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Abstract: The aim of this paper is to analyze the dynamic relationship between 

economic growth and CO2 emissions for a set of 98 countries over the lengthy 

period from 1951 to 2014. We describe the topology and hierarchy of countries 

and introduce a different concept of economic performance based on the idea of 

dynamic regimes. These regimes are defined by the average levels of per capita 

CO2 emissions and the growth rates of per capita GDP. By presenting a non-

 
1Research Group in Economic Dynamics (GIDE) - Departament of Quantitative Methods, Facultad de 

Ciencias Económicas y de Administración - Universidad de la República (Montevideo, Uruguay) Full 

postal address: Gonzalo Ramirez 1926 - 11200 - Montevideo, Uruguay. E-mail addresses: 

gbrida@ccee.edu.uy; vsegarra@ccee.edu.uy;  

mailto:matesanzdavid@uniovi.es
about:blank
about:blank


2 
 

parametric clustering technique, the paper identifies two main groups. One 

cluster can be identified as the group of developed countries, which presents a 

homogeneous structure and tends towards more similar dynamics over time. The 

other cluster, associated with developing countries, is homogeneous but the 

dynamics of the countries do not show convergence. The study also finds some, 

though little, mobility between groups. 
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1. Introduction 

Greenhouse gas emissions (GHGs) are major contributors to global climate 

change and the greenhouse effect, and consequently to global warming. The fifth 

International Panel on Climate Change (IPCC) report stated that over half of the 

observed increase in global average surface temperature from 1951 to 2010 was 

caused by an anthropogenic increase in greenhouse gas concentrations and 

other anthropogenic activities with a 95% confidence interval. It maintains that 

the key factors leading to increased GHG emissions are, among others, 

economic activity and energy use. A more recent summary for policymakers by 

the IPCC (IPCC, 2018) stated that “human activities are estimated to have 

caused approximately 1.0°C of global warming above pre-industrial levels, with a 

likely range of 0.8°C to 1.2°C.” At the same time, the world economy has 

multiplied more than fourfold since 1970, while in per capita terms this ratio is 2.2 

(using data from the United Nations Conference on Trade and Development, 

UNCTAD2). In this fashion, the aim of decoupling economic growth from 

environmental pressures and its impact is a key issue in international political 

agendas (OECD 2019, IRP 2019). 

The nexus between energy consumption, emissions, and economic growth has 

received considerable attention over the years by both policymakers and 

researchers as achieving long-term sustainable economic growth has gradually 

become a major global concern. Consequently, a vast number of studies have 

 
2 Data available online at: https://unctadstat.unctad.org/EN/ 
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been conducted to examine relationships between rising carbon emissions3, 

energy consumption, economic growth, and other variables. Most of these 

studies have confirmed the idea that economic growth and energy use have a 

significant effect on CO2 emissions (e.g., Atta Mills et al., 2020; Gardiner and 

Hajek, 2020; Antonakakis et al., 2017, among others). Referenced studies have 

employed different countries, time periods, proxy variables, and diverse 

methodologies. For instance, Amin et al. (2020) explored the dynamic 

relationship between CO2 emissions, urbanization, trade openness, and 

technological innovation for 13 Asian countries over the period 1985–2019. The 

authors employed panel cointegration and causal models and found bidirectional 

causality between these variables and CO2 emissions. Munir et al. (2020) 

examined the relationship between emissions, energy use, and economic growth 

in the five initial countries of the Association of Southeast Asian Nations (ASEAN) 

over the 1980–2016 period. By considering cross-sectional dependence, they 

found considerable heterogeneity among the countries and brought to light 

previous misleading results about the Environmental Kuznets Curve (EKC) and 

causality in those countries. Among other conclusions, they reported causality 

running from income to emissions for all five countries with the exception of 

Indonesia. Gardiner and Hajek (2020) used variance decomposition and 

cointegration models to assess the causal relationship between energy 

consumption, CO2 emissions, and economic development in European Union 

countries. They found long‐run equilibrium relationships among their variables 

 
3 CO2 emissions accounted for 76% of global emissions of greenhouse gases (GHGs) in 2015, 

by far the most significant contributor to climate change (EPA, 2017). 
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and some heterogeneity in short-term causal relationships. Vujović et al. (2018) 

applied neuro-fuzzy methods to research CO2 emission intensity based on 

alternative, fossil, and renewable energy and the connections between economic 

growth and CO2 emission intensity. Among other results, they found that CO2 

emissions intensity from solid fuel has the highest influence on economic growth. 

Narayan et al. (2016) studied the dynamic relationship between economic growth 

and CO2 emissions for 181 countries by employing an approach based on cross-

correlation estimates. They found that only 21 out of 181 countries (12%) support 

the idea of the Kuznets Curve hypothesis. However, they showed that increases 

in income reduced future emissions for 49 countries (27%). Chang et al. (2019) 

employed the LMDI decomposition method to investigate the time- and spatial-

dynamics of drivers such as population, affluence, energy intensity, and carbon 

intensity governing global CO2 emissions. Among other results, they showed that 

economic development, among other drivers, serves as a factor in accelerating 

carbon emissions. They also reported significant heterogeneities in the spatial 

dynamics of the contribution of different drivers. Lean and Smyth (2010) found a 

non-linear relationship between emissions and real output for five ASEAN 

countries in the period 1980–2006, consistent with the EKC hypothesis. However, 

they did not report consistent long-run causality between the two variables. 

The specific literature about the nexus between CO2 emissions and economic 

growth mostly concerns the EKC framework (Kuznets, 1855). The EKC 

hypothesis postulates an inverted U-shaped relationship between different 

pollutants and per capita income. As such, environmental degradation increases 

up to a certain level as income rises until, at a certain threshold, it starts to 

decrease. Since the study by Grossman and Krueger (1991), the EKC hypothesis 
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has been widely tested, however the empirical results, as expected, are not 

categorical. For instance, Galeotti et al. (2009), Saboori et al. (2012), Shahbaz et 

al. (2013), He et al. (2017), Acheampong (2018), and Munir et al. (2020) provided 

evidence on the validity of the EKC hypothesis. On the contrary, Azam 

(2016) and Antonakakis et al. (2017) found a monotonic rising curve, while other 

researchers found mixed results for the countries under study, as was the case 

for Narayan et al. (2016), Muhammad (2019), and Liu et al. (2020), among others. 

The clear policy implications regarding the EKC hypothesis are that 

environmental degradation will switch to a downward trend once economic 

development reaches a certain threshold, which implies that development is 

following a green path. This would be the ideal situation, as it implies that 

economic growth is decoupled from environmental degradation as Wu et al. 

(2018) showed for OECD countries, Cohen et al. (2018) for the top 20 country 

emitters and, to a certain extent, Xiao-Wei et al. (2016) and Liu et al. (2019) for 

China, among other studies. On the contrary, if economic growth increases CO2 

emissions, then economic development still occurs at the expense of the 

environment, meaning the economy needs to make growth more environmentally 

friendly as economic growth and emissions are still coupled (e.g., as Andreoni 

and Galmarini, 2012, found for the Italian economy or Aye and Edoja, 2017, for 

31 developing countries). 

As previously mentioned, the literature on this hot topic is diverse, extremely rich, 

and vast. As a result, quite a few surveys on different aspects of the issue have 

appeared. For instance, Wiedenhofer et al. (2020) and Haberl et al. (2020) 

systematically identified and screened more than 11,500 scientific papers (they 

about:blank#b52
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ultimately conducted an in-depth review of 825 studies) to obtain a broad view of 

the relationship between economic growth, resource use, and greenhouse gas 

emissions. Mardani et al. (2019) presented a systematic review of empirical 

studies on this issue over the past 20 years, carefully analyzing 175 empirical 

papers. Waheed et al. (2019) presented a survey of the empirical literature on 

the direction of causality between economic growth and carbon emissions, 

economic growth and energy consumption, and energy consumption and carbon 

emissions. Dinda (2004) and Purcel (2020) created extensive and in-depth 

surveys on the specific issue of the EKC hypothesis. 

Considering the topic of this study, the most relevant results emerging from such 

extensive literature can be summarized in two main ideas. The first idea is that 

the results are inconclusive and strongly depend on the methodologies, time 

periods, countries or regions selected, and the variables employed. Results 

undoubtedly differ from one country to another according to the economic 

characteristics of each one. Second, connections and causality between 

economic growth and CO2 emissions are relevant and have important policy 

implications. At the same time, it seems to be clear that some countries—

especially, though not only, developed ones—have achieved a certain degree of 

progress in decoupling their economic growth path from their pollutant emissions. 

Recently, some studies have used hierarchical structure methods to explore 

connections between economic growth, carbon emissions, and other variables 

(Kantar and Keskin, 2013; Deviren and Deviren, 2016; Kantar et al., 2016; Kantar 

et al., 2019; and de Souza Mendonça et al., 2020). In general, these studies 

describe the topology and hierarchy of different groups of countries, periods, and 
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variables. For instance, Kantar and Keskin (2013) studied the connections 

between energy consumption and economic growth in a sample of 30 Asian 

countries across the period 1971–2008. Deviren and Deviren (2016) analyzed 

the relationship between economic growth and emissions in 33 developed and 

developing countries over the period 1970–2010. Kantar et al. (2016) conducted 

research on electricity consumption and economic growth to detect the 

topological properties of 64 countries from 1971 to 2008. Kantar et al. (2019) 

examined the hierarchical structures of carbon dioxide emissions and three main 

sectors, namely electricity/heat, manufacturing/construction, and transportation, 

in 84 countries over the period 1971–2012. These three papers employed the 

concepts of minimum spanning trees (MST) and hierarchical trees (HT) as we did 

in our study. Lastly, de Souza Mendonça et al. (2020) used hierarchical 

regression modeling to ascertain the impact of economic activity, population 

growth, and renewable energy generation on CO2 emissions in the 50 largest 

world economies over the period 1990–2015. However, this study does not 

employ clustering networks such as MST or HT. 

These studies found that countries are grouped into geographical clusters or in 

terms of their level of development. Additionally, developed countries are at the 

center of the networks and are, consequently, more important nodes within said 

networks, particularly in terms of carbon emissions. The approximation we 

employ in this study is closely related to the abovementioned network studies. 

Our study relies on an approximation similar to the aforementioned studies. 

Specifically, this study contributes to the empirical literature on the topic by 

focusing on the intense diversity across countries and regions. The aim of this 
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paper is to analyze the dynamic relationship between economic growth and CO2 

emissions for a set of 98 countries during the lengthy period spanning from 1951 

to 2014. The paper introduces the economic regime concept, whose two-

dimensional form extends the reading of economic performance. In so doing, it 

analyzes the behavior of two variables for a group of countries using a non-

traditional (non-parametric) statistical model: the minimum spanning tree and the 

hierarchical tree. Our study contributes to comparing the dynamic behaviors of 

different countries without bearing in mind any one specific model. This approach 

allows us to identify groups of countries with similar dynamic behaviors for which 

models of the same type could be employed. In this sense, the study is directly 

interested in the heterogeneity present in the connections between the two 

variables and the consequences for the empirical analysis and policy 

implications. 

To the best of our knowledge, this is the first study to use the concept of economic 

regimes applied to economic growth and carbon emissions and to describe the 

topology and hierarchy of the dynamics presented in our sample of 98 developed 

and developing countries for the lengthy 1951–2014 period. 

The rest of the study is organized as follows: The next section presents the data 

and numerical methods we employed. Section 3 introduces the minimum 

spanning tree and the hierarchical tree concepts and presents the results of this 

network approach for two sub-periods from our sample: 1951–1999 and 2000–

2014. In Section 4 we introduce a time-windows analysis to study the cluster 

dynamics of the cluster we found in the previous section and, finally, Section 5 

presents our conclusions and indicates directions for further research. 
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2. Data and methodology 

Economic growth (x) is represented by the growth rate of per capita GDP 

measured at constant 2011 US$. We obtained these data from the Maddison 

Project Database available online at https://www.rug.nl/ggdc/. In the same 

manner, global CO2 emissions (y) are expressed in per capita terms and were 

retrieved from the Carbon Dioxide Information Analysis Center (CDIAC), 

available online at http://cdiac.esd.ornl.gov (Boden, Marland and Andres, 2017). 

Global CO2 emission data comes from gaseous, liquid, and solid fuel 

consumption and are expressed in metric tons of carbon per person. The data 

set includes 98 countries over the period 1951–2014. Countries were selected so 

as to represent all the geographical regions over this extended period. Armed 

with these two variables, we transformed them into symbolic series in order to 

focus on the trajectories that countries follow over time. We describe the 

dynamics of a country as a sequence of economic regimes (see Brida, Puchet 

and Punzo, 2003; Brida and Punzo, 2003). The partition of the state space is 

defined by the annual average of rate of growth of per capita GDP (𝜇𝑥), and the 

annual average of the level of metric tons of CO2 emissions per person (𝜇𝑦). In 

this case, we split the state space into 4 different regimes or regions determined 

by 𝜇𝑥 and 𝜇𝑦. 

Figure 1 shows the partition of state space defined by the average values 

of 𝜇𝑥 and 𝜇𝑦. Each data point represents the position of a country in a single year 

while the green lines represent the mean of emissions and growth for the whole 

period. As expected, most of the data points are close to the average emissions 

about:blank
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and economic growth. In the same manner, we can see that the data points are 

evenly spread around the average growth rate. For example, the lower part of 

Figure 1 shows the same information, but only for 2014. When we look at a single 

year, it is clear that greater heterogeneity can be found and the data points are 

not evenly distributed along the partitions we previously defined. 

INSERT FIGURE 1 BY HERE 

Next we describe the qualitative behavior of any country by using the notion of 

regime. Broadly speaking, an economic regime characterizes a particular 

qualitative behavior that is different from the others. Therefore, any change of 

regime represents a signal of some qualitative transformation. In the present 

study, the selection of the average values as thresholds is exogenous and 

consequently our results are contingent upon these exogenous cut-offs.  

To explore these qualitative changes we substitute our bi-dimensional time series 

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥T, 𝑦T)} for a sequence of symbols: 𝑠 = {𝑠1, 𝑠2, … , 𝑠𝑇} such 

that 𝑠𝑡 = 𝑗 if and only if (𝑥𝑡, 𝑦𝑡) belongs to a selected state space region, 𝑅𝑗. As 

previously mentioned, we defined four regions in the following way:4 

 

𝑅1 = {(𝑥𝑡, 𝑦𝑡) ∶ 𝑥𝑡 ≤ 𝜇𝑥𝑡
 ,  𝑦𝑡 ≥ 𝜇𝑦𝑡

} 

 𝑅2 = {(𝑥𝑡, 𝑦𝑡): 𝑥𝑡 ≥ 𝜇𝑥𝑡
 , 𝑦𝑡 ≥ 𝜇𝑦𝑡

} 

𝑅3 = {(𝑥𝑡, 𝑦𝑡) ∶ 𝑥𝑡 ≥ 𝜇𝑥𝑡
 , 𝑦𝑡 ≤ 𝜇𝑦𝑡

} 

 
4 The boundaries of the different regimes are defined by means of ≥ or ≤ because the probability of 

being in two regimes at the same time is 0. 
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𝑅4 = {(𝑥𝑡, 𝑦𝑡) ∶ 𝑥𝑡 ≤ 𝜇𝑥𝑡
 , 𝑦𝑡 ≤ 𝜇𝑦𝑡

} 

where, for example, R1 is the regime of low GDP growth and high per capita CO2 

emissions, so a country occupying that period would be slow-growing and a 

polluter. The other regimes can be interpreted similarly. At this point, we can 

ignore the precise values for GDP growth rates and per capita CO2 emission 

levels and describe an economy’s evolution based on the regime changes that 

have occurred throughout its history. This gives us a rough description of the 

dynamic, telling us only what regime an economy was in at a given point in time. 

Focusing on the environmental side, we can see regimes 3 and 4 are those 

wherein a country is emitting lower-than-average per capita metric tons of CO2. 

Regime 3 represents the best possible behavior: lower emissions and higher 

growth than the average. On the other hand, regimes 1 and 2 show worse-than-

average environmental performance, with regime 1 representing the worst 

situation: higher emissions and lower growth than the average. Table 1 shows 

the percent of the year that each country is in each regime and the acronyms we 

use in the figures throughout the paper. 

INSERT TABLE 1 AROUND HERE 

Figure 2 shows different trajectories across regimes for selected countries5. We 

can observe intense heterogeneity in the behavior that countries experience over 

the time period. 

 
5 This figure includes globally relevant countries (United States, China, Japan, Germany,etc.); countries 

that change groups between periods—see final part of Section 3—such as Sweden, Spain, Portugal, or 

Venezuela, and some other countries (Libya, Equatorial Guinea, or Saudi Arabia). 
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INSERT FIGURE 2 BY HERE 

For instance, some countries never reside in regimes 3 and 4 (e.g., Germany, 

Denmark, U.S.A., United Kingdom, Australia, South Africa, or Poland). On the 

other hand, other countries never reside in regimes 1 and 2 (e.g., India, Albania, 

Argentina, Bolivia, Egypt, Gambia, Iraq, Philippines, or Thailand). Lastly, a 

smaller group of countries move across the most regimes over the time period 

(e.g., Bulgaria, Cyprus, South Korea, Finland, Hong Kong, Hungary, Portugal, or 

Sweden).  

 

3. Regimes and clustering dynamics 

After verifying the heterogeneity present in country dynamics when it comes to 

the different regimes they occupy over time, we created a topology and hierarchy 

according to their dynamic economic-environmental behavior. We employed a 

non-parametric methodology based on the non-loop networks of MST and HT. 

These methods were pioneered in economics and finance by Mantegna (1999) 

and Mantegna and Stanley (2000). To build these networks, we defined a metric 

distance between the dynamical performances of each pair of countries. This 

“distance’’ measures how close two countries are in their respective regime 

dynamics. Several distances can be postulated (see Piccardi, 2004; Molgedey 

and Ebeling, 2000; Tang et al., 1994; Tang et al., 1995 and Tang et al., 1997). 

We have chosen the most used notion of distance for symbolic time series: the 

discrete metric distance. Given the symbolic sequences {𝑠𝑖𝑡}𝑡=1
𝑡=𝑇 and {𝑠𝑗𝑡}

𝑡=1

𝑡=𝑇
 the 

distance between two countries 𝑖 and 𝑗 is given by: 
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 𝑑(𝑠𝑖, 𝑠𝑗) = ∑ 𝑓(𝑠𝑖𝑡 , 𝑠𝑗𝑡);    

64

𝑡=1

𝑓(𝑠𝑖 , 𝑠𝑗) = {
0  𝑠𝑖 𝑠𝑖𝑡 = 𝑠𝑗𝑡

1  𝑠𝑖 𝑠𝑖𝑡 ≠ 𝑠𝑗𝑡
 ;   𝑡 = 1, … ,64;  𝑖 = 1, . . . ,98 

 

That is, each of the 64 adding terms is 0 if countries i and j are in the same regime 

at that time, or 1 if are not in the same regime. Thus, we obtained a distance that 

takes on a value of 0 if the two countries coincide in the same regime throughout 

the entire period and takes on a maximum value of 64 if the two have not 

coincided at any point in the same regime during the period under consideration.  

To build the hierarchical tree, we employed the nearest-neighbor single-linkage 

cluster algorithm as described in Mantegna and Stanley (2000). This technique 

uses an aggregative process that directly uses the distance matrix. We began by 

connecting the closest countries, meaning those with the shortest distance 

between them (in our case, France and Austria had the shortest distance which 

was equal to 10). We then proceeded by linking the remaining countries 

according to their distances to the previously connected countries. For instance, 

the shortest distance after France and Austria is the same for Canada and the 

US, with a distance of 11. The next shortest distance belongs to Belgium. In this 

case, Belgium joins the group initially formed by France and Austria (distance 

equal to 12). Proceeding in this manner, we constructed a tree with the 98 

countries and 97 links among them. As clearly observed, the distance between 

clusters is given by the minimum distance between each pair of countries. This 

is how the minimum spanning tree (Kruskal, 1956) was gradually constructed. 

This construction is represented in a graph of n vertices corresponding to each 
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country and n-1 links where the most relevant links for each particular country are 

selected. 

It is also possible to construct a hierarchical organization, or hierarchical tree, 

using the single-linkage clustering algorithm (Johnson, 1967) in which “similar” 

objects (i.e., single commodities or groups of commodities) are clustered in each 

step according to their characteristics. This classical agglomerative single-linkage 

algorithm enables the construction of a hierarchical dendrogram to illustrate the 

clustering characteristics of the data organization. 

By means of the MST and the HT, we extracted country clusters that showed 

similar dynamic performance over the state space partitions. 

Figures 2 and 3 show the HT and the MST for the entire period for our group of 

98 countries.  

INSERT FIGURES 3 and 4 BY HERE 

A set of indicators were considered in order to determine the optimal number of 

clusters using the Pseudo-F (Calinski and Harabasz, 1974) and the Pseudo-

𝑡2 (Duda and Hart, 1973) methodologies. In this study, both tests indicated that 

the optimal number of groups is 5 (2 main groups and 3 outliers).  

Two large groups were detected and only three isolated countries forming their 

own single-country cluster6 were detected (Iran, Equatorial Guinea, and North 

Korea). The two clusters are composed of the following countries: 

 
6 If we consider the maximum number of possible clusters, which is eight, the results do not change much. 

In this latter case, we found that only Barbados is left out of the green group, forming a single-country 

cluster, and Romania and Bulgaria formed their own clusters and, consequently, are separated from the 
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1. Cluster one is formed by countries that are mostly located in regimes 3 

and 4 (regimes with lower-than-average per capita CO2 emissions). We 

colored and labeled this as the green group. Geographically, countries in 

this group are mostly located in Asia, Africa, and Latin America and the 

Caribbean. Specifically, the countries in this cluster are: Afghanistan, 

Albania, Argentina, Barbados, Bolivia, Brazil, Cameroon, Chile, China, 

Colombia, Costa Rica, Cuba, Democratic Republic of the Congo, Djibouti, 

Dominican Republic, Ecuador, Egypt, El Salvador, Gambia, Ghana, 

Guatemala, Guinea-Bissau, Haiti, Honduras, India, Indonesia, Iraq, 

Jamaica, Jordan, Kenya, Lebanon, Liberia, Madagascar, Mauritius, 

Mexico, Mongolia, Morocco, Mozambique, Myanmar, Nepal, Nicaragua, 

Nigeria, Panama, Paraguay, Peru, Philippines, Saint Lucia, Sierra Leone, 

Sri Lanka, Syria, Thailand, Togo, Tunisia, Turkey, Uganda, and Uruguay. 

2. Cluster two on the other hand is formed by countries with dynamic 

performance that are mostly located in regimes 1 and 2 (regimes with 

higher-than-average per capita CO2 emissions). We colored and labeled 

this as the pink group. In this case, the countries in this group are mostly 

located in North America, Europe, and Oceania and some other petrol 

abundant countries such as Venezuela, Saudi Arabia, and others. The 

countries in this cluster are: Australia, Austria, Belgium, Bulgaria, Canada, 

Cyprus, Denmark, Ethiopia, Finland, France, Germany, Greece, Hong 

Kong, Hungary, Iceland, Ireland, Israel, Italy, Japan, South Korea, Libya, 

Luxembourg, Malta, Netherlands, New Zealand, Norway, Poland, 

 
pink group. Therefore, essentially, there are no relevant changes in the topology and hierarchy of the 

dataset. 
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Portugal, Romania, Saudi Arabia, South Africa, Spain, Sweden, 

Switzerland, Taiwan, Trinidad and Tobago, United Kingdom, United 

States, and Venezuela.  

Map 1 shows the geographical distribution of the clusters we obtained.  

INSERT MAP 1 BY HERE 

In fact, it is readily apparent that we can split our dataset into developed (pink 

group) and developing countries (green group) with a few outliers as we 

previously pointed out. This configuration is easily explained: Figure 4 shows per 

capita GDP rate of growth (upper part) and per capita metric tons of CO2 

emissions (lower part) for clusters one and two. 

INSERT FIGURE 5 BY HERE 

We clearly observed three relevant features. Firstly, per capita emissions are 

much higher in the pink group than the green group over the whole period 

(despite the pink group having reduced its growth trend during the eighties, 

nineties, and particularly in the new century). Secondly, per capita economic 

growth is significantly higher for the pink group during the second half of the past 

century, but since then the green group took the advantage in terms of rates of 

growth. This situation is especially clear after the 2008-2009 global financial 

crisis. Thirdly, we intuitively observed a correlation between the two variables, 

though this was not the subject of this study. 

It seems that per capita emissions somehow dominate the dynamics in this 

structural view of the whole period. However, changes in the dynamics of the 

variables around the end of the past century inside the two clusters highlight the 
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interest of analyzing what happened during the past century. Therefore, we 

repeated the analysis for both sub-periods: 1951–1999 and 2000–2014. Map 2 

shows a world map wherein the countries have been colored according to their 

clustering group. 

INSERT MAP 2 BY HERE 

This map presents our analysis for the 2000–2014 period in comparison to the 

previous period from 1951 to 1999. The green and pink colors represent the 

countries that, over the 2000–2014 period, remain in the same group as during 

the previous period from 1951 to 1999. Countries not included in our analysis are 

shown in gray. Lastly, those countries that switch clusters between the two 

periods are marked in red. The lower part of Map 2 presents a table detailing the 

group that each of the countries that switch belonged to in the previous period. 

Only Romania and North Korea move to the group of lower pollutant countries. 

However, only Romania leaves the pink group for the green as North Korea forms 

a single-country group in the previous period. On the contrary, countries such as 

South Korea, Hong Kong, Spain, or Venezuela, among others, switch to the more 

pollutant group (as most of them became developed countries during the lengthy 

period from the fifties to the end of the century). Portugal, on the other hand, 

abandons the green group in the second period and forms a greener self-group. 

Sweden and Switzerland create their own group in 2000–2014 when they were 

previously in the pink cluster, or the pollutant group. This new group seems to be 

less pollutant than the average of the pink group and, therefore, represents a 

successful green change between the two periods (see Figure 2 to see the 

countries’ trajectories over the whole period). 
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Note that most of the countries in our dataset (80 out of 98) remain in the cluster 

in which they were located during the lengthy previous period 1951–1999, this 

being the most relevant, and somewhat surprising, feature in the dynamics of our 

group of countries. 

To check the results of this part of the study, we extended our analysis by 

including an exercise using GDP per capita levels instead of its variations. Aside 

from this difference, we ran the analysis in the same manner. In doing so, we 

looked more directly at the role of developed and developing countries in relation 

to global CO2 emissions. Figures and tables with the results from this new 

approach are included as an annex. 

From this exercise, we show that, essentially, the two groups we previously found 

still hold. Only 15 countries of the 98 switch from their original group while the 

rest stay in their same previous group when using per capita GDP variations (see 

dendrogram, Figure S2). Switching countries are marked in italics and underlined 

in Table S1. Out of those, only South Korea, Malta, and Taiwan switch from the 

pink to the green group while the remaining 12 countries move and become 

outliers or move from being outliers to join the green or pink groups. Details of 

these movements are presented in Table S2. 

As mentioned, we still obtain the “green” group, formed by the less pollutant and 

low GDP per capita level countries, and the “pink group” which includes high 

income and high CO2 emitter countries. Therefore, the picture does not change 

much in comparison to the choice of variations with GDP as the income variable. 
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We also see that 55 countries remain in the same regime throughout the time 

sample (see Table S1, light gray cells). This is due to the economic inequality 

observed in the world. In our period of analysis, most developed countries had 

much higher than average income and their CO2 emissions per capita were much 

higher than the average as well. The opposite applies to less developed countries 

as well. In this sense, by using GDP per capita variations, we focused on the 

economic dynamic rather than looking at the evolution of level positions. 

 

4. Global distance and convergence 

This section presents an analysis of the evolution inside and between the groups 

we found in the previous section. To do so, we defined the evolution of the global 

distance inside the MST as the sum of their 97 links (corresponding to the 98 

countries included in our dataset). The global distance therefore is a kind of 

diameter of the sample whose dimensions are measured in terms of the size of 

the MST. Consequently, the evolution of the global distance reflects the 

expansion or contraction of this diameter over time. This is interesting for 

analyzing whether countries are converging towards or diverging (on average) 

from the same type of regime dynamics. Divergence is understood as the spread 

of the size of the branches in the MST. On the other hand, a convergence path 

is observed when the tree is diminishing in size. 

Figure 5 shows the evolution of the global distance for an overlapping window of 

ten years.  

INSERT FIGURE 6 BY HERE 
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As is easily observed in the evolution of the MST diameter for all countries, the 

observed trend shows a clear converging path. Considering that we identified two 

clear groups with different dynamics, we extend this analysis to our two different 

groups. When we look at our two groups, it is clear that the size of the pink cluster 

experienced fairly significant changes in its configuration while the green cluster 

shows no major changes. The figure shows that the pink group tends to be more 

compact, while the trend of the green group remains relatively constant. 

5. Conclusion  

This paper presents a non-parametric clustering technique based on the dynamic 

regime concept and symbolic time series. This methodology is applied to a set of 

98 countries over the 1951–2014 period to analyze the relationship between per 

capita economic growth and carbon emissions. Our study contributes to the 

literature on this topic focused on comparing the dynamic behavior in the 

relationship between our variables without any specific model in mind. This 

approach allows us to identify groups of countries with similar dynamic 

performance and that show clustering results that a traditional analysis of causal 

relations between carbon emissions and economic growth would not bring to light 

(see Haberl et al, 2020). 

First, two well-differentiated clusters were endogenously marked out. These 

groups basically correspond to developed and developing countries, which is in 

line with other studies such as those by Kantar and Keskin (2013), Deviren and 

Deviren (2016), Kantar et al. (2016), and Kantar et al. (2019). Additionally, 

homogeneous performances were found within the two clusters.  
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A second remarkable behavior that can be found in this analysis is the presence 

of larger disparities in the “developing” country group than in the “developed” one. 

While “developed” countries have converged among themselves in their 

dynamics, the “developing” countries have shown a tendency to maintain the 

dispersion of the group over time. We might think that developed countries as a 

group are converging in their dynamics to a progressive decoupling of economic 

growth from carbon emissions and, consequently, confirmation of the existence 

of an EKC as Narayan et al. (2016) and Chen et al. (2018) pointed out. 

Developing countries seem to be still far from the peak point of their CO2 

emissions and the time to reach said peak differs greatly from one to another, as 

some studies suggest (IEA, 2020; Jiang et al. 2019; Levin and Rich, 2017) 

We found little mobility of countries between groups when we looked at the 

different periods (specifically, 1951–1999 and 2000–2014). This result is 

somewhat surprising as international environmental agreements have been 

implemented over the past decades and, consequently, more friendly 

environmental policies have been proposed, especially by developed countries. 

However, today developed countries are still the highest per capita emitters and 

consequently they should make the largest effort to reduce emissions. The 

significant differences between per capita CO2 emissions levels in developed 

and developing groups seem to be behind this result (see Fig. 4). Only Sweden 

and Switzerland have abandoned the pollutant group to create a new greener 

group. In a similar manner, Portugal became a developed country at the end of 

the century, but it did not join the pollutant group as other countries such as Spain, 

South Korea, or Hong Kong did. In this situation, the average per capita 
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emissions of the two groups we found are very different, which is the most likely 

explanation for the low mobility between the groups. 

Future research should focus on a more in-depth study of these two 

heterogenous groups. Despite the fact that they behave like a homogeneous 

performance group, we may find different environmental and economic behaviors 

within them. Building regimes that consider this question could be a further 

extension of this study. 

By using this methodology, homogenous countries in terms of the long-term 

growth and CO2 emissions relationship emerge. This is especially useful for 

governments to find similar countries to learn from. Is important for countries to 

focus on improving their development policies by looking to countries with similar 

but better performance trajectories and factor endowments. 

The non-parametric methods we used made it possible to integrate other 

variables into the study (social, institutional, economic, etc.) to analyze the effect 

of these variables on the conformation of the clusters and their dynamic 

performance. This could be a topic of future research.  
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FIGURE 1: Upper part: Data partition in the state space for the set of 98 countries for the whole 
period. Lower part: Data partition in the state space for the set of 98 countries during 2014 
Sources: Maddison project database (MPD) and Carbon Dioxide Information Analysis Center 

(CDIAC). Authors’ calculations 
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FIGURE 2: Representation of regimes 

dynamics during the period 1951-2014. 
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FIGURE 3: 
Hierarchical tree of the set of 98 countries for the period 1951–2014. 

Sources: Maddison project database (MPD) and Carbon Dioxide Information Analysis Center 

(CDIAC). Authors’ calculations 
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FIGURE 4: 
Minimum Spanning Tree of the set of 98 countries for the period 1951–2014. 

Sources: Maddison project database (MPD) and Carbon Dioxide Information Analysis Center 

(CDIAC). Authors’ calculations 
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FIGURE 5: 
Per capita GDP (annual rates of growth) and CO2 emissions (metric tons of carbon, in levels) 

Sources: Maddison project database (MPD) and Carbon Dioxide Information Analysis Center 

(CDIAC). Authors’ calculations 
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FIGURE 6: Evolution of the diameter of the MST and the diameter of the portion of the MST 

corresponding to each cluster, for windows of 10 years. Sources: Maddison project database (MPD) 
and Carbon Dioxide Information Analysis Center (CDIAC). Authors’ calculations 
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Map 1. Regime Clusters for the whole period (1951-2014). In green cluster 1, pink cluster 2, in 

blue we show single-country clusters. Finally, we use gray color for not included countries in our 

dataset. 
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Country 1951-1999 2000-2014 

Barbados 1 3 

Cyprus 1 2 

North Korea 3 1 

Equatorial Guinea 1 2 

Greece 3 2 

Hong Kong 1 2 

Iran 1 2 

South Korea 1 2 

Libya 3 2 

Malta 1 2 

Portugal 1 4 

Romania 2 1 

Saudi Arabia 3 2 

Spain 1 2 

Sweden 2 3 

Switzerland 2 3 

Taiwan 1 2 

Venezuela 3 2 

 

 

Map 2. Mobility between clusters. Periods 1951-1999 and 2000-2014. In green, countries that 

remain in cluster 1 when compared to the previous period. In pink, the same information 

regarding cluster 2. In red, we show countries that have switched their group when comparing 

to the period 1951-1999. Finally, gray represents countries not included in our dataset. The 

lower table shows the countries’ changes between periods. Group 1 corresponds to the green 

group while number 2 is the pink group. Groups 3 and 4 correspond to different, smaller groups. 
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Country Code R1 R2 R3 R4 TOTAL 

AFGHANISTAN AFG 0% 0% 30% 70% 100% 

ALBANIA ALB 0% 0% 62% 38% 100% 

ARGENTINA ARG 0% 0% 47% 53% 100% 

AUSTRALIA AUS 62% 38% 0% 0% 100% 

AUSTRIA AUT 41% 59% 0% 0% 100% 

BARBADOS BRB 11% 0% 56% 33% 100% 

BELGIUM BEL 44% 56% 0% 0% 100% 

 BOLIVIA BOL 0% 0% 34% 66% 100% 

BRAZIL BRA 0% 0% 55% 45% 100% 

BULGARIA BGR 38% 48% 9% 5% 100% 

REPUBLIC OF CAMEROON CMR 0% 0% 23% 77% 100% 

CANADA CAN 52% 48% 0% 0% 100% 

CHILE CHL 0% 0% 56% 44% 100% 

CHINA (MAINLAND) CHN 0% 13% 62% 25% 100% 

COLOMBIA COL 0% 0% 47% 53% 100% 

COSTA RICA CRI 0% 0% 55% 45% 100% 

CUBA CUB 2% 0% 48% 50% 100% 

CYPRUS CYP 27% 20% 37% 16% 100% 

 D. P. R. KOREA PRK 17% 26% 16% 41% 100% 

D. R. CONGO  COD 0% 0% 30% 70% 100% 

DENMARK DNK 59% 41% 0% 0% 100% 

DJIBOUTI DJI 0% 0% 27% 73% 100% 

DOMINICAN REPUBLIC DOM 0% 0% 58% 42% 100% 

ECUADOR ECU 0% 0% 47% 53% 100% 

EGYPT EGY 0% 0% 53% 47% 100% 

EL SALVADOR SLV 0% 0% 36% 64% 100% 

EQUATORIAL GUINEA GNQ 8% 14% 44% 34% 100% 

ETHIOPIA ETH 58% 41% 0% 1% 100% 

FINLAND FIN 41% 51% 3% 5% 100% 

FRANCE (INCLUDING MONACO) FRA 38% 61% 0% 1% 100% 

GAMBIA GMB 0% 0% 33% 67% 100% 

GERMANY DEU 45% 55% 0% 0% 100% 

GHANA GHA 0% 0% 45% 55% 100% 

GREECE GRC 30% 31% 31% 8% 100% 

GUATEMALA GTM 0% 0% 36% 64% 100% 

GUINEA BISSAU GNB 0% 0% 50% 50% 100% 

HAITI HTI 0% 0% 28% 72% 100% 

HONDURAS HND 0% 0% 30% 70% 100% 

HONG KONG  HKG 12% 30% 41% 17% 100% 

HUNGARY HUN 40% 50% 5% 5% 100% 

ICELAND ISL 41% 59% 0% 0% 100% 

INDIA IND 0% 0% 62% 38% 100% 

INDONESIA IDN 0% 0% 67% 33% 100% 

IRAQ IRQ 0% 0% 47% 53% 100% 

 IRAN IRN 16% 17% 37% 30% 100% 

IRELAND IRL 42% 58% 0% 0% 100% 

ISRAEL ISR 33% 67% 0% 0% 100% 

ITALY (INCLUDING SAN MARINO) ITA 39% 42% 19% 0% 100% 

JAMAICA JAM 0% 0% 41% 59% 100% 

JAPAN JPN 33% 51% 16% 0% 100% 

JORDAN JOR 0% 0% 39% 61% 100% 

KENYA KEN 0% 0% 33% 67% 100% 

REPUBLIC OF KOREA KOR 5% 37% 45% 13% 100% 

LEBANON LBN 0% 0% 53% 47% 100% 

LIBERIA LBR 0% 0% 31% 69% 100% 

LIBYAN ARAB JAMAHIRIYAH LBY 47% 26% 22% 5% 100% 

LUXEMBOURG LUX 44% 56% 0% 0% 100% 

MADAGASCAR MDG 0% 0% 14% 86% 100% 
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MALTA MLT 16% 28% 44% 12% 100% 

MAURITIUS MUS 0% 0% 58% 42% 100% 

MEXICO MEX 0% 0% 53% 47% 100% 

MONGOLIA MNG 5% 11% 42% 42% 100% 

MOROCCO MAR 0% 0% 36% 64% 100% 

MOZAMBIQUE MOZ 0% 0% 48% 52% 100% 

MYANMAR (FORMERLY BURMA) MMR 0% 0% 67% 33% 100% 

NEPAL NPL 0% 0% 45% 55% 100% 

NETHERLANDS NLD 53% 47% 0% 0% 100% 

NEW ZEALAND NZL 58% 42% 0% 0% 100% 

NICARAGUA NIC 0% 0% 34% 66% 100% 

NIGERIA NGA 0% 0% 45% 55% 100% 

NORWAY NOR 47% 53% 0% 0% 100% 

PANAMA PAN 0% 0% 59% 41% 100% 

PARAGUAY PRY 0% 0% 41% 59% 100% 

PERU PER 0% 0% 50% 50% 100% 

PHILIPPINES PHL 0% 0% 50% 50% 100% 

POLAND POL 38% 62% 0% 0% 100% 

PORTUGAL PRT 17% 9% 55% 19% 100% 

ROMANIA ROU 24% 39% 23% 14% 100% 

SAINT LUCIA LCA 0% 0% 45% 55% 100% 

SAUDI ARABIA SAU 45% 30% 22% 3% 100% 

SIERRA LEONE SLE 0% 0% 44% 56% 100% 

SOUTH AFRICA ZAF 80% 20% 0% 0% 100% 

SPAIN ESP 31% 33% 28% 8% 100% 

SRI LANKA LKA 0% 0% 53% 47% 100% 

SWEDEN SWE 45% 47% 2% 6% 100% 

SWITZERLAND CHE 58% 30% 0% 12% 100% 

SYRIAN ARAB REPUBLIC SYR 0% 0% 45% 55% 100% 

TAIWAN TWN 6% 39% 50% 5% 100% 

THAILAND THA 0% 0% 75% 25% 100% 

TOGO TGO 0% 0% 34% 66% 100% 

TRINIDAD AND TOBAGO TTO 41% 58% 0% 1% 100% 

TUNISIA TUN 0% 0% 61% 39% 100% 

TURKEY TUR 0% 0% 66% 34% 100% 

UGANDA UGA 0% 0% 45% 55% 100% 

UNITED KINGDOM GBR 61% 39% 0% 0% 100% 

UNITED STATES OF AMERICA USA 53% 47% 0% 0% 100% 

URUGUAY URY 0% 0% 50% 50% 100% 

VENEZUELA VEN 58% 41% 1% 0% 100% 

 

Table 1. 98 Selected countries, acronyms and percentage of time every country in each 

regime. 1951-2014. 
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ANNEX. SUPPLEMENTARY FIGURES/TABLES 

 

 

 

FIGURE S1:  GDP and CO2 emissions per capita levels.  
Upper part: Data partition in the state space for the set of 98 countries for the whole period  
Lower part: Data partition in the state space for the set of 98 countries during 2014 
Sources: Maddison project database (MPD) and Carbon Dioxide Information Analysis Center 

(CDIAC). Authors’ calculations 
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FIGURE S2:  GDP and CO2 emissions per capita levels. Hierarchical tree of the set of 98 countries 
for the period 1951–2014. 
Sources: Maddison project database (MPD) and Carbon Dioxide Information Analysis Center 

(CDIAC). Authors’ calculations 

 

 

Country Code R1 R2 R3 R4 TOTAL  

Afghanistan AFG 0% 0% 0% 100% 100% 

Albania ALB 0% 0% 0% 100% 100% 

Argentina ARG 0% 0% 84% 16% 100% 

Australia AUS 0% 100% 0% 0% 100% 

Austria AUT 0% 100% 0% 0% 100% 

Barbados BRB 9% 2% 84% 5% 100% 

Belgium BEL 0% 100% 0% 0% 100% 

Bolivia BOL 0% 0% 0% 100% 100% 

Brazil BRA 0% 0% 0% 100% 100% 

Bulgaria BGR 34% 52% 2% 13% 100% 

Cameroon CMR 0% 0% 0% 100% 100% 

Canada CAN 0% 100% 0% 0% 100% 

Chile CHL 0% 0% 30% 70% 100% 

China CHN 13% 0% 0% 88% 100% 

Colombia COL 0% 0% 0% 100% 100% 

Costa Rica CRI 0% 0% 0% 100% 100% 

Cuba CUB 2% 0% 3% 95% 100% 
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Cyprus CYP 0% 47% 44% 9% 100% 

North Korea PRK 44% 0% 0% 56% 100% 

Democratic Republic of the Congo COD 0% 0% 0% 100% 100% 

Denmark DNK 0% 100% 0% 0% 100% 

Djibouti DJI 0% 0% 17% 83% 100% 

Dominican Republic DOM 0% 0% 0% 100% 100% 

Ecuador ECU 0% 0% 0% 100% 100% 

Egypt EGY 0% 0% 0% 100% 100% 

El Salvador SLV 0% 0% 0% 100% 100% 

Equatorial Guinea GNQ 0% 22% 0% 78% 100% 

Ethiopia ETH 98% 0% 0% 2% 100% 

Finland FIN 0% 92% 8% 0% 100% 

France FRA 0% 98% 2% 0% 100% 

Gambia GMB 0% 0% 0% 100% 100% 

Germany DEU 0% 100% 0% 0% 100% 

Ghana GHA 0% 0% 0% 100% 100% 

Greece GRC 0% 61% 20% 19% 100% 

Guatemala GTM 0% 0% 0% 100% 100% 

Guinea-Bissau GNB 0% 0% 0% 100% 100% 

Haiti HTI 0% 0% 0% 100% 100% 

Honduras HND 0% 0% 0% 100% 100% 

Hong Kong HKG 0% 42% 53% 5% 100% 

Hungary HUN 36% 55% 9% 0% 100% 

Iceland ISL 0% 100% 0% 0% 100% 

India IND 0% 0% 0% 100% 100% 

Indonesia IDN 0% 0% 0% 100% 100% 

Iraq IRQ 0% 0% 55% 45% 100% 

Iran IRN 28% 5% 2% 66% 100% 

Ireland IRL 0% 100% 0% 0% 100% 

Israel ISR 0% 100% 0% 0% 100% 

Italy ITA 0% 81% 19% 0% 100% 

Jamaica JAM 0% 0% 0% 100% 100% 

Japan JPN 0% 84% 3% 13% 100% 

Jordan JOR 0% 0% 0% 100% 100% 

Kenya KEN 0% 0% 0% 100% 100% 

South Korea KOR 0% 42% 0% 58% 100% 

Lebanon LBN 0% 0% 44% 56% 100% 

Liberia LBR 0% 0% 0% 100% 100% 

Libya LBY 5% 69% 19% 8% 100% 

Luxembourg LUX 0% 100% 0% 0% 100% 

Madagascar MDG 0% 0% 0% 100% 100% 

Malta MLT 0% 44% 8% 48% 100% 

Mauritius MUS 0% 0% 14% 86% 100% 

Mexico MEX 0% 0% 14% 86% 100% 

Mongolia MNG 16% 0% 0% 84% 100% 
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Morocco MAR 0% 0% 0% 100% 100% 

Mozambique MOZ 0% 0% 0% 100% 100% 

Myanmar MMR 0% 0% 0% 100% 100% 

Nepal NPL 0% 0% 0% 100% 100% 

Netherlands NLD 0% 100% 0% 0% 100% 

New Zealand NZL 0% 100% 0% 0% 100% 

Nicaragua NIC 0% 0% 0% 100% 100% 

Nigeria NGA 0% 0% 0% 100% 100% 

Norway NOR 0% 100% 0% 0% 100% 

Panama PAN 0% 0% 3% 97% 100% 

Paraguay PRY 0% 0% 0% 100% 100% 

Peru PER 0% 0% 0% 100% 100% 

Philippines PHL 0% 0% 0% 100% 100% 

Poland POL 91% 9% 0% 0% 100% 

Portugal PRT 0% 27% 44% 30% 100% 

Romania ROU 63% 0% 0% 38% 100% 

Saint Lucia LCA 0% 0% 0% 100% 100% 

Saudi Arabia SAU 0% 75% 25% 0% 100% 

Sierra Leone SLE 0% 0% 0% 100% 100% 

South Africa ZAF 61% 39% 0% 0% 100% 

Spain ESP 0% 64% 36% 0% 100% 

Sri Lanka LKA 0% 0% 0% 100% 100% 

Sweden SWE 0% 92% 8% 0% 100% 

Switzerland CHE 0% 88% 13% 0% 100% 

Syria SYR 0% 0% 0% 100% 100% 

Taiwan TWN 0% 45% 8% 47% 100% 

Thailand THA 0% 0% 0% 100% 100% 

Togo TGO 0% 0% 0% 100% 100% 

Trinidad and Tobago TTO 23% 75% 2% 0% 100% 

Tunisia TUN 0% 0% 0% 100% 100% 

Turkey TUR 0% 0% 2% 98% 100% 

Uganda UGA 0% 0% 0% 100% 100% 

United Kingdom GBR 0% 100% 0% 0% 100% 

United States USA 0% 100% 0% 0% 100% 

Uruguay URY 0% 0% 38% 63% 100% 

Venezuela VEN 50% 48% 2% 0% 100% 

 

Table S1. GDP and CO2 emissions per capita levels. 98 Selected countries, acronyms and 

percentage of time in each regime. 1951-2014. 

Italics and underlined: countries that moved from group (comparing to analysis of per capita 

GDP rate of growth) 

Light grey cells: countries staying in the same regime the overall period 
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Argentina and Barbados become outliers (previously placed in the green group) 
 
Bulgaria, Ethiopia, Hungary, Poland, Portugal, Romania, South Africa and Venezuela become outliers 
(previously placed in the pink group) 
 
Equatorial Guinea and Iran join the green group (previously outliers) 
 
South Korea, Malta and Taiwan moved away from pink to green group (these are the only countries 
moving between groups) 

 

 

 Table S2. Switching countries information 

 


