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aDepartamento de Estad́ıstica, Universidad Carlos III de Madrid. Avda. Universidad 30.
E-28911 Leganés (Madrid), Spain
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Abstract

This manuscript introduces a criterion to compare interval valued random map-

pings by means of a stochastic order for such random elements. The comparison

criterion is based on the distance to the origin on both sides of the values that

those random elements assume. The proposed stochastic order is studied, pro-

viding characterizations and properties. One of those characterizations is based

on a new stochastic order for bivariate random vectors when it is applied to

the endpoints of the random intervals. Some examples with applications of the

criterion to weather and economic problems are developed.
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1. Introduction

Most of the mathematical models to approach randomness and uncertainty

assume that random magnitudes can be modelled by means of random vari-

ables or random vectors. However, there are numerous real-life problems in

which random magnitudes are better described by other mathematical tools

like functional data, random matrices, random sets, etc.
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One of those problems is the case in which random magnitudes take on in-

terval values. A great number of real situations involve characteristics which

take on interval values instead of real or vectorial values, like for instance, those

involving ranges, fluctuations or intervals given by the minimum and maximum

of a set of real values. The relevance of the analysis of interval data in applied

problems is apparent from the large amount of recent publications on the field

addressing issues such as decision making, sensitivity analysis, data analysis,

optimization, etc. Some examples of papers dealing with interval data are [1],

where a smoothing technique for interval data based on poynomial models is

introduced, [2], where techniques for the likelihood-based statistical inference

for intervals are developed, [3], where interval data are used to deal with impre-

cise data in data envelopment analysis, or [4], which includes an optimization

model and method for thermal structure design with random, interval and fuzzy

quantities, as well as some of the references therein.

The following problem serves as a motivation of the aim of the manuscript.

Two manufacturers produce certain item. Ideally, the measure of a quality char-

acteristic of those items should assume a nominal value α. Each day, a sample

of the production is taken in each factory and the characteristic is measured

in each of the items. The daily interval of values with respect to the fixed α

is [x − α, x − α], x and x being the smallest and largest records of the corre-

sponding day. Which manufacturer produces “better” items? Intuitively, if the

endpoints of the interval of a manufacturer are closer to zero than those of the

other maker, the former would produce items with a closer value to α of the

quality characteristic. For instance, that could be the case of makers producing

automobile piston rings whose inner diameters should be 75 mm. If the interval

of values of a maker with respect to the desirable diameter 75 mm tends to take

on “more narrow” values around 0, that would mean that such a manufacturer

produces piston rings more accordant with the measurement requirements.

Motivated by the increasing number of problems in which the random el-

ements take on interval values and the necessity of the comparison of those

elements, we introduce and analyze a stochastic order to compare interval val-
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ued random mappings with respect to the distance to the origin of the values

they assume.

A stochastic order aims to compare probabilities in accordance with an ap-

propriate criterion. Most of the stochastic orders in mathematical literature are

in relation to the distributions of random variables or of random vectors (see, for

instance, [5], [6] and [7] for an introduction to the theory of stochastic orders).

To the best of our knowledge, not many stochastic orders have been proposed for

the comparison of the probabilities induced by other random elements. Among

them, we have some stochastic orders for different kinds of set valued random

mappings (see, for instance, [8], which introduces and analyzes some stochastic

orders for the so-called random closed sets, [9], devoted to a stochastic order for

random measures, [10], about the comparison of random closed sets in terms of

coupling results, [11], analyzing some stochastic dominance criteria for random

vectors by means of the Aumann expectations of some associated random sets,

or [12] and [13], which study the comparison of the shapes of bidimensional

closed curves and the variability of planar star-shaped sets, respectively, with

applications in image analysis).

The structure of the paper is the following. In Section 2, we collect the

concepts and basic results that we need for the development of the manuscript.

Section 3 is devoted to the introduction of the new stochastic order for interval

valued mappings and analyze its main characteristics and properties. In Section

4, we study relations of the new order with some other stochastic orders for

interval valued random elements, random vectors and random variables. Finally,

examples with applications of the new order to climatic and economic issues are

developed in Section 5. Some concluding remarks are presented in Section 6.

2. Preliminaries

Firstly, we include some notions on ordered sets. Later on, we bring in

the concept of interval valued random mapping. Finally, a relevant result on

stochastic orders for probabilities on Polish spaces is included.
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A binary relation � on a set X which satisfies the reflexive and transitive

properties is said to be a pre-order. If in addition, the binary relation is anti-

symmetric, then it is called a partial order. In that case, the pair (X ,�) is said

to be a poset (partially ordered set).

Given a poset (X ,�), a subset U ⊂ X is said to be an upper set if given

x1, x2 ∈ X with x1 ∈ U and x1 � x2, then x2 ∈ U .

A mapping f : X → R is said to be �-preserving if for any x1, x2 ∈ X with

x1 � x2, it holds that f(x1) ≤ f(x2).

The reader is refereed, for instance, to the monographs [14] and [15] for an

introduction to the theory of ordered sets.

Let Kc be the class of non-empty compact intervals of R. Given A ∈ Kc, we

will denote by A and by A the minimum and the maximum of the interval A,

respectively.

Consider the Hausdorff metric on Kc, given by

dH
(
A,B

)
= max{|A−B|, |A−B|} (1)

for any A,B ∈ Kc. It is well-known that (Kc, dH) is a complete and separable

metric space.

Denote by τH the topology induced by the Hausdorff metric dH on Kc and

by σH the Borel σ-algebra generated by τH on Kc.

Given a probability space (Ω,A, P ), a mapping X : Ω → Kc is said to be

an interval valued random mapping if it is measurable with respect to the σ-

algebras A and σH (see, for instance, [16]). It is well-know that X : Ω→ Kc is

an interval valued random mapping if and only if the mappings X, X : Ω→ R,

with X(ω) = X(ω) and X(w) = X(ω) for all ω ∈ Ω, are random variables.

Note that an interval valued random mapping X induces a probability PX on

the measurable space (Kc, σH) in the usual way.

The symbol ∼st between any kind of random elements will mean that such

elements are equal in distribution.

We will denote by Bs the interval [−s, s] with s ≥ 0 and if A ∈ Kc, A
s will

stand for A+Bs, where + denotes the Minkowki addition.
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The following result will be key for the development of the manuscript.

Consider a Polish space S with a partial order � such that {(x, y) ∈ S × S |

x � y} is closed in the product topology of S (closed partial order). For two

Borel measurable mappings X1 and X2 into S, with induced probabilities P1

and P2, respectively, we say that X1 (or P1) is smaller than X2 (or P2) in the

stochastic order generated by �, denoted by X1 �̃X2, if E(f(X1)) ≤ E(f(X2))

for any �-preserving, measurable and bounded mapping f : S → R.

The following proposition summarizes some results in [20] of stochastic or-

ders for probabilities on Polish spaces.

Proposition 2.1. Under the above framework, the following conditions are

equivalent,

i) X1 �̃X2,

ii) there exists a probability space (Ω,A, P ) and random elements X̃1, X̃2 :

Ω→ S with X̃1 ∼st X1 and X̃2 ∼st X2, such that X̃1 � Ỹ2 a.s. [P ],

iii) E(f(X1)) ≤ E(f(X2)) for any �-preserving continuous and bounded map-

ping f : S → R,

iv) PX1(U) ≤ PX2(U) for all closed upper sets U of S.

3. A stochastic order for interval valued mappings: on the distance

to the origin

In this section, we introduce and study a stochastic order for interval valued

random mappings. That order aims to compare those mappings with respect to

the distance to the origin on both sides of the values that those mappings take

on.

For such a purpose, some partial orders on R and on Kc are defined.

Definition 3.1. Let �1 be the binary relation on R defined as follows, let x, y ∈
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R, then

x �1 y if


x ≤ y when x > 0,

y ≤ x when x < 0,

y ∈ R when x = 0.

Basically, x �1 y means that y is further away from the origin than x in the

same direction.

The proof of the following lemma is clear.

Lemma 3.2. The relation �1 is a closed partial order on R, when R is endowed

with the usual topology.

We introduce a binary relation on the class Kc by means of the above partial

order on R.

Definition 3.3. Let �I be the binary relation on Kc defined as follows, let

A,B ∈ Kc, then A �I B when for all a ∈ A there exists b ∈ B with a �1 b, and

for all b ∈ B there exists a ∈ A with a �1 b.

The relation A �I B means that given any point of A, there exists a point

of B which is further away from the origin in the same direction as the point

of A, and given any point of B, there is a point of A which closer to the origin

in the same direction as the point of B. Roughly speaking, B is more distant

from the origin than A, considering both sides, on the positive and the negative

parts.

The binary relation �I on Kc is a closed partial order when Kc is endowed

with the topology τH . We state the following lemma to prove such a result.

Lemma 3.4. Let A,B ∈ Kc. Then, A �I B if and only if A �1 B and A �1 B.

Proof. Suppose that A �I B. Thus, there exists b ∈ B with A �1 b. Moreover,

there exists a ∈ A with a �1 B.

We distinguish the following possibilities,

i) 0 < A, in this case it holds that 0 < A �1 a �1 B, and so A �1 B,

ii) A < 0, because of A �1 b, it is not possible that B ≥ 0, therefore, b ≤ A,

and so B ≤ A, that is, A �1 B,
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iii) A = 0, in this case it is obvious that A �1 B.

Therefore, A �1 B when A �I B.

The analysis of A �1 B is similar and so it is omitted.

Thus, A �I B implies that A �1 B and A �1 B.

Conversely, let us suppose that A �1 B and A �1 B.

Let a ∈ A. At least one of the relations a �1 A and a �1 A is held. Because

of the transitivity of �1, we obtain that at least one of the relations a �1 B and

a �1 B is true. Therefore, for any a ∈ A there exists b ∈ B with a �1 b.

Now let b ∈ B. Consider the following cases,

i) 0 ≤ B, we have that A �1 B �1 b, and so, A �1 b,

ii) B ≤ 0, in this case A �1 B �1 b,

iii) if B < 0 < B, it holds that A ≤ 0 since A �1 B, and so, B ≤ A ≤ 0.

Moreover, A ≥ 0 since A �1 B, and so 0 ≤ A ≤ B. Thus, 0 ∈ A and 0 �1 b.

Then, for any b ∈ B there exists a ∈ A with a �1 b. Hence, A �I B.

Lemma 3.5. The binary relation �I on Kc is a closed partial order.

Proof. The relation �I is reflexive and transitive since �1 has the same prop-

erties on R.

Suppose that A �I B and B �I A. By Lemma 3.4, A �1 B, A �1 B, B �1

A and B �1 A. Since �1 is a partial order on R, A = B and A = B, that is,

A = B.

Now, let {An}n, {Bn}n ⊂ Kc, with An �I Bn for all n ∈ N, such that

limn dH(An, A) = 0 = limn dH(Bn, B), where A,B ∈ Kc. Let us see that

A �I B. In accordance with formula (1),

lim
n
|An −A| = lim

n
|Bn −B| = lim

n
|An −A| = lim

n
|Bn −B| = 0.

By Lemma 3.4, An �I Bn is equivalent to An �1 Bn and An �1 Bn. Lemma 3.2

says that the partial order �1 on R is closed. Therefore, A �1 B and A �1 B,

which is equivalent to A �I B by Lemma 3.4. Hence, �I is closed.

Recall that Kc endowed with the topology τH is a Polish space and �I is a

closed partial order on Kc. Let F�I be the class of mappings f : Kc → R which
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are �I -preserving, bounded and measurable with respect to the σ-algebras σH

and B, where B stands for the usual Borel σ-algebra on R.

That mathematical framework permits to introduce a stochastic order for

interval valued random mappings as follows.

Definition 3.6. Let X and Y be interval valued random mappings. It will be

said that X is smaller than Y in the distance to the origin stochastic order, if

E(f(X)) ≤ E(f(Y )) for all f ∈ F�I . It will be denoted by X �̃I Y .

The relation X �̃I Y means that the interval valued random mapping Y

takes on more distant values from the origin on both sides than X.

Consider the example in relation to the inner diameter of piston rings de-

scribed in the introduction of the manuscript. Let X be the interval valued

random mapping ‘daily interval of measurements with respect to value 75 mm’

of the first manufacturer, that is, X = [X − 75, X − 75], where X and X stand

for the random variables smallest and largest diameters of the day, and let Y

stand for the interval valued mapping of the second manufacturer. The relation

X �̃I Y formalizes the idea that the former produces piston rings with diame-

ters closer to 75 mm when we consider both excess and default with respect to

75 mm. Note that X �̃I Y means that E(f(X)) ≤ E(f(Y )) for all f : Kc → R

which preserves �I , that is, for any mapping on the set of compact intervals of

R which increases as the endpoints of those intervals take on values further from

the origin. Thus, Y assumes intervals with endpoints further from the origin

than X does.

The interpretation of the order will be reinforced with the next result on

�̃I , which follows from Proposition 2.1.

Proposition 3.7. Let X and Y be interval valued random mappings. The

following conditions are equivalent,

i) X �̃I Y ,

ii) there exists a probability space (Ω,A, P ) and interval valued random map-

pings X̃, Ỹ : Ω → Kc with X̃ ∼st X and Ỹ ∼st Y, such that X̃ �I Ỹ

a.s. [P ],
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iii) E(f(X)) ≤ E(f(Y )) for all bounded and continuous �I-preserving map-

pings f : Kc → R (continuity in the metric dH),

iv) PX(U) ≤ PY (U) for all closed upper sets U of Kc (upper set in the partial

order �I , closed in the topology τH on Kc).

For the inner diameter piston rings example, X �̃I Y is equivalent to the

existence of interval valued random mappings X̃ and Ỹ on the same probability

space, with the same probabilistic behaviour as X and Y , respectively, satisfying

that X̃ �I Ỹ a.s. [P ]. By Lemma 3.4, X̃ �I Ỹ a.s. means that the endpoints

of X̃ are closer to the origin than those of Ỹ a.s. That is, the intervals of

measurements with respect to 75 mm of the first manufacturer are, from a

probabilistic point of view, “more narrow around that value” than those of the

second maker.

It is well-known that for any interval valued random mappings X and Y ,

X ∼st Y if and only if the bivariate random vectors (X,X) and (Y , Y ) satisfy

that (X,X) ∼st (Y , Y ). That will be applied to give a characterization of the

order �̃I .

Next, we develop a characterization of the order �̃I for interval valued ran-

dom mappings, by means of a new stochastic order for bivariate random vectors

when it is applied to the endpoints of the intervals. Such a characterization

permits to delve into the analysis of the order �̃I .

Consider on R2 the binary relation �2 which is the componentwise or-

der of �1, that is, (x1, x2) �2 (y1, y2) when x1 �1 y1 and x2 �1 y2, with

(x1, x2), (y1, y2) ∈ R2.

By Lemma 3.2, it can be seen that �2 is a closed partial order on R2, when

R2 is endowed with the usual topology.

That permits to introduce an integral stochastic order for bivariate random

vectors whose generator is given by the class of real bounded measurable map-

pings which preserve the partial order �2 on R2.

Definition 3.8. Let W and Z be bivariate random vectors. It will be said that

W is smaller than Z in the stochastic order generated by �2, if E(f(W )) ≤
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E(f(Z)) for any �2-preserving, measurable and bounded mapping f : R2 → R.

It will be denoted by W �̃2
Z.

The following result is a consequence of Proposition 2.1.

Proposition 3.9. Let W and Z be bivariate random vectors. The following

conditions are equivalent,

i) W �̃2
Z,

ii) there exists a probability space (Ω,A, P ) and bivariate random vectors

W̃ , Z̃ : Ω→ R2 with W̃ ∼st W and Z̃ ∼st Z, such that W̃ �2 Z̃ a.s. [P ],

iii) E(f(W )) ≤ E(f(Z)) for all bounded and continuous �2-preserving map-

pings f : R2 → R,

iv) PW (U) ≤ PZ(U) for all closed upper sets U of R2 (upper set in the partial

order �2).

The following result relates the stochastic order �̃I for interval valued ran-

dom mappings and the stochastic order �̃2
for bivariate random vectors.

Proposition 3.10. Let X and Y be interval valued random mappings. The

following statements are equivalent,

i) X �̃I Y ,

ii) (X,X) �̃2
(Y , Y ).

Proof. Firstly, suppose that X �̃I Y . By ii) in Proposition 3.7, there exists a

probability space (Ω,A, P ) and interval valued random mappings X̃, Ỹ : Ω →

Kc with X̃ ∼st X and Ỹ ∼st Y, such that X̃ �I Ỹ a.s. [P ].

Lemma 3.4 says that the condition X̃ �I Ỹ a.s. [P ] is equivalent to X̃ �1

Ỹ and X̃ �1 Ỹ a.s. [P ], all the above random variables defined on the same

probability space, and so we obtain that (X̃, X̃) �2 (Ỹ , Ỹ ) a.s. [P ].

It holds that (X̃, X̃) ∼st (X,X) and (Ỹ , Ỹ ) ∼st (Y , Y ).

By ii) in Proposition 3.9, we obtain that (X,X) �̃2
(Y , Y ).
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Conversely, let us assume that (X,X) �̃2
(Y , Y ). By ii) in Proposition 3.9,

there exists a probability space (Ω,A, P ) and random vectors (X1, X2), (Y1, Y2) :

Ω → R2, with the same distribution of (X,X) and (Y , Y ), respectively, such

that (X1, X2) �2 (Y1, Y2) a.s. [P ].

Consider the interval valued random mappings [X1, X2] and [Y1, Y2]. We

have that [X1, X2] ∼st X and [Y1, Y2] ∼st Y. They are defined on the same

probability space and [X1, X2] �I [Y1, Y2] a.s. [P ] by Lemma 3.4, which proves

the result applying ii) in Proposition 3.7.

Propostion 3.10 permits to derive some consequences on the new stochastic

order �̃I .

Proposition 3.11. The stochastic order �̃I is a partial order where equality

is in distribution.

Proof. Clearly �̃I is reflexive. Moreover, �̃I is transitive since the mappings

of F�I are bounded.

Now, suppose that X �̃I Y and Y �̃I X. By Proposition 3.10, this is the

same as (X,X)�̃2
(Y , Y ) and (Y , Y )�̃2

(X,X). Applying Proposition 3.9, that

is equivalent to P(X,X)(U) = P(Y ,Y )(U) for all closed upper sets in the order

�2 on R2. It is clear that the class of closed upper sets in the order �2 is

a π-system. Moreover, it can be seen that the σ-algebra generated by such a

class is the usual Borel σ-algebra on R2. Therefore, P(X,X) = P(Y ,Y ), that is,

(X,X) ∼st (Y , Y ), and so, X ∼st Y.

Proposition 3.12. The stochastic order �̃I is closed under weak convergence.

Proof. It follows from iii) in Proposition 3.7.

Proposition 3.13. Let X and Y be interval valued random mappings. Then,

X �̃I Y if and only if −X �̃I − Y .

Proof. The partial order �1 on R satisfies that a �1 b if and only if −a �1 −b.

Let A,B ∈ Kc. By Lemma 3.4, A �I B is equivalent to A � B and A �1 B,
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which is the same as −A �1 −B and −A �1 −B, that is, −A �I −B. Then,

A �I B if and only if −A �I −B.

By Proposition 3.7, the condition X �̃I Y is equivalent to the existence of a

probability space (Ω,A, P ) and interval valued random mappings X̃, Ỹ : Ω →

Kc with X̃ ∼st X and Ỹ ∼st Y such that X̃ �I Ỹ a.s. [P ], equivalently,

−X̃ �I −Ỹ a.s. [P ], which is the same as −X �̃I − Y .

The distance to the origin stochastic order for interval valued random map-

pings can be viewed as an order in concentration of probability outside the

element {0} of Kc, as the following result shows.

Let BH(K, ε) be the closed ball in the Hausdorff distance, centred at K ∈ Kc,

and with radius equal to ε ≥ 0. The superindex c will stand for the complemen-

tary set.

Proposition 3.14. Let X and Y be interval valued random mappings such

that X �̃I Y . For any ε > 0, it holds that P (X ∈ BH({0}, ε)c) ≤ P (Y ∈

BH({0}, ε)c).

Proof. We will prove that the mapping f{0},ε : Kc → R, with f{0},ε(A) =

IBH({0},ε)c(A) for any A ∈ Kc, where I∗ is the indicator function of the intervals

in ∗, is �I -preserving and measurable. Note that this leads to the desired result

after iii) in Proposition 3.7.

Let A,B ∈ Kc with A �I B, let us see that f{0},ε(A) ≤ f{0},ε(B).

The result is clear if f{0},ε(A) = 0. Suppose that f{0},ε(A) = 1. This means

that A 6∈ BH({0}, ε), that is, dH({0}, A) = max {|A|, |A|} > ε. Let us see that

B 6∈ BH({0}, ε). Consider the following cases,

i) if A < 0, then dH({0}, A) = |A| ≤ |B| = dH({0}, B),

ii) if A > 0, then dH({0}, A) = A ≤ B = dH({0}, B),

iii) in any other case, we have that |A| ≤ |B| and 0 ≤ A ≤ B, which implies

that dH({0}, A) = max{|A|, A} ≤ max{|B|, B} = dH({0}, B).

Therefore, f{0},ε(B) = 1, and so, f{0},ε is �I -preserving.

On the other hand, BH(K, ε) ∈ τH ⊂ σH , hence, the mapping f{0},ε is

measurable.
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4. Connections with other stochastic orders

In this section, we state relations of the distance to the origin stochastic

order with other stochastic orders for interval valued random mappings and

with stochastic orders for random variables and vectors. For that, we include

some stochastic orders for random variables, random vectors and interval valued

random mappings.

Let X and Y be random variables, X is said to be smaller than Y in the

i) usual stochastic order, denoted by X �st Y , if E(f(X)) ≤ E(f(Y )) for

all increasing mappings f : R→ R such that the above expectations exist,

ii) bidirectional order, denoted by X �bd Y , if X+ �st Y+ and X− �st Y−

hold simultaneously, where given a ∈ R, a+ stands for the positive part of a,

that is, max {a, 0}, and a− for the negative part, max {−a, 0} (see [17] and [18]).

Let X and Y be Rd valued random vectors, X is said to be smaller than Y

in the

i) usual stochastic order, denoted by X �st Y , if E(f(X)) ≤ E(f(Y )) for

all increasing mappings f : Rd → R such that the above expectations exist,

ii) V -directional stochastic order, where V = {v1, . . . , vl} is a set of vectors

in Rd, if E(f(X)) ≤ E(f(Y )) for any f ∈ FV such that the above expectations

exist, with FV = {f : Rd → R | f(x+εvi) ≥ f(x) for all x ∈ Rd, ε ≥ 0, vi ∈ V },

that is, the set of mappings which are increasing in the direction of the vectors

in V . This relation will be denoted by X �V Y (see [21]).

To introduce some stochastic orders for interval valued random mappings,

the notion of expected value of those random elements is necessary.

Let (Ω,A, P ) be a probability space and X : Ω → Kc an interval valued

random mapping. Take the mapping ‖X‖ : Ω→ R given by ‖X‖(ω) = sup{|x| |

x ∈ X(ω)}. If ‖X‖ ∈ L1(P ), the Aumann expectation of X, denoted by E(X),

is the set E(X) = [E(X), E(X)].

Let X and Y be interval valued random mappings, then

i) X is said to be smaller than Y in the symmetric order, denoted by X �sym

Y , if E(co(X ∪ Br)) ⊂ E(co(Y ∪ Br)) for any r > 0, where co stands for the
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convex hull (see [11]),

ii) X is said to be smaller than Y in the set linear convex order, denoted by

X �slcx Y , if E(co(Xs ∪Br)) ⊂ E(co(Y s ∪Br)) for any s, r > 0 (see [11]),

iii) X is said to be stochastically smaller than Y , denoted by X �strs Y , if

there exist a probability space (Ω,A, P ) and interval valued random mappings

X̃, Ỹ : Ω→ Kc with X̃ ∼st X and Ỹ ∼st Y , such that X̃ ⊂ Ỹ a.s. [P ] (see, for

instance, [19]).

As we will see, the distance to the origin stochastic order is stronger than

the symmetrically smaller stochastic order. Firstly, we develop the following

result.

Lemma 4.1. Let A,B ∈ Kc and let r > 0. If A �I B, then co(A ∪ Br) ⊂

co(B ∪Br).

Proof. Let us consider the following cases,

i) 0 ≤ A, in this case co(A ∪ Br) = [−r,max {A, r}] ⊂ [−r,max {B, r}] =

co(B ∪Br), note that by Lemma 3.4 A �1 B, and so, A ≤ B,

ii) A ≤ 0, now co(A∪Br) = [min {A,−r}, r] ⊂ [min {B,−r}, r] = co(B∪Br),

observe that Lemma 3.4 implies that B ≤ A,

iii) A < 0 < A, note that co(A ∪ Br) = [min {A,−r},max {A, r}] ⊂

[min {B,−r},max {B, r}] = co(B ∪ Br), in this case Lemma 3.4 assures that

B ≤ A and A ≤ B.

Proposition 4.2. Let X and Y be interval valued random mappings such that

X �̃I Y . Then, X �sym Y .

Proof. By Proposition 3.7, there exist a probability space (Ω,A, P ) and interval

valued random mappings X̃, Ỹ : Ω→ Kc with X̃ ∼st X and Ỹ ∼st Y , such that

X̃ �I Ỹ a.s. [P ].

Therefore, co(X∪Br) ∼st co(X̃∪Br) and co(Y ∪Br) ∼st co(Ỹ ∪Br) for any

r > 0. In accordance with Lemma 4.1, we obtain that co(X̃ ∪Br) ⊂ co(Ỹ ∪Br)

a.s. [P ], and so E(co(X̃ ∪Br)) ⊂ E(co(Ỹ ∪Br)), which proves the result.
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The converse of the above result is not true. Note that Remark 17 in [11]

says that the symmetrically smaller order is not antisymmetric on the set of

probabilities induced by interval valued random mappings.

In relation to the set linear convex order, there is not a general relation be-

tween this order and the distance to the origin order. The stochastic order �slcx

does not imply the order �̃I , note that �slcx does not satisfy the antisymmetric

property. On the other hand �̃I does not imply �slcx, consider the constant

interval valued random mappings X = [−2,−1] and Y = [−12,−10]. It is clear

that X �̃I Y . Take s = 3 and r = 1 in the definition of �slcx. It can be seen

that E(co(X3 ∪ B1)) = [−5, 2] and E(co(Y 3 ∪ B1)) = [−15, 1], thus X �slcx Y

is false.

Regarding the stochastic orders �̃I and �strs, it can be seen that there is

not a general relation between both. The following result states a connection

under additional assumptions.

Proposition 4.3. Let X and Y be interval valued random mappings such that

X < 0 < X a.s. Then, X �̃I Y if and only if X �strs Y .

Proof. If X �̃I Y , there exist a probability space (Ω,A, P ) and interval valued

random mappings X̃, Ỹ : Ω → Kc with X̃ ∼st X and Ỹ ∼st Y, such that

X̃ �I Ỹ a.s. [P ].

We have that X ∼st X̃, X ∼st X̃ and so, X̃ < 0 and X̃ > 0 a.s. Since

X̃ �I Ỹ a.s., we obtain that X̃ ⊂ Ỹ a.s. [P ], that is, X �strs Y .

The converse can be reasoned in a similar way.

Next we relate the distance to the origin stochastic order with some stochas-

tic orders for random vectors and random variables.

Firstly, we will see that under some conditions on the interval valued random

mappings, the order �̃I is equivalent to the directional order �V applied to the

endpoints of the intervals with V = {−e1, e2}.

The example below shows that, in general, the orders �̃2
and �V are not

the same.
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Take the constant interval valued mappings X = [0, 3] and Y = [5, 7]. It is

immediate that (X,X) �2 (Y , Y ), and so, (X,X)�̃2
(Y , Y ).

Let v = (5, 7) − (0, 3) = (5, 4). Clearly enough, v 6∈ CV with CV the set

of all conical combinations of vectors in V , that is, CV = {α1(−e1) + α2e2 |

αi ≥ 0, 1 ≤ i ≤ 2}. By Proposition 3 in [21], there exists a linear mapping

ξ : R2 → R with ξ(−e1) ≥ 0, ξ(e2) ≥ 0 and ξ(v) < 0, that is, ξ(5, 7) < ξ(0, 3).

Thus, ξ ∈ FV , hence (X,X) �V (Y , Y ) is false.

Proposition 4.4. Let (X,X), (Y , Y ) be random vectors such that X,Y ≤ 0 a.s.

and X,Y ≥ 0 a.s, and consider V = {−e1, e2}. Then (X,X)�̃2
(Y , Y ) if and

only if (X,X) �V (Y , Y ).

Proof. Let x = (x, x), y = (y, y) ∈ R2. Define the relation ≤CV
on R2 given by

x ≤CV
y when y − x ∈ CV , which is equivalent to y − x ≤ 0 and y − x ≥ 0.

It is not hard to see that when x, y ≤ 0 and x, y ≥ 0, then x ≤CV
y if and

only if x �2 y.

Assume that (X,X) �V (Y , Y ). Note that CV does not contain non-trivial

subspaces of R2 and so ≤CV
is an order. By Proposition 9 in [21], that order

is closed. Applying Corollary 1 of that reference, there are random vectors

(X ′, X
′
), (Y ′, Y

′
) on the same probability space, with (X,X) ∼st (X ′, X

′
) and

(Y , Y ) ∼st (Y ′, Y
′
), such that (X ′, X

′
) ≤CV

(Y ′, Y
′
) a.s., which is the same

as (X ′, X
′
) �2 (Y ′, Y

′
) a.s. and so, (X,X)�̃2

(X,X) by Proposition 3.9 of the

present manuscript.

The converse is analogous.

The following connections of the order �̃I with the usual multivariate stochas-

tic order can be developed now.

Proposition 4.5. Let X and Y be interval valued random mappings such that

X,Y ≤ 0 a.s. and X,Y ≥ 0 a.s. Then X �̃I Y if and only if (−X,X) �st

(−Y , Y ).
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Proof. Observe that X �̃I Y is the same as (X,X)�̃2
(Y , Y ) by Theorem 3.10.

That is equivalent to (X,X) �V (Y , Y ) with V = {−e1, e2} by Proposition 4.4,

Take the linear mapping h : R2 → R2 with h(−e1) = e1 and h(e2) = e2.

By Proposition 7 in [21], (X,X) �V (Y , Y ) if and only if h(X,X) �V̂ h(Y , Y ),

with V̂ = {e1, e2}. Note that �V̂ is the usual multivariate stochastic order �st,

which proves the result.

Proposition 4.6. Let X and Y be interval valued random mappings such that

X,Y ≤ 0 a.s., X,Y ≥ 0 a.s. and (X,X) and (Y , Y ) have the same copula.

Then, X �̃I Y if and only if Y �st X, X �st Y .

Proof. Note that (−X,X) and (−Y , Y ) have the same copula. By Theorem

3.3.8 in [5], (−X,X) �st (−Y , Y ), and so the result follows from Proposition

4.5.

If W and Z are random variables, {W} and {Z} are interval valued random

mappings. The following result shows that the order �̃I is an extension of the

order �bd on the space of singleton valued random mappings.

Proposition 4.7. Let W and Z be random variables. Then {W} �̃I {Z} if and

only if W �bd Z.

Proof. By Proposition 3.10, {W} �̃I {Z} is the same as (W,W )�̃2
(Z,Z). By

Proposition 3.9, this is equivalent to the existence of a probability space (Ω,A, P )

and random variables W̃ , Z̃ : Ω → R with W̃ ∼st W and Z̃ ∼st Z and

W̃ �1 Z̃ a.s. Note that W̃ �1 Z̃ a.s. is the same as W̃− ≤ Z̃− a.s. and

W̃+ ≤ Z̃+ a.s. By Proposition 2 in [18], this is the equivalent to W �bd Z.

5. Applications to climate and economic data analysis

The �̃I order is illustrated below by means of two examples with weather

and economic interval valued data. The weather example appears first and is
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explained in a greater detail, while only the parts that are new with respect to

it are discussed in the economic example.

5.1. Comparison of continental and oceanic climates in terms of yearly temper-

ature range

Continental climates are characterized by a substantial annual variation in

temperature, having cold winters and hot summers, while oceanic climates have

mild summers and cool winters, so their annual variation in temperature is

somewhat narrow. We use the �̃I order to compare the yearly temperatures

in Madrid (central Spain, continental climate) and Oviedo (northern Spain,

oceanic climate). Specifically, we compare the yearly temperature range cen-

tred by the yearly average temperature (average of the daily midpoints between

absolute maximum and minimum temperatures) in both locations over the 25-

year period comprised between 1996 and 2020. Data were taken from the infor-

mation dissemination system of the Spanish Meteorological Agency (AEMET

OpenData) https://opendata.aemet.es and correspond to weather stations

3195 in Madrid (Retiro Park) and 1249I in Oviedo.

In Figure 1, we plot the raw collected data as a time-series. Madrid temper-

atures are in black, while those of Oviedo are in grey. The solid lines correspond

to the extreme temperatures (yearly absolute maximum and minimum temper-

atures), while the dotted lines are the yearly average temperatures. The tem-

perature variation range is the interval ranging between the absolute minimun

minus the average temperature and the absolute maximum minus the average

temperature.

In Figure 2, we present a scatterplot of the temperature variation range for

each one of the 25 selected years with its left endpoint in the X axis and its

right endpoint in the Y axis. As before, Madrid observations are in black, while

those of Oviedo are in grey. We check that there is no structure in neither of

the two time series of intervals by means of the global serial independence test

for multivariate time series proposed by [22] which renders p-values of 0.5089

for the Madrid data and 0.7393 for the Oviedo data (all subsets up to lag 10

18
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Figure 1: Raw temperature data.

and 104 permutations were considered), so both can be assumed to be serially

independent.

In order to compare the two series of temperatures by means of the �̃I order,

we make use of Proposition 4.6. First, we check that the bivariate random

vectors given by the endpoints of the temperature variation ranges share a

common copula. With such an objective, we have used the test proposed by

[23] obtaining a p-value equal to 0.2698 (106 replicates), so we cannot reject

that they indeed share the same copula. We have also run an independence test

on each of the two datasets, and the endpoints of the variation range of both of

them can be assumed to be independent (respective p-values equal to 0.2837 in

Madrid and 0.5817 in Oviedo).

Next, we compare the lower and upper endpoints of the temperature varia-

tion ranges in Madrid and Oviedo (whose respective empirical cumulative dis-

tribution functions are plotted in Figure 3) with respect to the usual stochastic

order. In order to confirm that each endpoint of the temperature variation range
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Figure 2: Temperature variation range obtained as local extreme temperatures minus average

temperature.

in Madrid is, in absolute value, stochastically greater than the corresponding

endpoint of the temperature variation range in Oviedo in the usual stochas-

tic order, we run two one-sided Kolmogorov-Smirnov tests with the inequality

that we want to prove in the alternative hypothesis, as suggested in [24, Sec.

3 – Homogeneity against stochastic order]. Since observations come in pairs

(each one corresponding to one specific year), both tests are run as permuta-

tion ones (with 106 permutations), obtaining p-values equal to 0, which shows

strong evidence that the upper enpoint of the temperature variation range in

Madrid is stochastically greater in the usual stochastic order than the one in

Oviedo, while the lower endpoint of the temperature variation range in Madrid

is stochastically smaller in the usual stochastic order than the one in Oviedo.

Finally, since the conditions of having a common copula and the usual

stochastic order for the endpoints of the random intervals are fulfilled, after

Proposition 4.6, we conclude that the temperature range in Madrid is stochas-

tically greater than the one in Oviedo in the �̃I order. In plain words, the

extreme temperatures of Madrid are more distant to the yearly local average
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temperature than those of Oviedo.

5.2. Comparison of Bitcoin and Euro in terms of weekly log-returns

Since the volatility levels of digital currencies are usually much higher than

the ones of classical currencies, we have decided to compare the Bitcoin and Euro

weekly log-regurns over year 2020. Specifically, we have taken the weekly open-

ing, closing, instant minimum, and instant maximum price of Bitcoin (BTC)

and Euro (EUR) in United States Dollar (USD) over the 52 weeks of year 2020
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from the dashboards for historical data BTC/USD - Bitcoin US Dollar1 and

EUR/USD - Euro US Dollar2. With such prices, we have built the weekly

log-return ranges of the two currencies and compared them in the �̃I order.

In Figure 4, we present the weekly maximum and minimum prices of Bitcoin

and Euro (in USD) throughout the 52 weeks of 2020 in solid lines (black for

Bitcoin and grey for Euro), together with their opening prices in a dotted line.

A base-10 logarithmic scale is used for the Y axis, which is presented with a

break between values 1.3 and 3500.
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Figure 4: Weekly maximum and minimum Bitcoin and Euro prices (solid line) and opening

price (dotted line) throughout 2020.

The weekly opening price is used together with the maximum and minimum

prices to obtain the weekly log-return ranges, which are presented in Figure 5

in a scatterplot with the minimum in the X axis and the maximum in the Y

axis. We check that, with significance level 5%, both sequences of bivariate

1https://www.investing.com/crypto/bitcoin/btc-usd-historical-data.
2https://www.investing.com/currencies/eur-usd-historical-data.
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observations are serially independent, so it is possible to assume that there is

no time structure. The respective p-values for the global serial independence

test for multivariate time series proposed by [22] are 0.6369 for the Euro data

and 0.0907 for the Bitcoin data (all subsets up to lag 10 and 104 permutations

were considered).
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Figure 5: Bivariate representation of the weekly log-return range.

As in the previous example, our goal is to confirm the �̃I order between the

considered random intervals by means of Proposition 4.6. Firstly, we check that

the minimum and maximum log-returns of the two currencies share a common

copula (p-value equal to 0.3279 with 106 replicates with the test proposed by

[23]). Unlike in the previous example, the endpoints of the range (minimum

and maximum log-returns) are not independent, showing a positive association

(both endpoints of the range increase at the same time) that is already aparent

in their scatterplots, see Figure 5.

Then, we check the orderings in terms of the usual stochastic order. The

empirical cumulative distribution functions of the minimum and maximum log-

returns are plotted in Figure 6. A permutation version (with 106 permutations)
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of the one-sided Kolmogorov-Smirnov test was used to deal with the paired data

situation that we face, rendering respective p-values of 0 for the minimum log-

return and 0.0296 for the maximum log-return. In conclusion, there is enough

evidence, at 5% significance level, to conclude that that the maximum log-return

of the Bitcoin is stochastically greater in the usual stochastic order than the

maximum log-return of the Euro and the minimun log-return of the Bitcoin is

stochastically smaller in the usual stochastic order than the minimum log-return

of the Euro.
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Figure 6: Empirical cumulative distribution functions of the minimum (top) and maximum

(bottom) of the log-return range.
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Finally, after Proposition 4.6, we conclude that the log-return range of the

Bitcoin is stochastically greater than the one of the Euro in the �̃I order. The

extreme weekly log-returns of the Bitcoin are thus more distant to zero than

those of the Euro. Note that the log-return is positive (respectively negative)

when the price increases (resp. decreases) from one week to the next, while it is

zero when there is no variation. Our conclusion is coherent with the empirical

observation that the Bitcoin has a higher volatility than the Euro.

Observe that, in the light of Proposition 4.4, our previous conclusion means

that the random vectors (X,X) and (Y , Y ), which respectively represent the

endpoints of the log-return range of the Euro and Bitcoin, satisfy E(f(X,X)) ≤

Ef(f(Y , Y )) for every f increasing mapping in the direction of −e1 and e2 for

which both expectations exist.

6. Conclusions

When working with interval data, the analysis of the closeness or distance of

the endpoints of the interval with respect to a reference point, may be of great

usefulness in many applied fields. This manuscript provides a mathematical

model for such an analysis in terms of a stochastic for interval valued random

mappings. A key advantage of the model is the characterization of that order

by means of a new stochastic order for bivariate random vectors when this new

order is applied to the endpoints of the interval valued mappings. Such a char-

acterization has enabled us to obtain conditions on the random variables given

by the endpoints of the intervals, which lead to the ordering of the correspond-

ing interval mappings. These conditions can be analyzed from an inferential

point of view, which permits the use of statistical inference techniques to test

the proposed stochastic order. All of that has been illustrated in the manuscript

with some examples regarding weather and economic interval valued data.
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