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Abstract—The need for improved quality control in industry
makes object detection crucial. This work addresses the challeg-
ing problem of subsurface defect detections using a combination
of active thermography and deep learning. The novel contribution
of this work is to pose the problem as one of object detection
rather than semantic segmentation or classification. The images
used as input for the deep learning algorithms are three-channel
color images obtained using Principal Component Thermography
(PCT). The use of these images improves the signal-to-noise
ratio (SNR). A framework to label ground truths automatically
is also created. The most widely used deep learning detector
algorithms were evaluated and YOLOv5 was selected because
of its excellent average precision (AP) and its low inference
time. The resulting combination of this algorithm and active
thermography is effective and accurate in detecting subsurface
defects.

Index Terms—Active infrared thermography, Non-destructing
testing, Subsurface defects, Carbon fiber sheet, Principal Com-
ponent Thermography, Deep learning.

I. INTRODUCTION

IMPROVED quality control is a growing demand in the
industry, and is therefore the object of many works. Many

of these works are focused on the identification of surface
defects [1]–[4]. Many subsurface defects cannot be detected
by the human eye, therefore their correct detection represents
a challenging problem, vital for the quality control of many
different industrial parts.

Several strategies can be used to detect subsurface defects,
two of the most common being X-ray and infrared thermog-
raphy (IRT). X-rays are more accurate than IRT, but less
safe [5]. The advantages of infrared thermography are that
it is non-invasive, does not need to be in direct contact with
the specimen and does not have the harmful radiation effects
present in X-rays [6]. Many works have been carried out using
IRT in order to detect subsurface defects in non-destructive
testing [7]–[9].

There are two types of IRT: passive and active. Passive
thermography consists of measuring the temperature contrasts
of an object which is involved in a spontaneous heat flow
process [10], without adding an external heat source. In active
thermography, the specimen is subjected to an external heat
source to create a temperature contrast. Inert objects do not
exhibit temperature variations, therefore it is necessary to use
active thermography in order to detect their subsurface defects.
The heat flow within the specimen depends on the properties
of the material [11]: the induced flow will be affected in areas
with subsurface defects and the areas around them. Anomalies

can be detected by measuring the infrared radiation from the
external surface with a thermographic camera.

Usually, the inspection is performed by a skilled operator
[12], which makes the detection process subjective and time
consuming. For example, in [13] subsurface defects were de-
tected in a bicycle frame. After applying active thermography
it was necessary for an operator to review the captured images
manually. Since some of the subsurface defects were very
subtle, after obtaining the infrared images and applying a post-
processing technique called Principal Components Analysis
(PCA), it was necessary to improve the signal-to-noise ratio
(SNR) content of thermographic data.

Traditionally, detecting subsurface defects was done man-
ually, which made the quality process dependent on the
judgment of the operator. To solve this problem, IRT and deep
learning can be combined. Deep learning can automate the
inspection of different industrial parts quickly and objectively,
based on data obtained by active IRT.

The combination of deep learning and IRT has already been
used in several fields. One of these fields is the medical,
more specifically breast cancer screening. In [14], a two-
part model composed of a pre-trained Inception V3 model
and a SVM classifier is used in conjunction with IRT to
detect breast cancer. In [15], a LeNet-based CNN is used
to classify breast cancer images automatically. And in [16],
a segmentation network with an autoencoder architecture is
used to automatically segment breast cancer areas in IRT
images. Another area where IRT and deep learning have been
combined is in behavioral monitoring. In [17], an infrared
image-based classifier is designed for an Ambient Assisted
Living (AAL) system to assist people with disabilities. A
dataset of six classes composed of everyday actions, such as
walking or sitting on a chair, was also created. The proposed
model achieves an accuracy of 87.44%. In [18], extremely
low-resolution thermal images are used in combination with
a LTSM-based network to classify different human actions.
Quality control, is another field where the combination of
deep learning and IRT has achieve good results. In [19], deep
learning techniques are applied to detect subsurface defects
using active IRT, however, only a single image classification
technique is used. In [20], a classification model is created
to classify subsurface defects in a laminate of glass-fiber-
reinforced polymer, achieving an accuracy of 84.03%, pre-
cision of 87.62% and recall of 82.43%. In [21], semantic
segmentation is combined with IRT to generate a mask of
possible internal defects in a carbon fiber part. After testing
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several strategies to obtain the semantic segmentation mask,
it is concluded that the best performing models are a 3-layer
LSTM network and U-Net pre-trained with VGG-16. In [22],
a spatio-temporal 3D network is created to detect the presence
and depth of subsurface defects in carbon fiber reinforced
polymer (CFRP) materials. Its main drawback is the inference
time: 4.4 seconds, much higher than the time achieved in this
work. In [23], a custom deep learning network is created to
detect subsurface defects of steel members in a steel truss
bridge. Its conclusion is that the position of the sun can affect
the inspection task, since the side of the bridge that is exposed
to the direct radiation of the sun can be altered. In [24], active
thermography is used together with a VGG-based network to
detect cracks in Electron-Bean Welding (EBW) and Tungsten
Inert Gas (TIG) weldings. The conclusion is that its CNN can
be trained with around 1000 samples, getting good accuracy.

All these cited works have made important contributions,
however, there is still room for improvement. The problem
of detecting subsurface defects can be posed as an object
detection problem, unlike in previous works, where it is posed
as a classification and segmentation problem. In image classi-
fication the objective is to predict the class of a given image.
In the context of this work, the classifier should determine
whether it contains defects or not. The aim of object detection
is to locate objects of interest using bounding boxes, in this
case defects. Semantic segmentation, like object detection,
locates the objects of interest. The main difference with object
detection is that in semantic segmentation, each pixel of the
image is classified. This implies two disadvantages: 1) to
annotate a dataset it is necessary to classify all the pixels of
the images, while for object detection it is simply necessary to
label the objects of interest, and 2) it is not possible to count
the detected objects, since it works at pixel level.

The object detection approach, combined with active IRT
has not yet been widely explored. Furthermore, the labeling
process of the ground truth of a detection problem is less
time-consuming than in semantic segmentation [25]. In se-
mantic segmentation a mask containing the defects detected is
obtained, while in object detection, the bounding boxes of the
defects are obtained [26]. The mask is not needed since the
most relevant information is the localization of the subsurface
defects.

To improve the quality control of industrial parts, four of the
most widely used non-proprietary object detectors are evalu-
ated: SSD [27], YOLOv3 [28], YOLOv4 [29] and YOLOv5
[30]. In order to reduce the time needed, the entire process
from data collection to the detection of the subsurface defects,
is automated. Usually, the most time-consuming task is data
labeling, for which a new framework has been developed.
Using this framework, the network used can be quickly trained
with the data needed to carry out the inspection of a certain
industrial part.

In this work, a carbon fiber sheet with a series of known
subsurface defects is used. To deal with the limited amount of
data, the part is rotated, in such a way that several images are
taken. To get more information, data augmentation is applied
to the training data. Thanks to these contributions, the quality
control process is significantly improved, and manufacturing
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Fig. 1. Infrared inspection using optical step heating (OSHT).

defects can be prevented, lowering costs and increasing safety.
Infrared radiation provides useful information about the

temperature of an object. By using infrared measuring devices,
it is possible to transform the infrared radiation emitted by an
object to an electronic signal. Then, the infrared images can
be converted to color images by assigning a color to each
level of energy. This false color image is called a thermogram
[11]. Thermograms are used in this work to detect subsurface
defects.

To apply IRT as a Non-Destructive Testing (NDT) technique
it is necessary to supply extra heat to the specimen, typically
by means of a heat gun, flash lamp or halogen lamp. The
heat gun is the simplest since no setup is needed. Flash lamps
and halogen lamps can also be used to heat the specimen
accurately. In this work, optical step heating (OSHT) is used
with two 1000 W halogen lamps (Eurolite PAR-64 Profi
floorspot model), shown in Fig. 1. The lamps are turned on
for 10 seconds and then turned off.

Usually, the infrared images captured present noise that
hinders the task of defect detection. To deal with this, several
post-processing techniques can be applied such as statisti-
cal moments, principal component analysis, dynamic thermal
tomography, and polynomial fit and derivatives. Principal
Component Analysis (PCA) is a static technique to reduce the
number of variables of the data and highlight its differences
and similarities. As concluded in [11], PCA is the most
appropriate method, although it depends on the properties of
the defects.

II. MATERIALS AND METHODS

A. Dataset

The dataset is obtained by applying active thermography to a
single carbon fiber solid laminate sheet, shown in Fig. 2a. This
type of material consists of several carbon fiber layers, each
layer with fibers oriented in a specific direction, stacked and
bonded together with a resin. Internal defects were induced by
means of small sheets of polytetrafluoroethylene (PTFE) and
metal shavings. The PTFE simulates delaminations, which are
defects produced by the separation of adjacent plies, while the
metal shavings simulate accidental inclusion of small pieces
of the cutting tools used in the manufacturing process. The
twelve subsurface defects are distributed as shown in Fig. 2b.
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(a)

(b)
Fig. 2. (a) Carbon fiber part used in this work. (b) Defects present in the
carbon fiber part used in this work. The first nine defects are PTFE defects,
while the last three are metal shavings. The inspection side is the upper side.

The defects have different sizes: 12× 12 mm, 7× 7 mm and
5× 5 mm, and different depths: 0.63 mm, 1.46 mm and 2.08
mm. Theoretically, the 12× 12 mm defect at 0.63 mm depth
is the easiest to detect and the 5× 5 mm at 2.08 mm depth is
the most difficult.

To collect the data, 36 inspections are carried out. Each
inspection consists of a 20-second video with a Xenix Gobi
640 GigE infrared camera (see Table I for more information),
in which the sheet is heated for 10 seconds. The camera is
positioned 1.5 meters from the specimen and the two halogen
lamps at 1.6 meters. Fig. 3 shows the temperature signal over
time. The video runs at 50 FPS, therefore 1000 frames are
obtained in each inspection. Between the inspections the sheet
is cooled for 10 seconds. To achieve more variability in the
data, the part is rotated 10° in each inspection, ensuring that
the sheet is always kept on the same plane using a laser system
to check the correct position.

To reduce the noise in the data, Principal Component
Thermography (PCT), which is based on Principal Component
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Fig. 3. Time of the inspection.

TABLE I
TECHNICAL SPECIFICATIONS OF THE INFRARED CAMERA XENIX GOBI

640 GIGE USED IN THE EXPERIMENTS.

Camera Xenix Gobi 640 GigE
Temperature range −20 °C to 120 °C

Spectral range 8–14 µm
Image frequency 50Hz
Pixel resolution 640× 480

Analysis (PCA), is used. PCT is used to reduce the number
of variables without affecting the subsurface defect detection.
PCT decomposes an image sequence into empirical orthogonal
functions (EOF). EOF creates a set of orthogonal statistical
modes that provide the best projection for the data [31]. The
frames obtained during the inspection are represented on the
left of Fig. 4. After applying PCT to the video, frames 1, 3
and 4 on the right of Fig. 4, are those selected to create an
RGB image (see Fig. 5) since they are the ones that maximize
the signal-to-noise ratio (SNR). The SNR metric is calculated
using Eq. (1), where Defu is the arithmetic mean of all the
pixels inside the defect area, Refu is the arithmetic mean of
all of the pixels that do not belong to a defect and Refσ is
the standard deviation of all the pixels that do not belong to
a defect [11]. These frames are selected because they have
the greatest contrast between the defects and the background,
as shown in Fig. 6. This technique of selecting 3 frames from
the video has been used in other works [32], [33]. Considering
that it is not possible to use all the non-defects pixels of the
sheet as reference (Refu) to calculate the SNR, for each defect
it has been selected an exclusion and a reference area [34].
Fig. 7 shows these areas. The area between the reference area
and the exclusion area has been used as reference (Refu and
Refσ). Table II shows the SNR for each defect before and
after applying PCT. These results demonstrate that PCT is not
only useful for summarizing thermographic data, but also for
improving the SNR compared to the raw data. Selecting the
frames that maximize the SNR is difficult, since it depends on
the properties of the anomalies [11], therefore for new samples
the frames that maximize the SNR would have to be analyzed.

SNR = 20 log10

(
|Defu −Refu|

Refσ

)
(1)
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Fig. 4. Noise reduction obtained in the inspection, improving the contrast
ratio between the defect and the background by applying PCT.

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 5. Result of combining frames 1 (a, e), 3 (b, f) and 4 (c, g) into a RGB
image (d, h).

Once the 36 3-channel images are collected, the next task is
to label them. Labeling images containing subsurface defects
can be an arduous process. To automate this process, the image
obtained from the first inspection is carefully labeled manually
(see Fig. 8a), following the known positions (see Fig. 2b).
Before labeling the first inspection, the image is preprocessed
with CLAHE (Contrast Limited Adaptive Histogram Equal-
ization) [35]. This improves the contrast, as can be seen in
Fig. 8a, the illumination can lead to confusion. This would
make the ground truth incorrect. For the rest of the images,
where the sheet is moved and rotated (see Fig. 8b), the edges
are calculated using the Canny algorithm [36] (see Fig. 8c).
Since corners detectors would generate many false positives

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 6. Result of applying PCT to the video. (a) Frame 1. (b) Frame 2. (c)
Frame 3. (d) Frame 4. (e) Frame 5. (f) Frame 6. (g) Frame 262. (h) Frame
494.

(a) (b)
Fig. 7. Defect, exclusion and reference areas of (a) maximum temperature
frame before PCT and (b) third frame after PCT.

TABLE II
SNR FOR EACH OF THE DEFECTS BEFORE APPLYING PCT ON THE

MAXIMUM HEATING FRAME, AND AFTER APPLYING PCT ON THE THIRD
FRAME.

Before PCT After PCT
Defect 1 -3.57 -1.28
Defect 2 -18.10 -5.73
Defect 3 1.31 19.45
Defect 4 -8.23 -1.60
Defect 5 -14.85 -9.59
Defect 6 -8.72 11.71
Defect 7 -31.57 -7.81
Defect 8 -14.50 -17.15
Defect 9 -12.96 9.19

Defect 10 -7.70 -22.48
Defect 11 -24.82 -5.20
Defect 12 -3.73 3.79

(they would also detect the corners of the support), the Hough
transformation is applied to search for lines on the binary
edge image [37]. In this way, the corners are calculated as
the intersection of the lines (see Fig. 8d). Next, the corner
correspondences between the base image and the rotated image
are calculated (see Fig. 8e). From these correspondences, the
2D rigid transformation, calculated as shown in Eq. (2) where
x and x’ are the homogeneous coordinates of the point at
the original and transformed position respectively, R is the
rotation matrix and t is the translation vector. The translation
vector determines the movement and rotation of the sheet
[38]. This transformation relates the rotation and translation
of the base image corners and those of the rotated image.
Through the application of this transformation, the corners of
the subsurface defects bounding boxes are calculated (see Fig.
8f). By applying this method to all the images, the dataset is
automatically labeled, which saves time and ensures that the
labeling is correct.

x′ = Hx =

[
R t
0T 1

]
x (2)

Due to the limited number of images, after dividing the
dataset into a 12-image test set and a 24-image training set, the
augmentation is applied to the training set. The augmentation
consists of the following modifications: ±5° rotation, vertical
and horizontal flips, 1% to 20% zoom variations and random
elastic image distortion. After applying this augmentation
technique, 500 images for training are obtained. Fig. 9 shows
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(a) (b)

(c) (d)

(e) (f)
Fig. 8. Autolabelling process. (a) Base image with its ground truth. (b)
Rotated image. (c) Edge calculation. (d) Hough Transformation. (e) Corner
calculation from applying 2D rigid transformation. (f) Rotated image with its
ground truth.

the result of mixing frames 1, 3 and 4, obtained after post-
processing the inspection videos with PCT, into an RGB image
and applying this augmentation technique to those correspond-
ing to the training set. Some circular patterns can be seen in
some of the images in Fig. 9. This is a common phenomenon
in active inspections with optical thermography, produced by
the reflection of the heating lamps on the surface of the
inspected object. These reflections can hide other indications
of interest. They can usually be avoided by modifying the
inspection setup, although this is not always possible due to
space limitations. Therefore, in order to reflect the conditions
of a worst-case scenario, the effect of the presence of parasitic
reflections in the results of the study, these reflections have not
been avoided and can be seen in some of the images where the
specimen is rotated with respect to the initial vertical position.

B. Analysis of classification algorithms

Image classification algorithms have helped automate tasks
such as facial recognition or vehicle license plate recognition.
To carry out these tasks, it is necessary to train one of these
algorithms. There are several algorithms that have shown good
performance, but due to the impossibility of evaluating all
of them, two of those that offer the best results have been
selected:

a) Efficientnet v2: This classifier [39] emerges as the
natural evolution of its predecessor, Efficientnet [40]. In this
work, it was observed that scaling all model dimensions

(depth, width and resolution) can improve the image classifi-
cation results. For doing this, a new method is proposed. This
method consists of scaling model dimensions uniformly with
constant ratio. This innovation produces a bottleneck, when
the resolution is too large and too many layers are used. This
results in high training times. In addition, there is a point
where increasing the resolution and the number of layers does
not improve the results. The second version of this network,
fix this problem by restricting the maximum resolution to 480,
and by adding more layers to later stages.

b) Mobilenet v2: Mobilenet [41] is another widely used
classifier. The core basis of this network is depthwise sep-
arable convolution. This is basically a depthwise convolution
followed by a pointwise convolution. A depthwise convolution
does the convolution individually for each channel, and then
stack the three outputs (for RGB images). The next step is a
pointwise convolution. This consists of applying a convolution
to the new image generated in the previous step, with a
1×1×3 kernel. This process is repeated 10 times, to generate
a W × H × 10 feature map. Thanks to these steps, the
computational costs are reduced by 7. The second version of
this network [42], continues the essence of its predecessor. It
uses an inverted residual structure where the input and output
of the residual blocks are thin bottleneck layers.

C. Analysis of semantic segmentation algorithms

In semantic segmentation networks, there have also been
great advances in recent years. Of all the networks developed,
U-Net [43] is the most popular. Its name is due to its encoder–
decoder architecture, which gives it a U-shape. The encoder
is a stack of convolutional and max pooling layers. It acts
as the feature extractor and learns through a sequence of the
encoder blocks. Each block consists of two 3× 3 convolution
layers and a Relu activation function. The bridge connects the
encoder and the decoder. It consists of two 3x3 convolutions.
Finally, the decoder makes it possible to locate the objects of
interest. It consists of 2×2 transpose convolution, concatenated
with the corresponding skip connection from the encoder. The
skip connections provide additional information that help the
decoder generate better semantic features. Its popularity is due
to its ability to produce good results using a small number of
training images, and its ease of adapting the number of classes
and input size.

D. Analysis of object detection algorithms

In recent years different object detection algorithms have
been developed offering good results in datasets such as Pascal
VOC [44] and COCO [45]. Object detectors can be divided
into two types: one-state and two-state detectors. Two-state
detectors first propose a set of regions of interest (ROIs) and
then perform the appropriate detections in these regions. R-
CNN [46] and its later versions, Fast R-CNN [47] and Faster
R-CNN [48], are clear examples of two-state detectors. One-
state detectors perform detection by treating the entire image.
SSD [27] and YOLO [49] are the two most used one-state
detectors. Typically, in datasets used to compare different
detectors, two-state detectors achieve better results, at the cost
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Fig. 9. Results after applying PCT and combining frames 1, 3 and 4 into a RGB image. (a–f) Test images. (g–l) Training images after applying augmentation.

of slower inference speed. Since the objective of this work is
to be able to carry out the detection of defects in industrial
parts by active thermography, the speed of inference is of vital
importance. Thus, SSD and YOLO have been selected. These
detectors and their many version are described below.

a) SSD: Single Shot Detector (SSD) [27] is a detector
that competes in terms of accuracy with R-CNN and improves
its inference time. SSD introduces a series of improvements,
such as multi-scale detection, default boxes and aspect ratios,
that enhance the detections. During training, the network uses
hard negative mining, which ensures a proportion between the
positives and negatives predictions of 1:3.

b) YOLOv1: You Only Look Once or YOLO [49] is the
first version of this family of detectors. The main advantage
introduced in YOLOv1 is inference in real time. YOLO divides
the image into an SxS grid, where each resulting cell detects
the objects whose center lies in that cell. As many redundant
predictions are generated, non-maximal suppression (NMS) is
applied to eliminate them.

Despite the many advantages introduced in YOLOv1, it has
inferior results to other detectors such as R-CNN.

c) YOLOv2: The second version of YOLO [50] intro-
duces a series of improvements, such as anchor boxes, to
overcome some of the drawbacks of YOLOv1. In YOLOv1
it was necessary to make predictions from scratch, but this is
not the case in YOLOv2. In any dataset, many of the objects
often have the same shapes and aspect ratios. The anchor

boxes of YOLOv2 are initial guesses which take advantage of
this, therefore the predictions are not generated from scratch,
as in YOLOv1. The peculiarity of YOLOv2 lies in the way
these anchor boxes are selected. In other works, such as [48],
they are selected by hand. In YOLOv2 they are selected
using k-means, which translates into better initial guesses, and
therefore better results.

d) YOLOv3: One of the main problems of YOLOv2 is
in the detection of small objects. YOLOv3 [28] addresses this
problem. The main contribution of YOLOv3 is the ability
to perform three-scale predictions. YOLOv3 uses Darknet-
53 instead of Darknet-19, used in YOLOv2. The tradeoff for
the improving in identifying small objects is an increase in
inference speed.

e) YOLOv4 and YOLOv5: YOLOv4 [29] and YOLOv5
[30] are the natural continuations of YOLOv3, by different
authors. Like other state-of-the-art detectors, both are com-
posed of three parts: CSPDarknet-53 as the backbone, PA-NET
as the neck and YOLOv3 as the head. By using cross-state
partial networks (CSP) [51] YOLOv5 solves the problem of
repeated information in the gradient, which results in a faster
and smaller model. With path aggregation pyramid network
(PANet) [52] as the neck, YOLOv5 improves the propagation
of low-level features. Finally, the head of YOLOv5, based on
YOLOv3, generates three predictions of different sizes.

In both detectors, several ideas are introduced that signifi-
cantly improve the results of YOLOv3. Many of these ideas
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are related to data augmentation. One of the best performing
techniques is mosaic augmentation, which consists of creating
an image from parts of other images. In this way, the model is
trained with very diverse images and can therefore generalize
correctly. Another idea introduced by YOLOv5 is the use of
what are known as auto-anchor boxes. It continues to use k-
means for the calculation of anchor boxes, but unlike previous
versions, no configuration to use the anchor boxes that best fit
the desired dataset is needed.

E. Evaluation metrics
The metrics used in image classification, object detection

and semantic segmentation are related, but have some dif-
ferences. A prediction can be computed as a True Positive
(TP) in case it is correctly predicted, False Positive (FP)
if it is incorrectly predicted, False Negative (FN) if it is
incorrectly unpredicted or True Negative (TN) if it is correctly
unpredicted. In image classification, it is just necessary to
compare the predicted class with the expected one. In semantic
segmentation, each pixel of the prediction is compared with its
corresponding pixel of the ground truth, but in object detection,
this direct comparison, is not possible. This is because the
prediction and the ground truth do not normally match at
100%, therefore the intersection over the union (IOU) is used.
The IOU, which measures the degree of overlap between two
regions (D and G), is shown in Eq. (3). If the IOU between
the prediction and the ground truth is greater than a threshold,
typically 0.5, the prediction is considered as TP, otherwise as
FP. The prediction is considered as an FN when an object
present in the ground truth is not detected. In case of object
detection, it is not possible to compute True Negatives (TN)
as in every image it would be infinite.

With these basic metrics, it is possible to calculate the
precision, recall and F1 . Precision measures the percentage of
correctness of the predictions made. Mathematically, precision
is calculated as shown in Eq. (4). Recall, shown in Eq. (5),
measures the percentage of predictions that have been correctly
classified or detected. To weight precision and recall with
a single value, the F1 shown in Eq. (6) is used. These are
the most popular metrics in image classification and semantic
segmentation, but not in object detection. In this field, the
most common metric used to evaluate the performance is the
average precision (AP) [44]. This is because each prediction
is given with a certain confidence value. Depending on the
selected confidence threshold, the precision and the recall
can vary. Each prediction is composed of a class name, a
confidence score value and a bounding box. For computing the
precision–recall curve, the predictions are sorted in ascending
order by their confidence value. Fig. 10 shows the precision–
recall curve obtained in this work with YOLOv5. The mean
average precision (mAP), or AP as there is only one class,
is the area under this curve, and it is non-dependent of the
confidence value.

IOU =
|D ∩G|
|D ∪G|

(3)

Precision =
TPs

TPs + FPs
(4)
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Fig. 10. Precision–recall curve of YOLOv5. The mAP is the area under the
curve.

Recall =
TPs

TPs + FNs
(5)

F1 =
2× Precision × Recall

Precision + Recall
(6)

In literature, when the dataset is composed of more than
one class, it is common to use the mAP. The mAP, shown in
Eq. (7), is the average of the APs for each of the classes. In
this work since just one class is used, the mAP is not used.
The AP can be calculated in several ways [53]:
• AP50 and AP75 are APs calculated with fixed IOU

threshold of 0.5 and 0.75 respectively, for considering
a prediction as a TP or FP.

• AP or AP@[.5:.05:.95] are the APs calculated as the
average of the AP obtained for different IOU thresholds,
from 0.5 to 0.95 with steps of 0.05.

• AP Across Scales is the AP calculated as in
AP@[.5:.05:.95] but taking into account the size of the
prediction. If the bboxarea < 322 pixels, it is called
APS . If 322 < bboxarea < 962, it is called APM . If
bboxarea > 962, it is called APL.

mAP =
1

N

N∑
i=1

APi (7)

III. RESULTS AND DISCUSSION

In this section, the results of the image classifiers, object de-
tectors and image segmentation algorithms used are analyzed.
All the experiments have been carried out with the following
hardware: Intel Core i7 9700K CPU, 64GB of RAM and a
NVIDIA GeForce RTX 2080 Ti Turbo GPU.

A. Classification results

The idea of evaluating image classification arises from the
possible need to simplify the detection of subsurface defects.
In this scenario, the dataset described in subsection II-A cannot
be used. It was necessary to create an alternative one, in
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TABLE III
RESULTS OBTAINED WITH EFFICIENTNET V2 AND MOBILENET V2.

Precision Recall F1

Efficientnet v2 0.8125 0.8636 0.8057
Mobilenet v2 0.8750 0.8810 0.8745

TABLE IV
RESULTS OBTAINED WITH U-NET.

Precision Recall F1

U-Net 0.689 0.717 0.703

which non-defects images were introduced. To compare it
with semantic segmentation and object detection algorithms
under the same circumstances, the same number or images
for training and testing were used. For training the same data
augmentation policy was also applied. The results shown in
Table III, prove that it is possible to create a classifier for this
kind of problems. Mobilenet v2 offers the best results, since
its F1 is a 7% higher than that of Efficientnet v2. These results
were achieved with the following configuration: 50 epochs, a
batch size of 16, a learning rate of 0.005, SGDM as solver
and a input size of 224.

B. Semantic segmentation results

To compare semantic segmentation and object detection,
U-Net is evaluated with the dataset described in subsection
II-A, after generating the appropriate masks from the object
detection labeling already made. After carrying out several
experiments, the best hyperparameter setup is the following:
1000 epochs, batch size of 8, learning rate of 0.001 and solver
Adam. With this configuration, the obtained results are shown
in Table IV. These results prove that it is possible to use U-
Net with this dataset, but the incorrectly predicted pixels cause
metrics (precision and recall) to be lower than 0.75. For this
reason, object detection is is evaluated more thoroughly. Fig.
11 shows some predictions obtained with U-Net.

C. Object detection results

The following object detector algorithms to detect subsur-
face defects have been evaluated under different conditions:
SSD, YOLOv3, YOLOv4 and YOLOv5.

Firstly, the dataset described in subsection II-A is used. The
results obtained are summarized in Table V. In terms of AP,
YOLOv5 outperforms the rest. It is 17% better than SSD, and
2% better than YOLOv3 and YOLOv4. For precision, recall
and F1 it is necessary to set a fixed value of confidence. To
compare these metrics, the confidence threshold that maxi-
mizes the F1 is established. By using this criterion, rather than
a fixed confidence for all models, the best possible model for
each object detector is compared. Thus, YOLOv5 achieves the
best results with precision, recall and F1. The results shown in
Table IV and Table V demonstrate that for this problem, object
detection is a more suitable option than semantic segmentation.

As mentioned above, precision, recall and F1 vary de-
pending on the confidence threshold chosen. To measure the
sensitivity of YOLOv5, Fig. 12 shows how these metrics vary

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 11. Segmentation made with U-Net over test images. (a–d) Images. (e–h)
Ground truth. (i–l) Predictions with U-Net.
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Fig. 12. Precision, recall and F1 curves for different confidence thresholds
with YOLOv5.

in function of the confidence threshold. Although a confidence
of 0.197 maximizes F1, the metrics are above 0.95 if the
confidence threshold lies in the interval [0.019, 0.663], which
ensures the robustness of the object detector.

Fig. 13 shows a visual sample of the detections performed
on some images of the test set. Fig. 13(a–d) show the ground
truth, and Fig. 13(e–h), show the detections performed with
SSD. SSD detects some of the defects but cannot locate them
correctly. Fig. 13(i–l) show the detections carried out with
YOLOv3. Fig. 13(j,k) show that YOLOv3 fails to detect many
of the defects in the test set. In Fig. 13(m–p) the detections
performed with YOLOv4 are shown. In this case, the results
obtained with SSD and YOLOv3 are improved, however,
Fig. 13o shows the detection of an FP. Finally, Fig. 13(q–
t) show the detections performed with YOLOv5. Visually,
YOLOv5 achieves better results than the other object detector
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)
Fig. 13. Comparison of detections performed on a subset of the test. (a–d) Ground truth. (e–h) Detections performed with SSD. (i–l) Detections performed
with YOLOv3. (m–p) Detections performed with YOLOv4. (q–t) Detections performed with YOLOv5.

algorithms, since it detects and locates most of the defects
correctly, which confirms the metrics shown in Table V. The
information obtained from applying these CNN-based object
detectors to the PCT images can be extracted and applied to the
original images. Since YOLOv5 offers the best results, Fig. 14
shows the detections performed with YOLOv5 on additional
original test images before applying PCT.

To achieve these results several experiments are carried
out with all the object detectors. After fine-tuning the hy-
perparameters, the best configurations for each detector are
shown in Table VI. With all the detectors the original network
augmentation is used. With these configurations, the training
times are the following: SSD–Pytorch 5 hours and 57 minutes,
YOLOv3–Pytorch 27 minutes, YOLOv4–Pytorch 28 minutes
and YOLOv5–Pytorch 8 minutes. The whole YOLO family
networks train quickly, therefore it would be possible to train
a model with extra images from other parts. In the case of
SSD the training time is around 6 hours. Although SSD is not
as fast as the YOLOs, a model can be trained with SSD with
several more parts, as long as the server can be dedicated to
this task.

TABLE V
RESULTS OBTAINED WITH SSD, YOLOV3, YOLOV4 AND YOLOV5.

Precision Recall F1 Confidence AP50 AP
SSD 0.8105 0.8241 0.8172 0.311 0.8039 0.3267

YOLOv3 0.8977 0.9150 0.9063 0.101 0.9260 0.4106
YOLOv4 0.9687 0.8611 0.9117 0.271 0.9254 0.3967
YOLOv5 0.9716 0.9513 0.9614 0.197 0.9767 0.4831

TABLE VI
HYPERPARAMETERS USED DURING TRAINING.

Epochs Batch size Learning rate Backbone Solver
SSD 15 16 0.01 Resnet50 sgdm

YOLOv3 100 8 0.001 Darknet53 adam
YOLOv4 100 8 0.01 CSPDarknet53 sgdm
YOLOv5 1000 8 0.001 CSPDarknet53 adam

Futher experiments were carried out varying the algorithms
configuration. Using more than 100 epochs produces overfit-
ting, as there is not enough data and the model begins to
memorize the training set. Choosing the optimum learning
rate is also of vital importance, as otherwise, the model will
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(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 14. Detections made with YOLOv5 over original test images (before applying PCT). (a–d) Ground truth. (e–h) Detections performed with YOLOv5.

not converge. In the experiments performed, the best learning
rate is always in the interval [0.01, 0.001]. The learning
rates outside this interval result in poor precision, recall and
AP. Apart from the augmentation applied to generate more
images to train the algorithms, the networks can use their
own augmentation during training. This helps the model to
generalize better, as the network modifies the training images
in every epoch. To understand how this augmentation can
affect the metrics behavior, experiments without it were done,
obtaining an AP50 between 20% and 30% lower than with the
network augmentation. Fig. 15 shows the loss function over
the epochs in two experiments. The best experiment performed
with YOLOv5 is shown in Fig. 15a. As the training and
validation losses cross at a value close to zero, the experiment
converges. Since the intersection point is around epoch 80,
it is not necessary to use more epochs for training. Adding
extra epochs would only produce overfitting, as the training
loss would still decrease but not the validation loss. The same
experiment can be seen in Fig. 15b, but without applying the
network augmentation. The training loss function is lower than
when augmentation is applied (Fig. 15a). This is because there
is less variability in the data, therefore the network memorizes
the training images. For this reason the validation loss function
does not stop growing and the experiment does not converge.
An mAP of 0.656 is obtained, 32% lower than if augmentation
were used.

As mentioned above, due to the limited amount of data
available, augmentation (not network augmentation) is applied
to the training set in order to generate more images. The
results of the experiments to evaluate the feasibility of training
without applying augmentation are summarized in Table VII.
The only difference between the experiments with and without
augmentation, is that in the second case 500 epochs were used.
Theses results confirm the need to apply data augmentation in
order the generate more diversity in the training set.

These deep learning object detectors have also been eval-
uated with another division, in which of the 36 images, 18
are used for testing and 18 for training. In order to get more
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(b)
Fig. 15. Evolution of the loss function. (a) Best experiment obtained with
YOLOv5. (b) Experiment without network augmentation with YOLOv5.
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TABLE VII
RESULTS OBTAINED WITH SSD, YOLOV3, YOLOV4 AND YOLOV5

WITHOUT APPLYING AUGMENTATION TO THE TRAINING SET.

Precision Recall F1 Confidence AP50 AP
SSD 0.6921 0.3824 0.4926 0.157 0.4103 0.1322

YOLOv3 0.7471 0.4719 0.5785 0.167 0.4677 0.1662
YOLOv4 0.7303 0.5833 0.6486 0.237 0.5531 0.1741
YOLOv5 0.8031 0.6805 0.7368 0.230 0.6808 0.2303

TABLE VIII
RESULTS OBTAINED WITH SSD, YOLOV3, YOLOV4 AND YOLOV5 WITH

THE SECOND DATASET.

Precision Recall F1 Confidence AP50 AP
SSD 0.7721 0.7548 0.7633 0.424 0.7106 0.3166

YOLOv3 0.9621 0.8287 0.8904 0.219 0.8714 0.3848
YOLOv4 0.9707 0.9207 0.9450 0.181 0.9434 0.4154
YOLOv5 0.9858 0.9675 0.9766 0.141 0.9774 0.5178

images for training, the same augmentation is applied to the
training set. The results are shown in Table VIII. In this case,
where 18 images are used for training and a 18 for evaluation,
the results are very similar to those of the original dataset,
where 24 images are used for training and 12 for evaluation.
For this reason, it is concluded that both options are suitable
to detect subsurface defects in industrial parts, as long as data
augmentation is applied.

In industry not only is the accuracy of the detections
important, but also the inference speed. Fig. 16 shows the
inference speed of each of the object detector algorithms
evaluated in this work, using a 640×480 image. The inference
times, with a GeForce RTX 2080 Ti Turbo GPU, are the
following: SSD – 8 ms, YOLOv3 – 12 ms, YOLOv4 – 14 ms
and YOLOv5 – 6 ms. These are the average times of running
the inference over 10 images. YOLOv5 is seen to offer the
best performance, not only for precision, recall and AP50, but
also in inference time. All of these detectors can run in real
time, which speeds up the process of evaluating an industrial
part.

Since one of the objectives is to be able to generalize, the
resulting model with YOLOv5 is used to detect subsurface
defects in sheets with different but similar materials. The
alternative materials chosen are a foam sandwich panel and a
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Fig. 16. Time to process a specimen using SSD, YOLOv3, YOLOv4 and
YOLOv5.

honeycomb sandwich panel. These panels are selected because
their use is widespread in various industries, such as aerospace,
building and shipbuilding. Their properties include thermal
insulation, lightness, strength and stiffness. Early detection
of subsurface defects is of vital importance as it can prevent
construction failures or damage caused during operations that
could lead to high repair costs and long downtimes. Fig. 17
shows the two parts used, each one with a different type
of core. Each part has 12 known subsurface defects, but to
make the detection more challenging, several parts are used
in which the depth of the defects is varied. That is, the model
is evaluated with defects at different depths from those used
for training. Fig. 18 shows the results of these detections. Fig.
18a is the same material as that used for training but with
the defects at different depths. In this case, all the defects
are detected correctly. Fig. 18b and Fig. 18c are two foam
sandwich panels, Fig. 18b with defects at the same depth
as the material used for training and Fig. 18c with defects
at different depths. When using a foam sandwich panel with
subsurface defects at the same depth as those of the material
used for training, the recall is greater than when using a foam
part with subsurface at different depths. Finally, Fig. 18d and
Fig. 18e are two honeycomb sandwich panels, Fig. 18d with
defects at the same depth as the material used for training
and Fig. 18e with defects at different depths. It is plain to
see that detection with a honeycomb sandwich panel is more
feasible than with a foam sandwich panel. The results obtained
with YOLOv5 prove that it is possible to train a model with
one material and use it with different materials, but ideally to
achieve optimum performance, a dataset with all materials to
be inspected should be created and used for training.

(a) (b)
Fig. 17. Alternative specimens used to evaluate the model generalization. (a)
Foam sandwich panel. (B) Honeycomb sandwich panel.

IV. CONCLUSION

In this work, active thermography (IRT) in combination
with deep learning is proposed to detect subsurface defects.
With deep learning it is possible to inspect an industrial
part objectively. To collect a dataset, 36 20-second infrared
videos were made. In each of the 36 inspections the sheet is
heated for 10 seconds and cooled another 10 seconds. Principal
Componets Thermography (PCT) is used as a post-processing
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(a) (b)

(c) (d)

(e)
Fig. 18. Detections performed with YOLOv5 on sheets not used during
training. (a) Same material structure as that used during training but with
different subsurface defect depths. (b) Foam sandwich panel with defects at
the same depths as the sheet used for training. (c) Foam sandwich panel with
defects at different depths from the sheet used for training. (d) Honeycomb
sandwich panel with defects at the same depths as the sheet used for training.
(e) Honeycomb sandwich panel with defects at different depths from the sheet
used for training.

technique since it has proved to improve the signal-to-noise
ratio (SNR). As a result of applying PCT to each video, frames
1, 3 and 4 were selected to create an RGB image. Since
labeling can be an arduous task an auto-labeling framework is
created. Due to the limited amount of data, an augmentation
technique is applied to the training set to generate 500 images.
With these dataset image classification, semantic segmentation
and object detection were evaluated. Image classification has
proved good potential for resolving this kind of problems, but
the impossibility of locating defects makes its less relevant
than semantic segmentation and object detection. With the 36-
image dataset U-Net, SSD, YOLOv3, YOLOv4 and YOLOv5
were evaluated under different conditions. The results obtained
with U-Net demonstrate that although it is possible to use
semantic segmentation, it is not the best option since there are
some outliers pixels that reduce the performance metrics. For
this reason, object detection has been more widely explored.
The average precision (AP50) obtained with each detector
is of 0.8039, 0.9260, 0.9254 and 0.9767, respectively. In
industry not only is detecting the defects important, but also
the time needed to detect them. In terms of speed YOLOv5

also overcomes the other object detector algorithms, therefore
parts can be inspected in real time. These results demonstrate
that it is not necessary to develop a customized deep learning
network to detect subsurface defects.

This work also shows the feasibility of training a model
with a single carbon fiber solid laminate sheet, and using it to
inspect sheets of other materials, although it would be ideal
to train the model with sheets of all the different materials to
be inspected.

The use of deep learning and IRT not only improves the
quality control of industrial parts, but also reduces its cost. For
future work, it would be useful to create a dataset with several
industrial sheets composed of different materials, including
internal and external defects, to combine the defect detection
process in a single deep learning model.
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