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Abstract
We review the state of the art and recent advances in quantum computing applied to derivative pricing and the computation 
of risk estimators like Value at Risk. After a brief description of the financial derivatives, we first review the main models 
and numerical techniques employed to assess their value and risk on classical computers. We then describe some of the 
most popular quantum algorithms for pricing and VaR. Finally, we discuss the main remaining challenges for the quantum 
algorithms to achieve their potential advantages.

1  Introduction

Quantum computing for financial applications is a hot topic, 
with multiple and varied possibilities [14, 70]. The main 
reason for exploring this field of application for quantum 
computing comes from the fact that current algorithms used 
by financial institutions demand high-performance comput-
ing, as most of the models used in mathematical finance do 
not have analytical solutions. For an increasing number of 
cases, quantum computing promises faster responses that 
can provide solutions to up-to-now intractable problems.

In this article, the set of algorithms to be explored cor-
responds to the pricing of financial derivatives and Value-
at-Risk (VaR) computation.

In the first case, the main objective is to provide the value 
of an option, which is a financial derivative that gives the 
right to sell or buy an asset in a future date at a prescribed 
price. Financial derivatives are contracts whose value 
depends on the value of a particular underlying asset. In the 
second case, the VaR is a risk measure so that the objective 
is to forecast the losses of future operations. The present 
article reviews the main concepts and classical algorithms 
to address both mathematical problems, as well as the recent 
advances to solve these problems with quantum computing.

The article is divided into two main parts. The first one, 
Sect. 2: “Classical methods in pricing and VaR”, provides a 
quick overview of the approaches currently used to price and 
manage the risk of financial derivatives. A simple example 
of a derivative contract is a European call option on a single 
equity stock. This contract gives the holder the right to pur-
chase the stock at some point in the future for a fixed price 
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agreed today. This means that, if at that future date (matu-
rity) the stock price increases, the option holder can make a 
profit by purchasing the stock at the previously agreed price 
and selling it in the market at the current, higher, price.

Section 2 starts with a short review of some basic option 
contracts and their payoff functions. It continues with some 
modelling approaches and finally covers two general numeri-
cal approaches for derivatives pricing: Monte Carlo and Par-
tial Differential Equations- PDEs (including machine learn-
ing approaches). In the second part of Sect. 2, financial risk 
management concepts are covered such as Market Risk and 
Credit Portfolio Management, as well as key risk portfolio 
metrics such as Value-at-Risk and Conditional Value-at-Risk 
(or Expected Shortfall). Factor models, a key dimension 
reduction technique, are also covered. The chapter ends with 
a review of some of the most important numerical methods 
in financial risk management.

The second part of the article, Sect. 3: “Quantum meth-
ods in pricing and VaR”, contains a review of the currently 
known approaches to implement derivative pricing and 
derivative risk management on quantum computers.

Section 3 starts discussing quantum alternatives to clas-
sical Monte Carlo. The cornerstone of the quantum alterna-
tives to Monte Carlo rely on Quantum Amplitude Estimation 
and more modern variations on this technique. Despite its 
relative simplicity, Monte Carlo approaches are widely used 
for derivative pricing and derivative risk management in 
financial institutions mainly due to their general purpose and 
larger resilience to the “curse of dimensionality”, that arises 
when the number of underlying assets or stochastic factors 
becomes large. Later on, still in Sect. 3, quantum methods 
for solving derivative pricing models using PDEs are also 
discussed. In the third block of Sect. 3 we introduce some 
numerical quantum techniques for pricing and VaR which, 
at least in spirit, are closer to Machine Learning. Section 3 
concludes with a review of the key remaining challenges for 
quantum alternatives to Monte Carlo to deliver their poten-
tial advantage, namely, the efficient loading or generation 
of probability distributions in a quantum computer and the 
computation of the payoff functions in pricing problems.

2 � Classical Methods for Pricing and VaR

2.1 � Pricing of Financial Derivatives

2.1.1 � Financial Derivatives and Options

In financial markets, a derivative is a financial contract 
whose value depends on the future performance of one 
or several assets (usually referred to as underlying asset, 
or simply underlying). Examples of underlying assets are 
stocks, interest rates, exchange rates, credit spreads, etc. 

Depending on the main underlying risk factor, we have 
equity derivatives, interest rate derivatives, FX derivatives, 
credit derivatives, etc.

Options (or contingent claims, or non-linear derivatives) 
are derivatives whose payoffs are non-linear functions of the 
underlying. Let us denote by vt and St the value of the option 
and the underlying at time t, respectively. At the expiring 
date of the option contract T, or before under certain circum-
stances, the option holder receives a payment, referred as 
payoff, that depends on the evolution of the underlying asset. 
The payoff is usually defined by a mathematical expression, 
vT = h(T , ST ) , where h is a function that depends on the 
expiry date T and the value of the underlying at the expiry 
date ST . There also exist options with payoffs depending on 
previous values of the asset (exotic options). At any time 
0 < t < T , the option value is given by vt = V(t, St) , where V 
is a function depending on time t and the value of the under-
lying St . The option value represents the premium the buyer 
has to pay to get the rights associated to the option contract.

In derivative pricing, mathematical models define the 
relationship between the underlying asset and option fair 
values, i.e., the premium which makes both the option seller 
and buyer break even.1

In the following, some of the most popular families of 
options based on their payoffs are defined. Similarly, some 
of the mathematical models are described later with the most 
common numerical techniques to solve them.

European Options A European vanilla option on an 
underlying asset gives the right but not the obligation to 
buy or sell the asset at a given date in the future (T or expiry 
date) and for a fixed price (which is commonly known as the 
strike price K) [50]. When the option confers the right to buy 
it is referred to as a call option, and when it gives the right 
to sell it is called a put option.

The payoffs of the European call and put options are 
respectively given by

s o  t h a t  h(T , ST ) = max
(
ST − K, 0

)
 o r 

h(T , ST ) = max
(
ST − K, 0

)
.

Notice that at maturity date t = T these values are known, 
since ST is known and the strike price K is fixed in the con-
tract. The option pricing problem is to calculate the fair 
value of the contracts at the pricing date t = 0 , i.e., c0 and p0.

For example, in Fig. 1 options on HSBC stock with expiry 
date April 30th, 2021 are shown.2. The value of the HSBC 
stock at that date was 29.16, The call options marked in blue 

(1)cT = max
(
ST − K, 0

)
, pT = max

(
K − ST , 0

)
,

1  Fair value of an option is also defined as a model-derived estimate 
of the option value in an efficient market.
2  Data from Yahoo​ Finan​ce, consulted on Apr. 2nd, 2021.

https://finance.yahoo.com/quote/HSBC/options
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were in the money on that day since the strike price is below 
the current value of the stock, however should the value of 
the stock fall below the strike price at maturity these options 
would expire out the money, i.e. with a value of zero. When 
the value of the underlying is exactly that of the strike, the 
option is known to be at the money. In Fig. 1, the last price 
column refers to the most recent price of the option in the 
market.

American Options Unlike European options, where the 
option can only be exercised at expiry date T and receive 
the payoff (1), American options give the holder the right to 
exercise the call (put) option, i.e. the right to buy (or sell) 
the underlying stock at the strike value at any time te ∈ [0, T] 
and receive:

which are referred to as the exercise value of the call or the 
put, respectively. Therefore, the value of an American option 
is always greater than or equal to its exercise value:

(2)cte = max
(
Ste − K, 0

)
, pte = max

(
K − Ste , 0

)
,

otherwise there would be arbitrage opportunities3, since a 
trader could make a riskless profit by selling (or buying) 
American and European calls/puts on the stock. While 
arbitrage opportunities do exist in financial markets, these 
are normally short lived and not usually material, there-
fore option pricing theory assumes the absence of arbitrage 
opportunities.

Basket Options In previous sections we introduced exam-
ples of options that depend on just one underlying asset. 
Options that depend on a set of assets are also traded in 
the financial markets and are known as basket options. The 
payoff of a vanilla basket option depends on the value of a 
set of assets at maturity, that is:

Some examples of specific payoffs for basket options are:

(3)ct ≥ max
(
St − K, 0

)
, pt ≥ max

(
K − St, 0

)
,

(4)VT = f (T , S1
T
,… , Sd

T
).

Fig. 1   Options on HSBC stocks 
(the underlying assets) in Yahoo 
Financials for expiry date of 
Apr. 30th, 2021

3  Which means opportunities of sure gain without risk, the lack of 
arbitrage opportunities being one of the main assumptions in option 
pricing theory
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where g is a generic function which is applied to the maxi-
mum (minimum) of the different assets values in the “Best 
of” (“Worst of”) option, respectively.

Note that basket options can be either American or Euro-
pean style options, i.e. they can include early exercise oppor-
tunity or not.

At this introductory level, we are going to focus on vanilla 
contracts only. For vanilla options, the payoffs only depend 
on the value of the underlying at expiry date T. More com-
plicated examples are Asian options, where the payoff is 
determined by certain average of the underlying asset values 
in a set of discrete times or in a certain period; or barrier 
options, where the payoff depends on whether the underly-
ing value has or has not crossed some prescribed limits (for 
further details, see [87], for example). Here we will not con-
sider these non-vanilla options (also called exotic options).

2.1.2 � Some Models for the Value of Underlying Assets

One of the key ingredients in option pricing is the choice of 
the dynamics of the underlying stochastic factors. Although 
there are a lot of possible choices of factors and dynamics 
that could be taken into account, in this review we will focus 
on the classical Black and Scholes [13] and Heston dynam-
ics [46] for the underlying asset evolution. This framework 
can easily be extended to the values of a set of assets when 
dealing with basket options.

Black–Scholes Model The Black–Scholes model allows 
us to compute the value of a derivative product vt = V(t, St) 
at time t in terms of the value of the underlying asset St at 
time t [87]. In the Black–Scholes model one assumes that 
the stochastic dynamics of the underlying value St follows a 
geometric Brownian motion, so that the stochastic process 
St satisfies the following Stochastic Differential Equation 
(SDE):

where � is the drift parameter, � is the stock volatility and 
dWt represents the increment of a Wiener process, also 
called a Brownian motion (see [66] for its definition). This 
Brownian motion is introduced within the frame of a filtered 
probability space involving a probability measure P.

In the case of basked options, the option value is given 
by vt = V(t, S1

t
,… , Sd

t
) and we can assume the Black-Scholes 

dynamics for each underlying asset:

Call spread option: f (T , S1, S2) = max(S1 − S2 − K, 0),

Put spread option: f (T , S1, S2) = max(K − (S1 − S2), 0),

"Best of " type option: f (T , S1,… , Sd) = g(max(S1,… , Sd)),

"Worst of " type option: f (T , S1,… , Sd) = g(min(S1,… , Sd)),

(5)dSt = �Stdt + �StdWt,

where �i , �i and Wi
t
 are the corresponding drift, volatility 

and driving Brownian motion of asset i, for i = 1,… , d . 
Correlations between assets are captured through correla-
tions between their corresponding Brownian motions, that 
is dWi

t
dW

j

t = �ijdt , �ij being the instantaneous correlation 
coefficient between asset Si

t
 and Sjt . Note that correlation 

coefficients can be time-dependent.
Heston Model Due to some drawbacks in the classical 

Black–Scholes model to match prices quoted in the mar-
kets (or calibration), stochastic volatility models replace the 
constant volatility � assumed in the Black–Scholes model. 
Considering two separate processes, one for the value St and 
another one for the instantaneous variance �t , this provides 
us with richer dynamics that can fit observed market prices 
better. One of the most popular stochastic volatility models 
is the Heston model, that assumes the following dynamics 
for the underlying asset and its variance:

In the first equation, � is the drift parameter and 
√
�t is the 

stochastic volatility. In the second equation, � is the mean 
reversion speed, � is the long term variance also called the 
level and � is referred to as the volatility of the volatility 
(vol-of-vol). Finally, two correlated Brownian motions WS

t
 

and W�
t
 are considered with correlation coefficient � that cap-

tures the dependency between asset value and variance, i.e. 
dWS

t
dW�

t
= � dt.

Extension to a multi-assets dynamics with d assets can 
be addressed by considering 2d processes corresponding to 
Heston dynamics for each asset.

2.1.3 � Numerical Methods for Options

In order to compute the value of European options with one 
underlying asset, we can use Girsanov’s theorem4 to work in 
the risk neutral probability measure Q. Mathematical models 
for options pricing must take into account the absence of 
arbitrage hypothesis. For this purpose, the discounted prices 
of financial products must satisfy the martingale property 
under certain probability measure, this measure is the so 
called risk neutral probability measure Q. The dynamics 
of the underlying asset under this measure is obtained by 
replacing the drift � by the risk free rate r in (5). Under the 
measure Q, the value of the option is a martingale process, 
that is, the conditional expected value of the discounted 

(6)dSi
t
= �iSi

t
dt + �iSi

t
dWi

t
,

(7)
dSt = �Stdt +

√
�tStdW

S
t
,

d�t = �(� − �t)dt + �
√
�tdW

�
t
.

4  In probability theory, the Girsanov theorem describes how the 
dynamics of stochastic processes is modified when the original meas-
ure is changed to an equivalent probability measure [66].
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value of the derivative is constant through time. Next, we 
use Ito’s lemma5 and the martingale property, so that the 
option value vt = V(t, St) can be obtained as a conditional 
expectation of the form:

such that St is an stochastic process satisfying any of the 
previous models. Note that r is the discounting rate, h is 
the payoff function (given by (1) in European call and put 
options) and the term Ft , the filtration, represents the market 
information (which is assumed to be known) until time t. For 
further details on probability theory and stochastic calculus 
we refer to [66].

For American options, the formulation in terms of expec-
tations involves the so called optimal stopping time. More 
precisely, in the case of one underlying asset, the American 
option value at time t is given by expression:

where � denotes a stopping time.
The pricing of European options admits an equivalent for-

mulation in terms of Partial Differential Equations (PDEs). 
This formulation can be obtained by using the Feynman-
Kac theorem that relates expectations of stochastic processes 
with the solution of PDEs. Alternatively, this formulation 
can also be derived using dynamic hedging methodologies 
which involve the use of Ito’s lemma, the building of a risk 
free portfolio and the consideration of the absence of arbi-
trage hypothesis. Under this formulation the function V, such 
that vt = V(t, St) is the value of the European option, satisfies 
the following Black-Scholes PDE in Ω = (0, T) ×ℝ

+:

The final condition at time T is given by the function h and 
depends on the payoff of the specific product. The solution 
for this PDE is [91]

(8)V(t, St) = e−r(T−t)�Q[h(T , ST )|Ft],

(9)vt = V(t, St) = max
�∈[t,T]

exp−r(T − �)�Q[h(�, S�)|Ft],

(10)�V

�t
+ rS

�V

�S
+

�2S2

2

�2V

�S2
− rV = 0,

(11)V(T , S) = h(T , S).

(12)V(t, S) =
e−r(T−t)

�
√
2�(T − t) ∫

∞

0

exp

⎛⎜⎜⎝
−
(log(S∕S�) + (r −

�2

2
)(T − t))2

2�2(T − t)

⎞⎟⎟⎠
h(t, S�)

dS�

S�
.

Note that for the case of European vanilla call or put options, 
the solution of (10) has an analytical expression, also known 
as Black-Scholes formulas:

with

where N(0, 1)(x) is the CDF of the standard normal distri-
bution. For more general payoffs or models, it is not always 
possible to find closed-form solutions like this one and 
numerical methods are required.

Regardless of the pricing problem formulation (condi-
tional expectation, PDEs or other) and the techniques of 
derivation (Girsanov theorem, dynamic hedging and non 
arbitrage, etc), the risk neutral probability measure is always 
used for derivative pricing.

Monte Carlo The expectation in Eq. (8) can be written in 
integral form as a risk-neutral valuation formula,

with f (⋅) being the Probability Density Function (PDF) of 
the asset value process St.

Many numerical techniques are based on the solution pro-
vided by this risk-neutral valuation formula, in particular by 
taking advantage of its integral formulation.

Monte Carlo methods are well-known numerical tech-
niques to evaluate integrals. They are based on the analogy 
between probability and volume. Suppose we need to com-
pute an integral

and we have a technique to draw M independent and iden-
tically distributed samples in C, X1,X2,… ,XM . We then 
define a Monte Carlo estimator (see [35], for further details) 
as

(13)Vc(t, St) = StN(0, 1)(d1) − Ke−r(T−t)N(0, 1)(d2),

(14)Vp(t, St) = −StN(0, 1)(−d1) + Ke−r(T−t)N(0, 1)(−d2),

(15)d1 =
log(S∕K) + (r +

1

2
�2)(T − t)

�
√
T − t

,

(16)d2 =
log(S∕K) + (r −

1

2
�2)(T − t)

�
√
T − t

= d1 − �
√
T − t,

(17)V(t, S) = e−r(T−t) ∫
ℝ

h(T , y)f (y|Ft) dy ,

I ∶= ∫C

g(x) dx ,

5  A formula to calculate the differential of a time-dependent function 
of a stochastic process. It is the equivalent in stochastic calculus to 
the chain rule in the usual calculus.
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If g is integrable over C then, by the strong law of the large 
numbers, ĪM → I as M → ∞ , with probability one.

Furthermore, if g is square integrable, we can define the 
standard deviation of g as

By the central limit theorem, it is known that the error of 
the Monte Carlo estimate, i.e. I − ĪM , is normally distributed 
with mean 0 and standard deviation sg∕

√
M . Therefore, the 

quadratic error of the Monte Carlo estimate tends to zero 
with order O(1∕

√
M) when M tends to infinity, which is 

considered slow for many applications.
However, Monte Carlo methods are highly appreciated in 

computational finance due to their simplicity, flexibility and 
easy implementation. One of their most important advan-
tages is that these methods are readily extendable to multi-
dimensional problems without increasing the rate of con-
vergence. Moreover, the simplicity of Monte Carlo methods 
allows for different convergence improvement techniques, 
such as variance reduction techniques [35] or multi-level 
Monte Carlo acceleration [32].

When employing Monte Carlo to approximate an expec-
tation value, an essential part of the method is the genera-
tion of sample paths. Random number generators (RNG) are 
typically used to generate Monte Carlo paths and they have 
been studied for many years. Broadly, they can be subdi-
vided into “true”, pseudo- and quasi-random generators, and 
they usually generate uniformly distributed samples. This 
is key, because when uniform samples between 0 and 1 are 
available, samples from any distribution can be obtained as 
long as the quantile function, i.e., the inverse of the Cumula-
tive Distribution Function (CDF), is known. The procedure 
is then as follows,

where FZ is the CDF, d= means equality in the distribution 
sense, U ∼ U([0, 1]) and Um is a sample from U([0, 1]) . The 
computational efficiency highly depends on the cost of cal-
culating F−1

Z
.

When the “exact” sample generation is not possible, 
either because the distribution is not available or the inver-
sion is computationally unaffordable, intermediate steps 
in the numerical scenario simulation can be introduced 
by means of a time discretization of the associated SDE. 
Taylor expansion-based discretization schemes are widely 
employed in quantitative finance. The most representative 
example is the Euler–Maruyama method, the generalization 

ĪM ∶=
1

M

M∑
m=1

g(Xm) .

sg ∶=

√

∫C

(g(x) − I)2dx .

FZ(Z)
d
= U thus Zm = F−1

Z
(Um) ,

of the Euler method to SDEs is the context of the Itô cal-
culus. Another well-known Itô-Taylor-based simulation 
scheme is the Milstein method, which presents a higher order 
of convergence than the Euler–Maruyama method. See [56] 
for further details on numerical methods for SDE.

In order to use Eq. (8) the expectation of St at time T 
needs to be estimated. To obtain this, it is possible to simu-
late different scenarios of the evolution of the values St from 
Eq. (5) in the Black–Scholes dynamics. These simulations 
of the values St until time T can be obtained by discretizing 
Eq. (5) with an Euler–Maruyama scheme, starting from the 
given value S0 at t = 0:

Δt = T∕(J + 1) is the uniform time step, j = 0,… , J + 1 is 
the index for each time step and m = 1,… ,M is the super 
index for each trajectory, so that Sm

j
 approximates the value 

at time tj = jΔt on the trajectory m.
Once the M simulations of the asset values evolution have 

been obtained, it is possible to approximate the option value 
at t = 0 in expression (8) by:

It is straightforward to extend Monte Carlo methods to the 
case of European options on a finite set of correlated assets 
following the Black–Scholes dynamics (6). This can be 
achieved by computing the trajectories of all the involved 
assets, taking into account correlations by means of corre-
lated Brownian motions that are obtained from independent 
ones and using, for instance, the Cholesky factorization of 
the correlation matrix � = (�ij) to generate correlated paths. 
It is also easy to extend Monte Carlo methods to pricing 
European options under the Heston model.

The use of Monte Carlo techniques for American options 
is more complex due to the possibility of early exercise 
included in these options which makes the problem path-
dependent. A common approach for pricing American 
options using the expectation given by expression (9) 
involves a combination of Monte Carlo and regression tech-
niques. Longstaff-Schwartz is a classical example of these 
methods [61].

PDEs: Finite Differences A common technique to solve 
PDEs like (10) is based on the so called finite differences 
methods. To use this approach it is necessary to define a 
bounded domain for the underlying asset so that the initial 
unbounded domain is truncated. A typical choice for the 
upper bound is S∞ = 4K , so that S ∈ [0, S∞].

The next step is to define a finite differences mesh 
by choosing two natural numbers J > 1 and I > 1 , 
so that the constant time and underlying step sizes 

(18)Sm
j+1

= Sm
j
+ rSm

j
Δt + �Sm

j
dWj,

(19)v0 = V(0, S0) ≈ exp(−rT)
1

M

M∑
m=1

h(tJ+1, S
m
J+1

).
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are  Δt = T∕(J + 1) and ΔS = S∞∕(I + 1) ,  respec-
tively. Thus, the finite differences mesh nodes are 
(tj, Si) = (jΔt, iΔS), j = 0,… , J + 1; i = 0,… , I + 1 . At the 
mesh nodes, the derivatives involved in the PDE (10) are 
approximated as follows:

In order to discretize in time, the second order Crank-Nicol-
son scheme can be used. Once these approximations of the 
derivatives have been introduced and using the notation 
Vji ≈ V(tj, Si) , the discretization of Eq. (10) can be written as 
the following set of I linear equations for j = J, J − 1,… , 0:

Additionally, boundary conditions depending on the specific 
payoff are imposed to complete the set of equations. For 
example, in the case of a call option:

Note that for each index j (associated to time tj ) we need to 
solve a linear system, which can be written in matrix form 
as AVj = bj , where Vj is the vector of unknowns containing 
the option values approximation at time t = tj for the discrete 
asset values Si, i = 0,… , I + 1 . Starting from j = J + 1 the 
system can be solved sequentially for j = J, J − 1,… , 0 . 
Thus, the pricing of European options with one underlying 
asset in a PDEs formulation mainly involves the sequential 
solution of linear systems.

The extension of the finite differences methodology to 
include the Heston model or European basket options is 
straightforward but it carries the cost of increasing the com-
putational demand with each additional dimension, the so 
called curse of dimensionality. In classical computers, the 
implementation in multi-CPUs or specific techniques like 
sparse grids can be used to alleviate this.

(20)�V

�S
(tj, Si) ≈

V(tj, Si+1) − V(tj, Si−1)

2ΔS
,

(21)�2V

�S2
(tj, Si) ≈

V(tj, Si+1) − 2V(tj, Si) + V(tj, Si−1)

(ΔS)2
,

(22)�V

�t
(tj, Si) ≈

V(tj+1, Si) − V(tj, Si)

Δt
.

(23)

Vj+1,i − Vj,i

Δt
=

1

2

(
−rSi

Vj,i+1 − Vj,i−1

2ΔS
−

�2S2
i

2

Vj,i+1 − 2Vj,i + Vj,i−1

(ΔS)2
+ rVj,i

)

+
1

2

(
−rSi

Vj+1,i+1 − Vj+1,i−1

2ΔS
−

�2S2
i

2

Vj+1,i+1 − 2Vj+1,i + Vj+1,i−1

(ΔS)2
+ rVj+1,i

)
,

i = 1,… , I.

(24)Vj,I+1 = S∞ − e−r(T−tj)K, Vj,0 = 0.

In the case of American options, the early exercise oppor-
tunity implies the replacement of the PDE problem (10) by 
a linear complementarity problem associated to the Black-
Scholes differential operator:

More precisely, the complementarity problem is written as 
(see [87] and the references therein):

There is no known analytical solution to this problem and 
therfore it needs to be solved numerically. When discretizing 
the complementarity problem using the same approxima-
tions as in the European options, we obtain:

where hj = h(tj, .) is the vector of exercise values at time tj in 
the finite differences asset nodes and super index t denotes 

the traspose operation. It is easy to see that problem (26) 
can be expressed as a quadratic optimization with inequality 
constraints of the form:

Therefore, numerical methods for solving convex quadratic 
optimization problems under inequality constraints can be 
used, such as penalization or duality techniques.

PDEs: Artificial Neural Network (ANN) and Deep 
Learning Unsupervised deep learning techniques can be 
used in derivative pricing, see [9] and the references therein, 
for applications for solving both linear and nonlinear time-
dependent PDEs such as the ones presented above.

A general PDE problem can be written as:

L(V) =
�V

�t
+ rS

�V

�S
+

�2S2

2

�2V

�S2
− rV .

(25)L(V) ≤ 0, V ≥ h, L(V) ⋅ (V − h) = 0 .

(26)AVj ≤ bj, Vj ≥ hj, (AVj − bj)
t
⋅ (Vj − hj) = 0 ,

(27)Vj = argmin
Y≥hj

(
1

2
YtAY − bt

j
Y
)
.

(28)

NI(v(t, x)) = 0, x ∈ Ω̃, t ∈ [0, T],

NB(v(t, x)) = 0, x ∈ �Ω̃, t ∈ [0, T],

N0(v(t
∗, x)) = 0, x ∈ Ω̃ and t∗ = 0 or t∗ = T ,



4144	 A. Gómez et al.

1 3

where v(t, x) denotes the solution of the PDE, NI(⋅) is a 
linear or nonlinear time-dependent differential operator, 
NB(⋅) is a boundary operator, N0(⋅) is an initial or final time 
operator, Ω̃ is a subset of ℝD and �Ω̃ denotes the boundary 
on the domain Ω̃.

PDEs problems for European and American option 
pricing can be cast in (28) formulation. In this setting, 
the goal is to obtain v̂(t, x) by minimizing a suitable loss 
function L(v) over the space of k-times differentiable func-
tions, where k depends on the order of the derivatives in 
the PDE, i.e.,

where v̂(t, x) denotes the true solution of the PDE.
The solution of (28) can be approximated with a deep 

neural network and the accuracy of this approximation can 
be related to the value of the cost function used. The deep 
neural network consists of an input layer with d neurons, 
several hidden layers and an output layer with a single neu-
ron, representing the entire solution of the PDE. The ANN 
should approximate the solution, satisfying the restrictions 
imposed by the PDE and the boundary conditions. A gen-
eral expression for the cost function is defined as follows:

where Ω = Ω̃ × [0, T] , �Ω is the boundary of Ω and the oper-
ators N∙ have the form

where N, F, B, G and H are generic functions whose expres-
sion depends on the problem at hand. Moreover, the param-
eter � ∈ (0, 1) in the cost function (30) represents the relative 
importance of the interior and boundary functions in the 
minimization process. Also the choice of p depends on the 
assumed regularity of the solution of the PDE (usually p = 2 
is taken).

Trinomial Trees The trinomial tree scheme allows us 
to simulate the SDE (5) under the risk-neutral measure 
[57]. In order to do so, we discretize the time as tj = jΔt 
with j = 0, 1,… , J  and the underlying as si = iΔs with 
i = 0, 1,… , I . Here tJ = T  and sI = s∞.

Next, we define the transition probabilities as:

(29)argmin
v∈Ck

L(v) = v̂ ,

(30)

L(v) = �∫Ω

|NI(v(t, x))|pdxdt

+ (1 − �)∫�Ω

(|NB(v(t, x))|p + |N0(v(t, x))|p
)
dxdt,

(31)

NI(v(t, x)) ≡ N(v(t, x)) − F(t, x) in Ω ,

NB(v(t, x)) ≡ B(v(t, x)) − G(t, x) on �Ω̃ ,

N0(v(t
∗, x)) ≡ H(x) − v(t∗, x) in Ω̃ × t∗, with t∗ = 0 or t∗ = T ,

To approximate the SDE we choose the transition probabili-
ties between the nodes so that they reproduce the first and 
the second moments of the process:

These probability transitions allows us to compute the final 
distribution of the asset f (sT |Ft) . To compute the value of 
an option we then need to use equation (17).

2.2 � Risk Measures for Derivatives Portfolios

Pricing and computing risks of financial derivatives are 
linked problems that share core parts of the formulation 
and resolution techniques. Lets summarise the high level 
differences:

•	 Risk-neutral probability measure Q is used for pricing, 
whereas risks problems are formulated under real prob-
ability, usually approximated by the historical prob-
ability.

•	 Prices are usually computed individually at trade level, 
whereas for risks it is important to consider portfolios 
of derivatives, so that netting/hedging effects are taken 
into account. Linked to this, very often risk problems 
are usually highly dimensional.

•	 In risks we compute tails of a distribution, as quantiles; 
as opposed to the expectations used when pricing.

We consider two well-known measures of risk, the Value-
at-Risk (VaR) and the Conditional Value-at-Risk (CVaR) 
(also known as Expected Shortfall). We introduce the defi-
nition of both measures in the following results.

Definition 1  Given a confidence level � ∈ (0, 1) , the portfo-
lio VaR is defined as,

where FPL is the cumulative distribution function of the port-
folio value variation random variable PL (as well known as 
profit and losses).

(32)

pu(s, t) = Pr[St+Δt = s + Δs|St = s],

pm(s, t) = Pr[St+Δt = s|St = s],

pd(s, t) = Pr[St+Δt = s − Δs|St = s].

(33)

pu(si, tj) =
1

2

(
�2s2

i

Δs2
+

rsi

Δs

)
Δt,

pd(si, tj) =
1

2

(
�2s2

i

Δs2
−

rsi

Δs

)
Δt,

pm(si, tj) = 1 − pu − pd.

(34)
VaR� = inf{l ∈ ℝ ∶ ℙ(PL ≤ l) ≥ �} = inf{l ∈ ℝ ∶ FPL(l) ≥ �},
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The VaR is therefore an estimate of how much one can 
gain or lose from one’s portfolio over a given time horizon, 
with a given degree of confidence [91].

Definition 2  Given the variable PL with �[|PL|] < ∞ and 
distribution function FPL , the CVaR at confidence level 
� ∈ (0, 1) is defined as,

When the profit-loss variable is integrable with con-
tinuous distribution function, then the CVaR satisfies the 
equation,

or, in integral form,

where fPL is the probability density function of PL. Thus, 
in the continuous case, the CVaR can be interpreted as the 
expected profit-loss in the event that VaR is exceeded.

In the following we will illustrate the dimensionality 
problem and some modelling alternatives with an example 
specific from Credit Risk. A complete and comprehensive 
monograph on risk management can be found in [64].

2.2.1 � Credit Portfolio Management

A source of risk that needs to be measured and managed 
is the credit risk coming from the risk of default of a num-
ber of counterparties. The financial instruments could be 
simple loans or bonds, or more complex products such as 
credit derivatives such as Credit Default Swaps or Credit 
Loan Obligations. It can also include credit exposures stem-
ming from other derivative contracts through counterparty 
credit risk. Given its complexity and high dimensionality, 
credit portfolio modelling relies on dimensionality reduction 
techniques such as factor models and Principal Component 
Analysis (PCA).

Let us consider a portfolio of N credit products or obliga-
tions (e.g. loans, bonds, overdrafts, etc) to a number of coun-
terparties (also known as obligors). Each product is charac-
terized by the exposure at default and the loss given default. 
The exposure at default is the amount of money that would 
be due at the time of counterparty default. The loss given 
default is the actual loss incurred after the recovery pro-
cess is concluded (this is bounded between zero and 100%). 
In addition, each counterparty has a known probability of 
default associated to its credit worthiness. Note that several 
products can be linked to the same counterparty, however 

(35)CVaR� =
1

1 − � ∫
1

�

VaRudu.

(36)CVaR� = �[PL|PL ≥ VaR�],

(37)CVaR� =
1

1 − � ∫
+∞

VaR�

xfPL(x)dx,

here we will take the simplifying assumption that each coun-
terparty has only one single product. While the first two 
parameters will be denoted by Ej and Pj , j = 1,… , J , the 
third parameter is assumed to be 100% for all the counter-
parties. These parameters can be estimated from the capital 
markets, or from historical credit data.

Assume now that we are in the framework of Merton’s 
firm-value model [65]. In this approach, a counterparty is 
assumed to go into default if the value of its assets falls 
below a given default barrier which is linked to the value 
of its liabilities. In other words, if the value of the assets 
of a company falls below how much the company owns to 
its creditors, the model assumes that this firm is in default. 
Therefore, the combination of asset value and liability bar-
rier determines the credit quality of the counterparty and 
defines its probability of default. Let Vj(t) denote the asset 
value of instrument j at time t < T  , where T is the time hori-
zon (typically one year). The counterparty j defaults when its 
value at the end of the observation period, Vj(T) , falls below 
barrier �j , i.e, Vj(T) < 𝜏j . A default indicator can be defined 
mathematically as

where Be(p) is a Bernoulli distribution with probability of 
success p. Given Dj , the individual loss of counterparty j is 
defined as Lj = Dj ⋅ Ej , while the total loss in the portfolio 
reads

As the credit quality of the counterparty (captured by the 
asset value in the Merton model) is correlated, this problem 
is closely related to the basket option covered earlier, but 
with the additional complexity of having different barriers. 
In addition, banks portfolios would usually comprise sev-
eral millions of counterparties, and therefore credit portfolio 
models typically rely on Monte Carlo techniques to esti-
mate the probability distribution of portfolio losses. Once 
the probability of portfolio losses L has been estimated, it 
is possible to compute different risk measures such as those 
introduced earlier (with PL = L).

2.2.2 � Some Models for Portfolio Credit Risk

A common approach used to reduce the dimensionality of 
the problem is the introduction of factor models. In these 
models the credit quality of each counterparty is assumed to 
be driven by two different components: a set of factors that 
is shared by the counterparties and captures the systemic 
risk and a second that is unique to each counterparty and 
captures its idiosyncratic risk. Depending on the number of 

(38)Dj = 1{Vj(T)<𝜏j}
∼ Be

[
ℙ
(
Vj(T) < 𝜏j

)]
,

(39)L =

J∑
j=1

Lj.
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factors of the systemic part, the model can be classified into 
the one- or multi-factor class. The power of factor models 
is that they allow us to reduce the number of parameters 
needed to capture the portfolio correlations. In the follow-
ing section we briefly describe some of the most commonly 
employed models.

One-Factor Models In the one-factor model setting, the 
credit quality (which in the Merton model is defined as the 
logarithmic return of the asset value) of counterparty j, Xj , 
at time T is represented by a common, standard normally 
distributed single factor Y component and an idiosyncratic 
Gaussian noise component �j . The dependence structure 
between these two latent random variables can be set using 
copula6 functions. Thus, these models are also called one-
factor copula models. Two models are usually considered in 
practice. The Gaussian copula model is given by:

where Y and �j are i.i.d. standard normal random variables 
for all j = 1,… , J . Alternatively, as an extension of the 
model in Eq. (40), the t-copula model was introduced to 
take into account tail dependence,

where �1,… , �J , Y ∼ N(0, 1) , W follows a chi-square distri-
bution �2(�) with � degrees of freedom and �1,⋯ , �J , Y and 
W are mutually independent. Scaling the model in Equa-
tion (40) by the factor 

√
�∕W  transforms standard Gauss-

ian random variables into t-distributed random variables 
with � degrees of freedom. For both models, the parameters 
�1,… , �J ∈ (0, 1) are the correlation coefficients. In the case 
that �j = � , for all j = 1,… , J , the parameter � is called the 
common asset correlation.

According to the Merton model described above, coun-
terparty j defaults when the value of its assets falls below the 
barrier �j . The barrier is therefore defined by �j ∶= Φ−1(Pj) 
or �j ∶= Φ−1

�
(Pj) for the Gaussian and t-copula models 

respectively, where Φ−1 denotes the inverse of the standard 
normal cumulative distribution function and Φ−1

�
 is the cor-

responding inverse distribution function of the t-distribution 
(with � degrees of freedom).

Multi-factor Models Multi-factor models aim to capture 
more realistic correlation structures, e.g. counterparties in 
similar industrial sectors and geographies would typically 
be more correlated. For this, we consider the extension to 
multiple dimensions of the models presented in Sect. 2.2.2, 

(40)Xj =
√
�j Y +

�
1 − �j �j,

(41)Xj =

�
�

W

�√
�j Y +

�
1 − �j �j

�
,

i.e., the multi-factor Gaussian copula model and the multi-
factor t-copula model.

The d-factor Gaussian copula model assumes that the 
covariance structure of [V1,… ,VJ] is determined by the 
multi-factor model,

where Y =
[
Y1, Y2,… , Yd

]T denotes the systematic risk fac-
tors. Note that we represent vectors by bold symbols. Here, 
aj =

[
aj1, aj2,… , ajd

]T represents the factor loadings satisfy-
ing aT

j
aj < 1 , and �j are standard normally distributed ran-

dom variables representing the idiosyncratic risks, independ-
ent of each other and independent of Y . The constant bj , 
being the factor loading of the idiosyncratic risk factor, is 
chosen  so  tha t  Vj  has  un i t  var iance ,  i . e . , 

bj =

√
1 −

(
a2
j1
+ a2

j2
+⋯ + a2

jd

)
 , which ensures that Vj is 

N(0, 1).
The incentive for considering the multi-factor version of 

the Gaussian copula model becomes clear when one rewrites 
it in matrix form,

While each �j represents the idiosyncratic factor affecting 
only counterparty j, the common factors Y1, Y2 … , Yd , may 
affect all (or a certain group of) counterparties. Although the 
systematic factors are sometimes given economic interpreta-
tions (as industry or regional risk factors, for example), their 
key role is that they allow us to model complicated correla-
tion structures in a non-homogeneous portfolio.

Similarly, the multi-factor t-copula model definition 
reads,

where Y, �j, aj and bj are defined as before, with W ∼ �2(�).

2.2.3 � Numerical Methods for Risk Measures

Monte Carlo Assuming the loss distribution as defined in 
Eq. (39) and employing Monte Carlo methods, the VaR can 
be computed as follows:

•	 Generate M samples of the loss random variable, PL, 
denoted by PL1,PL2,… ,PLM.

(42)Xj = aT
j
Y + bj�j, j = 1,… , J.

(43)

⎡⎢⎢⎢⎣

X1

X2

⋮

XJ

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

a11
a21
⋮

aJ1

⎤⎥⎥⎥⎦
Y1 +

⎡⎢⎢⎢⎣

a12
a22
⋮

aJ2

⎤⎥⎥⎥⎦
Y2 +⋯ +

⎡⎢⎢⎢⎣

a1d
a2d
⋮

aJd

⎤⎥⎥⎥⎦
Yd +

⎡⎢⎢⎢⎣

b1�1
b2�2
⋮

bJ�J

⎤⎥⎥⎥⎦
.

(44)Xj =

√
�

W

(
aT
j
Y + bj�j

)
, j = 1,… , J,

6  A copula is a mathematical object which allows to define the 
dependence structure between random variables. For more detail of 
the application of copulas in finance see [20]
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•	 Compute the empirical CDF:7 

•	 Then, we have the estimator VaR𝛼 ≈ F̃−1
PL,M

(𝛼).

Practically, the same result can be achieved by first sort-
ing the sample set, obtaining the ordered samples 
PL1̄,PL2̄,… ,PLM̄ and taking

where ⌊⋅⌋ denotes the nearest integer smaller than the 
argument.

Given the VaR value, a Monte Carlo estimator for the 
CVaR can be readily derived,

Notice that when sampling PL, parametric or non-parametric 
distributions can be used.

The VaR (and the CVaR) are intended to prevent extreme 
events of big losses, so the quantile � is usually between 95% 
and 99.9% depending on the application. In such regimes, 
Monte Carlo is rather inefficient, specially for the CVaR 
computation, since the number of samples in the area of 
interest is usually not sufficient to provide an acceptable pre-
cision. In order to mitigate this drawback, several approaches 
have been explored in the literature, the utilization of impor-
tance sampling techniques being one of the most successful 
attempts.

Principal Component Analysis Principal Component 
Analysis is a classical mathematical technique that is widely 
used in quantitative finance for dimensionality reduction; not 
only for both pricing problems (as Sect. 2.1.1) and in risk 
models (as the ones in Sect. 2.2.2), but also for stock value 

(45)F̃PL,M(x) =
1

M

M∑
m=1

1{PLm≤x}.

(46)VaR𝛼 ≈ min
PLm̄

{m̄ ≥ ⌊𝛼M⌋},

(47)CVaR𝛼 ≈

∑M

m=1
1{PLm̄≥VaR𝛼}

PLm̄

∑M

m=1
1{PLm̄≥VaR𝛼}

.

forecasting (usually in combination with other machine 
learning techniques).

As we have seen in Eq. (6), a multidimensional problem 
with N risk factors can be formulated through an N × N cor-
relation matrix (�ij) , and an N volatility vector (�i) . Equiva-
lently, it can be formulated through the Hermitian and posi-
tive semi-definite covariance matrix Σ , the coefficients of 
which are Σij = �ij�i�j.

The objective is to reduce the dimension of the problem 
from N to E while still representing the highest amount of 
variance. For this purpose:

•	 First Σ is factorized in terms of its eigenvalues and eigen-
vectors through the spectral decomposition.

•	 Then, only the highest (with higher eigenvalues) E 
( E < N  ) components are kept, and the N − E smallest 
are discarded.

3 � Quantum Methods for Pricing and VaR

In Sect.  2 we discussed some of the most widely used 
numerical techniques to solve problems in pricing and VaR. 
Throughout this section we cover some proposals for their 
quantum counterparts.

In the first subsection, we cover Quantum-Accelerated 
Monte Carlo (QAMC), usually described in the literature 
as the quantum equivalents of Monte Carlo (see Sects. 2.1.3 
and 2.2.3). In the second subsection, we cover techniques 
based on the PDE formulation (see Sect. 2.1.3). In the third 
subsection, we comment on some machine learning tech-
niques (see Sects. 2.1.3 and 2.2.3). Finally, in the fourth 
subsection we discuss some of the challenges on the subject.

3.1 � Quantum‑Accelerated Monte Carlo

As we saw in Sects. 2.1.3 and 2.2.3, the computation of 
expectation values constitutes the basis for many pricing and 
risk problems. Such a computation is normally performed by 
means of classical Monte Carlo methods. The exponential 
growth of the dimension of the Hilbert space with the num-
ber of qubits, however, suggests that an alternative quantum 
implementation for Monte Carlo could be in a better position 

Fig. 2   Schematic pipeline of a 
quantum algorithm to compute 
the expected value of a function

7  In (45) and (47) we use the indicator function of a set, 1C(x) , which 
is equal to one if x belongs to C and equal to zero otherwise.
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than its classical counterparts, especially over domains with 
a high dimensionality.

Quantum-Accelerated Monte Carlo8 for the computation 
of the expected value of a function is usually divided in four 
steps (see Fig. 2): 

1.	 Loading the probability distribution p(x) into the 
quantum computer.

2.	 Loading the function f(x) whose expected value we 
want to compute.

3.	 Quantum amplification of the expected value that we 
want to estimate. This part relies on Grover’s amplifica-
tion [41].

4.	 Estimation of the amplified expected value. This part 
can be performed in different ways: by means of an 
inverse quantum Fourier transform, through an approxi-
mate counting strategy or even with classical post-pro-
cessing techniques.

In practice the functions p(x) and f(x) are appropriately 
discretized before they are loaded into the quantum com-
puter. The discretization procedure is a relevant aspect of 
the computation which—in general—introduces approxi-
mations, this is however an aspect shared by classical and 
quantum algorithms. Besides, we are going to assume the 
existence of two oracles P and R which load the probability 
distribution p(x) and the function f(x), respectively. As we 
shall discuss in Sect. 3.4, this hypothesis might be too strong 
in some cases.

Under this considerations, QAMC algorithms have—at 
least—two very interesting properties:

•	 They are not based on any particularly restrictive assump-
tion on the function whose expected value we want to 
compute, thereby encompassing quite generic cases. This 
is one of the reasons why they lie on a similar footing as 
classical Monte Carlo algorithms.

•	 They entail a theoretical quadratic speed-up with respect 
to classical Monte Carlo. More precisely, if the precision 
for classical Monte Carlo sampling generically scales as 
M

−
1

2 , where M is the number of samples, quantum algo-
rithms have a theoretical precision scaling as M−1.

In the following sections we start by giving a brief overview 
of the main amplification algorithms. Next, we describe 
what is amplitude estimation and discuss some algorithms 
to realize it. Then, we describe some concrete applications 
to the financial problem of pricing (see Sect. 2.1). Finally, 

we comment on the computation of risk indicators (see 
Sect. 2.2).

3.1.1 � Amplitude Amplification

Given an oracle A defined as:

the amplitude amplification algorithm gives us a strategy 
to enhance the probability of measuring �Ψ̃1⟩ , namely the 
“good” or marked state. This strategy exploits similar ideas 
to the original Grover search algorithm.9 The path to obtain 
the amplification consists in defining the Grover operator Q,

where the operator S0 flips the sign of the component along 
�0⟩ whereas the operator Sf  flips the sign of �Ψ̃1⟩ , that is to 
say, it flips the sign of the “good” states.

In order to understand the effect of the Grover operator, 
we rewrite Eq. (48) as

where we have been able to associate an angle � to the ampli-
tude a because the state is properly normalised. An iterated 
application of Q leads to

where k denotes a generic integer. If one chooses k in (51) 
such that (2k + 1)� ∼

�

2
 , then sin

(
(2k + 1)�

)
∼ 1 and so one 

maximizes the probability of getting a result along �Ψ̃1⟩ upon 
measurement. We have therefore reached the initial purpose 
of amplifying the probability of measuring �Ψ̃1⟩ in a way 
which explicitly depends on � . Said otherwise, by measuring 
(51) we have a more efficient access to the estimation of a.

3.1.2 � Amplitude Estimation

Once we have the amplified state (51), we still need to actu-
ally estimate a in the best possible way. We stress once 
more that (51) is the result of rotations—implemented by 
the Grover operator Q—aimed to enhance in a controlled 
way the probability to obtain �Ψ̃1⟩ upon measurement. So, 
a sampling by repeated preparations and measurements of 
(51), instead of the original vector �Ψ⟩ , already provides an 
advantage, although not quadratic. To guarantee a quadratic 

(48)A�0⟩ = a�Ψ̃1⟩ +
√
1 − a2�Ψ̃0⟩ ,

(49)Q ≡ −AS0A
−1Sf ,

(50)�Ψ⟩ = sin(𝜃)�Ψ̃1⟩ + cos(𝜃)�Ψ̃0⟩ ,

(51)Qk�Ψ⟩ = sin
�
(2k + 1)𝜃

��Ψ̃1⟩ + cos
�
(2k + 1)𝜃

��Ψ̃0⟩ ,

9  The original Grover algorithm to search a marked element x̄ corre-
sponds to having p(x) = 1∕N , which is the uniform sampling (imple-
mented through a Walsh-Hadamard transform), while the oracle is 
f (x) = 𝛿xx̄ , where � is a Kronecker delta.

8  The paper [67] is generally regarded as representing the current 
state of the art in relation to quantum speedups in Monte Carlo tasks.
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speed-up in the estimation of a by means of suitable theo-
retical bounds, we need a systematic way of leveraging the 
power of amplitude amplification. These systematic strat-
egies are known in the literature as amplitude estimation 
techniques and in the following sections we describe some 
of them.

Original Amplitude Estimation The path suggested in 
the original paper [15] is to adopt an inverse quantum Fou-
rier transform, see Fig. 3. In the picture, the oracle A of 
Sect. 3.1.1 corresponds to R(P⊗ �) acting on the first n 
qubits. The first n qubits are the physical register upon which 
the block P loads the probability distribution. The block 
R applies the function whose expected value we want to 
compute, this is assumed to require one auxiliary qubit. The 
last m qubits constitute an auxiliary register used for ampli-
tude estimation; it controls different powers of the Grover 
amplification block Q. Eventually, an inverse of the Quan-
tum Fourier transform on the auxiliary register provides the 
phase estimation, from which one recovers the amplitude.

The inverse Quantum Fourier transform adopted by the 
original amplitude estimation algorithm [15] is resource 
demanding and thus constitutes a serious bottleneck, espe-
cially in relation to current or near-future technologies. Said 
otherwise, Quantum Fourier transform requires a deep and 
wide quantum circuit. For this reason, some algorithms 
which need less resources have been proposed.

Quantum Amplitude Amplification and Estimation with 
Max Likelihood One interesting possibility to avoid the 
inverse Quantum Fourier transform has been suggested in 
[84] and it relies on classical post-processing. One collects 
data corresponding to measuring states amplified by means 
of Qk with different k (see Fig. 4 for the circuit needed for a 
specific k); then one compares this dataset against a suitable 
classical prior distribution which depends on the angle � (see 

(51)). Maximizing the likelihood that the distribution fits the 
data satisfactorily, provides an estimation of � , here acting 
as a variational parameter. In turns, from the estimation of � 
one gets an estimation of the amplitude a.

The classical post-processing adopts standard statistical 
tools such as Fisher information and the Cramer–Rao ine-
quality, we refer to [22] for their description. The Max likeli-
hood alternative for amplitude estimation has been further 
discussed in subsequent papers. In [39] the authors stress 
that the accuracy of the Max likelihood method [84] has not 
been precisely assessed, and they address this question in 
their appendix. The potential quadratic speedup of quantum 
amplitude estimation without quantum phase estimation has 
been covered in [1].

Iterative Quantum Amplitude Estimation In [39] a dif-
ferent variant of quantum amplitude estimation is consid-
ered, which does not need quantum phase estimation, that 
is, it avoids the estimation of � through an inverse Quantum 
Fourier Transform. As such, the suggested implementation 

Fig. 3   Quantum circuit for 
amplitude amplification and 
estimation [15]

Fig. 4   Quantum circuit for amplitude amplification and estimation 
with max likelihood [84]. The circuit depicted refers to a specified 
value of the amplification exponent k. A collection of similar circuits 
for all the desired values of k is needed
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is able to reduce the number of qubits and gates, making the 
overall algorithm lighter. The analysis in [39] focuses on a 
rigorous study of the quadratic quantum speed-up for their 
algorithm.

To achieve the quadratic speed-up, the iterative quantum 
amplitude estimation algorithm—like the other amplitude 
estimation algorithms—loads the square root of the inte-
grand function in the quantum state. Instead, an alternative 
method dubbed quantum coin (to be covered in Sect. 3) 
loads the function to the quantum state directly, rather than 
its square root (something which is sometimes referred to 
as direct embedding [57] or amplitude encoding). Despite 
of the different embedding, both methods exploit Grover’s 
amplification to “stretch” as much as possible the confidence 
interval of previous estimations. In other words, given an 
estimation of the amplitude a and a high confidence inter-
val for it, an iterated application of the Grover operator Q 
allows to “zoom-in” and extend the confidence interval to 
the region where the sin function in (51) is invertible. Thus, 
one can obtain a finer estimation of � , and thereby of a too.

Power-Law and QoPrime Amplitude Estimation Both 
Power-law and QoPrime algorithms have been described in 
[34]. The paper frames the asymptotic trade-off between the 
quantum speed-up of an amplitude estimation algorithm and 
its depth. More precisely, the authors relate the speed-up to 
the total number of oracle calls N = O

(
1

�1+�

)
 , while the 

depth is given by the number of oracle calls that need to be 
performed sequentially D = O

(
1

�1−�

)
 ; � represent the preci-

sion (the additive error), while 0 ≤ � ≤ 1 . The extreme cases 
when � = 0 and � = 1 are respectively associated to the 
standard Quantum Amplitude Estimation algorithm and to 
classical Monte Carlo. Note that D is inversely related to the 
degree of parallelizability, and it is relevant to stress that it 
represents the asymptotic depth due the needed sequential 
calls to the oracle, without taking into account the 
O(log log(1∕�)) depth overhead due to the eventual Quantum 
Fourier transform of the standard Quantum Amplitude Esti-
mation algorithm. Roughly, Power-law and QoPrime algo-
rithms interpolate between the quantum and classical cases 
playing with the trade-off between N and D, at fixed 
ND = O

(
1

�

)
.

The Power-law algorithm (sometimes referred to as Kere-
nidis-Prakash algorithm) refines the Max Likelihood algo-
rithm of [84]. This class of algorithms rely on a sampling 
schedule (mk,Nk) where the oracle is called sequentially 
mk times for Nk iterations. Eventually, the results collected 
according to the schedule are post-processed classically. The 
Power-law algorithm optimizes such sampling schedule, pro-
posing a power-law schedule instead of an alternative expo-
nential or linear schedule as originally suggested by [84]. 
These functional forms refer to the dependence of mk on k.

The QoPrime algorithm follows the same trade-off 
between N and D as the Power-law algorithm, however its 
strategy is based on a result from number theory, that is 
known as Chinese Remainder Theorem. This concerns mod-
ular arithmetic and allows to combine a set of low-accuracy 
samplings in order to obtain a high accuracy result. The key 
technical point is to define a schedule based on coprime 
integers which, intuitively, provide independent information 
about the result, analogous to projections on distinct ele-
ments of an orthogonal basis in vector calculus.

Quantum Coins The “quantum coin” [1, 3, 81] also offers 
a way to circumvent the use of the inverse Quantum Fourier 
Transform which relies on an alternative algorithm, differ-
ing from quantum amplitude estimation in some of its basic 
aspects. Although belonging to the same family of Grover 
algorithms, the quantum coin loads the integrand function 
(and not its square root) into the quantum state amplitude. 
We stress that this apparently small modification can turn 
in normalization subtleties: in fact, when loading the func-
tion instead of its square root, the normalization of the 
state does not correspond to the normalization of the func-
tion, this being relevant in dealing with probability density 
distributions.

3.1.3 � Applications to Option Pricing

As presented in Eq. (8), the option pricing problem can be 
formulated as the computation of the expected value of a 
payoff function with respect to a probability distribution:10

where the domain Ω can be multi-dimensional. In pure com-
putational terms, the problem can be reduced to that of com-
puting an expression like:

where

Here we have implicitly defined p, f and X, which are proper 
discretized versions of p̂ , f̂  and Ω respectively. Recall that, 
upon the discretization procedure (which we are not speci-
fying to keep the treatment general), the sum in (53) corre-
sponds to the discretized version of the original integral we 
needed to compute. The problem of defining a suitable (and 

(52)�[f̂ (x̂)] = ∫Ω

p̂(x̂)f̂ (x̂) ,

(53)
∑
x∈X

p(x)f (x) ≈ ∫Ω

p̂(x̂)f̂ (x̂) = �[f̂ (x̂)] ,

(54)
∑
x∈X

p(x) = 1 .

10  This is true also in path dependent cases, but one must refer to the 
probability distribution defined on the path space.
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efficient) discretization procedure, common to classical and 
quantum algorithms, entails the theory of measure and the 
choice of optimal meshes.

Up to this point, there is no difference between the clas-
sical and the quantum approaches. To be able to continue 
the process of computing (53) in the quantum computer, the 
function f is required to take values within the real interval 
[0, 1]. If needed, we can define f by means of a rescaling 
of the actual function and then rescale back at the end of 
the computation, exploiting the linearity of expected values. 
Hence, there is no loss of generality in the assumption11

With f and p defined accordingly to the restrictions present 
in a quantum computer, we can continue by assuming to be 
able to implement two operators, P and R , which respec-
tively “load” the probability density distribution p(x) and 
the function f(x) to the quantum state, respectively. More 
precisely, their action is specified by

and

We have indicated with �x⟩n a quantum register composed of 
n qubits which has an affine mapping with x. In (57) there is 
an extra auxiliary qubit which represents a “flag” denoting 
the “good” states whose amplitude corresponds to the func-
tion we wanted to load. The operator R can be implemented 
by means of rotations controlled by the physical register. 
Composing (57) and (56), we obtain

which corresponds to the oracle A ≡ R(P⊗ �) of 
Sect. 3.1.1. The probability of getting the auxiliary qubit 
equal to 1 in a measurement of the state �Ψ⟩ is given by

which is actually the expectation value we want to compute.
We have almost mapped our original problem (53) to 

that of suitably measuring (58). To clarify the mapping, one 
defines the following vectors:

(55)f ∶ x ∈ X = {0, 1}n → [0, 1] .

(56)P�0⟩n =
2n−1�
x=0

√
p(x) �x⟩n ,

(57)R�x⟩n�0⟩ = �x⟩n
�√

f (x)�1⟩ +√
1 − f (x)�0⟩

�
.

(58)

�Ψ⟩ ≡ R(P⊗ �)�0⟩n�0⟩ =
2n−1�
x=0

√
p(x) �x⟩n

�√
f (x)�1⟩√1 − f (x)�0⟩

�
,

(59)�x∼p(f ) =

2n−1∑
x=0

p(x)f (x) ,

The vectors �Ψ1⟩ and �Ψ0⟩ belong to the 2n+1 dimensional 
Hilbert space H . This latter is generated by the collection 
of basis states {�x⟩n�1⟩, �x⟩n�0⟩} for all values of x (we have 
2n such values). More precisely, �Ψ1⟩ and �Ψ0⟩ indicate two 
specific directions belonging respectively to the subspaces 
of H associated to the values 1 and 0 of the auxiliary qubit. 
Notice that, from the definitions in (60), we have

One can also define

and we remind ourselves that getting an estimation for a, that 
is the expectation value of f, is our purpose. For the sake of 
subsequent manipulations, let us also define the normalized 
version of (60), namely

Thus, we have

From this point on, the amplitude amplification and estima-
tion algorithms described in Sect. 3.1.2 take over.

The simplest use-cases in finance for this procedure 
are pricing problems for vanilla European options (see 
Sect. 2.1.1.1, for details). They are considered in the litera-
ture as a first benchmark, or better a proof-of-concept, for 
quantum implementations, see for example [53, 71, 73, 83].

3.1.4 � Applications to Risk Analysis

As described in Sect. 2.2, some of the tools used for option 
pricing can be leveraged for financial risk analysis. In 
particular, both in the pricing and in the risk assessment 
arena, Monte Carlo methods (see Sects. 2.1.3 and 2.2.3) 

(60)

�Ψ1⟩ =
2n−1�
x=0

√
p(x)f (x) �x⟩n�1⟩ ,

�Ψ0⟩ =
2n−1�
x=0

√
p(x)(1 − f (x)) �x⟩n�0⟩ .

(61)�Ψ⟩ = �Ψ1⟩ + �Ψ0⟩ .

(62)a2 ≡ ⟨Ψ�Ψ1⟩ = ⟨Ψ1�Ψ1⟩ =
2n−1�
x=0

p(x)f (x) ,

(63)1 − a2 ≡ ⟨Ψ�Ψ0⟩ = ⟨Ψ0�Ψ0⟩ =
2n−1�
x=0

p(x)(1 − f (x)) ,

(64)

�Ψ̃1⟩ = 1

a

2n−1�
x=0

√
p(x)f (x) �x⟩n�1⟩ ,

�Ψ̃0⟩ = 1√
1 − a2

2n−1�
x=0

√
p(x)(1 − f (x)) �x⟩n�0⟩ .

(65)�Ψ⟩ = a �Ψ̃1⟩ +
√
1 − a2 �Ψ̃0⟩ .

11  It is however important to recall that such rescaling affects the 
final estimation of errors.
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play a predominant role. Nevertheless, risk analysis prob-
lems require a precise estimation of the tail of a distribu-
tion, which constitute a more demanding task in terms of 
Monte Carlo samplings. On top of that, the problem usually 
is highly dimensional, because portfolios of various deriva-
tives are usually considered.

Classical strategies to improve the performance of Monte 
Carlo resort to importance sampling, but, also after such 
mitigation, the problem remains usually very heavy in terms 
of the necessary resources. Because of this state of affairs, a 
possible improvement in efficiency due to a quantum algo-
rithm results particularly interesting in the field of financial 
risk assessment.

A generally important technical ingredient—both in 
option pricing and in risk assessment—is given by the com-
putation of expected values above (or below) a pre-specified 
bound. For instance, vanilla European options with a speci-
fied strike price K, feature a payoff function which “acti-
vates” above/below it, depending whether we are consider-
ing a call or put option. As already seen in Sect. 3.1.3, such 
a discontinuous activation can be implemented by means of 
a quantum comparator circuit, see [24] for details.

In risk assessment, one can be interested in estimating the 
probability of experiencing a future loss exceeding a pre-
determined value, according to, for example, the definition 
of the VaR and the CVaR risk measures as in Sect. 2.2. Such 
a question can again be addressed by means of a comparator. 
More often, one is interested in fixing a (high) confidence 
level � and asking which maximal loss corresponds to it. 
This question can be addressed combining a comparator 
with a binary search algorithm [26, 27].

As a final remark on quantum-enhanced Monte Carlo 
techniques, we refer to [7] for the quantum generalization 
of the classical multi-level Monte Carlo strategy [32]. This 
latter consists in an optimized sampling which favours the 
collection of many low-precision/low-cost samples and 
entails the collection of just a few high-precision/high-cost 
samples. Such multi-level strategy is encoded in a telescopic 
sum where each term represents a Monte Carlo sub-problem. 
The idea of [7] is to apply a quantum circuit to solve each 
Monte Carlo sub-problem.

3.2 � Quantum PDEs

Following [36], the quantum approaches rely on the observa-
tion that the financial PDEs can be mapped into the propaga-
tion governed by an appropriate Hamiltonian operator.

To this purpose, the first step is to consider appropriate 
changes of variable and/or unknown in the Black–Scholes 
equation (10). Note that this is the usual way to reduce this 
equation to a PDE with constant coefficients or to a heat 
equation. Also, this technique is used in European vanilla 
options to obtain the Black-Scholes formula.

First, by using the change of variable S = ex , Eq. (10) 
becomes

which can be written as

where

and we have defined the momentum operator

Note that (67) is a Schrödinger-like equation. However, it 
is important to stress that the Hamiltonian ĤBS defined in 
(68) is not Hermitian. Therefore, the associated evolution 
operator

is not unitary. For implementing the evolution operator (70) 
into a quantum circuit, i.e. through unitary operations, one 
can consider an enlarged system.12 In [36], Û(t, t0) is embed-
ded into a doubled unitary operator where the doubling is 
implemented at the price of adding an auxiliary qubit with 
respect to which one needs to post-select.

An interesting alternative is followed in [30]. Instead of 
doubling the system, one can perform an additional change 
of variable � = �2(T − t) and consider a new unknown 
v(x, �) = exp(−ax − b�)V(t, s) , with appropriate constant 
values of a and b (see [87] for details) so that (66) maps into 
the heat equation

Next, using the Wick rotation 𝜏 = −i𝜏 , which maps real 
time to imaginary time, the heat equation (71) turns into a 
Schrödinger-like equation, namely

with

(66)
�V

�t
+

(
� −

�2

2

)
�V

�x
+

�2

2

�2V

�x2
− � V = 0 ,

(67)
𝜕V

𝜕t
= −iĤBS V ,

(68)ĤBS = i
𝜎2

2
p̂2 −

(
𝜎2

2
− 𝜇

)
p̂ + i𝜇� ,

(69)p̂ = −i
𝜕

𝜕x
.

(70)Û(t, t0) = e−iĤBS(t−t0) ,

(71)�v

��
=

1

2

�2v

�x2
.

(72)
𝜕v

𝜕𝜏
= −ĤHE v ,

12  This is a standard technique followed in quantum mechanics (and 
quantum field theory) when dealing with a subsystem in contact with 
an external environment. For instance, to consider a quantum system 
in contact with a thermal bath or when one wants to consider dissipa-
tion.
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This leads to a purely anti-Hermitian Hamiltonian opera-
tor. Said otherwise, (72) encodes a Hamiltonian evolution 
along imaginary time, that is, the Wick rotated version of 
a normal real-time propagation. Intuitively, imaginary-time 
propagation transforms oscillations into dampings, so that 
(72) can be associated to a non-unitary (read dissipative) 
cooling evolution. These observations are relevant in prac-
tice, especially because they allow us to connect to an area 
where similar problems have been thoroughly investigated, 
namely that of finding the ground state of quantum systems. 
This is a central problem in condensed matter physics and in 
chemistry, which also connects to optimization.

We briefly revise the two approaches just described above 
separately, commenting the associated literature.

3.2.1 � Propagating with Ĥ
BS

In [36] they consider the Hamiltonian (68) and exploit the 
fact that it is diagonal in momentum space. Thus, by means 
of a quantum Fourier transform, and its inverse, they are 
able to work with a diagonal propagator, which admits an 
efficient decomposition in the Cartan basis. They study the 
possibility of truncating the Hamiltonian retaining just a pol-
ynomial number of interactions and, on this basis, they claim 
an exponential speedup in the Hamiltonian propagation sub-
routine. Nevertheless, an overall exponential speedup for the 
entire pipeline would require efficient loading of the uncer-
tainty model and of the payoff function. These issues remain 
as open problems. A schematic depiction of the algorithm 
is given in Fig. 5.

There are two relevant drawbacks of the method, one the-
oretical and the other one practical. The former is related to 
the fact that the diagonalization in momentum space of the 
Hamiltonian is a “delicate” condition, spoiled when con-
sidering interest rates or volatilities which depend on the 
underlying asset value. That is, it is difficult to generalize 
the method to models which are not just Black–Scholes. On 
the practical level, the quantum Fourier transform (and its 

(73)ĤHE = −
i

2
q̂2 , q̂ = −i

𝜕

𝜕x
.

inverse too) are gate-wise demanding and easily incompat-
ible with actual implementation in NISQ devices.

Two technical aspects of the analysis in [36] are worth 
stressing. The first is that they double the spatial direction 
on which they solve the Black–Scholes equation, so that they 
mitigate the possible spurious effects arising from the bor-
ders. The doubling is carried out by the addition of an extra 
auxiliary qubit. The second technical advantage is that the 
Hamiltonian that they consider can be expressed using only 
the diagonal Pauli matrices �0 and �z (i.e. the generators of 
the SU(2) Cartan subalgebra) and there is no need to take a 
Trotter approximation for non-commuting terms.

3.2.2 � Imaginary‑Time Propagation with Ĥ
HE

Imaginary-time propagation is a standard technique in phys-
ics and it is related to mapping the real time t of an evolution 
to imaginary time � ≡ it , an operation that, depending on 
context, is sometimes referred to as Wick rotation. We do 
not enter into the details and implications of imaginary-time 
propagation in general, yet intuitively it can be thought as a 
technical device which allows to exploit better convergence 
properties, for instance trading oscillatory behaviours with 
damped ones.

A quantum algorithm for imaginary-time propagation has 
been developed in the field of quantum chemistry [63].13 It 
assumes to deal with a Hamiltonian

given by a polynomial number of terms where the coeffi-
cients �i are real and the operators ĥi are observables which 
admit an expression in terms of tensor products of Pauli 
operators. In [30] such assumption is imported into the 
financial application domain, although it is not discussed 
in detail.

The imaginary-time evolution of the quantum state 
needs special care due to its lack of unitarity. In [63] they 

(74)Ĥ =
∑
i

𝜆i ĥi ,

Fig. 5   Schematic pipeline of the 
quantum algorithm described in 
[36]. The acronym QFT stands 
for Quantum Fourier Transform

13  For related discussions we refer to [85] and [47].
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address this aspect by means of a suitable normalization 
factor.

The quantum state is then approximated with a parametric 
circuit, like in the variational quantum eigensolver approach 
(VQE). Nevertheless, as opposed to this latter, the param-
eters Θ of the circuit are not optimized. In fact, the idea of 
the imaginary-time propagation method is essentially that of 
trading an optimization with a cooling (or annealing) driven 
by a Hamiltonian evolution. Specifically, if the initial state 
overlaps with the ground state, and if the circuit ansatz is 
able to represent the ground state, then the imaginary-time 
evolution leads the system to eventually land on the ground 
state. The approach is attractive because it avoids the circuit 
optimization, whose hardness and scaling properties are dif-
ficult to assess. Nevertheless, some difficulties are translated 
into the choice of the ansatz and to its capability of express-
ing and reaching the ground state efficiently.

More technically, the imaginary-time method entails con-
sidering a McLachlan variational principle

where we remind the reader that Θ are the parameters of 
the circuit ansatz. The coefficient E is related to the above-
mentioned normalization issue, see [63] for details.

The evolution of the parameters is derived from the linear 
system of differential equations associated to the variational 
principle (75), namely

where 𝜃̇j = 𝜕𝜃j∕𝜕𝜏 and

The matrix Aij and the vector bi are claimed to be efficiently 
computable with a quantum subroutine embedded in the 
overall, hybrid quantum/classical algorithm.

Also this approach presents some drawbacks. First, the 
transformation to a pure heat equation, (71), occurs for 
the Black-Scholes model but is expected not to hold when 
generalizing it. Secondly, the evolution of the parameters 
is governed by (76) which is solved with classical comput-
ing techniques. Its efficiency and scaling properties have not 
been assessed thoroughly.

It is interesting to explore the possibility of solving (76) 
still within the quantum circuit, possibly implementing the 
Harrow–Hassidim–Lloyd (HHL) algorithm [43] or its refine-
ments (see for example [18]). For further discussions about 
solving partial differential equations in quantum computers 
we refer to [58].

(75)𝛿
����
����
�
𝜕

𝜕𝜏
+ Ĥ + E

�
�𝜓(Θ(𝜏))⟩����

���� = 0 ,

(76)
∑
j

Aij𝜃̇j = bi ,

(77)

Aij = Re

�
𝜕⟨𝜓�
𝜕𝜃i

�𝜕𝜓⟩
𝜕𝜃j

�
, bi = −Re

��
a

𝜆a
𝜕⟨𝜓�
𝜕𝜃i

ĥa�𝜓⟩
�
.

3.3 � Quantum Machine Learning

As for many other scientific disciplines, in the last decade 
machine learning techniques have been intensively applied 
to diverse problems in quantitative finance. Regression-
based pricing methods, PDE resolution and optimal stochas-
tic control problems are prominent examples. For that rea-
son, the recent advances in the so-called Quantum Machine 
Learning (QML) front of research can have a great impact 
when employed on pricing derivatives and risk management 
or other relevant tasks for the financial industry. The QML 
explores how to devise and implement quantum algorithms 
that outperform classical computers on machine learning 
tasks [12]. Many machine learning classical components 
have been recently adapted to quantum systems, opening 
this way a full range of novel applications. Although these 
new QML algorithms have not been widely employed, so far, 
for financial applications (to the best of the authors’ knowl-
edge), they deserve to be considered in the near future.

In the following, we summarise the most promising 
developments in the QML area, which could be potentially 
applied to problems appearing in the financial sector, par-
ticularly the ones described in Chapter 2. Note however that 
most quantum machine learning algorithms working with 
classical data assume the availability of a Quantum Ran-
dom Access Memory (QRAM), which are not expected to be 
physically realizable in the near future [14]. For a discussion 
about the relation among quantum machine learning and ker-
nel methods we refer to [77]. Note as well that some (not all) 
of the QML algorithms can be dequantized, i.e., transformed 
into a classical quantum-inspired equivalent (see [33, 86], 
for example). Although useful to study theoretical questions 
about possible quantum speed-ups and a fair comparison 
among classical and quantum algorithms, dequantization 
might not be particularly helpful to the purpose of design-
ing actual classical algorithms.

3.3.1 � Quantum Principal Component Analysis

In Sect. 2.2.3 we have briefly described the usage of the 
PCA algorithm in finance. The first step behind PCA 
is to calculate the eigenvalues of the covariance matrix 
Σ ∈ ℝ

N ×ℝ
N , which is Hermitian and positive semi-defi-

nite. To this purpose, one possibility is to use the Quantum 
Phase Estimation (QPE) algorithm. However, two prob-
lems arise: (i) an initial state describing all the eigenvec-
tors of the covariance matrix has to be loaded; (ii) the 
covariance matrix must be decomposed as a summation of 
Pauli strings (which needs N2 classical operations). Tak-
ing into account that Σ is usually a dense matrix (i.e. not 
sparse), there is no guarantee of obtaining a significant 
speed-up, as that achieved by other algorithms like HHL.
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Another possibility is to work with the covariance 
matrix Σ as a density matrix (usually represented as � ), and 
make a Quantum Principal Component Analysis (QPCA). 
The initial proposal of this approach is due to [60]. It 
describes an algorithm to obtain the exponential of a den-
sity matrix using C copies of it. One concrete example of 
this technique was implemented by [2] in the case N = 2 , 
with C = 2 . Having enough resources, QPCA theoretically 
runs exponentially faster. Other refined versions have been 
proposed later [44, 59].

Recently, [92] suggested to calculate the eigenvalues 
and eigenvectors of Σ through a variational algorithm, by 
using the density matrix expansion

where {�j} represents an orthogonal basis. Thus, it is pos-
sible to find a unitary transformation such that:

where {�j⟩} is the usual computational basis and Θ = {�i} 
is the set of angles that define the operator U(Θ) . This uni-
tary operator is searched for by optimizing the parameters 
Θ using variational hybrid algorithms. Once U(Θ) is found 
(or—at least—suitably approximated), the eigenvalues can 
be computed directly by measuring probabilities on the com-
putational basis. It is nevertheless not clear yet whether this 
procedure is efficient in the general case.

The workflow to use these density-matrix-based QPCA 
algorithms should include several steps [2]:

•	 Convert Σ in a density matrix � . For this purpose, three 
characteristics of the density matrix must be fulfilled: it 
must be Hermitian, positive semi-definite and its trace 
must be equal to 1. As the covariance matrix Σ is Her-
mitian and positive semi-definite, only a division by its 
trace is needed ( � = Σ∕tr(Σ) ) to convert it into a density 
matrix. This step consumes N2 classical operations.

•	 In general, � represents a mixed state. As quantum com-
puters can only work with pure states, � must be puri-
fied. This means that, in order to load � into a quantum 
circuit, n = 2 log(N) qubits and additional classical pre-
processing are required.

•	 The purified state must be loaded into the quantum 
circuit, which could need a large number of gates (see 
Sect. 3.4.1 for a discussion about the loading problem).

In general, these facts limit the scalability of QPCA to O(N2) 
operations. However, it could still exhibit better performance 

(78)� =

N−1�
j=0

�j��j⟩⟨�j� ,

(79)�f = U(Θ)�U(Θ)† =

N−1�
j=0

�j�j⟩⟨j� ,

than the general classical complexity, which corresponding 
to O(N3) operations.

3.3.2 � Regression

Classical and more advanced (neural networks-based) 
regression methodologies are greatly appreciated in deriva-
tive pricing problems, in particular for options with early 
exercise, like American options (see Sect. 2.1.1), when they 
are priced by Monte Carlo methods. The plain regression 
algorithms rely on solving linear systems, a task of enor-
mous interest in quantum computation. The HHL algorithm 
proposed in [43] is a first relevant representative algorithm 
for solving linear systems, allowing to diagonalize some 
special matrices with exponential speedup. Then, the HHL 
algorithm was employed to perform a regression on a quan-
tum computer in [90]. Some related works in this field are 
[78, 89]. A more involved approach is presented in [74], 
where the authors tested several existing quantum (machine 
learning) regression algorithms tailored to a specific prob-
lem in chemistry, like Quantum radial basis function neural 
network [79] or Quantum Neural Networks [10] (and the 
references therein). Other quantum-based techniques like 
Quantum Kernel Estimation [28] and QML with Gaussian 
processes [94] have been recently proposed.

3.3.3 � Quantum Neural Networks and Deep Learning

The drastic increase in the computational power has ena-
bled the use of deep Artificial Neural Networks (ANN) for 
general purpose, giving rise to the so-called deep learning 
techniques. This computational paradigm has boosted the 
applicability of approaches based on supervised learning, 
unsupervised learning, reinforcement learning, convolu-
tional networks, etc. As it is the case for many other disci-
plines, computational finance greatly benefits from this new 
computational paradigm, with successful developments on 
numerical solutions for PDEs or Backward Stochastic Differ-
ential Equations (BSDE), inverse option pricing problems, 
counterparty credit risk computations, etc. In Sect. 2.1.3, we 
have presented a PDE-based problem formulation suitable 
to be solved by unsupervised ANN approaches.

In the context of deep learning and ANNs, the quantum 
advantage can be exploited from different points of view. 
The first and most obvious contribution is achieved by 
improving the training procedure employing quantum com-
puters. The use of, for example, quantum algorithms can 
have a positive impact on increasing the computational effi-
ciency in performing the training and/or avoiding possible 
undesirable malfunctioning (local minima) with respect to 
the classical alternatives (e.g. stochastic gradient descent). 
The advances on training the so-called Boltzmann machines 
(particularly the Restricted Boltzmann Machines (RBMs)) 
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are especially relevant. Some representative works in this 
area of interest are [4, 5, 51, 88].

Another research line consists in the algorithms based 
on a fully Quantum Neural Network (QNN). In the last few 
years, many works on QNN advanced training have been 
proposed, among which we highlight [10, 23]. One of the 
main applications of QNNs is the function (or distribution) 
loading. For its great importance in the financial problems, 
we devote a specific section to this particular aspect (see 
Sect. 3.4.1).

3.4 � Discussion

In this section we discuss some of the open problems in 
quantum computing for option pricing and VaR. As QAMC 
approaches to solve pricing and VaR problems are the most 
widely adopted ones in the literature and the ones tak-
ing more attention, we focus on them. The main implicit 
assumption in QAMC is the existence of an efficient oracle 
which loads the probability distribution. Both for pricing and 
VaR, loading the distribution means that it is necessary to 
create a circuit for a unitary operation P such that:

In the case of VaR, the cost of creating such a unitary can 
be mitigated to some extent using the techniques from 
Sect. 3.4.1. In the case of pricing, it is much more critical 
as we discuss below.

In pricing, the distribution to be loaded has to be previ-
ously generated through the simulation of a SDE. As it was 
discussed in the first part of this survey, the simulation of 
the SDE consumes most of the computing resources. When 
assessing the overall performance of the QAMC one must 
take into account this step. Otherwise, the latter compari-
son of the QAMC and the CMC would be unfair. Indeed, 
the claims of a quadratic speed-up of the QAMC over the 
CMC for financial applications—in general—do not take 
into account the generation step. If we compare both QAMC 
and CMC under the same conditions, with the approaches 
proposed in the literature, we will find that there is no rigor-
ous evidence for the quadratic speed-up.

If we assume that we have the probability distribution 
in the classical case (as it is done for the quantum one), the 
problem of pricing is reduced to computing the following 
expectation

where p is the probability distribution, f de payoff func-
tion and xi are the points where we know the probability 

(80)�P⟩ = P�0⟩ =

N−1�
i=0

√
Pi�i⟩ ,

N−1�
i=0

Pi = 1 .

(81)�[f ] =

N−1∑
i=0

p(xi)f (xi) ,

distribution. In this case the number of operations performed 
in the classical computer is of order N and there is no quad-
ratic speedup for the QAMC. In fact, when adding the costs 
of loading the probability distribution and the payoff into the 
quantum state we might end up with a clear disadvantage.

These problems provide concrete examples about possi-
ble issues encountered in designing full quantum algorithms 
able to reach a quantum advantage. Almost any speed-up 
concentrated in a subroutine of an overarching inefficient 
algorithm, however interesting, is clearly not sufficient to 
reach quantum advantage.

We are here implicitly referring (as it often happens) to 
quantum advantage in terms of scaling of the execution time. 
This is only a part of a bigger picture which needs to involve 
other variables such as the energy consumption and cost. 
Strangely enough, this wider picture is usually not analyzed 
in the quantum finance literature.

Many ideal algorithms studied in the literature are not 
viable on current or near-future quantum technology14. 
They usually require either an exceedingly large number 
of qubits or involve too deep a circuit with respect to the 
realistic coherence time, or both. The theoretical analysis 
of algorithms should be always accompanied by a critically 
explored awareness of current and future technological limi-
tations. In this perspective, an important (negative) claim 
has been described in [8], where it is argued that a quadratic 
speed-up is not sufficient to obtain a quantum advantage, 
mainly due to the—constant but large—resource overheads 
(needed for error correction). An important overarching sug-
gestion emerging from [8] is that the complexity scaling is 
in general not enough to properly define an actual threshold 
for quantum advantage.

In [19] the authors analyze the resources to attain a prac-
tically valuable quantum advantage in derivative pricing. 
They refer to benchmark, path-dependent cases, specifically 
to autocallable options and target accrual redemption for-
ward contracts. They argue that the complexity of the pricing 
task implied by path dependence is a necessary ingredient 
to find a regime where quantum technologies can lead to an 
advantage with respect to their classical counterparts. How-
ever, the benchmark cases are showed to need 7.5k logical 
qubits and a depth of 46 million T-gates and a clock-rate of 
10 MHz (current quantum technologies moves on the order 
of 10 kHz). These are recognized as markedly prohibitive 
for the moment, yet they set an order-of-magnitude scenario, 
useful to frame further research and strategy. An important 

14  It is difficult to forecast the evolution of the quantum computing 
technology in the next 5 to 10 years. We refer here to have only a 
few dozens of qubits (physical or logical) with errors in operations 
higher than 10−5 which can execute circuits with only a small num-
ber of steps—around 1000—before the result collapses to useless or 
meaningless values



4157A Survey on Quantum Computational Finance for Derivatives Pricing and VaR﻿	

1 3

technical aspect of the paper consists in basing the compu-
tation on returns instead of levels of the underlying asset 
value. This is sometimes necessary, e.g. when performances 
of the underlying assets are defined in terms of returns. The 
discussions about realistic implementations of quantum 
algorithms for finance cannot, at least so far, be addressed in 
a hardware-independent fashion. Connectivity of the actual 
computing architecture or even the kind of technology they 
are based upon are significant factors in discussing the con-
crete viability of a quantum algorithm.

In the following subsections we make some further com-
ments on: 

1.	 Loading a probability distribution: the direct benefits in 
this matter goes to VaR problems.

2.	 Generating a probability distribution: this would be the 
direct equivalent of simulating a stochastic differential 
equation.

3.	 Loading a payoff function: this case is only relevant for 
pricing.

3.4.1 � Specific Methods to Load Probability Distributions

Loading the necessary state into a quantum register in order 
to initialize an algorithm constitutes often the main bottle-
neck. For example, [31, 67] show that in QAMC the overall 
calculation time is dominated by the (asymptotic) time to 
load the probability distribution as

where TQAMC is the time cost of the ideal amplitude esti-
mation algorithm, TP the time for implementing the oracle 
P which loads the distribution and � the desired sampling 
precision.

As opposed to pricing where there are cases in which 
the probability distribution can be generated sinthetically, 
in VaR we always need to load an empirical distribution. 
Thus, the loading step is of particular importance for VaR.

If we were to load the exact15 probability distribution into 
the quantum state, we could leverage general techniques for 
loading functions, such as:

•	 Use a general method to convert unitary operators to cir-
cuits [38].

•	 Use specific methods to initilize the amplitudes to a nor-
malized vector [54, 80, 82].

(82)TQAMC = O

(
TP

�

)
,

•	 Grover approach: use the properties of the probability 
distribution to create an efficient circuit [40].

The main problem of the first two methods is the poor scal-
ability with the number of points that we need to load. In 
order to seek for efficient loading algorithms, we can give 
up techniques which load the exact function in the quantum 
state and explore the possibility of approximating the state 
to be loaded. In this way we lower the resources necessary 
to load the state at the cost of accuracy and exploit the fact 
that we are working with a specific subset of functions. This 
generic idea of loading an approximated version of the state, 
aiming to have an efficient process, can take different practi-
cal paths. We focus on two of them:

•	 Variational Quantum Circuits: create an ad-hoc circuit 
which approximates the amplitudes [68].

•	 Tensor Networks techniques [31, 48, 72].

Grover Approach [40] proposed a general methodology 
to load integrable probability distributions into the states 
efficiently. The basic idea is to discretize the probability den-
sity p(x), defined on a continuous one-dimensional space 
spanned by x, in 2n regions iteratively, splitting in each step 
one region in two. In the first step, the initial state is pre-
pared as:

where pr and pl are the probabilities that x lies on the right 
or on the left of the middle point, respectively. At each itera-
tion step, one additional qubit is added. This doubles the 
state space and it is necessary to store the extra information 
coming from dividing each region into two equally spaced 
subregions. If xi

R
 and xi

L
 are the right and left boundaries of 

a region i, it is necessary to apply a �i rotation controlled by 
the state �i⟩ on the new qubit, where �i is given by

where f(i) represents the probability of being to the left of 
the middle point of the region i conditioned by being in that 
region.

Summarizing, one full iteration consists in the following 
passages:

(83)�0⟩⊗ �0⟩n−1 → (
√
pl�0⟩ +

√
pr�1⟩)⊗ �0⟩n−1 ,

(84)

�i = arccos
�√

f (i)
�
, with f (i) =

∫
xi
R
+xi

L

2

xi
L

p(x)dx

∫ xi
R

xi
L

p(x)dx

,

15  With exact we mean that the only approximation is—possibly—
due to the discretization.
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In the first passage, a unitary transformation Ui loads �i into 
the auxiliary register, Ui�0⟩q = ��i⟩ . The auxiliary register is 
composed by q qubits and we indicate this explicitly when 
the register is in its state 0; q corresponds to the precision 
with which we encode �i . Then, a rotation controlled by ��i⟩ 
encodes the left/right conditioned probabilities for region 
i into the qubit m + 1 . Finally, the initial Ui operation is 
uncomputed, thus resulting in a state with the probabilities 
for each 2m+1 regions mapped into the amplitudes of the 
states. Thus, by iterating the passages from (85) to (86), the 
probabilities of the 2n regions are eventually mapped into the 
corresponding amplitudes as desired.

The method could consume less resources in the case in 
which some parallelization strategy is encountered. How-
ever, some recent works dispute the possibility of a speed-
up when this method is used for Monte Carlo [19, 45, 52]. 
Similar algorithms which use the conditioned probabilities 
are presented in [54].

It is important to stress that all these methods based 
on the Grover approach (or variations thereof) rely on the 
knowledge of an analytic expression for the PDF, in general, 
with some further assumptions such as log-concavity. When 
dealing with empirical data, like in VaR calculations, the 
computation of the conditioned probabilities (84) is straight-
forward and can be implemented by means of a simple cir-
cuit with controlled Ry gates using binary trees [44, 55].

Variational Circuits With Variational Circuits we loosely 
refer to all methods which rely on a parametric ansatz whose 
parameters are chosen by means of some optimization pro-
cedure [11]. The optimization can be either classical, giving 
rise to a hybrid algorithm, or quantum and directly embed-
ded into the quantum circuit. At any rate, we are here in the 
domain of approximation theory tackled with optimization 
algorithms. Within this wide family, we want to pay particu-
lar attention to a specific strategy to train the circuit called 
Quantum Generative Adversarial Networks (QGANs).

(85)
2m−1�
i=0

�
p
(m)

i
�i⟩m�0⟩(n−m)�0⟩q

(86)
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QGANs have been proposed by [75, 95]. They are based 
on the classical concept proposed by [37], where two deep 
learning models are trained simultaneously in an adversarial 
setup. One model G, called the generator, tries to generate 
data that are checked by a second model D, the discrimina-
tor. This latter tries to distinguish if the data comes from a 
real distribution or not. For the quantum case, G is also a 
PQC which is trained to decieve the discriminator, which 
can be a classical deep learning model. Once the generator is 
trained, it can be used alone to load the desired distribution. 
The discriminator could be a quantum circuit or a classical 
deep learning model, while G is a parametric circuit G(Θ) 
that transforms an initial PDF into the desired PDF. The 
initial distribution can be a uniform, a normal, or a generic 
random distribution. Thus, we have

where U loads the initial distribution and G(Θ) transforms 
it to the desired one. In the case that the initial distribution 
is the uniform distribution, U can be implemented using a 
Walsh-Hadamard operation which applies a Hadamard gate 
to all the qubits. In the case of a random distribution, it can 
be implemented easily applying random rotations to them. 
In [95] the authors used QGANs to make an experiment to 
solve the option pricing problem. In their experiment, an 
initial normal PDF has proved the best to obtain a desired 
PDF according to the Kolmogorov-Smirnov distance. In the 
case of [75], the circuit has a different mechanism to take 
into account the latent space (i.e. the initial PDF). The initial 
random numbers (z) are drawn from a classical PDF and are 
encoded into the circuit using a small encoding part of one-
qubit gates. In this case, the state is loaded as

However, training a circuit to reproduce a general PDF is not 
an easy task, even in the classical paradigm for 1-dimension, 
as shown by [93].

In general, variational methods do not provide a clear 
path to get the sought for speed-up. Specifically, it is difficult 
to guarantee the loading performance by means of rigorous 
bounds. This is mainly due to the uncertainty associated to 
the optimization of the parameters [19]. For each data distri-
bution one needs to train the circuit, which clearly requires 
time and consumes resources. A possible mitigation comes 
from the fact that after having trained an initial circuit for an 
asset, it is sometime possible to assume that the associated 
distribution changes slowly so that just an daily and auto-
matic small retraining would be needed daily.

Tensor Networks Tensor networks have been developed 
in condensed matter physics in order to define convenient 
ansatzes for the ground state of highly-entangled systems. 
The ansatz is generically expressed in terms of a product of 

(87)�P⟩ = G(Θ)U�0⟩ ,

(88)�P⟩ = G(Θ)U(f (z))�0⟩ .
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matrices (or tensors) which have different kinds of indexes: 
physical indexes spanning the Hilbert space and virtual 
indexes which are associated with an auxiliary space16. The 
dimensionality and characteristics of the auxiliary space can 
be adapted to different situations. Intuitively, the auxiliary 
space helps in disentangling the quantum state providing 
a more explicit representation which is easy to handle and 
interpret, though in a bigger space. Through suitable con-
traction operations on the virtual indexes, the tensor network 
reduces to the physical quantum state, with only physical 
indexes.

Tensor networks can be useful to address the problem 
of the initial loading for quantum circuits if one is able to 
efficiently encode the desired quantum state into a suitable 
tensor network ansatz. Such encoding would in general 
entail multi-qubit operations, which can be traded-off with 
a deeper circuit composed only by 1- and 2-qubit states, see 
[72].

Matrix product states (MPS) constitute a widely used 
class of tensor network ansatzes. These have been long stud-
ied in the context of quantum computation [76] and have 
been recently claimed to allow for an efficient and scalable 
encoding of explicit amplitude functions with a high fidelity, 
relying just on linear-depth quantum circuits [48].

Tensor network techniques have been studied also in the 
quantum-inspired realm of classical algorithms. Two rel-
evant example applications are the efficient classical simula-
tion of Shor’s factorization algorithm [25] and generic multi-
variate analysis [31] (e.g. expected value, Fourier transform, 
interpolation and solving PDE). In fact, in [31] the author 
presents an algorithm to efficiently use MPS techniques 
to encode smooth, differentiable multivariate functions in 
quantum registers. Although being a promising method, the 
extension to a general empirical data-based probability is 
not, to our knowledge, yet known and needs further research.

3.4.2 � Specific Methods to Generate Probability 
Distributions

With “generative approach” we refer to the actual simula-
tion of the discrete stochastic processes which generate the 
desired approximate distribution. The discrete stochastic 
approach is particularly important when the underlying 
asset SDE does not admit an analytical formulation, or when 
the option is path dependent (thus requiring the knowledge 

of the distribution of the underlying at intermediate times 
before maturity) as it usually happens in pricing.

In the class of generative techniques we find the vari-
ational quantum simulation [29], implemented—for exam-
ple—by means of trinomial trees [57] (see Sect. 2.1.3)17. In 
[57] the up/down transition probabilities (32) for the trino-
mial tree approximation are implemented by means of lad-
der operators. These are built from the cyclic permutation 
operators, suitably combined with the identity. Thus, the 
strategy proposed by [57] relies on the linear combination 
of unitaries [21]. In [17] they extend the idea of using the 
transition probabilities and propose an algorithm to keep not 
only the final distribution but also the probabilities of each 
possible path. Further considerations about this approach 
are described in [19].

Another interesting member of the class of generative 
techniques is given by quantum walks [6, 7, 62, 67]. These 
can be seen as quantum alternatives to classical Monte Carlo 
techniques based on multiple-stage Markov chains. For simi-
lar ideas aimed at embedding risk models into the quantum 
circuit, we refer to [16]. To clarify the ideas behind quan-
tum walks, it is useful to focus on the technical differences 
among classical random walks and quantum walks. The for-
mer are stochastic processes where each discretized step is 
taken according to some random procedure (e.g. the toss of 
a coin). On the contrary, an ideal quantum walk represents 
a class of deterministic evolutions for a wave function. Here 
the stochasticity is given just by the stochastic nature of the 
eventual quantum measurement, at least in the cases where 
decoherence and dissipation phenomena are absent. Actu-
ally, suitable consideration of decoherence allows to inter-
polate between classical random walks and quantum walks 
[69]. This can be understood as follows. The quantum state 
of a quantum walk has an auxiliary qubit which controls the 
decision about the step, similarly to a classical coin which 
determines if the step is taken upward or downward in a 
binomial classical random walk. The auxiliary qubit is some-
times called a “quantum coin”18 and it evolves, for instance, 
with a Hadamard operation at each discrete time step. The 
Hadamard evolution for the auxiliary qubit represents the 
quantum version of a fair coin where an up or down state 
is evenly mapped to up and down at the next step. Yet, we 
stress once again, the ideal evolution of the quantum state 
is here deterministic. Unless we consider deviations from 
ideality and introduce some decoherence and, for instance, 
go to the extreme non-ideal case in which decoherence is 

16  In the tensor network literature, the auxiliary space is usually 
referred to as bond dimension or virtual dimension. It refers to the 
dimensionality of the index that connects tansors. A higher-dimen-
sional auxiliary space corresponds to a richer (and more complex) 
ansatz which is correspondingly more expressive as well as more 
costly in terms of resources.

17  [42] contains a study on the quantum implementation of the bino-
mial tree approach. Note that we can see the n-nomial approach as a 
way to address the quantum numerical solution of a partial differen-
tial equation [30, 31, 36] (see Sect. 3.2).
18  Not to be confused with the quantum coin algorithm we have 
introduced for integration.
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pushed to its maximum, where the “quantum coin” is meas-
ured at each time step. In this extreme situation the Had-
amard quantum coin reduces to a classical fair coin.

3.4.3 � Specific Methods to Load the Payoff Function

The task of computing the expectation value of a payoff 
function with respect to a probability distribution, see Eq. 
(53), requires that both be loaded into the quantum circuit, 
accordingly to the pipeline depicted in Fig. 2. As already 
commented below Eq. (53), the probability distribution and 
the payoff function are in general loaded separately. Never-
theless, they can be loaded simultaneously [17].

The payoff functions for European vanilla options, see 
Eq. (1), are relatively easy to implement by means of a com-
parator circuit. As long as the payoff function is piecewise 
linear, one can generalize the approach implemented for the 
European vanilla contracts. Nonetheless, this would already 
entail an increased level of complexity in the quantum cir-
cuit; for instance, any separation point between two linear 
regions would require a comparator circuit19.

In a completely general case, i.e. for arbitrary payoff, its 
loading problem can be even more complicated than that 
of the probability distribution function. In fact, one–quite 
generically—needs to load the payoff on a quantum state 
which already encodes the probability distribution. On the 
contrary, one typically loads the probability distribution 
starting from a standard reference quantum state (e.g. �0⟩n).

For small size examples, the payoff can be loaded point-
wise. However this is clearly an approach which scales inef-
ficiently and cannot be planned for real applications.

4 � Conclusions

In recent years we have seen significant advances in quan-
tum algorithms with application to financial mathematical 
problems. While this progress is very encouraging, further 
work will be required to prove that Quantum Computing 
can deliver real-world advantage to the areas of derivative 
pricing and financial risk management. Especially if this 
advantage is to be delivered on Noisy Intermediate-Scale 
Quantum technology with limitations to both the number of 
logical qubits and the width of quantum circuits.

Recent achievements in Quantum Amplitude Estimation 
allow us to circumvent the use of resource-demanding Quan-
tum Fourier Transforms, providing grounds for optimism.

Further theoretical work is needed in order to find effi-
cient (ideally optimal) ways to load probability distributions 
to quantum registers, as well as efficient mathematical repre-
sentations of payoff functions using unitary transforms that 
can be easily implemented in a quantum circuit.

An area that is also showing some interesting results is 
the solution of PDEs using quantum computers with appli-
cations to derivative pricing and risk management. While 
exciting, these approaches have not yet been able to prove 
whether quantum algorithms can provide an advantage 
over their classical counterparts. Lastly, relatively recent 
advances in both classical and Quantum Machine Learning 
algorithms for solving PDEs are also exciting, especially 
because it has been shown that QML can be robust when 
implemented in noisy hardware. Furthermore, QML algo-
rithms can present some interesting theoretical advantages 
over their classical counterparts, see for example [49], where 
the authors introduce the concept of “projected quantum 
kernel” to show numerical results that promise a quantum 
advantage in learning algorithms. These kernels work by 
projecting the quantum states to an approximate classical 
representation, helping to reduce the dimensionality of 
the problem, however for real-world examples the dimen-
sion would be still too large to be handled efficiently using 
a classical computer. Quantifying quantum advantage for 
ML algorithms is however not straightforward and should 
be approached carefully.

In summary, research into financial applications of quan-
tum computing is accelerating with new ideas emerging at 
rapid pace and while important breakthroughs across the 
technology stack will be needed to make the approach via-
ble, the recent accelerated publication of important results 
is encouraging.
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