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In bears, reproduction is dependent on the body reserves accumulated during hyperphagia. The Cantabrian brown
bear mainly feeds on nuts during the hyperphagia period. Understanding how landscape heterogeneity and vegetation
productivity in human-dominated landscapes influence the feeding habits of bears may therefore be important for
disentangling species-habitat relationships of conservation interest. We determined the spatial patterns of nut con-
sumption by brown bears during the hyperphagia period in relation to landscape structure, characteristics of fruit-
producing patches and vegetation productivity. For this purpose, we constructed foraging models based on nut con-
sumption data (obtained by scat analysis), by combining vegetation productivity data, topographical variables and
landscape metrics to identify nut foraging patterns during this critical period for bears. The average wooded area of
patches where scats were collected and where the nuts that the bears had consumed were produced was larger than
that of the corresponding patches where nuts were not produced. For scats collected outside of nut-producing patches,
the distance between the scats and the patches was greatest for chestnut-producing patches. Elevation, Gross Primary
Production (GPP) and the Aggregation Index (AI) were good predictors of acorn consumption in the models. Good
modelfits were not obtained for data on chestnut consumption in bears. Thefindings confirm that brown bears feeding
on nuts show a preference for relatively large, highly aggregated patches with a high degree of diversity in the land-
scape pattern, whichmay help the bears to remain undetected. The nut predictionmodel highlights areas of particular
importance for brown bears during hyperphagia. The human presence associated with sweet chestnut forest stands or
orchards may make bears feel more vulnerable when feeding.
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1. Introduction

Landscape heterogeneity influences multiple processes, such as ecosys-
tem functioning, population persistence and animal movements (Fahrig
et al., 2011; Fahrig and Nuttle, 2005; Johnson et al., 1992; Matthiopoulos
et al., 2020). Habitat conditions and resource supply are unevenly distrib-
uted across the landscape, affecting the spatial ecology of animal species
(Avgar et al., 2013; Doherty and Driscoll, 2018; Nathan et al., 2008;
Roshier et al., 2008; With, 2019) and conditioning choices such as those
made by frugivorous species about what to eat and where to move
(Fryxell et al., 2008). At the landscape scale, animal distributions are af-
fected by two components of landscape heterogeneity (Fahrig et al.,
2011; Fahrig and Nuttle, 2005): composition, i.e. the number of land
cover types and their relative importance (Fahrig, 2003; Walz, 2011), and
configuration, i.e. the spatial organization of the landscape elements
(Bevanda et al., 2015; Villard and Metzger, 2014). Both components deter-
mine the availability of resources for animal species, which can therefore be
affected in space and time by the level of productivity of the resources. The
resource productivity thus constitutes an important factor for species distri-
butions in critical seasons, such as periods of high nutritional requirements.

The importance of each component is highly dependent on the specific
response of the species and the fragmentation threshold of the habitat
(Bascompte and Sole, 1996; Pardini et al., 2010; Ritchie et al., 2009;
Smith et al., 2011; Wiegand et al., 2005). The spatial heterogeneity of a
landscape is sensitive to scale (Díaz-Varela et al., 2016; Díaz-Varela et al.,
2009; Turner et al., 1989; Wu, 2004), thus affecting species-habitat rela-
tionships (Gastón et al., 2017; Mateo-Sánchez et al., 2014; Wheatley and
Larsen, 2018), which on the other hand may reflect seasonal differences
in resource availability and use (McLoughlin et al., 2010).

For long-lived species with low reproductive rates, such as the brown
bear (Ursus arctos L.), reproduction is determined by nutritional status
(Hertel et al., 2018; López-Alfaro et al., 2013). Brown bears accumulate
fat reserves during hyperphagia (Di Domenico et al., 2012), before the hi-
bernation period, when reproductive females give birth in dens. It has
been estimated that at least 19%of body fat reserves are required to support
female bear reproduction (López-Alfaro et al., 2013). The diet of the
European brown bear is composed of a variety of types of food (Bojarska
and Selva, 2012; Naves et al., 2006). However, during hyperphagia, the
Cantabrian brown bear population, fragmented into eastern and western
subpopulations (Gonzalez et al., 2016; Pérez et al., 2014) and located at
the southwestern limit of its distribution, mainly consumes nuts produced
by trees such as Quercus sp. and Fagus sylvatica L. (Bojarska and Selva,
2012; Naves et al., 2006). Long-term climate related changes in the avail-
ability of some other resources, such as the decrease in the availability of
Vaccinium fruits, are already increasing the contribution of nuts to the
bear diet (Rodríguez et al., 2007).

Bears are particularly sensitive to food availability during hyperphagia
due to the high energy requirements associated with reproduction (Welch
et al., 1997). Nut-producing species show high interannual variability in
nut production: fruiting may fail in some years, while it will be normal in
other years, and bumper crops will occur in other years, referred to as
mast years (Pemán et al., 2013). Clevenger et al. (1992) observed fruiting
failure in Quercus sp. and F. sylvatica in the Cantabrian Mountains for up
to 4 consecutive years, in some cases coinciding in both species. Further
studies claim that some tree species located at the limits of their distribu-
tion, such as beech (F. sylvatica) and Atlantic oaks (Q. petraea (Matt.)
Liebl. and Q. robur L.), may suffer a drastic reduction in the Cantabrian
Mountains in the context of climate change (Dyderski et al., 2017), thus fur-
ther intensifying the changes in the bear diet (Navarro et al., 2021). Climate
change is known to affect primary productivity, one of the most important
ecosystem functions (Stocker et al., 2019; Tang et al., 2019) and on which
fruiting depends (Journé et al., 2021). An increase in the frequency of ex-
treme events, such as prolonged droughts, heatwaves and heavy rainfall,
is also expected and could negatively affect forest productivity, as already
demonstrated (Nussbaumer et al., 2018). However, the productivity of spe-
cies such as thermophilic oaks (Q. faginea Lam., Q. ilex L.) and sweet
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chestnut (Castanea sativa Mill.), the nuts of which already form part of the
bear diet (Naves et al., 2006; Rodríguez et al., 2007), may even increase
under future climate change scenarios (Pérez-Girón et al., 2020).

In autumn, bears can both increase the size of their home range and vary
the elevational gradient at which they live, in the search for food resources
rich in digestible energy that meet their dietary needs (Pop et al., 2018).
Bears particularly favour acorns (Di Domenico et al., 2012; Naves et al.,
2006) and chestnuts (Rodríguez et al., 2007), which are efficiently con-
verted to body fat (Pritchard and Robbins, 1990). However, Angelis et al.
(2021) suggested that this behaviour corresponds to seasonal migrations
driven by years in which fruiting fails, and it therefore does not occur
every year. In this context, exceptional bear aggregations have been associ-
ated with occurrences of large variations in food availability during hyper-
phagia, particularly in micro-regions where oak acorn production remains
high despite widespread fruiting failure across the landscape (Ballesteros
et al., 2018).

Remote sensing provides continuous, powerful information on plant
productivity that can be used as a good proxy for assessing the
availability of food resources to animals (Radeloff et al., 2019). Previ-
ous studies on brown bears in the Cantabrian Mountains have used re-
mote sensing approaches such as the normalized difference vegetation
index (NDVI), which is specifically related to ecosystem productivity
and has proved useful for understanding general species-habitat rela-
tionships (Wiegand et al., 2008). However, this is not the only index re-
lated to ecosystem productivity. Dynamic habitat indexes (DHIs)
summarize cumulative productivity, minimum productivity and sea-
sonality, three key measures of plant productivity (Radeloff et al.,
2019), and provide valuable information about ecosystem productivity
that could be used to explain long-term habitat use patterns (Razenkova
et al., 2020). Thus, given the predominantly frugivorous nature of
brown bears during hyperphagia, vegetation productivity indices may
be useful for explaining nut consumption, as nut productivity is related
to ecosystem productivity (Fernández-Martínez et al., 2017; Herbst
et al., 2015). Nonetheless, individual DHIs have low predictive power
in habitat selection modelling and must be combined with environmen-
tal variables (Razenkova et al., 2020).

The aims of the present study were (i) to analyse the spatial distribution
of brown bear faeces during hyperphagia to understand the nut foraging
patterns in relation to the characteristics of nut-producing patches and (ii)
to evaluate and model how vegetation productivity, topographical vari-
ables and landscapemetrics are related to nut (particularly acorn and chest-
nut) consumption by the Cantabrian brown bear during the hyperphagia
season.

2. Materials and methods

2.1. Study area

The reference area considered in this study covers the provinces of
Lugo, León, Asturias, Cantabria and Palencia, comprising the entire range
of the Cantabrian Mountains in the NW Iberian Peninsula (see Fig. 1).
The Cantabrian Mountains are located in a transitional zone between the
Atlantic and Mediterranean biogeographical regions, and they are
characterised by an oceanic climate that is conditioned by the proximity
to the ocean and by their geographic orientation. The northern faces of
the mountains are characterised by a higher rainfall rate that is constant
throughout the year; the climate is temperate, and snowfall is low, with lit-
tle accumulation. This contrasts with the characteristically high oscillations
in temperature and precipitation of the southern faces, with cooler and long
winters with heavy snowfall and short summers without droughts
(Lamamy et al., 2019; Naves et al., 2006; Ortega Villazán and Morales
Rodríguez, 2015).

The heterogeneous landscape pattern has traditionally resulted from
socio-ecological relationships established through millennia (López-
Merino et al., 2009; Pérez-Díaz et al., 2016). This pattern has been caused
by the gradual clearing of forests for agricultural and livestock husbandry



Fig. 1. Location and density of brown bear scats sampled within the study area. Forest species presence was extracted from the Forest Map of Spain (MFE) and only the pre-
dominant species is represented, although co-occurrence of species is possible. The oak category comprises Quercus pyrenaica Willd., Quercus faginea Lam., Quercus petraea
(Matt.) Liebl., Quercus robur L., Quercus ilex L. and Quercus suber L..
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and by the influence of climatic and topographic conditions (Muñoz
Sobrino et al., 2005; Roces-Díaz et al., 2015). However, this heterogeneous
pattern has changed in the last few decades, due to agricultural abandon-
ment and land consolidation in the most productive areas, towards forest
expansion (García-Llamas et al., 2019). In this context, the low/midlands
are used for agricultural crop production or livestock grazing, with isolated
patches of woodland of native species (Q. robur and C. sativa) and forest
plantations destined for timber production (Eucalyptus globulus Labill.,
Pinus pinaster Aiton and P. radiata D. Don). In the highlands, deciduous for-
ests dominated by sweet chestnut (C. sativa), oaks (Q. robur, Q. petraea),
beech (F. sylvatica) or birch (Betula pubescens Ehrh.) predominate on north-
ern slopes, while south-facing slopes are usually covered by deciduous ses-
sile oaks (Q. petraea and Q. pyrenaica) or beech (F. sylvatica) forests and
shrubland.

The species of interest in this study, i.e. C. sativa and Quercus
(including Quercus pyrenaica, Q. faginea, Q. petraea, Q. robur, Q. ilex
and Q. suber in the study area), are distributed throughout the entire
distribution of the Cantabrian brown bear, but the eastern habitat
only includes oaks (see Fig. 1). Together with beech and hazel
(Corylus avellana L.), the aforementioned trees are the most important
source of nuts during hyperphagia. However, although flowering oc-
curs regularly every year, this does not necessarily indicate nut produc-
tion. Acorn production varies greatly from year-to-year, tree-to-tree
and also within species (e.g. in Q. ilex, Q. petraea and Q. pyrenaica
acorn production tends to be high about once every 2–3 years, while
in Q. robur high production is expected to occur every 8–10 years)
(Pemán et al., 2013). By contrast, although bumper crops of sweet
chestnut generally occur every 2–5 years, in what are referred to as
mast years, nut production is very regular as a large number of sweet
chestnut cultivars undergo asynchronous production. In this regard,
nut production generally failed in 2017 due to heavy frosts that
affected flowering and production. However, evidence of nuts being
produced was observed in some small and localized patches, appar-
ently due to favourable microclimate or orographic characteristics
(Ballesteros et al., 2018). By contrast, 2019 and 2020 were good
acorn-producing years.
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2.2. Collection of bear faeces and analysis of dietary components

To explore the relationship between the nut-based diet of bears and
landscape and vegetation productivity, we used data already available in
the area. We used bear faeces collected across the range of Cantabrian
bears during population monitoring surveys conducted in 2017, 2019 and
2020 (López-Bao et al., 2021; López-Bao et al., 2020). As bears do not use
faeces for territorial marking, we used the spatial location of faeces as a
proxy for bear habitat use during hyperphagia. Sample collection was
based on 5 × 5 km UTM grid cells (see López-Bao et al., 2021, López-Bao
et al., 2020 for details). In total, 148 grid cells covering a distance of
624 km were sampled in the eastern subpopulation in 2017, and 282
cells covering a distance of 1678 km were sampled in the western subpop-
ulation in 2019 (López-Bao et al., 2021). In the eastern subpopulation, fae-
ces were sampled between November and December 2017, while in the
western subpopulation, sampling was conducted between October and De-
cember 2019 (López-Bao et al., 2021). Within each cell, transects were es-
tablished in the best sites for detecting bear signs according to potential
feeding areas in autumn. We also included scat samples collected in 2020
by the rangers of the Regional Government of Asturias during ongoing
bear monitoring activities (the samples were collected following the ap-
proach described above). Overall, we analysed 677 scat samples: 128 col-
lected in 2017, 455 collected in 2019, and 94 collected in 2020. Bear
scats were georeferenced using a GPS and preserved in 96% ethanol.
Each scat was subsequently classified by visual inspection according to
the content, into four categories: i) presence of acorn remains (Quercus
sp.); ii) presence of chestnut remains (C. sativa); iii) presence of both
acorn (Quercus sp.) and chestnut remains (C. sativa); and iv) other.

2.3. Vegetation productivity data

The gross primary production (GPP) allocated to fruit production by for-
est species represents a small fraction of the total C balance in forest ecosys-
tems. The values reported for European Fagaceae species range between
0.5 and 10% of the GPP, increasing to 23% in mast years (Fernández-
Martínez et al., 2017; Herbst et al., 2015). A low proportion is allocated



Table 1
Recoding of landscape patch classes and codes in the functional classification.

Class Landscape
code

Description

Wetland 1

Land use established by the TNFI and the structural
forest type in non-wooded areas

Grassland 2
Water 3
Artificial areas 4
Cropland 5
Fresh fruit 6 % of area with capacity to produce fresh fruit ≥ 50%
Nuts 7 % of area with capacity to produce nuts≥ 50%

Mixed fruit-nuts 8
% of area with capacity to produce fresh fruit and nuts
<50% but together add up more than 50%

Shelter 9
Forest areas without capacity to produce fruit
production
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by oak species, accounting for 0.9 and 1.3% of the GPP in Q. petraea and
Q. robur respectively (Fernández-Martínez et al., 2017); however, there is
evidence that the C balance in previous years can affect nut production
and can therefore act as a limiting factor (Journé et al., 2021).

The global MODIS data were obtained from the Land Processes
Distributed Active Archive Center (LP DAAC) data pool. We used the
MOD17A2HGF.006 and MOD17A3HGF.006 products (Running and
Zhao, 2019a, 2019b), which provide GPP and net primary production
(NPP) data (in kg carbon m−2) respectively, for the years 2017, 2019 and
2020, at 500 m resolution. The GPP and NPP were computed individually
(Running et al., 2004). GPP and NPP values for non-vegetated or artificial
areas were excluded from the analysis (Zhang et al., 2014), and the land
pixel values were multiplied by a scale factor of 0.0001 (Running and
Zhao, 2015), as ordered in the metadata file, to return the original value
at the corresponding pixels.

The GPP data set (originally one for every 8 days) was used to calculate
both the Dynamic Habitat Indices (DHIs) (Radeloff et al., 2019) and the
Carbon Use Efficiency (CUE) (Pérez-Girón et al., 2020). DHIs comprise
the following indices (Radeloff et al., 2019): (a) cumulative GPP, where
the GPP is summed for all time periods over a year; (b) minimum GPP,
where each pixel represents the minimum productivity value during the
year evaluated; (c) GPP variation, which indicates the seasonality of the
productivity over a year and is calculated as the standard deviation (σ) di-
vided by the mean (μ). CUE was annually calculated as the NPP/GPP
ratio, representing the efficiency of plants to sequester carbon from the at-
mosphere via photosynthesis.

2.4. Topographically derived information

Topographical variables are often used to explain the relationships with
tree species distribution along elevational ranges, slopes and aspects (e.g.
Q. robur and C. sativa occupying low-midlands), and they are also fre-
quently used to fit brown bear habitat models (García et al., 2007; Mateo-
Sánchez et al., 2016; Mateo-Sánchez et al., 2014). We selected 25 m EU-
DEM v1.1 (Bashfield and Keim, 2011), which is distributed by the
European Environment Agency (EEA)within the framework of the Coperni-
cus programme.

In addition to extracting the elevational information, we used Horn's
method (Horn, 1981) to compute slope and aspect, and we also calculated
the surface curvature (profile, plan and general curvature) to determine
changes in concavity or convexity in the direction of or perpendicular to
the slope (Kienzle, 2004) and thus address slope, orientation and
elevational changes that may affect the species-habitat relationships. We
computed the topographic position index (TPI), terrain ruggedness index
(TRI) and vector ruggedness measure (VRM) by using a moving window
of 3 × 3 pixels, i.e. 75 × 75 m due to the pixel size, to address changes
in ruggedness and morphology. The TPI (Jenness, 2006) determines
whether the focal cell is located higher than its surrounding area or vice
versa. The TRI (Riley et al., 1999) quantifies the total elevational change
relative to its surrounding area. The VRM (Sappington et al., 2007) quan-
tifies terrain ruggedness (i.e. local variations in terrain slope) bymeasuring
the dispersion of vectors orthogonal to the terrain surface within a
neighbourhood.

All topographically derived information was calculated using the QGIS
geographic information system (QGIS Development Team, 2020).

2.5. Landscape source layers and classification

The vector format of the Forest Map of Spain (Mapa Forestal de España,
MFE) (Ministerio para la Transición Ecológica y el Reto Demográfico,
2020) was used as the main source of information regarding the distribu-
tion of Spanish forest ecosystems, providing detailed data on forest compo-
sition and structure in patches such as the patch size, the 3 tree species that
occupy each patch, the percentage of the patch covered by trees (canopy
cover) and the individual occupation by each of the species, among other
variables. A patch is understood as an area of habitat differing from its
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surroundings, and therefore in which the ecosystem is sufficiently homog-
enous to be identified as forest stand. Canopy cover determines the extent
to which a forest stand is occupied by trees. The latest version of the Forest
Map of Spain, MFE25, was developed at 1:25000 scale by combining pho-
tointerpretation and field inventory data, with a minimum mapping unit
(MMU) of 1 ha for forest. However, due to its decennial periodicity, it
was not fully available for the entire study area, and we therefore used
the previous version (MFE50), developed at 1:50000 scale with an MMU
of 2.25 ha, for the provinces of León and Palencia.

The approach was applied by focusing on the functionality of the forest
composition to provide food resources or shelter for brown bears in the hy-
perphagia period (Naves et al., 2003; Ordiz et al., 2011). Based on the three
main species that the MFE includes, we computed the percentage of forest
areas that potentially produced nuts during the hyperphagia period, i.e.
only the species in which fruiting occurs in autumn were considered, by
considering the percentage occupation by each tree species in the landscape
patch. When the percentage area with the capacity to produce nuts was
equal to or more than 50%, the patch was categorized as nut-producing.
The same approachwas used to compute the presence of fleshy fruit, under-
stood as pulp fruit produced by tree species during hyperphagia season, e.g.
the fruits of Arbutus unedo L. and Sorbus spp. Fleshy andmixed fruit produc-
tion was also classified but did not exceed 0.5% of the study area, as fleshy
fruits are not commonly available during the hyperphagia season. We also
considered that forest without the capacity to produce fruits/nutswas capa-
ble of providing shelter for bears (Naves et al., 2018).

Non-wooded areas, such as wetlands, grassland, water bodies, artificial
areas and cropland, were established in the Third National Forest Inventory
(TNFI). These areas included a treeless class categorized according to the
structural type into shrubland, grassland, wetland, water bodies or artificial
areas. Shrublands were also considered shelter areas. A total of 9 landscape
classes were included in the map, as briefly described in Table 1.

As the analysis required raster format cartography, a rasterization pro-
cess was developed. The cell size was chosen by exhaustively following
the recommendations of Hengl (2006) regarding the size of the smallest
spatial objects, the width of linear elements and frequency distribution of
patch sizes. The spatial resolution finally chosen was 20 m.

2.6. Detection of scale effects in landscape

Landscape heterogeneity was studied using landscape metrics
(Botequilha-Leitão et al., 2012; Uuemaa et al., 2013). Amovingwindow ap-
proach was used to analyse the spatial distribution of the values of the land-
scape metrics (Díaz-Varela et al., 2009; Gaucherel, 2007). The first step
consisted of determining the window size to characterize a representative
extension (i.e. scale) for the spatial pattern in the study area. For this pur-
pose, the previously classified landscape raster map was analysed using
FRAGSTATS software (McGarigal et al., 2012) to compute an initial set of
six landscape metrics in multiple square windows of N x N cells in 13 in-
creasing sizes. The side length of the different windows ranged from 100
to 1620 m, starting at 7 × 7 cell window size (side length of 100 m) and
ending at 81 × 81 cell window size (side length of 1620 m) in steps of
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40 m to 220 m, and 200 m thereafter. The mean value and standard devia-
tion of patch area distribution (AREA_MN and AREA_SD), total edge (TE),
shape index distribution (SHAPE_MN), interspersion and juxtaposition
index (IJI) and Shannon's diversity index (SHDI) were used to represent dif-
ferent aspects of the landscape pattern. A detailed description of themetrics
can be found in McGarigal et al. (2012).

The resulting maps were then analysed to identify representative scales
through the observed dissimilarity (S) (Díaz-Varela et al., 2009; O’Neill
et al., 1996; Saura and Martínez-Millán, 2001) and the change in the
slope of the curve S as a change in the scale domain (pi). Thus, from exten-
sion of themovingwindow forwhich themap shows a change in the sign of
pi, the heterogeneity value was less dependent on the scale of analysis and
can be considered a representative analytical scale (i.e. window size). A
moving window of 61 × 61 pixels (side length of 1220 m) was finally se-
lected as the reference window size (see detailed analysis in Supplementary
Material).

2.7. Landscape indices

After identification of the reference scale (i.e. moving window), a total
of 85 landscape metrics corresponding to the typologies of area-edge,
shape, contrast, aggregation (except proximity, similarity and connectance
index, due to the requirement of non-available additional data) and diver-
sity metrics were computed on the landscape map generated, using a mov-
ing window of 61 × 61 pixels in the FRAGSTATS 4.2 software (McGarigal
et al., 2012). Further details about calculating the landscape metrics can be
found in McGarigal (2015).

A set of information theory-derived landscape metrics was also com-
puted, as conditional entropy, marginal entropy, joint entropy, mutual in-
formation and relative mutual information in R software, version 4.0.0 (R
Core Team, 2020) using the landscapemetrics package (Hesselbarth et al.,
2019) and a moving window of 61 × 61 pixels. For detailed information
about the calculation procedure, see Nowosad and Stepinski (2019). A de-
tailed list of calculated landscape indices is provided in Table S1.

2.8. Modelling foraging habits

A total of 99 independent variables related to vegetation productivity
(5), topographical (9) and landscape patterns (85) were evaluated as poten-
tial predictor variables to explain changes in the presence or absence of
bear scats containing food scraps of chestnut or acorn. A Random Forest
(RF) classifier algorithm was fitted to the data with the single aim of iden-
tifying the most important predictors of acorn and sweet chestnut foraging
habits in Cantabrian brown bears during the hyperphagia period. Subse-
quently, a Logistic Regression (LR) model selection procedure was carried
out to fit predictive models using only the most important variables identi-
fied from the RF classifier.

The RF classification and regression non-parametric methodology, pro-
posed by Breiman (2001), comprises a large number of individual decision
trees that work as an ensemble, known as a “forest”. RF quantifies the im-
portance of the input variables, through random permutation, which can
be used to rank or select factors (e.g. Genuer et al., 2010). In this study,
we used the cforest implementation, which uses the Conditional Inference
Trees (CTree) algorithm (Hothorn et al., 2006a) to fit each of the trees to
be grown for the forest. This approach utilizes permutation tests, with the
aim of distinguishing between significant and non-significant improve-
ments (Sardá-Espinosa et al., 2017) and addressing overfitting and variable
selection biases by using a conditional distribution to quantify the relation-
ship between the output and the input variables and taking distributional
properties into account (Williams, 2011). To assess variable importance, a
permutation importance measure of accuracy was applied. This measure
yields more robust results when multifactorial variables are involved and
is less biased than the mean decrease in Gini in the traditional RF algorithm
(Gil-Tapetado et al., 2020; Strobl et al., 2008; Strobl et al., 2007). Although
implementation of cforest does not completely remove the problem of mul-
ticollinearity, it resolves it to some extent, thus helping to assess the
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importance of correlated predictor variables (Strobl et al., 2009). These
characteristics make cforest useful, especially when the challenge is to iden-
tify a subset of relevant predictor variables from large sets of candidates
(Strobl et al., 2007).

Although RF allows a binary classification (0 or 1, presence or absence),
LR is a well-known parametric method for fitting habitat use models with
presence/absence samples that returns the probability of use of the target
cell or pixel as a function of one or more independent variables (Boyce
et al., 2002). It has the advantage that the coefficients have a natural inter-
pretation while they do not vary, and therefore is sufficient to know the
fitted values of the regression coefficient to apply a LR-based prediction
rule to make predictions. Due to the computational cost of model selection,
the seven non-correlated most important variables provided by RF (using
Spearman's rank-order correlation) were selected to fit a set of LR Models.
The predictive performance of LR models was assessed with the area
under ROC curve (AUC), Akaike information criterion (AIC) and confusion
matrix (omission and commission errors, accuracy and sensitivity) and the
most parsimonious models -based on AIC and the goodness of fit- were se-
lected. Once the best model was selected, the interactions between the se-
lected predictors were considered and each interaction model was again
validated according to the above criteria. Finally, an annual goodness of
fit validationwas performedwith the selectedmodel by examining the con-
fusion matrix.

The party library (Hothorn et al., 2006b; Strobl et al., 2008; Strobl et al.,
2007) and glmnet library (Friedman et al., 2009) implemented in the R soft-
ware environment (R Core Team, 2020) were used to fit RF and LR. Addi-
tionally, the dredge function of the MuMIn package was used for model
selection (Barton, 2015). In RF, the number of variables tested at a given
classification tree node split was set at 10 (the square root of the total num-
ber of variables), and the number of trees to be grown was set at 10000 to
ensure the stability of the RF results. Variables were excluded frommodels
when they were pairwise correlated or not statistically significant. Finally,
ecological criteria, such as the impossibility of acorn foraging in a cereal
crop or on a road, were used tomask crops, artificial areas andwater bodies
from the from the visual representation of the spatial model prediction.

Graphical analyses were conducted with box-and-whisker plots con-
structedwith the ggplot2 package (Wickham, 2009). Significant differences
were determined using the Wilcoxon-Mann-Whitney test (at α = 0.01).

3. Results

3.1. Location of bear faeces

In total 677 scat samples were analysed (Fig. 2). Of these, 41.7%
contained acorn (Quercus sp.) remains, and 13% contained chestnut
(C. sativa) remains, while 45.1% contained other types of food. The pres-
ence of both types of nut remains in the same scat was very uncommon.
The percentage of samples collected in 2017 and 2019 without acorn or
chestnut remains, i.e. with other food, was the same in both years
(52.3%), and no sample of this type was found in 2020. Of the 284 samples
containing remains ofQuercus sp. acorns, 70%were located in patcheswith
the presence of at least one species of the genus, while of the 90 scat sam-
ples containing chestnut remains, only 26% were found in sweet chestnut
patches. The distribution and abundance of scat in the nut-fruiting patches
in relation to the spatial coverage of those areas differed significantly from
the random distribution typical of the null model approach, i.e. randomly
redistributing the same number of samples from each category in the
study area and replicating the process 100 times (Table S2). Therefore,
the observed patterns cannot be considered typical of a random distribu-
tion.

The average patch size was 46.2 ha for acorn-producing patches and
34.8 ha for chestnut-producing patches in the study area, with an average
wooded area of 30.2 and 24.9 ha, respectively. The average wooded area
of the patch differed depending on whether the scats were located inside
or outside the nut-producing patch and was always higher when scats
were collected inside the patch, independently of whether the scat



Fig. 2. Scat distribution in year and location categories within a nut-producing patch. The following categories were considered: i) presence of Quercus sp. acorn remains, ii)
presence of C. sativa chestnut remains and iii) presence of both acorn (Quercus sp.) and chestnut (C. sativa) remains.

Fig. 3. Box-and-whisker plot comparing the average wooded area of the patch for scats found inside or outside the a) acorn- or b) chestnut-producing patch. c) Box-and-
whisker plot comparing the minimum distance between scat containing nut remains and located outside of a forest patch with presence of Quercus sp. or C. sativa (as
appropriate) and the nearest acorn- or chestnut-producing patch. d) Density plot of distance between the nut-producing patches and the nearest population centre.
Statistical significance: *: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001. Green dots denote the mean values.
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contained remains of acorn or chestnuts (Fig. 3a and b). The average patch
size for scats containing acorn remains and located inside the nut-
production patch was 161 ha, while the average wooded area was
121 ha. When these scats were located outside, the average patch size
was 569 ha, while the average wooded area was 18 ha. Despite the low av-
erage wooded area, a large number of these samples located outside the
patch were collected in patches categorized by the MFE as adult forest
stands (pole or timber stage) and dense shrublands. Regarding scats con-
taining chestnut remains, when those were located inside the nut-
production patch, the average patch size was 177 ha while the average
wooded area was 136 ha. When these scats were located outside, the aver-
age patch sizewas 314 ha, while the average wooded area was 37 ha. In the
latter there are two trends: 33.8% of these scats were located in patches
without trees and more than 55% in patches where trees represent 75%
or more of the patch size.

A scat containing nut remains (acorn or chestnut) but located outside a
forest patch that can produce this type of food may indicate that the bear
has gone away from the place where it has eaten. Thus, for each scat con-
taining nut remains (acorn or chestnut) and located outside a forest patch
that produced the corresponding nut (acorn- or chestnut-producing patch
as appropriate), the minimum distance (in a straight line) to the nearest
patch that produced the corresponding nut was computed. The minimum
distance was greatest for scats containing chestnut remains (Fig. 3c). The
average minimum distance was 111 m for scats containing acorn remains
and 552 m for scats containing chestnut remains. For the latter, in some
cases the minimum distances were greater than 2500 m. Regarding the lo-
cation of nut-fruiting patches, it was found that chestnut patches are located
closer to the population centres than oak patches, while when both species
co-occur, the distribution is similar to that of chestnut (Fig. 3d).

3.2. Modelling acorn consumption

3.2.1. Variable selection
The most important variable explaining the location of bear faeces con-

taining acorn remains was the terrain elevation (Fig. 4). GPP was the most
important vegetation productivity predictor, together with NPP. Landscape
metrics also yielded some improvement. Specifically, the aggregation index
(AI) was the best-positioned landscape variable (third position), followed
by relative mutual information (relmutinf). The other variables comprising
the top 20 in the variable importance plot were all landscape metrics, with
the exception of CUE,which corresponds to vegetation productivity.We are
Fig. 4. Top 20 variables in regard to permutation importance
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aware of the multicollinearity in most of the landscape metrics included in
the analysis, and of the negative effects of such correlations in explanatory
models (e.g. Cushman et al., 2008). However, we consider that multicollin-
earity was largely resolved by the use of the cforest algorithm and that the
accuracy of predictive models was therefore not affected (Strobl et al.,
2009).

The confusion matrix statistics for the acorn RF model revealed that the
fitted model was very accurate, supporting its use for variable selection.
Omission and commission errors represented respectively 5.1% and
18.7% of the errors. Thus, 89.3% of cases were correctly classified (overall
error: 10.7%), with a sensitivity of 81.3% and an area under the ROC curve
of 0.96.

Comparative box-and-whisker plots for scats containing acorn remains
and the most important predictors showed different patterns for the pres-
ence or absence of acorn (Fig. 5). TheWilcoxon-Mann-Whitney results rein-
forced the hypothesis of significant differences between the presence or
absence of scats containing acorn remains. In 2017, scats containing
Quercus sp. acorn remains were located in forest patches with higher GPP
and lower elevations than scats that did not contain Quercus sp. acorns.
The opposite trend occurred in 2019, when scats containing acorn were
found at higher elevations with lower GPP, while in 2020, only the eleva-
tion was statistically significant at p < 0.05. Predictor values for scats con-
taining acorn remained constant between years and subpopulations. The
average GPP values in scats containing acorn ranged from 1.47 to 1.50 kg
C m−2 yr−1, for elevation approximately from 850 to 1000 m and the AI
remained stable at around 95%.

3.2.2. Predictive model
The LR acorn model selected was not the model with the lowest AIC (Δ

AIC=4.79), but itwas themost parsimonious, as it includes only three pre-
dictors, GPP, elevation and aggregation index. The model yielded an ac-
ceptable fit (Table 2; Table S3 for complete model selection table), with
an accuracy of 0.68, a sensitivity of 0.53 and an AUC of 0.75. In other
words, the model correctly classified 68% of all samples and 53% of scats
containing acorn remains. Omission and commission errors suggest over-
prediction of acorn presence. Comparison of thismodel with a better candi-
date model (as indicated by ΔAIC = 0.25) including another variable
(slope) showed that the additional variable added further complexity and
did not improve the model fit sufficiently for this model to be considered
further (see goodness of fit measures in Table S4). When interactions
between predictors were considered, only the interaction between
for acorn scats, determined using the cforest algorithm.



Fig. 5. Box-and-whisker plot comparing the presence and absence of scats containing acorns by years for the most important vegetation productivity, topographical and
landscape variables. Statistical significance: *: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.001; ****: p ≤ 0.0001. The black dots represent outliers. The green dots represent
mean values.
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aggregation index (ai) and elevation (interaction model 2; Table S5 for fur-
ther details) slightly improved the model sensitivity (ca. 4%). Furthermore,
there are more models with ΔAIC <2, so other models may perform simi-
larly or may be of interest in relation to model averaging. However, with
an ecological meaning in mind, the parsimonious initial model with only
three variables and without interactions was selected, as adding new vari-
ables or considering interactions led to an increase in complexity with a
slight improvement (ca. 4% in the best of cases), which was considered in-
sufficient to assume greater complexity.

Annually, the LR acorn model showed a consistent and robust accuracy
while the sensitivity varied slightly between years due to the lack of unifor-
mity of the acorn samples (Table 3). In 2017, the sensitivity was above av-
erage for the general model, correctly classifying 79% of acorn samples. In
2019, when the bulk of samples were obtained, the goodness of fit was al-
most the same, while in 2020, despite the small number of acorn samples,
the model correctly classified 36% of acorn scats.

The prediction model fits well with the most recent distribution of the
Cantabrian brown bear, particularly in previous and permanent distribu-
tion cells (Fig. 6). The new areas occupied by bears between 2012 and
2016 also showed a high likelihood of being good habitats for hyperphagia,
especially in the intermediate interpopulation corridor. Outside of the dis-
tribution of the Cantabrian brown bear, intermediate probabilities of
Table 2
Fitting method and goodness of fit measures for the acorn model. Confusion matrix stat

Fitting method Independent variable Parameter estimate Std. Error AUC

RF + LR

(Intercept) −0.382 0.086

0.75
GPP 0.662 0.109
Elev 0.733 0.118
ai 0.552 0.109
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presence were predicted for the surrounding area north of León and high
probabilities in the southwest of León, where theMontes de LeónMountain
system connects with the province of Zamora and northern Portugal.

3.3. Modelling sweet chestnut consumption

For scats containing chestnut remains, the RF model yield an accuracy
0.88 and sensitivity of 0.18. Thus, the RF model correctly classified 88%
of absences, but did not correctly predict more than 18% of the presence
of scat containing chestnut. Omission errors represented 1.3% of the errors,
and 82% of commission errors. Therefore, the models and the correspond-
ing importance variable plots were not useful for explaining the presence of
scats containing chestnut. Given the low predictive power of the predictors,
no further analysis was performed with chestnut scats.

4. Discussion

The study findings highlight the association between Cantabrian brown
bear food habits during hyperphagia and vegetation productivity, terrain
elevation and landscape characteristics. One variable of each type was in-
cluded in the final model for acorn. However, a good model fit was not ob-
tained for the data on chestnut consumption by brown bears, which may be
istics are proportions.

AIC Omission error Commission error Accuracy Sensitivity

804.75 0.21 0.47 0.68 0.53



Table 3
Annual goodness offit measures for the acornmodel. Confusionmatrix statistics are
proportions.

Year AUC Omission error Commission error Accuracy Sensitivity

2017 0.69 0.46 0.21 0.66 0.79
2019 0.76 0.17 0.52 0.69 0.48
2020 0.69 0.15 0.64 0.65 0.36
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explained by the bears' foraging behaviour and the spatial distribution of
chestnut formations, which is strongly influenced by human management.

Elevationwas themost important predictor variable in the acornmodel.
However, elevation cannot be assessed independently of DHI, as changes in
the elevational range imply changes in vegetation structure and composi-
tion, as well as in climatic conditions, which affect vegetation productivity
(Collalti et al., 2020). In other words, as elevation increases, the weather
conditions become colder and harsher, which favours some species but
not others, and therefore implies changes in vegetation. However, these
changes do not necessarily imply changes in vegetation productivity, as
when the productivity of one species is reduced this may favour another
species. Nonetheless, in some transition zones productivity will not be
good for either species as bothwill be at the extreme limits of their distribu-
tion. Thus, in 2017, in the eastern subpopulation and coinciding with low
acorn and beechnut production due to harsh weather conditions
(Ballesteros et al., 2018), the GPP was higher for locations of scats contain-
ing acorns at lower elevations than at higher elevations. Therefore, our in-
terpretation is that bears moved to lower elevations to feed on acorns,
predictably in patches that were not affected by frost. The other food con-
sumed was characterised by less common fruits, such as fruits of Rosaceae
(Rosa sp.), typical of areas recolonized by shrubs or open landscapes. By
contrast, in the samples from 2019 and 2020, corresponding to the western
subpopulation and good acorn-producing years, and thereforewhere all the
patches produced acorn, Quercus sp. trees used by bears to feed on acorn
were located at higher elevations than other food, e.g. chestnut, and the
data can thus be interpreted in relation to the higher elevation and lower
GPP values.

The most important landscape metrics were the aggregation index (AI)
and the relative mutual information (relmutinf), which quantify respec-
tively the degree of aggregation of the habitat classes (He et al., 2000)
and the information that a given cell with class y provides about a given
Fig. 6.Maps of probability of acorn foraging by brown bears during the
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neighbouring cell with class x (Nowosad and Stepinski, 2019). The predic-
tive ability of the aggregation index in the mixed forest has previously been
reported (Mateo-Sánchez et al., 2014). Although AI is considered a config-
urational metric (McGarigal et al., 2012), we believe that as both metrics
are positive and highly correlated, they indicate the preference of brown
bears for relatively large, highly aggregated adjacent forest stands of di-
verse cover classes for feeding on acorns during the hyperphagia season.
In this particular case, the relmutinf variable identified a high degree of di-
versity in the landscape pattern (Nowosad and Stepinski, 2019), whichmay
emerge from the aggregation of a variety of land cover classes at a given
spatial scale. This is also consistent with previous research in the area
(Lamamy et al., 2019; Mateo-Sánchez et al., 2014), highlighting the impor-
tance of diverse types of forest and other land cover types in the selection of
suitable habitat with access to resources. These stands may also act as ref-
uges and would therefore be associated with the risk perceived by bears re-
garding human presence (Nellemann et al., 2007; Ordiz et al., 2011).

Food takes between 3 and 16 h to pass through the bear's digestive tract
before being excreted (Elfström et al., 2013). As bears can walk an average
distance of between 0.5 and 2 km in this time (Lalleroni et al., 2017), the
scats can thus be deposited in the feeding area as well as in the bedding
or refuge area and on the route between these areas. Regardless of the pres-
ence ofQuercus sp. or C. sativa, the existence of large, highly aggregated ad-
jacent and complex forest standsmay act as refugeswhere bears can remain
undetected. The bears may therefore spend more time in these patches,
consuming nuts and resting, as indicated by the average wooded area for
scats found inside the nut-producing patch, and the percentage of scats con-
taining acorn remains inside the acorn-producing patches.

The resulting model has shown acceptable predictive capacity for areas
with good conditions for bear feeding during hyperphagia, overlapping
with some recent expansion of bear habitats (Di Domenico et al., 2012;
López-Alfaro et al., 2013). The resulting model has a slight tendency to
overestimate probabilities due to the higher commission than omission
error, which means that the acorn presence may be overestimated. This im-
plies that the probability may actually be a little lower and in the case of
claiming classifications, the established LR threshold must be restrictive.
However, the general trend given by those areaswith a very high predictive
power can be considered accurate. The predictions suggest a high probabil-
ity of good quality hyperphagia habitat in the interpopulation corridor and
towards the southwest of the western subpopulation, where bear presence
has been expanding in recent years (Gonzalez et al., 2016; Palomero et al.,
hyperphagia period as determined by the logistic regression model.
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2021). It also suggests a possible limitation in the eastern subpopulation,
where beech trees and Q. pyrenaica dominate the landscape in the area oc-
cupied by bears. Therefore, years with low beechnut production or even the
loss of beech trees (Dyderski et al., 2017), together with the probable scar-
city of acorn production by Q. pyrenaica (Pemán et al., 2013), may affect
bears during hyperphagia, due to the lack of other species such as
C. sativa. In large areas of the southern Cantabrian slope, the presence
and expansion of denseQ. pyrenaica patchesmay facilitate bear movements
and land use during hyperphagia. Acorn production may be limited in
Q. pyrenaica, in which mast episodes are common (Pemán et al., 2013).

Sweet chestnut constitutes an increasingly important source of food for
brown bears during hyperphagia, particularly in the western subpopulation
(Rodríguez et al., 2007), and the species may benefit from climate change,
especially in the Cantabrian range (Pérez-Girón et al., 2020), thus compen-
sating for variations in other nut/−producing trees during hyperphagia.
However, we were unable to relate vegetation productivity, terrain eleva-
tion or landscape characteristics to chestnut consumption. The traditionally
multifunctional agroforestry character of sweet chestnut trees, appearing in
natural and semi-natural forest stands, as well as in managed stands, which
vary from high-forest to grafted orchards, is always related to human pres-
ence (Míguez-Soto et al., 2019; Roces-Díaz et al., 2018), potentially making
bears feel more vulnerable (Fig. A.1). Thus, we believe that bears feeding
on chestnuts near villages or areas with human presence may perceive a
high risk related to humans and human activity. As a consequence, after
consuming the chestnuts, the bears will tend to move from these stands to
quieter refuge areas. Therefore, different risk perception by bears may ex-
plain the observed differences in foraging patterns for acorn and chestnut
in regard to the size and distance to the nut-producing patches. The current
trend towards the abandonment of traditional chestnut orchards involves
the evolution of the agroforestry system in different ways, varying from or-
chards (known as soutos, castañeros or castañeos in NW Spain and
characterised by low tree density, open stand structure and high chestnut
production) to abandoned orchards or mixed forests (Roces-Díaz et al.,
2018), the likely stages at present and where sweet chestnut trees may
occur in different proportions. This results in a high level of spatial variabil-
ity in resource availability, which is difficult to map or predict. A clear ex-
ample of this was given by Gil-Tapetado et al. (2020), who found that
C. sativa trees were attacked by the chestnut gall waspDryocosmus kuriphilus
throughout almost the entire region of Galicia, while even at the highest
resolution available the MFE did not capture this change, as this would re-
quire tree-to-tree mapping.

5. Conclusions

In the light of ourfindings on acorn consumption by bears during hyper-
phagia, we suggest that bears prefer to feed on acorns, specifically in rela-
tively large, highly aggregated deciduous mixed forest stands with a high
degree of diversity in the landscape pattern, characterised by the presence
of adjacent forest stands of diverse cover classes. This type of landscape
will provide refuge areas where bears can remain undetected. This pattern
was also reflected in the model predictions, as the areas predicted to be
most important coincided with areas of high importance (e.g. permanent
distribution cells) or where recent expansion has occurred (e.g. the inter-
population corridor or the southwest of the western subpopulation). We
therefore encourage the preservation and maintenance of large patches of
mature deciduous mixed forest that produce nuts, as well as patches of
dense vegetation or scrub interspersed with or close to these forests, to en-
sure the nutritional needs of bears are met during hyperphagia and to pro-
mote bear reproduction.

Sweet chestnut forests and orchards (grafted trees organized in open
stands) possibly acquire greater importance in the bear's diet during the hy-
perphagia season. Consumption of sweet chestnut also compensates for the
variable production of other nuts. Recovery of abandoned orchards and
promotion of new fruit chestnut plantations is of particular interest, mainly
in the search for large patches or stands with chestnuts far from inhabited
areas and human influence.
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