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Abstract: (1) Background: We explored, for the first time, the contribution of angiogenic T cells (TAng)
in interstitial lung disease associated to autoimmune disease (AD-ILD+) as potential biomarkers of
the disease, evaluating their role in the underlying vasculopathy and lung fibrosis. Additionally, the
relationship of TAng with clinical manifestations and cellular and molecular endothelial dysfunction-
related biomarkers was assessed. (2) Methods: We included 57 AD-ILD+ patients (21 with rheumatoid
arthritis (RA)-ILD+, 21 with systemic sclerosis (SSc)-ILD+ and 15 with other AD-ILD+) and three
comparative groups: 45 AD-ILD− patients (25 RA-ILD− and 20 SSc-ILD−); 21 idiopathic pulmonary
fibrosis (IPF) patients; 21 healthy controls (HC). TAng were considered as CD3+CD184+CD31+ by
flow cytometry. (3) Results: A similar TAng frequency was found between AD-ILD+ and IPF, being
in both cases lower than that observed in AD-ILD- and HC. A lower TAng frequency was associated
with negative Scl-70 status and lower FEV1/FVC ratio in SSc-ILD+, as well as with men in RA-ILD+

and non-specific interstitial pneumonia radiological pattern in other AD-ILD+. No relationship
between TAng and endothelial progenitor cells, endothelial cells and vascular endothelial growth
factor gene expression and protein levels was disclosed. (4) Conclusions: Our findings suggest TAng
as potential biomarkers for the early diagnosis of ILD in AD.

Keywords: angiogenic T cells; autoimmune disease; interstitial lung disease; systemic sclerosis;
rheumatoid arthritis; biomarkers
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1. Introduction

Interstitial lung disease (ILD) is a common and potentially life-threatening complica-
tion in patients with autoimmune diseases (AD), mainly in those with systemic sclerosis
(SSc) and rheumatoid arthritis (RA) [1–5]. Early diagnosis of AD-ILD+ is sometimes chal-
lenging due to the potential absence of symptoms in early or mild disease and the similarity
of radiological features with other entities involving the lung [1–6]. Currently, there is
no established protocol to evaluate these patients, although several studies highlight the
need for careful follow-up of these patients with both pulmonary function tests (PFTs)
and high-resolution computed tomography (HRCT) [1–7]. In this sense, the early detec-
tion of pulmonary involvement is crucial to start an appropriate therapy and to avoid
an irreversible damage to the lung in these patients [1–5,7,8]. A large body of evidence
suggests that an impairment of vascular endothelium is a characteristic hallmark of the
initial phase in these inflammatory diseases, ultimately resulting in a constitutive activation
of fibroblasts in various organs, predominantly in the lung, leading to pulmonary fibro-
sis. In fact, the damage of the pulmonary endothelium has been described as one of the
early key stages for the development of pulmonary lesions and the subsequent onset and
progression of ILD in AD. However, the mechanisms underlying endothelial cell damage
and defective repair remain incompletely understood in AD-ILD+ [1,3,9–13]. Endothelial
progenitor cells (EPC) and endothelial cells (EC) are key cellular effectors in the home-
ostasis of the physiologic vascular network, and they have been described as an essential
element of the endogenous vascular repair machinery in AD [14–16]. In this regard, we
recently proposed EPC as biomarkers to identify the presence of ILD in patients with RA
and SSc [14,15]. Moreover, it has been reported that a circulating cell population showing
both M1 and M2 monocyte/macrophage surface markers characterizes SSc patients with
lung involvement [17].

It has been described that a specific T cell population termed angiogenic T cells (TAng)
cooperate with EPC in the endothelial repair function [18]. Since then, several studies have
supported the notion that TAng promote the formation of new blood vessels and enhance
the repair of damaged endothelium [9,18–27]. Furthermore, TAng exhibit a vasculogenic
phenotype characterized by enhanced endothelial proliferation and may function by cell
contact-dependent and paracrine mechanisms [9,18,28,29]. Specifically, TAng secrete a
wide array of proangiogenic factors that have been implicated in AD-related angiogenic
disturbances such as vascular endothelial growth factor (VEGF) [9,18,28,29]. Moreover,
it has been demonstrated that TAng have migratory capacity towards the angiogenic
chemoattractant VEGF secreted by injured endothelium [28,30]. Interestingly, altered TAng
frequencies have been linked to RA [20,23,24], SSc [9,19], or to other AD [22,23,25–27].
Nevertheless, information on their role in the development of ILD in AD patients is scarce.

It has become apparent that the scarcity of useful markers for the early diagnosis of
AD-ILD+ remains a problem that needs to be solved [1,2,4,8]. With respect to this, TAng
may have an important role as biomarkers of endothelial damage in AD-ILD+. Accordingly,
the main objective of this study was to determine, for the first time, the contribution of
TAng in the pathogenesis of AD-ILD+ as potential biomarkers of the disease. For this
purpose, we evaluated the role of TAng in the underlying vasculopathy of patients with
AD-ILD+ and in the presence of lung fibrosis in these patients. Additionally, we also aimed
to assess the relationship of TAng with AD-ILD+ clinical manifestations and endothelial
dysfunction-related biomarkers at the cellular (EPC, CE) and molecular (VEGF mRNA
expression and VEGF protein) level.

2. Materials and Methods
2.1. Study Population

Peripheral venous blood was collected from a total of 144 individuals. Specifically,
57 patients with AD-ILD+ were recruited: 21 with RA-ILD+, 21 with SSc-ILD+ and 15 with
other AD-ILD+. Moreover, to assess the role of TAng in AD-ILD+, we recruited different
comparative groups. A group of AD-ILD− patients (n = 45) composed of 25 RA-ILD−
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and 20 SSc-ILD−, another group of idiopathic pulmonary fibrosis (IPF) patients (n = 21),
and 21 healthy controls (HC). Both patients and HC were recruited from the depart-
ments of Pneumology and Rheumatology of Hospital Universitario Marqués de Valdecilla
(Santander, Spain).

Patients with AD had an underlying vasculopathy (clinically evident or not) and met
the criteria established by the ACR/EULAR for the classification and diagnosis of each
AD [31,32]. Pulmonary involvement was assessed in all the patients by HRCT images of the
chest and PFTs. AD-ILD− patients lacked lung involvement, whereas those with AD-ILD+

fulfilled the ATS/ERS criteria for ILD [33]. IPF patients fulfilled the ATS/ERS criteria [33].
HRCT patterns of ILD patients were stratified according to the criteria for usual interstitial
pneumonia (UIP) pattern of the Fleischner Society [34]. Additionally, in SSc and IPF
patients, pulmonary hypertension (PH) was diagnosed by transthoracic echocardiogram.

Demographic and clinical features of patients including sex, age, smoking history,
duration of disease, PFTs, pulmonary involvement on HRCT and HRCT pattern, among
others, were collected. The main characteristics of all the patients of the study group (RA-
ILD+, SSc-ILD+ and other AD-ILD+) and the comparative groups (RA-ILD−, SSc-ILD−, IPF
patients) are shown in Table 1. Furthermore, PH and other clinical manifestations of SSc
patients were described in Table S1. HC did not present any history of autoimmune or lung
diseases. Additionally, their mean age ± standard deviation (SD) was 41.2 ± 12.5 years,
33.3% of them were women, and 31.3 % were smokers.

Table 1. Main characteristics of all the patients of the study objective groups and the compara-
tive groups.

Study Objective Groups Comparative Groups

RA-ILD+

n = 21
SSc-ILD+

n = 21
Other AD-ILD+

n = 15
RA-ILD−

n = 25
SSc-ILD−

n = 20
IPF

n = 21

Sex (women), n (%) 9 (45.9) 13 (61.9) 5 (33.3) 15 (60.0) 18 (90.0) 7 (33.3)
Age at study, mean ± SD, years 66.5 ± 10.1 60.3 ± 7.0 62.0 ± 10.1 60.1 ± 11.8 56.6 ± 15.4 69.2 ± 10.0
Smoking ever, n (%) 13 (65.0) 11 (52.4) 11 (73.3) 13 (52.0) 11 (55.0) 16 (76.2)

Pulmonary function tests

FVC (% predicted), mean ± SD 95.2 ± 24.1 88.4 ± 27.1 88.3 ± 28.8 99.2 ± 16.0 106.6 ± 15.9 84.9 ± 14.7
FEV1 (% predicted), mean ± SD 92.2 ± 21.0 87.3 ± 25.6 88.7 ± 27.6 94.9 ± 22.0 101.9 ± 17.8 87.3 ± 19.6
FEV1/FVC (% predicted), mean ± SD 77.8 ± 9.1 79.7 ± 5.5 79.7 ± 4.6 93.6 ± 12.3 79.2 ± 9.9 79.7 ± 7.8
DLCO (% predicted), mean ± SD 43.3 ± 15.9 47.5 ± 19.5 44.6 ± 14.6 79.9 ± 20.0 71.5 ± 15.3 43.6 ± 18.4

HRCT

Pulmonary involvement on HRCT 21 (100.0) 21 (100.0) 15 (100.0) 0 (0.0) 0 (0.0) 21 (100.0)
UIP pattern, n (%) 11 (52.4) 3 (14.3) 4 (26.7) - - 21 (100.0)
Probable UIP pattern, n (%) 2 (9.5) 3 (14.3) 5 (33.3) - - 0 (0.0)
NSIP pattern, n (%) 7 (33.3) 14 (66.7) 6 (40.0) - - 0 (0.0)
Non-NSIP pattern, n (%) 1 (4.8) 1 (4.7) 0 (0.0) - - 0 (0.0)

Received therapies

csDMARDs n (%) 17 (81.0) 16 (76.2) 2 (13.3) 13 (52) 12 (60.0) 0 (0.0)
bDMARDs, n (%) 15 (71.4) 7 (33.3) 3 (20.0) 2 (8) 2 (10.0) 0 (0.0)
Antifibrotic drugs, n (%) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 9 (42.9)

RA: rheumatoid arthritis; ILD: interstitial lung disease; SSc: systemic sclerosis; AD: autoimmune disease; IPF: idio-
pathic pulmonary fibrosis; SD: standard deviation; FVC: forced vital capacity; FEV1: forced expiratory volume in
one second; DLCO: diffusing capacity of the lung for carbon monoxide; HRCT: high resolution computed tomog-
raphy; UIP: usual interstitial pneumonia; NSIP: non-specific interstitial pneumonia; csDMARDs: conventional
synthetic disease-modifying anti-rheumatic drugs; bDMARDs: biologic disease-modifying anti-rheumatic drugs.

All patients and HC gave their written informed consent to be included in the study.
The procedures followed were in accordance with the ethical standards of the approved
guidelines and regulations, according to the Declaration of Helsinki. The Ethics Committee
of clinical research of Cantabria, Spain (2016.092) approved all experimental protocols.

2.2. Cell Quantification by Flow Cytometry

TAng quantification was analyzed by direct flow cytometry following a method previ-
ously described [24]. Briefly, cells obtained from 200 µL of peripheral blood were labelled
with VioBlue-conjugated anti-CD3 (Miltenyi Biotec, Madrid, Spain), APC-conjugated anti-
CD184 (Miltenyi Biotec, Madrid, Spain) and PE-conjugated anti-CD31 (Miltenyi Biotec,
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Madrid, Spain) monoclonal antibodies. In a further step, incubation with FACS lysing
solution (BD Bioscience, San Jose, CA, USA) was performed to lyse red blood cells. Af-
ter obtaining the white cell pellets, two washes with PBS were carried out. Finally, a
CytoFLEX flow cytometer (Beckman Coulter, Brea, CA, USA) and the Cytexpert 2.3 an-
alyzer (Beckman Coulter, Brea, CA, USA) were used to assess the labeled cells, acquiring
approximately 3 × 104 events per sample. CD3+ cells were gated and then assayed for
the expression of CD184 and CD31 in the lymphocyte gate. TAng were considered as
triple-positive for CD3, CD184 and CD31 (Figure S1) and expressed as percentage of cells
in the lymphocyte gate.

EPC and EC frequencies were measured by flow cytometry following the method
previously described [14,15]. EPC were considered as CD34+, CD45low, CD133+ and
CD309+ cells and EC were defined as triple-negative for CD34, CD45 and CD133 and
positive for CD309, following the nomenclature previously defined [14,15].

2.3. VEGF mRNA Expression

Total RNA was isolated from peripheral blood by a commercial RNA extraction
kit (NucleoSpin RNA Blood Kit, Macherey-Nagel, Neumann-Neander-Str., Düren, Ger-
many). The complementary DNA (cDNA) was obtained using iScriptTM Advanced cDNA
Synthesis Kit for reverse transcription-quantitative real-time polymerase chain reaction
(qPCR) (Bio-Rad, Madrid, Spain). qPCR was performed in the thermocycler QuantStu-
dio™ 7 Flex Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) using
SsoAdvancedTM Universal SYBR® Green Supermix (Bio-Rad, Madrid, Spain). All samples
were assayed in duplicate and experimental control assays were included. The relative
VEGF mRNA expression was analyzed by the comparative Ct method using GAPDH as
housekeeping gene.

2.4. VEGF Serum Levels Determination

VEGF levels were measured in serum samples by a commercial quantitative colori-
metric sandwich enzyme-linked immunosorbent assay (Reddot Biotech Inc., Kelowna,
BC, Canada) as previously described [35].

2.5. Statistical Analyses

Data were reported as the number of individuals (n) and percentage (%) or mean ± SD
depending on the type of data. Differences in TAng frequencies between two study groups
were calculated and compared by Student’s t-test. To evaluate the implication of TAng
in the underlying vasculopathy, we compared all patients with HC, while their role in
fibrosis was analyzed by comparing patients with AD-ILD+, patients with AD-ILD− and
patients with IPF. Estimation of the Pearson’s correlation coefficient (r) was used to assess
the relationship of TAng frequency with continuous variables. To evaluate the association
of TAng frequency with categorical variables, we employed one-way ANOVA. Statistical
significance was defined as p-values < 0.05. STATA statistical software 12/SE (Stata Corp.,
College Station, TX, USA) was used to perform all statistical analysis.

3. Results
3.1. TAng Play a Role in the Pathogenesis of AD-ILD+

First, we studied the role of TAng in the vasculopathy in AD-ILD+. Patients with
AD-ILD+ showed a significantly lower frequency of TAng than HC (11.560 ± 5.242 vs.
16.500 ± 4.830, p < 0.001, Figure 1a and Table S2). It was also the case when IPF patients
were compared with HC (11.340 ± 3.732 vs. 16.500 ± 4.830, p < 0.001, Figure 1a and Table S2).
However, similar frequencies of TAng in patients with AD-ILD− and HC were found
(Figure 1a and Table S2). The same findings were seen when patients were stratified accord-
ing to the underlying AD. In particular, frequencies of TAng were significantly decreased
in patients with RA-ILD+ and SSc-ILD+ in relation to HC (11.950 ± 5.234 vs. 16.500 ± 4.830,
p = 0.007 and 12.570 ± 5.052 vs. 16.500 ± 4.830, p = 0.016, respectively), unlike patients with
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RA-ILD− and SSc-ILD− who showed no differences with HC (Figure 1b,c and Table S2).
Furthermore, patients with other AD-ILD+ displayed a lower frequency of TAng than HC
(10.560 ± 6.684 vs. 16.500 ± 4.830, p = 0.005, Figure 1d and Table S2).

Figure 1. Differences in the frequency of TAng between all the study groups. Differences between
patients with AD-ILD+, AD-ILD−, IPF and HC (a); patients with RA-ILD+, RA-ILD−, IPF y HC (b);
patients with SSc-ILD+, SSc-ILD−, IPF and HC (c); and patients with other AD-ILD+, IPF and HC (d).
TAng: angiogenic T cells; AD: autoimmune disease; RA: rheumatoid arthritis; ILD: interstitial lung
disease; SSc: systemic sclerosis; IPF: idiopathic pulmonary fibrosis; HC: healthy controls. The
horizontal bars indicate the mean value of each study group. Significant results are highlighted
in bold.

In a second step, we evaluated the implication of TAng in the presence of fibrosis in
AD-ILD+. TAng frequencies were similar between patients with AD-ILD+ and those with
IPF, while these frequencies were significantly lower in relation to those with AD-ILD−

(11.560 ± 5.242 vs. 15.920 ± 4.612, p < 0.001 and 11.340 ± 3.732 vs. 15.920 ± 4.612, p < 0.001,
respectively, Figure 1a and Table S2). Specifically, patients with RA-ILD+ exhibited signifi-
cantly lower TAng frequencies than those with RA-ILD− (11.950 ± 5.234 vs. 16.400 ± 4.926,
p = 0.006), but no differences were observed when they were compared to patients with
IPF (Figure 1b and Table S2). Moreover, a significant increase in the frequency of TAng
was seen in patients with RA-ILD− when compared to those with IPF (16.400 ± 4.926 vs.
11.340 ± 3.732, p < 0.001, Figure 1c and Table S2). Patients with SSc-ILD+ and IPF had the
same frequencies, which were significantly lower than those observed in patients with
SSc-ILD− (12.570 ± 5.052 vs. 16.070 ± 5.420, p = 0.044 and 11.340 ± 3.732 vs. 16.070 ± 5.420,
p = 0.003, respectively, Figure 1c and Table S2). Likewise, TAng frequencies of patients with
other AD-ILD+ were similar to the frequency of those with IPF (Figure 1d and Table S2).
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3.2. TAng Are Associated with Demographic and Clinical Features of RA-ILD+, SSc-ILD+ and
Other AD-ILD+

Regarding RA-ILD+ patients, men had significantly lower TAng frequencies than
women (9.75 ± 4.12 vs. 16.44 ± 5.97, p < 0.01, Table 2), though no relationship was
disclosed between these cells and the duration of RA, C-reactive protein (CRP), erytrocyte
sedimentation rate (ESR) or PFTs. No differences were found in the frequency of TAng
when patients with RA-ILD+ were stratified according to smoking history, rheumatoid
factor/anti-cyclic citrullinated peptide antibodies status or HRCT pattern (Table 2).

Table 2. Relationship of TAng frequency with characteristics of RA-ILD+ patients.

Variable r p

Duration of RA (years) −0.16 0.50
CRP (mg/dL) 0.02 0.94

ESR (mm/1st hour) −0.18 0.44
FVC (% predicted) 0.13 0.58
FEV1 (% predicted) 0.18 0.43

FEV1/FVC (% predicted) 0.18 0.44
DLCO (% predicted) 0.15 0.62

Category Mean ± SD p

Men 9.75 ± 4.12
<0.01Women 16.44 ± 5.97

Non-Smoker 15.50 ± 5.63
0.24Smoker 12.02 ± 5.86

RF− 13.59 ± 3.29
0.79RF+ 12.52 ± 6.50

UIP HRCT Pattern 12.40 ± 6.34
0.76NSIP HRCT Pattern 13.36 ± 6.55

TAng: angiogenic T cells; RA: rheumatoid arthritis; ILD: interstitial lung disease; CRP: C-reactive protein; ESR:
erythrocyte sedimentation rate; FVC: forced vital capacity; FEV1: forced expiratory volume in one second; DLCO:
diffusing capacity of the lung for carbon monoxide; SD: standard deviation; RF: rheumatoid factor; UIP: usual
interstitial pneumonia; HRCT: high resolution computed tomography; NSIP: non-specific interstitial pneumonia.
Significant results are highlighted in bold.

With respect to SSc-ILD+ patients, a positive correlation between the frequency of
TAng and the forced expiratory volume in one second (FEV1)/forced vital capacity (FVC)
ratio was observed in these patients (r = 0.48; p = 0.03, Table 3). Anti-Scl70 negative
SSc-ILD+ patients presented lower TAng frequencies compared to anti-Scl70 positive pa-
tients (10.30 ± 5.09 vs. 15.73, p = 0.03, Table 3). No significant relationship was found
between the frequency of TAng and SSc duration, CRP or ESR (Table 3). The same re-
sults were obtained when SSc-ILD+ patients were stratified according to sex, smoking
history, anti-nuclear antibodies/anti-centromere antibodies status, presence of pulmonary
hypertension or HRCT pattern (Table 3).

In relation to patients with other AD-ILD+, differences in the frequency of TAng
were found when these patients were stratified according to the HRCT pattern (Table 4).
Specifically, patients who presented a NSIP pattern had lower TAng frequencies than those
with an UIP pattern (6.43 ± 3.99 vs. 15.11 ± 7.69, p = 0.03, Table 4). Nonetheless, no
associations of PFTs with TAng were noted in these patients (Table 4). Similarly, we did
not disclose an association with TAng frequency when these patients with other AD-ILD+

were analyzed according to sex or smoking history (Table 4).
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Table 3. Relationship of TAng frequency with characteristics of SSc-ILD+ patients.

Variable r p

Duration of SSc disease (years) 0.04 0.86
CRP (mg/dL) 0.31 0.22

ESR (mm/1st hour) −0.17 0.51
FVC (% predicted) −0.06 0.79
FEV1 (% predicted) −0.02 0.94

FEV1/FVC (% predicted) 0.48 0.03
DLCO (% predicted) −0.06 0.77

Category Mean ± SD p

Men 10.30 ± 5.67
0.07Women 15.02 ± 5.25

Non-Smoker 14.97 ± 5.20
0.19Smoker 11.64 ± 6.04

ATA (Scl70)− 10.30 ± 5.09
0.03ATA (Scl70)+ 15.73 ± 5.44

Non-Pulmonary hypertension 12.38 ± 6.08
0.37Pulmonary hypertension 15.86 ± 5.15

NSIP HRCT Pattern 13.52 ± 6.61
0.70UIP HRCT Pattern 12.38 ± 4.28

TAng: angiogenic T cells; SSc: systemic sclerosis; ILD: interstitial lung disease; CRP: C-reactive protein; ESR:
erythrocyte sedimentation rate; FVC: forced vital capacity; FEV1: forced expiratory volume in one second; DLCO:
diffusing capacity of the lung for carbon monoxide; SD: standard deviation; ATA: anti-topoisomerase I antibodies;
NSIP: non-specific interstitial pneumonia; HRCT: high resolution computed tomography; UIP: usual interstitial
pneumonia. Significant results are highlighted in bold.

Table 4. Relationship of TAng frequency with characteristics of other AD-ILD+ patients.

Variable r p

FVC (% predicted) −0.27 0.32
FEV1 (% predicted) −0.27 0.32

FEV1/FVC (% predicted) 0.15 0.59
DLCO (% predicted) −0.36 0.27

Category Mean ± SD p

Men 11.92 ± 8.97
0.84Women 11.05 ± 4.92

Non-Smoker 17.83 ± 7.30
0.06Smoker 9.38 ± 6.74

NSIP HRCT Pattern 6.43 ± 3.99
0.03UIP HRCT Pattern 15.11 ± 7.69

TAng: angiogenic T cells; AD: autoimmune disease; ILD: interstitial lung disease; FVC: forced vital capacity; FEV1:
forced expiratory volume in one second; DLCO: diffusing capacity of the lung for carbon monoxide; SD: standard
deviation; NSIP: non-specific interstitial pneumonia; HRCT: high resolution computed tomography; UIP: usual
interstitial pneumonia. Significant results are highlighted in bold.

3.3. No Relationship of TAng with Biomarkers of Endothelial Dysfunction in the Whole Cohort
of AD-ILD+

TAng frequency did not show correlation with EPC or EC frequency in AD-ILD+

patients (Table S3). Likewise, no association between TAng frequency and VEGF, either at
mRNA expression or at protein level, was observed (Table S3).

4. Discussion

Growing evidence indicates that vascular abnormalities constitute the early phase
in the pathogenesis of AD-ILD+ [1,3,9–12]. To the best of our knowledge, this is the first
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study exploring the implication of TAng, a crucial player in endothelial repair [18], in the
pathogenic processes of lung fibrosis and vasculopathy in patients with AD-ILD+.

The present findings provide the first evidence that TAng may be a relevant factor
involved in the processes of lung fibrosis. This idea is supported by the decrease in TAng in
patients with AD-ILD+ compared to those with AD-ILD−. In line with this notion, patients
with RA-ILD+ and SSc-ILD+ showed a decrease in TAng compared to RA-ILD− and
SSc-ILD− patients, respectively, demonstrating the same behavior of TAng regardless of the
underlying AD. In keeping with our results, a previous study showed different frequencies
of TAng in systemic lupus erythematous (SLE) depending on the presence or absence of
a renal involvement, one of the most severe comorbidities of SLE [27]. Interestingly, our
work disclosed that patients with IPF presented TAng frequencies similar to those with
AD-ILD+ and lower than AD-ILD− patients. Accordingly, we disclosed that TAng were
decreased in all the individuals with a lung involvement, including both AD-ILD+ and IPF
patients, compared to those unaffected by this condition, highlighting the contribution of
TAng in the pulmonary complications. Therefore, a reduction in TAng may indicate the
presence of lung fibrosis. Based on our results and given that the development of ILD is
one of the main causes of mortality in AD patients [1,2,4], TAng could be used as novel
biomarkers for the early diagnosis of AD-ILD+.

Following the same line of evidence, both patients with AD-ILD+ and IPF showed a
remarkable decrease in TAng frequency when compared to HC. In accordance with our
results, it has been previously reported that TAng diminish in response to vascular disease
in other disorders [23–25,29,30,36,37]. Furthermore, our data showed that TAng frequency
in AD-ILD− patients, in particular in RA-ILD− and SSc-ILD− patients, was not different
from HC, as disclosed in other rheumatic diseases [9,23,26,27]. Consequently, we could
speculate that the decrease in circulating TAng in AD-ILD+ and IPF patients occurs because
they are migrating to the site of lung injury to repair the endothelium, constituting a marker
of lung vasculopathy.

In the present study, we also disclosed a relationship of TAng with some characteristics
of our patients with AD-ILD+. Notably, we found a lower frequency of TAng in men with
RA-ILD+, which seems to be expected considering that the male sex is a known RA-ILD+

risk factor [1]. Paradoxically, a higher TAng frequency was observed in Scl-70-positive
when compared with Scl-70-negative SSc-ILD+ patients. Additionally, a higher TAng
frequency was associated with a higher FEV1/FVC ratio in SSc-ILD+ patients. Since the
Scl-70 antibody is a risk factor for the development of ILD in patients with SSc and a
decrease in FVC is used as a routine measure to assess disease progression in fibrotic
ILD [5], it is possible that the relative TAng increases in these two situations in SSc-ILD+

patients may be due to a compensatory mechanism in response to vascular damage. It is
worth mentioning that patients with other AD-ILD+ who presented NSIP pattern had the
lowest TAng frequencies. This is in line with the fact that NSIP is the predominant pattern
in AD-ILD+ [1,2,8,33,34,38].

Finally, a relationship of TAng with EPC or EC was not found in peripheral blood of
our AD-ILD+ patients. These results are in keeping with other studies in which a lack of
association was described in patients with RA and diabetes mellitus [24,37]. It is possible
that the cooperation of TAng and EPC may take place when they are already in the damaged
tissues and not at the blood level. Additionally, we did not find an association of TAng
with VEGF. This finding may be explained by the fact that VEGF secretion is regulated by
many different factors in AD-ILD+ or even at different molecular levels.

In conclusion, our findings suggest, for the first time, that TAng play a relevant role
in the underlying lung vasculopathy and fibrosis, being potential biomarkers of ILD in
patients with AD. Therefore, the assessment of TAng could help to establish an earlier
diagnosis of AD-ILD+. This may favor the use of appropriate therapy in earlier stages of
the disease, preventing progression to an irreversible pulmonary process and, ultimately,
contributing to improving the survival of patients with AD.
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The results of this work were partially presented at the American College of Rheuma-
tology (ACR) 2021 Congress (abstract no. 1508) (View Abstract and Citation Informa-
tion Online https://acrabstracts.org/abstract/decrease-of-angiogenic-t-cells-associated-to-
the-presence-of-interstitial-lung-disease-in-patients-with-connective-tissue-diseases/ (ac-
cessed on 4 April 2022)), European Alliance of Associations for Rheumatology (EULAR)
2021 Congress (abstract no. AB0026) (View Abstract and Citation Information Online
https://ard.bmj.com/content/80/Suppl_1/1046.3 (accessed on 4 April 2022)) and Euro-
pean Respiratory Society (ERS) Virtual Congress (abstract no. 27636) (view abstract and
citation information online: https://erj.ersjournals.com/content/58/suppl_65/PA3620
(accessed on 4 April 2022)).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10040851/s1, Figure S1: Representative dot-blots of
the strategy used to quantify of TAng by flow cytometry; Table S1: Clinical manifestations of patients
with SSc-ILD+ and SSc-ILD−; Table S2: Frequency of TAng (%) in all the individuals included in
the study; Table S3: Detailed information of cellular and molecular endothelial dysfunction-related
biomarkers in the whole cohort of patients with AD-ILD+.
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