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Abstract
The study of Gaussian Markov Random Fields has attracted the attention of a large
number of scientific areas due to its increasing usage in several fields of application.
Here, we consider the construction of Gaussian Markov Random Fields from a graph
and a positive-definite matrix, which is closely related to the problem of finding the
Maximum Likelihood Estimator of the covariance matrix of the underlying distribu-
tion. In particular, it is simultaneously required that the variances and the covariances
between variables associatedwith adjacent nodes in the graph are fixed by the positive-
definite matrix and that pairs of variables associated with non-adjacent nodes in the
graph are conditionally independent given all other variables. The solution to this
construction problem exists and is unique up to the choice of a vector of means. In
this paper, some results focusing on a certain type of subgraphs (invariant subgraphs)
and a representation of the Gaussian Markov Random Field as a Multivariate Gaus-
sian Markov Random Field are presented. These results ease the computation of the
solution to the aforementioned construction problem.
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1 Introduction

AMRF is a randomvectorwhose components are associatedwith the nodes of an undi-
rected graph and the conditional distributions satisfy some properties (called Markov
properties) over the structure of the graph. In this model, the dependence of two
non-adjacent variables in the graph is explained in terms of the dependence between
adjacent variables of the chains that connect these two non-adjacent variables (Rue
and Held 2005). MRFs are a simple way to model spatial dependencies between the
components of the randomvector. For example, formodeling the evolution of a disease
over some regions of a country, it is quite typical to consider an MRF over a graph in
which two nodes are adjacent if the regions have a common border (see Section 4.4.2
in Rue and Held 2005).

The case in which the random vector has multivariate Gaussian distribution has
attracted a lot of attention since; in such case, theMRF can be characterized by the null
elements of the inverse of the covariance matrix. Furthermore, the modeling of a prob-
lem by means of a GMRF is, in general, computationally attractive, mainly because
the inverse of the covariance matrix is positive-definite and typically sparse (Rue and
Held 2005). The multivariate generalizations of GMRFs, called Multivariate Gaus-
sian Markov Random Fields (MGMRFs), have also been widely studied in recent
years (MacNab 2018).

In this paper, we follow the approach by Speed and Kiiveri (1986) in which they
propose a GMRF construction problem over a graph. Formally, given a multivari-
ate Gaussian distribution and an undirected graph, we search for another multivariate
Gaussian distribution that keeps the same variances and the covariances between adja-
cent variables while satisfying the Markov properties. This problem is analogous to
finding the Maximum Likelihood Estimator (MLE) of the covariance matrix of the
GMRF given the sample covariance matrix of the distribution. If the GMRF model is
reasonable, then thisMLEwill be similar to the sample covariance matrix but will also
benefit from the computational advantages of having a sparse inverse. In this direction,
several methods that allow to learn the underlying graph structure have been developed
(see Furtlehner et al. 2021; Ferrer-Cid et al. 2021; Loftus et al. 2021 for some recent
examples). Here, we solve this GMRF construction problem restricted to a certain
type of subgraphs (which we will call invariant subgraphs) and then solve the whole
GMRF construction problem by considering MGMRFs over forests. This will result
in a significant reduction in computation time in comparison to directly solving the
GMRF construction problem over the whole graph.

The remainder of the paper is organized as follows. In Sect. 2, we introduce the
preliminary concepts necessary for presenting our results. The notions of invariant
subgraph and complete separator are presented in Sect. 3. In Sect. 4, we define an
MGMRF construction problem over a forest as a reduction in several GMRF construc-
tion problems over invariant subgraphs and we provide an easy formula for solving
such construction problem. In Sect. 5,we study the complexity of the presentedmethod
and compare it with the original algorithms. Finally, in Sect. 6, we illustrate the pre-
sented results with three different examples and show the benefits of the considered
approach. Some conclusions are presented in Sect. 7.
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2 Preliminaries

2.1 Simple undirected finite graphs

A simple undirected finite graph G = (V , E) consists of a couple of sets: a finite set
of vertices (or nodes) V and a finite set of edges E , whose elements (i, j) are such
that i, j ∈ V and satisfy that (i, j) ∈ E if and only if ( j, i) ∈ E and (i, i) /∈ E for any
i ∈ V . The cardinal of V is called the order of the graph and is usually denoted by n and
the cardinal of E is called the size of the graph and is denoted by m. The subgraph (of
G = (V , E)) induced by V ′ ⊂ V isG ′ = (V ′, E ′)with E ′ = {(i, j) ∈ E | i, j ∈ V ′}.

If (i, j) ∈ E , then i and j are said to be adjacent. The number of adjacent nodes to a
node is called the degree of incidence of such node. A sequence of nodes (a1, . . . , ak)
is called a chain from a1 to ak if (ai , ai+1) ∈ E for all i ∈ {1, . . . , k−1}. The number
of edges involved in a chain is called the length of the chain. If a1 = ak , then the chain
is also called a cycle. Two chains that only share the first and the last node are called
internally disjoint.

If there exists a chain between two nodes, both nodes are said to be connected.
If there exist two internally disjoint chains between them, the nodes are called 2-
connected. A graph is called connected if all pairs of nodes are connected and is called
2-connected if all pairs of nodes are 2-connected.A subgraph that is connected (respec-
tively, 2-connected) and maximal with respect to this property is called a connected
(respectively, 2-connected) component.

A graph is called complete if all pairs of nodes are adjacent. A graph that does not
contain any cycle is called a forest and, if it is also connected, then it is called a tree.

A subset V ′ ⊂ V is called a separator of G = (V , E) if the subgraph induced by
V \V ′ is not connected. Given three pairwisely disjoint sets V ′, V1, V2 ⊂ V , such that
V1 and V2 are non-empty, we say that V ′ separates V1 and V2 if any chain between a
node in V1 and a node in V2 contains a node in V ′.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the Cartesian product of G1
and G2 is the graph G1�G2 = (V , E) with V = {(u, v) | u ∈ V1, v ∈ V2} such
that (u1, v1) and (u2, v2) are adjacent if and only if it either holds that u1 = u2 and
(v1, v2) ∈ E2 or v1 = v2 and (u1, u2) ∈ E1.

2.2 Multivariate Gaussian distribution

A continuous random vector X has a multivariate Gaussian distribution if any linear
combination of its components has a univariate Gaussian distribution (Mardia et al.
1979). Its joint density distribution has the following expression:

f (x) = 1√|2πΣ | exp
(

− (x − µ)′Σ−1(x − µ)

2

)
, ∀x ∈ R

n ,

where µ is the mean vector and Σ is the covariance matrix. We denote the set of
positive-definite matrices byP and we require Σ ∈ P . Given two subsets of indices
A and B, we denote the corresponding submatrix of Σ by ΣAB or simply by ΣA in
case A = B. We also denote X\XA by X−A.
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Given three continuous random vectors X, Y and Z of dimensions nX , nY and nZ ,
respectively, with joint density function f (x, y, z),X andY are said to be conditionally
independent given Z (see, e.g., Rohatgi 1976) iff there exist h : RnX+nZ → [0,∞]
and g : RnY+nZ → [0,∞] such that f (x, y, z) = h(x, z)g(y, z) ,∀x ∈ R

nX ,∀y ∈
R
nY ,∀z ∈ R

nZ . We denote the fact that XA and XB are conditionally independent
given XC by XA ⊥ XB |XC .

In particular, the conditional independence structure of a Multivariate Gaussian
distribution can be characterized by using Σ−1, often referred to as the precision
matrix.

Theorem 1 (Rue and Held 2005) Let X be a multivariate Gaussian random vector
with mean vector µ and covariance matrix Σ . For any i 
= j , it holds that Xi ⊥
X j |X−{i, j} ⇐⇒ (

Σ−1
)
i j = 0.

2.3 The GMRFmodel

Let G = (V , E) be a simple undirected finite graph where V = {1, ..., n} denotes
the set of nodes and E ⊂ V × V denotes the set of edges. The neighborhood of a
node i (i.e., the nodes that are adjacent to i) is denoted by N (i). Given a random vector
X = (X1, ..., Xn), the Markov properties are defined as follows:

– The pairwise Markov property: Xi ⊥ X j |X−{i, j} for any i, j ∈ V such that
(i, j) /∈ E and i 
= j .

– The local Markov property: Xi ⊥ X−{i}∪N (i) |XN (i) for any i ∈ V .

– The global Markov property: XA ⊥ XB |XC , for any pairwisely disjoint
A, B,C ⊂ V with A, B 
= ∅ and where C separates A and B.

If X is a multivariate Gaussian random vector, then the three properties above are
equivalent (Rue and Held 2005) and if any of the properties above is satisfied, X is
called a Gaussian Markov Random Field (GMRF) over G. As a result of Theorem 1,
given a GMRF, the Markov properties are characterized by the null elements of Σ−1.

Amultivariate version of the GMRFs can be also defined. LetX = (X1, . . . ,Xn) be
amultivariate Gaussian random vector andG = (V , E)with V = {1, ..., n}. Similarly
to a GMRF, any node can be associated with a random vector instead of a random
variable. This results in the notion of Multivariate Gaussian Markov Random Field
(MGMRF). In this case, the Markov properties are characterized by null submatrices
of Σ−1.

2.4 The GMRF construction problem

We focus on the construction of a GMRF over a graph when the covariances between
adjacent variables are fixed. We start with a positive-definite matrix P of dimension
n × n and we allow to change the non-fixed values in order to satisfy the Markov
properties over the graph. Given the matrix P as initial data, the search for a matrix
F that coincides with P for adjacent variables and whose inverse F−1 has zeros
at the positions associated with non-adjacent variables is referred to as the GMRF
construction problem.
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Theorem 2 (Speed and Kiiveri 1986) Let P,R ∈ P and G = (V , E) be a graph.
There exists a unique F ∈ P that satisfies:

– Fi j = Pi j if (i, j) ∈ E or if i = j ,
– F−1

i j = Ri j if (i, j) /∈ E.

In particular, setting the matrix R in the theorem above as the identity matrix, the
existence of a unique solution to the GMRF construction problem is assured. The gen-
eralization of this construction problem to MGMRFs is immediate, with also a unique
solution. Some algorithms to compute an approximate solution to this problem are
provided in Speed and Kiiveri (1986) and Wermuth and Scheidt (1977). We highlight
the importance of finding the solution to this problem, since it is related to several
widely studied problems.

Firstly, the problem above is equivalent to finding the MLE (Maximum Likelihood
Estimation) of the covariance matrix of the GMRF given the sample covariance matrix
(Dempster 1972; Xu et al. 2011; She and Tang 2019). More precisely, suppose that we
have a sample of a GMRF and compute the sample covariance matrix. If we identify
this sample covariance matrix with the matrix P in Theorem 2 and set R as the identity
matrix, the matrix F corresponds to the MLE of the covariance matrix of the GMRF.

Proposition 1 Let X be a GMRF over G and consider a random sample of X. If the
matrix P in Theorem 2 is the resulting sample covariance matrix, then the matrix F
in Theorem 2 is the Maximum Likelihood Estimation of the covariance matrix of X.

This result is relevant to applications such as those in Furtlehner et al. (2021),
Ferrer-Cid et al. (2021) and Loftus et al. (2021). If the assumption of the data being
sampled from aGMRF is reasonable, then theMLE is similar to the sample covariance
matrix while also having a sparse inverse matrix. In order to decide whether a GMRF
model is reasonable or not, we can use a likelihood ratio test or apply some penalty
procedures (Banerjee et al. 2008).

Secondly, the problem above is also equivalent to finding the distribution that max-
imizes the differential entropy among all the random vectors with the variances and
some of the covariances specified (since it maximizes the determinant of the associated
covariance matrix Grone et al. 1984).

Proposition 2 Let P ∈ P , G = (V , E) be a graph and consider the set of matrices
M = {A ∈ P | Ai j = Pi j if (i, j) ∈ E or i = j}. The matrix F in Theorem 2
maximizes the determinant among all matrices in M.

This problem was also introduced by Dempster (1972) as a covariance selection
model, which has been shown to be very useful for reducing the number of parameters
in the estimation of the covariance matrix of aMultivariate Gaussian distribution (and,
actually, of the exponential family) (Speed and Kiiveri 1986).

Note that there is a direct link between this problem and the construction of aGMRF
from the marginal distribution of the cliques (complete subgraphs) of the graph by
means of the positive definite completion of partial Hermitian matrices (Grone et al.
1984). In particular, the following result is a direct consequence of Theorem 2.
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Proposition 3 Let G = (V , E) be a graph and C be the set of cliques of G. Consider
{XC | C ∈ C} to be a set of marginal multivariate normal distributions over the
cliques of G satisfying that, for any C1,C2 ∈ C, XC1 restricted to C2 and XC2

restricted to C1 are equally distributed. Let us denote by A the partial matrix such
that Ai, j = Cov(Xi , X j ) if there exists C ∈ C with i, j ∈ C and all other elements
unknown. It holds that a GMRF Y over G such that YC = XC for all C ∈ C exists if
and only if there exists a positive definite completion of A.

Another well-known approach to the construction of a GMRF starts from the full
conditionals (see Section 2.2.4 in Rue and Held 2005), which is equivalent to deter-
mining the mean vector and the inverse of the covariance matrix (also known as the
precisionmatrix). Themain differencewith our approach is that it is necessary tomake
additional considerations to assure the positive definiteness of the precision matrix. In
our case, given a positive definite matrix, which in real-life applications typically is
the sample covariance matrix, the solution to the GMRF construction problem always
exists and is unique. However, if we are working with a degenerate GMRF, in which at
least one variable may be expressed as a linear combination of the other ones, working
with the precision matrix is a better option (see Sect. 3 in Rue and Held 2005).

3 Invariant subgraphs and complete separators

3.1 Construction of invariant subgraphs from complete separators

Subvectors of a GMRF over a graph are not, in general, GMRFs over the subgraph
induced by some of their components. For example, consider a GMRF over a tree
with 3 nodes. The subgraph induced by the two nodes with degree of incidence 1
consists of two non-adjacent nodes. If the associated subvector were a GMRF over
this subgraph, the associated variables would then be independent, a statement that is
not true in general. For this very reason, we search for a type of subgraphs for which
this property holds.

Definition 1 Let G be a graph. A subgraph G ′ of G is called an invariant subgraph (of
G) if any GMRF over G restricted to G ′ is also a GMRF over G ′.

The term invariant subgraph refers to the fact that, given the submatrix of the initial
data matrix P associated with the invariant subgraph, the submatrix of the solution
matrix is invariant to the rest of values of P . This is a very important property when we
are interested in finding the MLE estimator of the covariance matrix associated with
an invariant subgraph, since it states that we can restrict our attention to the associated
variables rather than to all the components of the random vector.

The simplest invariant subgraphs are the complete ones, but we are interested in
more general ones. In particular, we will make use of complete separators to find these
invariant subgraphs.

Definition 2 Let G = (V , E) be a graph. A subset V ′ ⊂ V is a complete separator if
it is a separator of G and the subgraph of G induced by V ′ is complete.
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Fig. 1 Graph with complete
separators
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This type of subsets of nodes is also known in the literature as clique separators (Tar-
jan 1985; Coudert and Ducoffe 2018).

Example 1 In the graph of Fig. 1, the subgraph induced by {3, 4} is a complete separator
because it separates {1, 2} and {5, 6, 7, 8, 9} and, in addition, it is complete. Similarly,
the subgraph induced by {6} is a complete separator because it separates {1, 2, 3, 4, 5}
and {7, 8, 9} and, in addition, it is complete.

The next theorem proves that, given a complete separator, two invariant subgraphs
arise.

Theorem 3 Let X be a GMRF over G = (V , E) and A, B,C ⊂ V be pairwisely
disjoint subsets satisfying A ∪ B ∪ C = V and A, B 
= ∅. If C separates A and B
and the subgraph induced by C is complete, thenXA∪C is a GMRF over the subgraph
induced by A ∪ C and XB∪C is a GMRF over the subgraph induced by B ∪ C.

Proof We consider the global Markov property. For proving that XA∪C is a GMRF
over the subgraph induced by A∪C , it suffices to prove that, if C ′ ⊂ A∪C separates
A′ and B ′ in A∪C , then C ′ separates A′ and B ′ in G. Suppose that there exist a′ ∈ A′
and b′ ∈ B ′ that are connected in G\C ′ but are not connected in (A ∪ C)\C ′. We
distinguish three cases:

(i) If a′, b′ ∈ C\C ′, since C is complete, then it holds that a′ and b′ are connected in
(A ∪ C)\C ′, a contradiction.

(ii) If a′ ∈ A\C ′ and b′ ∈ C\C ′, then there exists a chain (a′, ..., b′) between a′ and
b′ of which at least an element is not contained in (A ∪ C)\C ′. Therefore, there
exists b ∈ B with b ∈ (a′, ..., b′). Since C separates A and B, the fact that b and
a′ are connected implies that there exists c ∈ C\C ′ connected to a′. Since C\C ′
is complete, c is also connected to b′. The contradiction then follows from the fact
that a′ and b′ are connected in A ∪ C .

(iii) If a′, b′ ∈ A\C ′, the contradiction is reached similarly to the previous case.

The proof for B ∪ C is identical to the one for A ∪ C . ��
It is concluded that, if we find a complete separator C that separates A, B 
= ∅, then
the subgraphs induced by A ∪ C and B ∪ C are invariant subgraphs.

Example 2 Thegraph inFig. 2 can be divided into three invariant subgraphs {1, 2, 3, 4},
{3, 4, 5, 6} and {6, 7, 8, 9} considering successively the complete separators {3, 4} and
{6}.
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Fig. 2 Identification of invariant
subgraphs of the graph in Fig. 1
using complete separators
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3.2 Complete separators of low order

Finding complete separators and invariant subgraphs is not always an easy task. How-
ever, it is easy to characterize complete separators of order 0 and 1. A complete
separator of order 0 arises whenever the graph is partitioned into two connected com-
ponents. Complete separators of order 1 are linked to Menger’s Theorem.

Theorem 4 (Menger’s Theorem) (Menger 1927) Let G = (V , E) be a graph and
u, v ∈ V be such that (u, v) /∈ E. The order of a minimal uv-separator of G is equal
to the maximum number of internally disjoint chains that connect u and v in G.

As a consequence of this theorem, it is concluded that we can find some invariant
subgraphs just by studying disjoint chains.

Proposition 4 Let G = (V , E) be a graph and G ′ = (V ′, E ′) be the subgraph of G
induced by V ′ ⊆ V . If for every u, v ∈ V ′ there exist two disjoint chains from u to v in
G ′ and G ′ is maximal with respect to this property, then G ′ is an invariant subgraph.

Proof If themaximal subgraph inwhich every two nodes are connected by two disjoint
chains is the whole graph G, then the result follows. Otherwise, there exist two nodes
connected by a maximum number of internally disjoint chains lower than 2. From
Menger’s Theorem, these two nodes are separated by another node or by the empty set.
In both cases we have a complete separator, thus two invariant subgraphs, Theorem 3.
We can repeat the same process on each of the obtained invariant subgraphs several
times, until all obtained invariant subgraphs are such that for every u, v ∈ V ′ there
exist two disjoint chains from u to v in G ′ and G ′ is maximal with respect to this
property. ��

Note that, if the order of all these subgraphs is greater than two, we obtain a
decomposition into 2-connected components of the graph. It must be remarked that
Menger’s Theorem cannot be used to study a similar case associated with 3 disjoint
chains because the minimal separator may be formed by two nodes that are not adja-
cent, so it might not be a complete separator. As a conclusion, we expect to find
complete separators in sparse graphs.

We end this section by stressing that the existence of complete separators of order 0
and 1 is crucial when studying the complete separators of the Cartesian product of two
graphs A�B, that can been seen as a two-dimensional graph. This is the case for the
ladder graph, which is considered in Sect. 6.1. In particular, Theorem 2.2 in Anand
et al. (2012) can be reformulated as follows:

Theorem 5 Let A�B be the Cartesian product of two graphs A and B. It holds that
A�B has a complete separator if and only if one of A and B is complete and the other
one has a complete separator of order 0 or 1.
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4 Resolution of a MGMRF construction problem

4.1 Definition of theMGMRFs

FromTheorem 3, we can find the elements of the submatricesΣA∪C andΣB∪C just by
solving the GMRF construction problem over the associated subgraphs. The second
step is then to find the rest of the values of Σ . Since for any a ∈ A and b ∈ B it holds
that (a, b) /∈ E , this can be done in an easy way by reducing the main problem to an
MGMRFmodel. IfC 
= ∅we associate A,C, B with a 3-tree, beingC associated with
the node with degree of incidence 2 becauseXA andXB are conditionally independent
given XC (since C separates A and B). Note that, if C = ∅, then the graph associated
with the MGMRF only consists of two non-adjacent nodes, one for A and another one
for B.

It is interesting to apply Theorem 3 iteratively whenever we identify a complete
separator in A∪C or in B∪C . In such case, wemay solve several GMRF construction
problems over the obtained invariant subgraphs.

4.2 SolvingMGMRF over forests

The next step is to solve the MGMRF construction problem defined above, ultimately
resulting in a solution to the initial GMRF construction problem. We will focus on
the case of trees, keeping in mind that, since the covariance matrix of an MGMRF
over a forest is a diagonal block matrix where the blocks are associated with the
connected components of the forest, the provided results are also valid for solving
MGMRF construction problems over forests. Firstly, we provide a lemma concerning
the MGMRF construction problem over a tree with 3 nodes.

Lemma 1 Let X = (XA,XC ,XB) be an MGMRF over a 3-tree G = (V , E) in which
XC is associated with the node with degree of incidence 2. It holds that ΣAB =
ΣACΣ−1

C ΣCB.

Proof Byusing thematrix formula to calculate the conditional distributionof (XA,XB)
given XC for a multivariate Gaussian distribution, we have that ΣAB|C = ΣAB −
ΣACΣ−1

C ΣCB . The result then follows from applying that ΣAB|C is a null matrix. ��
We can repeat the 3-tree structure all over the tree to calculate the remaining ele-

ments of Σ by just operating with the matrices obtained from the solved GMRF
construction problems over the invariant subgraphs.

Proposition 5 Let X be an MGMRF over a tree G = (V , E). The covariance matrix
between the subvectors associated with two non-adjacent nodes A and B is given by:

ΣAB = ΣK1K2

l−1∏
i=2

Σ−1
Ki

ΣKi Ki+1

where K = (K1, ..., Kl) is the unique chain of length l − 1 from K1 = A to Kl = B.
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Proof Since G is a tree, there exists a unique chain K = (K1, ..., Kl) from K1 = A to
Kl = B (Kocay and Kreher 2016). The subvectors (XA,XK2 ,XK3), (XA,XK3 ,XK4),
..., (XA,XKl−1 ,XB) areMGMRFs over 3-trees. The result follows from applying l−2
times Lemma 1. ��
Corollary 1 Let X be a GMRF over a tree G = (V , E). Pearson’s correlation coeffi-
cient between two variables is the product of Pearson’s correlation coefficients of the
adjacent variables in the unique chain that connects them.

The case of tree graphs, although is one of the simplest cases, is interesting due to
its applicability. For instance, Gaussian Markov chains are examples of GMRFs over
a tree graph, which are closely related to the Kalman Filter (Kalman 1960), which
has been used in many real-life applications (see, e.g., Auger et al. 2013). Moreover,
any GMRF over a non-acyclic graph can be approximated by a GMRF over a tree
graph, which is specially relevant to spatial pattern classification and image restoration
problems (Wu and Doerschuk 1995). Regarding the construction of the matrix F in
Theorem 2, from the corollary above, it is immediate to determine the covariance
between two variables in linear time O(n).

5 The proposedmethod and analysis of the computational
complexity

As a conclusion of the previous results, a method to solve the GMRF construction
problem by using invariant subgraphs may be defined. It can be summarized in the
three following steps:

1. Decompose the graph into invariant subgraphs by using complete separators.
2. Solve the GMRF construction problem over every invariant subgraph.
3. Compute the solution for the whole graph.

For the second step, one of the original algorithms in Speed and Kiiveri (1986) and
Wermuth and Scheidt (1977) is used to solve the GMRF construction problem over
every invariant subgraph. These algorithms converge toward the solution by repeating
a procedure iteratively. In each iteration, a loop over the non-adjacent nodes, the
maximal cliques or the maximal cliques of the complementary graph, depending on
the chosen algorithm, is performed.

Example 3 Consider the graph in Fig. 1 and the initial matrix P defined by Pi j = 0.5 if
i 
= j and Pi j = 1 if i = j , for any i, j ∈ {1, . . . , 9}. We recall the decomposition into
invariant subgraphs of the graph provided in Fig. 2, corresponding to the subgraphs
induced by {1, 2, 3, 4}, {3, 4, 5, 6} and {6, 7, 8, 9}. The solution FI of the GMRF
construction problems restricted to each of the three invariant subgraphs coincides
and is the following one:

FI ≈

⎛
⎜⎜⎝

1 0.5 0.366 0.5
0.5 1 0.5 0.366
0.366 0.5 1 0.5
0.5 0.366 0.5 1

⎞
⎟⎟⎠
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Therefore, some of the values of the solution matrix F are already known:

F ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.5 0.366 0.5 ? ? ? ? ?
0.5 1 0.5 0.366 0.5 ? ? ? ?
0.366 0.5 1 0.5 0.366 ? ? ? ?
0.5 0.366 0.5 1 0.5 0.366 ? ? ?
? ? 0.366 0.5 1 0.5 ? ? ?
? ? 0.5 0.366 0.5 1 0.5 0.366 0.5
? ? ? ? ? 0.5 1 0.5 0.366
? ? ? ? ? 0.366 0.5 1 0.5
? ? ? ? ? 0.5 0.366 0.5 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

All other elements can be computed by applying Proposition 5:

F ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.5 0.366 0.5 0.268 0.232 0.116 0.085 0.116
0.5 1 0.5 0.366 0.232 0.268 0.134 0.098 0.134
0.366 0.5 1 0.5 0.366 0.5 0.25 0.183 0.25
0.5 0.366 0.5 1 0.5 0.366 0.183 0.134 0.183
0.268 0.232 0.366 0.5 1 0.5 0.25 0.183 0.25
0.232 0.268 0.5 0.366 0.5 1 0.5 0.366 0.5
0.116 0.134 0.25 0.183 0.25 0.5 1 0.5 0.366
0.085 0.098 0.183 0.134 0.183 0.366 0.5 1 0.5
0.116 0.134 0.25 0.183 0.25 0.5 0.366 0.5 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

5.1 Complexity of the proposedmethod

In order to study the complexity of the proposed method, it is necessary to examine the
complexity of each one of the three sequential steps. In order to analyze the complexity
we will assume that the number of adjacent nodes and the number of non-adjacent
nodes grow with n2 (see Tarjan 1985; Xu et al. 2011). This is a common assumption
since themaximumnumber of adjacent nodes (and consequently themaximumnumber
of non-adjacent nodes) in a graph of order n is n(n−1)

2 . The same is assumed for the
number of maximal cliques of the graph, whose maximum number is the number of
edges. This will lead to a common complexity for the first and second cyclic algorithm
in Speed and Kiiveri (1986) and the variant in Wermuth and Scheidt (1977). The
complexity of the three steps involves the complexity of inverting an n × n matrix.
Its value depends on the method applied but is of the order O(n2+ε), with ε > 0 (Xu
et al. 2011).

The first step of our method is based on decomposing the graph into invariant
subgraphs by using complete separators, which is a purely graph-theoretical matter.
This decomposition in terms of complete separators was considered in a classical
paper (Tarjan 1985), where an algorithm for obtaining this decomposition is proposed.
The authors prove that the computation time is O(mn), being m the number of graph
edges. In particular, their method is based on computing a minimal ordering of the
graph (see Rose et al. 1976), and subsequently obtain the decomposition. More refined
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results in Coudert and Ducoffe (2018) reduce the computation time to the complexity
of multiplying an n × n matrix; thus, the complexity of this step is O(n2+ε).

For the second step, it suffices to apply one of the two cyclic algorithms in Speed and
Kiiveri (1986) or the variant in Wermuth and Scheidt (1977) to all invariant subgraphs
obtained in the previous step. Let us start by studying the complexity of solving the
problem over the whole graph. In the three variants, an iteration of these algorithms
visits all the cliques (second cyclic algorithm in Speed and Kiiveri 1986), the cliques
of the complementary graph (first cyclic algorithm in Speed and Kiiveri 1986) or
the edges of the complementary graph (algorithm in Wermuth and Scheidt 1977),
which are of the order of m. For every element visited in the iteration, an inversion
of an n × n matrix must be computed. Since the algorithm does not give the exact
solution but converges toward this exact solution, the number of iterations may be
determined by a maximum iteration number or a tolerance criterion. We conclude that
the complexity of the algorithms is O(mn2+ε). A similar study of the complexity has
been carried out in Xu et al. (2011), reaching the same conclusions. For the algorithm
over the invariant subgraphs, it is convenient to consider the first cyclic algorithm
in Speed and Kiiveri (1986) or the variant in Wermuth and Scheidt (1977), since they
focus on the complementary of the graph. It is easy to see that two nodes v,w ∈ V
can be both contained in two different invariant subgraphs only if they are adjacent.
Thus, considering an iteration over all the invariant subgraphs, the algorithms visit less
cliques or edges in the complementary graph than if we consider the algorithm over
the whole graph; thus, an upper bound will be m. In this case, we have to compute the
inverse of the matrix associated with the invariant subgraph, with a maximum order
of n. We conclude that the complexity for the second step has an upper bound of
O(mn2+ε).

For the last step, we need to invert the matrices associated with the complete sepa-
rators and compute a matrix multiplication. A loose upper bound for the complexity
can be obtained if we suppose that there are n complete separators of maximum order
(which is actually not possible). Since any complete separator is always contained in
an invariant subgraph, an upper bound of their order is n. In this case, the complexity
has an upper bound of O(n3+ε).

Thus, the complexity of each step of the sequential algorithm is, respectively,
O(n2+ε), O(mn2+ε) and O(n3+ε). Sincem growswith n2, then the total complexity is
O(mn2+ε). Note that if we apply directly the algorithms in Speed and Kiiveri (1986)
andWermuth and Scheidt (1977), the complexity is also O(mn2+ε). We conclude that
the addition of the first and third steps to the method does not increase the complexity.

5.2 Further comments on computational aspects

On the one hand, if there exists a complete separator of the graph, the dimensions of
the matrices in the second step are smaller than those for the original algorithm. Since
this step is the most computationally expensive, a slight decrease in the dimension of
the matrix can result in a notable decrease in the computation time of the algorithm.
Thus, we expect the computation time to be reduced, even for a big graph in which
we can only separate a few nodes (possibly in the corners or the outskirt of the graph)
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from the rest. The numerical results in Sects. 6.2 and 6.3 illustrate the improvement
in the computation time for this case. In addition, the number of iterations in the
algorithm used in step 2 is determined by a maximum number of iterations and a
tolerance criterion. It seems reasonable that the number of iterations needed to reach
the fixed tolerance criterion when we consider invariant subgraphs is smaller than in
the general case.

On the other hand, if there does not exist any complete separator of the graph,
no decomposition of the graph is reached and the second step consists in solving
the GMRF construction problem over the whole graph, with the drawback of having
computed step 1, losing time by trying to find complete separators that actually do not
exist. This leads to an increase in the computation time with respect to the original
algorithms.However, since the complexity of the first step is O(n2+ε), which is smaller
than the complexity of solving the problem over the whole graph, O(mn2+ε), trying
to find invariant subgraphs seems reasonable for graphs of large order.

We end this section by noticing that the decomposition stepmay be performed faster
over some types of graphs. For instance, if the graph is planar then the complexity is
O(n) and if the graph has a bounded treewidth then the complexity is O(n log(n)). We
refer to (Sect. 6.1 in Coudert and Ducoffe 2018) for more information in this regard.

6 Examples

In this section, we consider three different scenarios in which the presented method
simplifies the GMRF construction problem. Firstly, we consider a GMRF construc-
tion problem over the ladder graph. Secondly, we consider a generalization of the
autoregressive model AR(k) in which the distribution is not necessarily stationary.
Finally, we consider a real-life graph representing the (peninsular) regions of Spain as
the nodes and in which two nodes are adjacent if the regions have a common border.
We use real data concerning the mean temperature over the years 2011–2015 to find
the Maximum Likelihood Estimation of the covariance matrix.

6.1 The ladder graph

Consider the random vector (X1, ..., Xn,Y1, ...,Yn) following amultivariate Gaussian
distribution. We search for a model where, for any i ∈ {1, . . . , n}, Xi is conditionally
independent from all the other random variables but the three following ones: Xi+1,
Xi−1 and Yi . The same holds for Yi , being conditionally independent from all the other
random variables but the three following ones: Yi+1, Yi−1 and Xi . We can express the
multivariate Gaussian distribution as a GMRF over a ladder graph, see Fig. 3. This
structure can be interpreted as a pair of random variables studied over a period of time
and measured at specific instants of time in a way such that the values of the random
variables only depend on the value of the variable at the previous instant of time and
the value of the other variable at the same instant of time. We assume that the variance
of all variables is equal to 1, the correlation between Xi and Xi−1 and between Yi and
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Fig. 3 Ladder graph associated with the considered GMRF

Yi−1 is constant and equals α for any i ∈ {2, ..., n} and the correlation between Xi

and Yi is constant and equals β for any i ∈ {1, ..., n}.
Any set {Xi ,Yi } with i ∈ {2, ..., n − 1} is a complete separator. Therefore, for any

i ∈ {1, ..., n − 1}, it holds that {Xi ,Yi , Xi+1,Yi+1} is an invariant subgraph. When
solving the GMRF construction problem over {Xi ,Yi , Xi+1,Yi+1}, we obtain the
correlation between Yi and Xi+1, denoted by φ(α, x), which is equal to the correlation
between Xi and Yi+1. The value φ(α, x) is the only real solution of the equation
φ(α, β)3 − (α2 + β2 + 1)φ(α, β) + 2αβ = 0, obtained by inverting the covariance
matrix and imposing the Markov properties. The following value is obtained:

φ(α, β) =
3
√√

4(−3α2 − 3β2 + 3) + 2916β2α2 − 54βα

3 3
√
2

−
3
√
2(−3α2 − 3β2 + 3)

3 3
√√

4(−3α2 − 3β2 + 3) + 2916β2α2 − 54βα

.

The computation of φ(α, β) is straightforward from the values of α and β. We
may consider the MGMRF construction problem over the graph in Fig. 4, with Ai =
{Xi ,Yi } for any i ∈ {1, ..., n}. From Proposition 5 and after diagonalizing the matrix
on the right side, it is easy to verify that, we obtain that the covariance matrix between
Ai and Ai+d is:

ΣAi Ai+d =
(

α φ(α, x)
φ(α, x) α

) ((
1 x
x 1

)−1 (
α φ(α, x)

φ(α, x) α

))d−1

= 1

2d

(
α φ(α, x)

φ(α, x) α

)(−1 1
1 1

) ⎛
⎜⎝

(
α−φ(α,x)

1−x

)d−1
0

0
(

α+φ(α,x)
1+x

)d−1

⎞
⎟⎠

(−1 1
1 1

)

A1 A2 A3 An

Fig. 4 Graph associated with the MGMRF
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This expression is easier to compute for any value of d than solving the GMRF
construction problem over the whole graph, especially bearing in mind that the order
of the graph is at least 2d.

6.2 Non-stationary AR(k) processes

In this example, we consider a generalization of the autoregression model AR(k).
The AR(k) model considers a time series measured at specific instants of time that
is stationary (i.e, it is invariant with respect to time translations) and such that the
value at a certain instant of time only depends on the values of the k previous instants
of time (Lindsey 2004). We consider a more general model, in which the time series
is not necessarily required to be stationary. A non-stationary AR(k) model may be
understood as a GMRF in which each node is adjacent to the k preceding nodes and
the k succeeding nodes (or by all preceding/succeeding nodes in case there are less
than k preceding/succeeding nodes). Notice that any subset of k consecutive nodes
is a complete separator of the graph. Thus, all subsets {1, . . . , k + 1},{2, . . . , k + 2},
. . . ,{n − k, . . . , n} are invariant subgraphs.

For illustrative purposes, we consider a non-stationary AR(k) with n variables for
all combinations of n ∈ {70, 110, 150} and k ∈ {3, 5, 10}. For setting the initial
matrix, we choose a random matrix M of dimension n × n with elements ranging
uniformly from 0 to 0.1. Subsequently, we compute the matrix P = MT + M + In ,
where In is the identity matrix of dimension n × n. The matrix M + MT is assured to
be symmetric, whereas the addition of the term In was incorporated in order to make
the matrix M + MT positive definite.

As we have discussed earlier on, the matrix F in Theorem 2 maximizes the deter-
minant among all matrices verifying Fi j = Pi j for any (i, j) ∈ E or i = j (Grone
et al. 1984). Therefore, the evolution through time of the determinant of the matrix
may be used as a tool for the comparison of the efficiency of the method. In particular,
the faster the determinant increases, the faster we are approaching the solution to the
GMRF construction problem.

We compute the determinant and the computation time (in seconds) of the algorithm
presented by Wermuth and Scheidt (1977), both in case the decomposition into invari-
ant subgraphs is considered and in case it is not considered for the aforementioned
values of n and k. The result is illustrated in Fig. 5. It can be seen that for the method
applied on the whole graph the determinant of the matrix converges smoothly toward
the solution, whereas the here-presented method takes some initial time to decompose
the graph into invariant subgraphs but attains the optimal solution immediately after
this decomposition has been obtained. The difference between both methods seems to
become larger for greater values of n.

In case the consideredmodel is stationary, for the solution to theGMRFconstruction
problem to be a stationary covariance matrix it is necessary for the initial matrix to be
stationary. For this purpose, we may first estimate a stationary covariance matrix (see
for instance Eldar et al. 2020) and then use the presented algorithm in order to impose
the graph structure. Notice that in this case we can provide an explicit expression of
the covariance between non-adjacent variables similarly as in Sect. 6.1.
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Fig. 5 Convergence speed of the determinant of the approximated MLE matrix for the classical algorithm
(blue line) and the proposed method (orange line) for the computation of the MLE of the covariance matrix
of the GMRF associated with the non-stationary AR(k) process with n ∈ {70, 110, 150} and k ∈ {3, 5, 10}.
Bigger determinant implies less distance to exact the value of the MLE (color figure online)

6.3 A real-life graph

LetX be a multivariate Gaussian random vector associated with the mean temperature
over a year of the (peninsular) regions of Spain. A map of the (peninsular) regions of
Spain may be found on the left-hand side of Fig. 6. A reasonable assumption may be
to consider that the mean temperature of a region only depends directly on the mean
temperatures of the regions that share a border with it, just as in the example in Section
4.4.2 of Rue and Held (2005). The associated graph is presented on the right-hand
side of Fig. 6.

The decomposition of the graph into invariant subgraphs is represented by the
following subsets of nodes: {1, 2, 8}, {2, 3, 8}, {3, 4, 8}, {4, 5, 6, 8, 9}, {6, 7, 13},
{8, 10, 12} and {6, 8, 11, 12, 13, 14, 15}. Notice that the order of the whole graph
is 15, but the largest order of all the invariant subgraphs is 7.

Next, we consider the mean temperature through the years 2011–2015, as provided
by the Instituto Nacional de Estadística (INE 2016), taking as reference the mete-
orological observatories located at the capital of the regions (with the exception of
Extremadura, for which we have considered Badajoz). From these data, we construct
the sample covariance matrix and solve the GMRF construction problem, both consid-
ering and not considering the decomposition into invariant subgraphs. The comparison
of the computation time (in s) and the value of the determinant of the matrix at the
current iteration for the classical algorithm in Wermuth and Scheidt (1977) and our
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Fig. 6 Map of the (peninsular) regions of Spain (left) and associated graph (right)

Fig. 7 Convergence speed of the determinant of the approximated MLE matrix for the classical algorithm
(blue line) and the proposed method (orange line) for the computation of the MLE of the covariance matrix
of the GMRF associated with the mean temperature of the regions of Spain. Bigger determinant implies
less distance to the exact value of the MLE (color figure online)

proposed method is illustrated in Fig. 7. As can be observed, the convergence to the
solution is faster in the case inwhich the graph is decomposed into invariant subgraphs.

We also want to stress that considering smaller regions (such as the provinces of
Spain) makes it more difficult for complete separators to exist, mainly because in a
planar graph any complete separator must have order 4 or less, as a consequence of
Kuratowski’s Theorem (Kuratowski 1930).

7 Conclusions

We have proposed a method to facilitate the search for the solution to the Gaussian
Markov Random Field construction problem over a graph by independently consid-
ering several Gaussian Markov Random Field construction problems over invariant
subgraphs and a Multivariate Gaussian Markov Random Field construction problem
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over forests. We have provided a way to find these invariant subgraphs by identifying
complete separators of the graph, and we have studied the easiest cases in which the
complete separators are of order 0 and 1. In particular, we have illustrated the utility of
this proposal by considering a Gaussian Markov Random Field construction problem
over a ladder graph, a non-stationary AR(k) process and a real-life problem regarding
the mean temperature of the (peninsular) regions of Spain.

We have compared the complexity of the proposed method and the original algo-
rithms in Speed and Kiiveri (1986) and Wermuth and Scheidt (1977), concluding
that the decomposition of the graph in invariant subgraphs and the reconstruction of
the solution for the initial problem do not increase the complexity. The numerical
results illustrate that the proposed method has a lower computation time than the orig-
inal algorithms for the considered examples. In case there does not exist a complete
separator of the graph, both methods are equivalent, with the inconvenience of the
here-presented method requiring to check the existence of complete separators at first.
However, we believe that the cost of checking for the existence of complete separators
is affordable, considering the potential gain. Furthermore, it should be borne in mind
that the decomposition of the graph into complete separators only needs to be done
once if several GMRF construction problems over the same graph are considered.
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