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ABSTRACT

Context. Point source (PS) detection is an important issue for future cosmic microwave background (CMB) experiments since they
are one of the main contaminants to the recovery of CMB signal on small scales. Improving its multi-frequency detection would allow
us to take into account valuable information otherwise neglected when extracting PS using a channel-by-channel approach.
Aims. We aim to develop an artificial intelligence method based on fully convolutional neural networks to detect PS in multi-frequency
realistic simulations and compare its performance against one of the most popular multi-frequency PS detection methods, the matrix
filters. The frequencies used in our analysis are 143, 217, and 353 GHz, and we imposed a Galactic cut of 30◦.
Methods. We produced multi-frequency realistic simulations of the sky by adding contaminating signals to the PS maps as the CMB,
the cosmic infrared background, the Galactic thermal emission, the thermal Sunyaev-Zel’dovich effect, and the instrumental and PS
shot noises. These simulations were used to train two neural networks called flat and spectral MultiPoSeIDoNs. The first one considers
PS with a flat spectrum, and the second one is more realistic and general because it takes into account the spectral behaviour of the
PS. Then, we compared the performance on reliability, completeness, and flux density estimation accuracy for both MultiPoSeIDoNs
and the matrix filters.
Results. Using a flux detection limit of 60 mJy, MultiPoSeIDoN successfully recovered PS reaching the 90% completeness level at
58 mJy for the flat case, and at 79, 71, and 60 mJy for the spectral case at 143, 217, and 353 GHz, respectively. The matrix filters
reach the 90% completeness level at 84, 79, and 123 mJy. To reduce the number of spurious sources, we used a safer 4σ flux density
detection limit for the matrix filters, the same as was used in the Planck catalogues, obtaining the 90% of completeness level at 113,
92, and 398 mJy. In all cases, MultiPoSeIDoN obtains a much lower number of spurious sources with respect to the filtering method.
The recovering of the flux density of the detections, attending to the results on photometry, is better for the neural networks, which
have a relative error of 10% above 100 mJy for the three frequencies, while the filter obtains a 10% relative error above 150 mJy for
143 and 217 GHz, and above 200 mJy for 353 GHz.
Conclusions. Based on the results, neural networks are the perfect candidates to substitute filtering methods to detect multi-frequency
PS in future CMB experiments. Moreover, we show that a multi-frequency approach can detect sources with higher accuracy than
single-frequency approaches also based on neural networks.

Key words. techniques: image processing – submillimeter: galaxies – cosmic background radiation

1. Introduction

The search for point sources (PS) as contaminants to the recov-
ery of the cosmic microwave background (CMB) anisotropies at
small angular scales has become more and more relevant through
the years since the conception of the Wilkinson Microwave
Anisotropy Probe (WMAP, Bennett et al. 2003) and Planck
(Planck Collaboration IV 2020) missions. At millimetre wave-
lengths, most of the PS are dusty galaxies, mainly dusty star-
forming galaxies among which there are the most intense
stellar nurseries in the Universe, and blazars, that is active galac-
tic nuclei (AGNs), whose jets are aligned in the line of sight
of the satellite instrument. In this regime, they are one of the
main contaminants to the recovery of the CMB anisotropies on
small scales. The future CMB experiments, such as the Probe of

Inflation and Cosmic Origins (PICO, Hanany et al. 2019), the
CMB-S4 (Abazajian et al. 2019) and the Simons Observatory
(SO, Ade et al. 2019), all of them with higher resolution than
Planck, are designed to keep the PS contamination low. This can
be achieved by measuring at frequencies with lower PS contri-
bution, by taking the data in regions with robust extragalactic
surveys available, and mostly by developing high-performance
methods for PS detection.

Multi-frequency detection of PS is an important field of
research because the Planck successors will be able to observe
the sky at simultaneous wavelengths. The diffuse component
separation is possible with multi-wavelength information, but
the PS detection is not because they can have different phys-
ical properties, that is, each individual galaxy acting like a
PS has its own unique spectral behaviour. Therefore, the PS

Article published by EDP Sciences A110, page 1 of 11

https://doi.org/10.1051/0004-6361/202141874
https://www.aanda.org
mailto:casasjm@uniovi.es
https://www.edpsciences.org


A&A 658, A110 (2022)

detection is generally a task for single-frequency methods, and
the catalogues of extragalactic sources are extracted from CMB
maps one channel at a time. However, using this approach, valu-
able information that multi-wavelength experiments can offer
is wasted. Thus, it is appropriate to develop accurate multi-
frequency PS detection methods for future CMB experiments.

The first multi-frequency compact source detection meth-
ods made use of prior knowledge of the spatial profile of the
sources. Moreover, they needed to know that sources should
appear as compact objects in diffuse random fields, having the
source located in a noisy map in order to help the detection.
Some of those methods were wavelet techniques (Vielva et al.
2001, 2003; González-Nuevo et al. 2006; Sanz et al. 2006;
López-Caniego et al. 2007), Bayesian approaches (Hobson &
McLachlan 2003; Carvalho et al. 2009), linear filters (Sanz et al.
2001; Chiang et al. 2002; Herranz et al. 2002a,b; López-Caniego
et al. 2004, 2005a, 2005b), and matched filters (Tegmark & de
Oliveira-Costa 1998; Barreiro et al. 2003; López-Caniego et al.
2006).

An evolution of these methods was based on combining sim-
ulated multi-wavelength maps to obtain a higher average in the
signal-to-noise ratio of the sources. This approach was used in
Naselsky et al. (2002). Similarly, Chen & Wright (2008) com-
bined WMAP W and V bands, obtaining CMB-free maps that
helped them to detect the fainter sources. Although these meth-
ods detected a higher number of sources, they failed to recover
their flux density.

The matrix filters (MTXFs; Herranz & Sanz 2008) were
introduced as an intermediate approach of the above mentioned
methods. It looked for the detection of compact sources using
their distinctive spatial behaviour and multi-wavelength infor-
mation, but without the need to know their frequency depen-
dence. After being applied to realistic microwave sky LFI Planck
simulations (Herranz et al. 2009), MTXFs were used in Planck
Collaboration XXVIII (2014) to validate the LFI channels of
the Planck catalogue of compact sources (PCCS). After that,
they were used in Planck Collaboration LIV (2018) to pro-
duce the Planck multi-frequency catalogue of non-thermal (i.e.
synchrotron-dominated) sources (PCNT), which was the first
multi-frequency catalogue of compact sources covering the nine
Planck channels.

In the last years, machine learning techniques have repre-
sented a revolution in astrophysics and cosmology. One of the
most popular machine learning models concerns neural net-
works. These are artificial intelligence techniques inspired by
the human brain, and they can be trained to learn non-linear
behaviours from data by supervised or unsupervised learning
(Suárez Gómez et al. 2020, 2021; García Riesgo et al. 2019,
2020). These characteristics make neural networks a good can-
didate to obtain interesting results in cosmology. Some exam-
ples of recent applications of neural networks in this field are the
identification of galaxy mergers (Pearson et al. 2019) and strong
gravitational lenses (Petrillo et al. 2017; Hezaveh et al. 2017) in
astronomical images, a galaxy classifier (Kim & Brunner 2017),
a better estimation of cosmological constraints from weak lens-
ing maps (Fluri et al. 2019), a real-time gravitational wave detec-
tor (George & Huerta 2018), a high-fidelity generation of weak
lensing convergence maps (Mustafa et al. 2019), and cosmolog-
ical structure formation simulations under different assumptions
(Mathuriya et al. 2018; He et al. 2019; Perraudin et al. 2019;
Giusarma et al. 2019).

Multi-layer perceptron (Juez et al. 2012) and convolutional
neural networks (CNNs) (LeCun et al. 1989, 2015) have been
successfully applied to image processing (and related fields)

for modelling and forecasting (Graves et al. 2013; Giusti et al.
2013). An evolution of CNNs are the fully-convolutional neu-
ral networks (FCN) (Long et al. 2015; Dai et al. 2016), which
are usually applied in image segmentation to classify a labelled
object pixel-at-pixel by making use of different layers to learn
image patterns (e.g., shapes, smoothness, and borders). In order
to obtain relevant features of the input images, convolution and
merging layers are generally paired in convolution and decon-
volution steps. After that, the output (image or numerical) is
obtained.

Fully-convolutional networks were recently used to detect
PS in noisy microwave background simulations (Bonavera et al.
2021). The neural network, called PoSeIDoN, was trained at
217 GHz, and its performance was compared at 143, 217, and
353 GHz against the Mexican hat wavelet 2 (MHW2; González-
Nuevo et al. 2006), a single-frequency filtering method that was
used in the Planck experiment to detect PS at both LFI and
HFI channels, creating the Planck catalogue of compact sources
(Planck Collaboration XXVIII 2014) and the second Planck cat-
alogue of compact sources (Planck Collaboration XXVI 2016).
PoSeIDoN obtained similar results on completeness with respect
to the filter but with a much lower number of spurious detections.

In this work, we propose the use of FCN as a multi-frequency
generalisation of PoSeIDoN to develop the Multifrequency Point
Source Image Detection Network (MultiPoSeIDoN) to detect
compact sources in noisy background maps by using image
segmentation.

The outline of the paper is the following. Section 2 covers
how the simulated maps are generated. Section 3 describes our
methodology. The results are explained in Sect. 4, and our con-
clusions are discussed in Sect. 5.

2. Simulations

In this work, realistic simulated maps of the microwave sky
are used. These maps correspond to sky patches at the cen-
tral channels of the Planck mission: 143, 217, and 353 GHz.
The pixel size is 90 arcsec, which is a round number close
to the 1.72 arcmin used in the Planck maps, corresponding to
Nside = 2048 in the HEALPix all sky pixelisation schema (Górski
et al. 2005). Balancing between the density of bright sources per
patch and size, we consider that patches of 128× 128 pixels are
sufficient for our study.

The multi-frequency PS detection is studied with two differ-
ent sets of simulations. The first one consists of realistic simu-
lated maps whose PS contribution is from flat-spectrum sources,
that is, objects that have the same spectral behaviour in the three
channels. The other set of simulations have PS with different
spectral behaviours, thus also including in this case sources that
increase and decrease their emission with frequency.

In the first case, where only sources with a flat spectrum
have been considered, radio galaxies, mainly radio quasars and
BL lacertae objects (or simply BL Lacs), commonly known as
blazars, are simulated at 217 GHz using the model by Tucci
et al. (2011) and the software CORRSKY (González-Nuevo
et al. 2005). Then, in order to produce the simulated catalogue at
143, 217, and 353 GHz, the flux densities are convolved with the
corresponding instrumental FWHM (7.22, 4.90, and 4.92 arcmin
at 143, 217, and 353 GHz, respectively (Planck Collaboration
IV 2020). Although not substantially contributing to the statis-
tical properties of the background, the infrared late-type galax-
ies (IRLT, mainly starburst and local spiral galaxies; Toffolatti
et al. 1998) are also simulated in order to add their shot-noise
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contribution to the patches by adopting the source number counts
by Cai et al. (2013), normalised to the later update by Negrello
et al. (2013) and the software CORRSKY.

In order to obtain the set of simulations for the second case,
the spectral behaviour of radio and IRLT sources is assumed to
vary as

S = S 0

(
ν

ν0

)α
, (1)

where S is the flux density of the sources at each frequency ν, S 0
is the flux density at the central channel with frequency ν0, that
is, 217 GHz, and α is the spectral index.

The spectral index distribution for each population is esti-
mated in Planck at each frequency (Planck Collaboration XXVI
2016). For frequencies below 217 GHz, the emission is mostly
due to radio galaxies. Above such a frequency, most of the con-
tribution comes from the late-type galaxies. At 217 GHz, the
emission of both kind of sources is relevant to the total distribu-
tion. In our simulations, the spectral index is randomly chosen
according to the Gaussian distributions with mean and standard
deviation given in Planck Collaboration XXVI (2016).

To obtain realistic simulations at these frequencies, we also
consider the cosmic infrared background (CIB, Puget et al. 1996;
Hauser & Dwek 2001; Dole et al. 2006) emission due to high
redshift infrared PS (massive proto-spheroidal galaxies in the
process of forming most of their stellar mass, Granato et al.
2004; Lapi et al. 2006, 2011; Cai et al. 2013), which is domi-
nant at a few arcminute resolution, resulting in a contaminant for
the purpose of our work. To simulate them, the source number
counts given by Cai et al. (2013), their angular power spectrum
given by Lapi et al. (2011), and the software CORRSKY are
used. Their spectral behaviour is simulated by assigning them
the same spectral index as for the late-type galaxies. For all the
source populations (radio, late-type, and CIB) and frequencies,
we simulate them down to the same flux density limit of 3 µJy.

On larger angular scales, the contamination due to diffuse
emission by our Galaxy and the CMB are also considered.
Galactic emission varies significantly with frequency. Since our
simulations correspond to the 143, 217, and 353 GHz Planck
channels, only thermal dust emission (Finkbeiner et al. 1999)
from our Galaxy is simulated. Both CMB and thermal dust emis-
sions are introduced in the simulated maps by randomly selecting
patches at the same position where the sources were simulated.
On one hand, the CMB maps are the ones given at each fre-
quency by the SEVEM method (Martínez-González et al. 2003;
Leach et al. 2008; Fernández-Cobos et al. 2012). These maps
are the inpainted version to fill the empty pixels due to the mask
(both for the galactic plane and the PS) used during the compo-
nent separation process (see Planck Collaboration IV 2020, and
references therein). On the other hand, the thermal dust emission
is added at each frequency by using the Planck Legacy Archive
(PLA) simulations, which were produced using the Planck Sky
Model software (Delabrouille et al. 2013).

The Planck maps are at Nside = 2048, which corresponds to
a pixel size of 1.72 arcmin. The selected sky patches, which are
randomly chosen to be negligible the probability of having two
exact sky maps, are projected into flat patches of pixel size of
1.5 arcmin by using the gnomview function of HEALPix frame-
work (Górski et al. 2005). Small-scale fluctuations are added
to Galaxy emission by following the Miville-Deschênes et al.
(2007) method in order to simulate the sky at Planck resolution.
This method tries to reproduce the non-Gaussian behaviours of
the interstellar emission by increasing its fluctuation level as a
function of the local brightness (Leach et al. 2008).

The thermal Sunyaev-Zel’dovich effect produced by galaxy
clusters is also considered. This effect is generally negligible in
PS detection, but it is added for completeness. To simulate it,
PLA simulations are also used at each frequency, extracting the
patches at the same sky position as for the other components
(Delabrouille et al. 2002, 2013). Moreover, instrumental noise is
added to the simulations by considering white noise using the
Planck values: 0.55, 0.78, and 2.56 µKCMB deg for 143, 217, and
353 GHz, respectively (Planck Collaboration IV 2020).

In our work, we considered all the contributions listed above
as background ones, except for the PS. Overall, the background
at 143 GHz is mainly the emission from the CMB, and it
decreases while increasing the frequency. On the other hand, the
contamination due to our Galaxy and proto-spheroidal galaxies
increases at higher frequencies.

Examples of random simulated patches at the same location
in the sky are shown in the first two columns of Fig. 1 for 143,
217, and 353 GHz (top, middle, and bottom panels, respectively)
at b > 30◦ Galactic latitudes. The first column shows the back-
ground with the PS emission (i.e. the total images). The second
column represents the PS-only map.

3. Methodology

3.1. MultiPoSeIDoN

Mitchell and Goodfellow stated that a computer program is said
to learn from experience with respect to a class of tasks and per-
formance measures, if its performance improves with experience
(Mitchell 1997; Goodfellow et al. 2016). The method by which a
computer program learns is called machine learning. Neural net-
works are machine learning models inspired by the human brain
with the goal of learning non-linear behaviours from the data.
They are formed by connected layers of neurons, which are their
basic computing units. Neurons have weights that adjust their
value through a cost function on each step of training.

When the data have a known grid-like topology, the mod-
els used are called convolutional neural networks (CNN, LeCun
et al. 1989, 2015). In this case, the weights correspond to kernel
values, which are tensor-shaped arrays that model the connec-
tions between neurons. Every CNN is formed by convolutional
blocks. Each of them consist of a layer that performs convolu-
tions in parallel, followed by a set of linear activations, and by
a pooling function, which aggregates information by grouping
neighbouring pixels generally using their maximum or average
values.

The fully-convolutional neural networks (FCN, Long et al.
2015), which aim to classify each pixel instead of the whole
image to perform object segmentation, represent an evolution of
this model. They make both learning and inference on the whole
image at once through extracting the most relevant characteris-
tics of the image by using convolutional blocks while making a
prediction at each pixel by using deconvolutional blocks.

FCN, as any other neural network model, perform optimi-
sation procedures to obtain parameters from data through min-
imising a loss function. To drive the loss function to a minimum,
a gradient-based optimiser is used (Cauchy 1847). When the
loss function is adjusted, an algorithm called backpropagation
(Rumelhart et al. 1986) flows the information backward through
the network, changing the weights of the neurons. At the same
time, the optimiser learns by obtaining an unbiased estimate of
the gradient on a small set of samples called minibatch (Kiefer
& Wolfowitz 1952).
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Fig. 1. From left to right, one simulation for the spectral case with the total and PS-only input validation maps, and the MTXFs and MultiPoSeIDoN
PS outputs at 143, 217, and 353 GHz from top to bottom at b > 30◦ Galactic latitudes. The flux density values (in Jy) for each panel are shown in
the colour bars.

FCN are well-suited models for PS detection, as was con-
cluded in Bonavera et al. (2021), since they make inferences
through their convolutional blocks to detect PS in noisy maps,
while they make predictions through their deconvolutional
blocks to produce cleaned PS maps. With these output images,
the catalogues can be created and studied statistically.

MultiPoSeIDoN is the FCN developed in this work to detect
PS in noisy, multi-frequency background maps. It is a U-Net-
based neural network (Ronneberger et al. 2015) with two differ-
ent approaches: flat and spectral MultiPoSeIDoNs. The first one
is trained with a set of 50 000 simulations of background and PS
at 143, 217, and 353 GHz as inputs and a set of 50 000 simula-
tions of PS-only at 217 GHz as labels. The second one is trained
with a set of 50 000 simulations of background and PS and a set
of 50 000 simulations of PS-only. In this case, both sets of simu-
lations are at 143, 217, and 353 GHz as inputs and labels, respec-
tively. Therefore, 200 000 and 300 000 images in total are used to
train flat and spectral MultiPoSeIDoNs, respectively. Both train-
ing procedures are performed during 500 epochs (when an entire
dataset is passed forward and backward through the neural net-
work only once) by using a mean-squared error loss function
(MSE, Hastie et al. 2001) and the adaptive gradient algorithm
(AdaGrad, Duchi et al. 2011) to perform the learning with a rate
of 0.05 on each minibatch of 32 samples. These hyperparameters
were selected through a grid search.

The architectures for both flat and spectral MultiPoSeIDoNs
are detailed as follows (top and bottom pannel in Fig. 2 respec-
tively). First, the neural networks have a set of convolutional
blocks: flat MultiPoSeIDoN have six convolutional blocks con-
taining both convolutional and pooling layers with 8, 2, 4, 2,
2, and 2 kernels of sizes of 9, 9, 7, 7, 5, and 3, respectively.

Its feature maps are 8, 16, 64, 128, 256, and 512, respectively.
On the other hand, spectral MultiPoSeIDoN have the same num-
ber of layers, kernels, and kernel sizes, but, since we are using
three label images instead of one, as for the flat case, we need to
use threefold feature maps. In this case, they are 9, 18, 72, 144,
288, and 576. Both networks have a sub-sampling factor of 2.
The padding type ‘Same’ (an additional layer that adds ‘space’
around the input data or the feature map, which helps to deal
with possible loss in width and/or height dimensions in the fea-
ture maps after having applied the filters) is added in all the lay-
ers and the activation function is a leaky ReLU (Nair & Hinton
2010).

After that, the neural networks have a set of deconvolutional
blocks: flat MultiPoSeIDoN convolutional blocks are connected
to six inverse-convolutional (also called deconvolutional) plus
pooling layers with 2, 2, 2, 4, 2, and 8 kernels of sizes of 3, 5,
7, 7, 9, and 9, respectively. Its feature maps are 256, 128, 64,
16, 8, and 1. On the other hand, the spectral MultiPoSeIDoN
deconvolutional blocks are formed by the same number of lay-
ers, kernels, and kernel sizes, but its feature maps are 288, 144,
72, 18, 9, and 3, respectively. The sub-sampling factor is 2. The
padding type Same is added in all the layers, and the activation
function is a leaky ReLU. The feature maps resulting from the
five last convolutions are added as fine-grained features to the
results of the five first deconvolutions.

Both flat and spectral MultiPoSeIDoNs learn through their
convolutional blocks that a PS is located at a given position in the
background using the position and flux density information pro-
vided by the PS-only image, while their deconvolutional blocks
perform a PS segmentation from the total input maps, resulting
in a PS-only output image.
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8 feature maps

512 feature 
maps

Five 
convolutional 

blocks

First convolutional block

Fine-grained features addition

. . .

8 feature maps

Five 
deconvolutional 

blocks

Last deconvolutional block

9 feature maps

576 feature 
maps

Five 
convolutional 

blocks

First convolutional block

Fine-grained features addition

. . .

9 feature maps

Five 
deconvolutional 

blocks

Last deconvolutional block

Fig. 2. Architecture of flat (top panel) and spectral (bottom panel) MultiPoSeIDoNs. The first one has a convolutional block, which produces eight
feature maps. After that, the space dimensionality increases to 512 feature maps through five more convolutional blocks. The second one produces
9 and 576 feature maps in its first and last convolutional blocks, respectively. These layers are connected to deconvolutional ones, which decreases
the space dimensionality to eight and nine feature maps in the last deconvolutional block for flat and spectral MultiPoSeIDoNs, respectively.
Fine-grained features are added from each convolution to its corresponding deconvolution in both neural networks.

Both versions of MultiPoSeIDoN are trained with a large
number of simulations to prevent underfitting, and they are tested
during training using 5000 simulations isolated from the training
dataset to prevent overfitting. However, since the objective is to
predict a numerical flux density of the same type of object (i.e.
a point in a map), overfitting is not a problem because the main
goal is to deal with background in order to decrease the num-
ber of spurious sources (i.e. false positives) instead of detecting
different objects in an image. However, learning curves of train-
ing and test errors have been used to prevent overfitting during
training (Goodfellow et al. 2016). An example of a spectral Mul-
tiPoSeIDoN output patch (at 143, 217, and 353 GHz, from top

to bottom) is shown in the last column of Fig. 1. Similar output
images are obtained for the flat MultiPoSeIDoN case.

3.2. Matched matrix filters

The matched matrix filters (MTXFs, Herranz & Sanz 2008;
Herranz et al. 2009) was introduced as a method to detect
multi-frequency extragalactic PS using their distinctive spatial
behaviour, multi-wavelength information, and the fact that their
frequency dependence was not known a priori.

Let us consider a set of N two-dimensional images (chan-
nels) formed by PS and other foreground components mainly
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called generalised noise. The data model is defined by

Dk (x) = sk (x) + nk (x), (2)

where sk (x) is the term involving the PS and nk (x) is the one for
the generalised noise. The subscript k = 1, ...,N is the index of
each image. The term for the PS is defined as

sk (x) = Ak τk (x) (3)

where Ak is the unknown amplitude of the source in the kth chan-
nel and τk (x) is the known spatial profile of the source. On the
other hand, for the generalised noise, the MTXFs assume a zero
mean, i.e. 〈nk (x)〉 = 0, which can be characterised by its cross-
power spectrum:

〈nk (q)n∗l (q′)〉 = Pkl (q)δ2 (q − q′), (4)

where P = (Pkl) is the cross-power spectrum matrix and ‘*’
denotes complex conjugation.

For accurate photometry in each channel, one has to produce
N input maps and other N output maps. For a multi-wavelength
approach, one can define a set of N × N filters Ψkl, which allows
the input channels to help in the elaboration of the output maps.
Then, the filtered images for a set of data Dl can be defined as

ωk(x) =
∑

l

∫
d x′Ψkl (x − x′) Dl (x′)

=
∑

l

∫
d qe−i q x Ψkl (q) Dl (q), (5)

where ωk is the sum of a set of linear filters of the data Dl. The
root mean square (rms) of the filtered data is then estimated using
the square root of the variance:

σ2
ωk

=
∑

l

∑
m

∫
d qΨkl (q)Ψ∗km Plm (q). (6)

The set of filters Ψ that minimise the variance σωk for all k
channels, and for the same amplitudes Ak of the sources, as was
derived in Herranz & Sanz (2008), can be obtained by matrix
multiplication:

Ψ∗ = FP−1, (7)

where

Ψ = (Ψkl), F = (Fkl), P = (Pkl),
λ = (λkl), H = (Hkl), (8)

are N × N matrices for any q, and

Fkl = λkl τl,

λ = H−1,

Hkl =

∫
d qτk (q) P−1

kl τl (q). (9)

When the filters (7) are applied to a set of N images, the
filtered ones with values [ω1, ..., ωN] have the form

ωk =
∑

l

∫
d qΨkl (q) Al τl (q) = Ak. (10)

To avoid the fact that the flux density of a PS in the lth chan-
nel could leak into the kth filtered image, the filters satisfy an
orthonormality condition:∫

d qΨkl (q)τl (q) = δkl. (11)

Therefore, the filters are unbiased estimators of the flux density
of the PS for all N channels. Moreover, to avoid the possibil-
ity of statistical correlations between the generalised noise in the
lth and kth channels, the Hkl terms in Eq. (9) minimise the fil-
tered rms σωk to lower values than the ones achieved by single-
frequency matched filters (Herranz & Sanz 2008, Herranz et al.
2009).

Where the noise is uncorrelated through channels, the matrix
of filters are diagonal matrices with elements:

Ψ∗kl (q) = δkl
τk (q)/Pk (q)∫

d(q)τ2
k (q)/Pk (q)

, (12)

that is, the non-zero elements of the matrix filters are the com-
plex conjugates of the matched filters of each channel. When
the PS have symmetric profiles or statistically homogeneous
and isotropic noise, the MTXFs show the same performance
as the single-frequency matched filter, which is formed by real
values. Since for real foreground-contaminated data, the gener-
alised noise is neither homogeneous nor isotropic and is further
correlated between channels, MTXFs are one of the best-suited
methods to detecting multi-frequency PS.

With all these assumptions, one can conclude that MTXFs
detect PS by removing the generalised noise by filtering in the
scale domain of the sources and by cleaning out large-scale
structures localised in neighbouring channels. An example of
MTXF’s output patch (at 143, 217, and 353 GHz, from top to
bottom) is shown in the third column of Fig. 1.

4. Results

Once we obtained the outputs of MultiPoSeIDoN and the
MTXFs on the same validation simulations (a set of 5000 sim-
ulations isolated from train and testing datasets), we created the
input and output (with the detections) catalogues by searching
the local maxima of the sources, after introducing a threshold
in flux density of 60 mJy for the three models, and also a safer
4σ limit for the MTXFs, as the one used in Planck catalogues.
We also considered a detection when sources are separated by a
two-pixel minimum distance. Border effects are one of the main
problems of filtering techniques such as the MTXFs, because the
detection algorithm could consider some artefacts near the patch
border as spurious PS detections. As was concluded in Bonavera
et al. (2021), neural networks does not have to deal with border
effect issues, so the whole patch can be included in the analysis.
However, for the MTXFs, some pixels in the patch border must
be avoided. In our case, we removed five pixels both in width
and height. To asses our results, we performed a statistical anal-
ysis of the catalogues resulting from the outputs of both flat and
spectral MultiPoSeIDoNs, as well as for the MTXFs. The sta-
tistical quantities analysed are the completeness, the percentage
of spurious sources, and the flux density comparison between
the input and the recovered values (López-Caniego et al. 2007;
Planck Collaboration VII 2011, 2014, 2016, 2020; Hopkins et al.
2015). Completeness is the ratio between the number of recov-
ered true sources and the total number of input sources over a
given flux limit. It is defined by the relation

C (> S 0) =
Ntrue detected (> S 0)

Ninput (> S 0)
, (13)

where S 0 is the input flux density, Ntrue detected (> S 0) is the num-
ber of true detected sources by each method, and Ninput (> S 0)
is the number of sources in the PS-only input catalogue. The
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detected sources that do not have a counterpart in the input cat-
alogue (i.e. false positives) are called spurious sources. Their
number can be estimated using

R (S 0) =
Nspurious (> S 0)
Ninput (> S 0)

=
Noutput (> S 0) − Ntrue detected (> S 0)

Ninput (> S 0)
, (14)

where S 0 is the input flux density, Noutput (> S 0) is the number
of detected sources after having used each method, Ntrue detected (>
S 0) is the number of detected sources which are in both the input
and detection catalogues (i.e. true detections), and Ninput (> S 0)
is the number of sources in the PS-only input catalogue.

4.1. Completeness and spurious sources

The completeness (top sub-panel) and the percentage of spuri-
ous sources (bottom sub-panel) with respect to the input ones are
shown on the left column of Fig. 3. For the MTXFs (cyan solid
line), we obtain the expected results: using a detection limit of
60 mJy in flux density, the MTXFs provide good completeness
results for the three Planck channels, reaching the 90% com-
pleteness level at 84, 79, and 123 mJy for 143, 217, and 353 GHz,
respectively. We also used a 4σ limit (orange solid line) to reduce
the number of spurious detections, reaching the 90% complete-
ness level at 113, 92, and 398 GHz.

The percentage values of spurious sources are sensitive to
detection limits in flux density; more than 20% of the total
detected sources are spurious bellow 180 mJy at 143, and this
behaviour increases with frequency, reaching the same percent-
age value below ∼400 and 1200 mJy for 217 and 353 GHz,
respectively. The application of a 4σ detection limit for the flux
density does not improve these results much.

Flat (blue solid line) and spectral (red solid line) MultiPo-
SeIDoNs have a relatively similar completeness results at 143
and 217 GHz, reaching the 90% completeness level at 58 mJy
for a flat MultiPoSeIDoN and 79 and 71 mJy for a spectral Mul-
tiPoSeIDoN at 143 and 217 GHz, respectively. For 353 GHz,
the completeness results of MultiPoSeIDoN are much better
than for the MTXFs, reaching the 90% completeness level at
60 mJy. The clear advantage of MultiPoSeIDoN with respect to
the MTXFs is shown in the percentage of spurious sources panel:
both neural networks reach percentages of spurious sources of
20% below 100 mJy. Moreover, above the 90% of completeness
level, they detect sources with a percentage of spurious sources
between 0 and 10%. This behaviour is similar to that found in
Bonavera et al. (2021), when a single-frequency neural network
called PoSeIDoN was compared in completeness and percent-
age of spurious sources with the Mexican hat wavelet 2 (MHW2
González-Nuevo et al. 2006). The spurious PS issue is mainly
due to a strongly contaminant background when the emission
from our Galaxy and the CIB is higher. Therefore, obtaining
lower values of spurious sources implies that MultiPoSeIDoN
detects PS with higher accuracy than the MTXFs.

At 217 GHz, there is a peak in both flat and spectral cases,
showing a high number of spurious sources above 1000 mJy up
to about 4000 mJy. These peaks correspond to sources located
at the borders of the map. This small issue is due to the cata-
logue production on the MultiPoSeIDoN outputs rather than the
MultiPoSeIDoN detection capability.

By comparing the two versions of MultiPoSeIDoN, the flat
one performs slightly better than the spectral one based on the
results of completeness and reliability. This is explained by con-

sidering that spectral MultiPoSeIDoN have to deal with the spec-
tral behaviour of PS, challenging their detection, as in a realistic
case.

4.2. Photometry

In Fig. 3 (right column), we compare the recovered and input
flux density of the sources. On one hand, the MTXFs correctly
recover most of the flux densities above 100 mJy at 143 and 217,
respectively, and above 150 mJy at 353 GHz within a 10% rela-
tive error. However, below those flux density values, the filters
perform with a higher relative error, mainly due to very faint PS
that are hardly detectable and could be located near a CMB fluc-
tuation or a region with a high contamination from our Galaxy.
This effect is called the Eddington bias (Eddington 1913), which
is more visible at 353 GHz, when the contamination from the
background is higher.

On the other hand, both flat (blue dots) and spectral (red
dots) MultiPoSeIDoNs recover the flux density of the sources
quite well, especially the brighter ones (flux densities above
100 mJy), the flat version being slightly better than the spectral
one, as explained in the previous section. However, the results
are still very good even at the fainter flux densities (already
at 100 mJy for all the frequencies) with relative errors such as
5% for the flat case and between 7% and 10% for the spectral
case.

At 217 GHz, a double diagonal can be seen above 300 mJy
with a relative error of ±5%. This issue is due to a bad fitting
of the fainter IRLT sources by the network. At this frequency,
either IRLT and radio galaxies are in the training catalogue,
as was explained before. More particularly, in this regime, the
IRLT population is generally formed by fainter sources. This
bad fitting is due to a not sufficiently accurate assigned spec-
tral index value for the fainter IRLT sources, implying a worse
performance recovering the flux density of the sources for the
neural network at this frequency and flux density regime. How-
ever, MultiPoSeIDoN is removing part of the background that is
increasing the flux density of those sources, which is the main
objective of the network, and the detection is not affected at all
by this issue attending on the results of completeness and spuri-
ous detections.

4.3. Multi-frequency versus single-frequency point source
detection with fully convolutional networks

PoSeIDoN is a fully convolutional neural network designed to
detect PS in single-frequency noisy background maps. Its per-
formance was evaluated in Bonavera et al. (2021) by training it
at 217 GHz with 50 000 realistic simulated images of PS plus
contaminants such as CMB, CIB and thermal dust emissions,
the thermal Sunyaev-Zel’dovich effect, and instrumental noise. It
learned to detect PS with the help of 50 000 label images formed
by PS only (radio and IRLT galaxies). Its performance was com-
pared to the Mexican hat wavelet 2 filter (MWH2, González-
Nuevo et al. 2006), one of the most popular single-frequency
PS detection methods, which was used in the Planck experi-
ment to validate both LFI and HFI channels and to create both
PCCS and PCCS2 (Planck Collaboration XXVIII 2014; Planck
Collaboration XXVI 2016). The results have shown that PoSeI-
DoN has a similar completeness results to the filter, but with
much lower number of spurious detections, not only at the
frequency at which it was trained, but also at 143 GHz and
353 GHz. Therefore, they concluded that PoSeIDoN is a more
accurate and robust method.
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Fig. 3. Validation results of completeness (left column, top sub-panel), percentage of spurious sources (left column, bottom sub-panel), and flux
density comparison (right column) between the input sources and the recovered ones by flat (blue series) and spectral (red series) MultiPoSeIDoNs,
the MTXFs with a detection limit of 60 mJy (cyan series), and with a 4σ detection limit (orange series). The frequencies are 143 (top panels),
217 (middle panels), and 353 GHz (bottom panels) for a 30◦ Galactic cut. The dotted grey vertical line is the 90% completeness flux density limit
(177, 152, and 304 mJy for 143, 217, and 353 GHz, respectively) for the second Planck catalogue of compact sources (Planck Collaboration XXVI
2016).

The three statistical quantities explained above are used
to compare the performance between PoSeIDoN and Multi-
PoSeIDoN. Both neural networks are validated with the same
5000 simulations at 217 GHz. The detection limit of 60 mJy in
flux density and the two-pixel minimum distance between the
sources to create the detection catalogues are also the same for
both models.

As is shown in Fig. 4, the completeness results (left column,
top sub-panel) show that both flat and spectral MultiPoSeIDoNs
(blue and red solid lines respectively) show better performance
than the single-frequency neural network (green solid line),
reaching the 90% completeness level at 58 and 71 mJy, respec-
tively, while PoSeIDoN reaches it at ∼300 mJy. On the other

hand, the percentage of spurious sources (left column, bottom
sub-panel) shows that the detections of MultiPoSeIDoN are
more accurate since 20% of the PoSeIDoN detections are spu-
rious below 150 mJy, while for MultiPoSeIDoN the same per-
centage of spurious sources is obtained below 100 mJy.

The comparison between the flux density of input sources
(from the validation set) and of detected sources is shown at
the right column in Fig. 4 for the three neural networks. On
one hand, PoSeIDoN (green dots) tends to underestimate the
flux density of the recovered fainter sources (which was exactly
the opposite behaviour to the MHW2, as is shown in Bonavera
et al. 2021). On the other hand, both flat and spectral Multi-
PoSeIDoNs (blue and red dots, respectively) show much better
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Fig. 4. Validation results of completeness (left column, top sub-panel), percentage of spurious sources (left column, bottom sub-panel), and flux
density comparison (right column) between the input sources and the recovered ones by Flat (blue series) and Spectral (red series) MultiPoSeIDoNs
and PoSeIDoN (green series). The frequency is 217 GHz for a 30◦ Galactic cut. The dotted grey vertical line is the 90% completeness flux density
limit (152 mJy) for the second Planck catalogue of compact sources (Planck Collaboration XXVI 2016).

performance in recovering the flux density of the fainter PS, with
only a relative error between 5% and 10% below 100 mJy, while
PoSeIDoN has an up to 80% relative error below the same flux
density limit. For the more intense sources, the three neural net-
works recover the flux density of the detections quite well.

5. Conclusions

In this work, we successfully applied a modern approach for the
multi-frequency detection of point sources (PS) based on fully-
convolutional neural networks trained with realistic simulations
of images of the microwave sky. The patches of the images
have contributions from PS (radio and IR late-type galaxies), the
emission from the CMB and from the thermal dust of our Galaxy,
the contamination due to massive proto-spheroidal galaxies
(CIB), the thermal Sunyaev-Zel’dovich effect, and instrumental
noise using Planck values. The CMB maps are the ones from the
SEVEM method, and the Galaxy and Sunyaev-Zel’dovich con-
tributions are those provided by the PLA. The frequencies were
143, 217, and 353 GHz at b > 30◦ Galactic latitudes.

A total of 50 000 simulations of background plus PS and
50 000 PS-only simulations were used to train two neural net-
works: flat MultiPoSeIDoN is trained by assuming sources with
a flat spectrum (i.e. the sources had the same emission in all
the channels), and spectral MultiPoSeIDoN uses simulations
considering sources with a spectral behaviour. In that case, the
emission from radio galaxies is higher at 143 GHz, whereas at
353 GHz IR late-type galaxies have more impact on the maps.
The spectral behaviour is simulated by using the spectral index
of each population after fitting their gaussian distributions plot-
ted in PCCS2 (Planck Collaboration XXVI 2016).

After the training, 5000 simulations (isolated from the train-
ing dataset) are used to validate both flat and spectral Mul-
tiPoSeIDoNs and our comparison method, the matrix filters
(MTXFs). Then, they are compared using their completeness,
percentage of spurious sources, and flux density estimation
values. Applying a detection limit of 60 mJy, MultiPoSeIDoN
performs better than the MTXFs, especially when dealing with
spurious sources. It reaches the 90% completeness level at
58 mJy for the flat case and 79, 71, and 60 mJy for the spectral
case at 143, 217, and 353 GHz, respectively. The filter reaches
the 90% completeness level at 84, 79, and 123 mJy. Of these
detections, the percentage of spurious ones detected by the neu-

ral networks is 20% below a flux density of 100 mJy, decreasing
it to values between 0 and 10% above that flux density value.
For the filter, the percentage of spurious detections is higher than
20% below 180 mJy at 143 GHz. For the other frequencies, more
than 20% of detections are spurious below ∼400 and 1200 mJy.
Using the 4σ limit does not help to improve these results.

Based on these results, MultiPoSeIDoN has a similar com-
pleteness to the MTXFs at 143 and 217 GHz, but it is better
at 353 GHz. For all those detections, the ones from the neu-
ral network are more reliable, especially for the sources with
higher intensity, although we used a safer 4σ detection limit.
As expected, the performance of the matrix filter is worse at
higher frequencies, when the contamination from our Galaxy
and the CIB is higher. However, the neural network demon-
strates a rather equal performance at these higher frequencies.
Based on that behaviour, we can assume that the parameters that
model the spectral behaviour of the foreground components are
successfully learned by MultiPoSeIDoN. Therefore, we antici-
pate that the higher contamination from the foregrounds would
only weakly affect the performance of the neural network at
higher frequencies than 353 GHz, or in regions inside the Galac-
tic mask, where the contamination from our Galaxy has limited
the Planck Collaboration when it comes to creating a reliable
catalogue of compact sources in those regions. However, those
two possibilities are outside the scope of this work.

The results on photometry show that both flat and spectral
MultiPoSeIDoNs perform well in recovering the flux density of
the sources, especially the brighter ones. On the other hand, the
MTXFs are affected by the Eddington Bias at higher flux densi-
ties than the neural networks.

Another advantage of MultiPoSeIDoN with respect to the
MTXFs is that we do not need to subtract pixels from the patch
borders to avoid the border effect issue of the filtering meth-
ods. Therefore, the whole patch was considered in the analysis,
allowing MultiPoSeIDoN to detect sources located at the patch
border.

The comparison between both neural networks shows that
flat MultiPoSeIDoN performs slightly better than the spectral
case for the three statistical quantities. However, spectral Mul-
tiPoSeIDoN successfully obtains results considering that it is a
more general and realistic method.

MultiPoSeIDoN can be considered as an evolution of its
single-frequency relative, PoSeIDoN, because the performance
of the multi-frequency approach is better than the one in
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the single-frequency case, especially regarding the photometry
results: MultiPoSeIDoN recovers the flux density of the fainter
sources with a much lower relative error (a mean difference of
∼70% with respect the results of PoSeIDoN). There are two main
reasons for that: the first one is the increasing of the training
information. The flat case was trained with twice the amount
of information for PoSeIDoN, and the spectral one had three
times the information. The second reason is that MultiPoSeI-
DoN learned the different correlations between the elements in
the simulations due to their spectral behaviours.

As a future perspective, MultiPoSeIDoN could be trained for
other CMB experiments such as the Q-U-I JOint Tenerife experi-
ment (QUIJOTE, Rubiño-Martín et al. 2012), LiteBird, or PICO.
It could be used to study CMB P-polarization modes to com-
pare its performance against a recent Bayesian method, which
uses images of realistic simulations with P-polarized compact
sources (Herranz et al. 2021). Another interesting study could
be to use MultiPoSeIDoN in multi-frequency component sepa-
ration, training it to segmentate the CMB from the other fore-
ground components.
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