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We discuss the computation of the quantum effective action of strongly interacting field theories using
holographic duality and its use to determine quasiequilibrium parameters of first-order phase transitions
relevant for gravitational wave production. A particularly simple holographic model is introduced,
containing only the metric and a free massive scalar field. Despite the simplicity, the model contains a rich
phase diagram, including first-order phase transitions at nonzero temperature, due to various multitrace
deformations. We obtain the leading terms in the effective action from homogeneous black brane solutions
in the gravity dual and linearized perturbations around them. We then employ the effective action to
construct bubble and domain wall solutions in the field theory side and study their properties. In particular,
we show how the scaling of the effective action with the effective number of degrees of freedom of the
quantum field theory determines the corresponding scaling of gravitational wave parameters.
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I. INTRODUCTION

First-order phase transitions are of great interest espe-
cially for early-Universe cosmology, where bubble nucle-
ation could result in the production of an observable
gravitational wave signal at LISA [1,2], providing evidence
for beyond the Standard Model physics. If this new physics
is strongly coupled, computations of the parameters of the
phase transition relevant for gravitational wave production
with standard techniques (see, e.g., [3,4] for reviews) fail,
and the direct connection between the gravitational wave
signature and the masses and couplings of the underlying
field theory is lost.
Gravitational waves at strong coupling in SUðNÞ gauge

theories have been investigated using phenomenological
models of the free energy density [5–7]. A complemen-
tary approach is through holographic duality [8–10], but
analyses have so far had certain limitations. In [9,10]
only equilibrium properties were computed, with some

significant properties such as the bubble nucleation rates
left as free parameters. This was not the case in [8], where
the transition rate was computed (based on the results in
[11]), but some additional assumptions were made, either
by working in a quenched sector of the theory or by using
a phenomenological approach that does not strictly follow
from the holographic dictionary. In this work we will
try to partially improve the holographic approach and
present a derivation of the transition rate that does not
require these assumptions. Although our analysis is
motivated by its possible application to cosmological
transitions and thus limited to high temperature and zero
charge density, it can be straightforwardly generalized to
other setups.
In quantum field theories the dynamical evolution of the

phase transition can start to be addressed by finding the
quantum effective action of the theory, which in many
aspects is reminiscent of a Ginzburg-Landau effective
action. Bubble configurations are obtained from semi-
classical solutions to the effective action, and these can
be employed to compute key properties of the transition
such as the nucleation rate. Bubble production could take
place through quantum tunneling or thermal fluctuations,
the probabilities of which can be estimated from the action.
However, the dynamical evolution of the bubbles them-
selves requires further analysis, as at nonzero temperature
dissipation and drag will enter into play. We will not
attempt to describe the dynamical evolution of bubbles, but
this has been studied in some models [12–14].
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In a weakly coupled theory, the effective action can
be computed by standard perturbative methods (see, how-
ever, [15] for a discussion of issues at nonzero temper-
ature). At strong coupling things are as always more
difficult. While lattice simulations provide one route of
attack (see, e.g., [16]), they are computationally expensive
and have great difficulty at nonzero charge density and
especially for real time evolution. A possible avenue is to
use gauge/gravity duality, or holography, which is well
suited both for strong coupling and to study the dynamical
evolution of the system at nonzero temperature.
In this paper, we consider the computation of the

effective action using holographic duality. This allows us
to study a strongly coupled quantum field theory (QFT)
(often a gauge theory in the large-N limit) through the lens
of a classical gravitational theory. We will consider only
zero charge density, so our focus is on configurations that
may be relevant for a cosmological phase transition, and
pick a simple model to illustrate our approach. An analysis
of the gravitational wave signal extracted in this model will
be presented elsewhere [17].
Our approach has some similarities with the effective

action approach used to describe the confinement-
deconfinement transition from holographic models
[11,18], in that we do not attempt to find gravity solutions
dual to bubble configurations, but construct the bubble
solutions directly in the field theory. However, we do not
make any additional phenomenological assumptions within
the holographic model. Our derivation of the effective
action follows directly from the usual rules of the duality.
We will truncate the effective action by keeping only terms
with two derivatives, but we show that higher-derivative
terms seem to be comparatively suppressed in the bubble
configurations we obtain.
The outline of the paper is as follows. In Sec. II we warm

up with a general discussion of the field theory (quantum)
effective action and show how to extract it from the gravity
dual. Then, in Sec. III, we introduce a particularly simple
“bottom-up” gravity theory which nonetheless displays an
interesting phase structure upon deforming it by single- and
multitrace operators. By finding a one-parameter family of
numerical black brane solutions and applying careful
holographic renormalization, we show how to extract the
effective potential and thereby produce the phase diagram.
Furthermore, by solving the linearized equations of motion
around the black brane solutions, we show how to derive
the (noncanonical) kinetic term as well as a subset of
higher-derivative terms. In Sec. IV we then use the effective
action to study the first-order phase transitions of this
theory, by finding the critical bubble solutions and comput-
ing their action, which sets the nucleation rate. We discuss
implications for early-Universe cosmology, including the
computations of the nucleation temperature and the tran-
sition rate, as well as their dependence on the number of
degrees of freedomN. We also briefly discuss domain walls

and compute their surface tension for the complete param-
eter space, allowing us to comment on the applicability of
the thin-wall approximation. Our conclusions and the
discussion of the extensions of our work appear in
Sec. V. The appendixes detail the holographic renormal-
ization, exact results at large temperatures, and also the
linearized fluctuation equations.

II. THE QUANTUM EFFECTIVE ACTION
FROM HOLOGRAPHY

Consider a theory with a scalar field Ψ whose action we
denote S½Ψ�. The path integral in the presence of an external
source J is

Z½J� ¼
Z

DΨ exp

�
iS½Ψ� þ i

Z
d4xJΨ

�
: ð1Þ

From the path integral one can obtain the closely related
generating functional for connected correlation functions

W½J� ¼ −i logZ½J�: ð2Þ

We define the effective action through a functional
Legendre transform,

Γ½hΨiJ� ¼ W½J� −
Z

d4xhΨiJJ: ð3Þ

In this definition J should be understood as being a
functional of hΨiJ determined implicitly through the
relationship

δW½J�
δJ

¼ hΨiJ: ð4Þ

This is also the statement that hΨiJ—sometimes referred to
as the classical field—corresponds to the expectation value
of Ψ for a given source J. Separating the expectation value
of the field in the sourceless and sourced parts

ψ ¼ hΨiJ¼0; δψ ¼ hΨiJ − hΨiJ¼0; ð5Þ

the effective action can be recast as a functional of δψ . The
effective action so defined is the generating functional of
one-point irreducible (1PI) connected correlation functions
Γnðx1;…; xn;ψÞ; hence it can be expanded as

Γ½ψ þ δψ � ¼
X∞
n¼0

1

n!

Z
d4x1…d4xnΓnðx1;…; xn;ψÞ

× δψðx1Þ…δψðxnÞ: ð6Þ

The 1PI connected correlators themselves admit, in prin-
ciple, an expansion around the trivial vacuum ψ ¼ 0
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Γnðx1;…; xn;ψÞ ¼ Γnðx1;…; xn; 0Þ þ
X
k≥1

1

k!

Z
d4y1 � � �

× d4ykΓnþkðx1;…; xn; y1;…; yk; 0Þ
× ψðy1Þ � � �ψðykÞ: ð7Þ

The full effective action is in general highly nonlocal, as
can be seen from this expansion. However, if there are no
gapless degrees of freedom, at sufficiently low energies one
expects that it can be written as an integral over a local
effective Lagrangian, and furthermore, that it can be
expanded for small derivatives,

Γ½ψ þ δψ � ¼
Z

d4x

�
−Vðψ þ δψÞ

−
1

2
Zðψ þ δψÞ∂μδψ∂μδψ þ…

�
: ð8Þ

Here Vðψ þ δψÞ and Zðψ þ δψÞ are ordinary functions of
ψ þ δψ , and we have assumed that the sourceless state is
static and homogeneous at J ¼ 0, so that ∂μψ ¼ 0. The
function Vðψ þ δψÞ is known as the effective potential,
whose minimum determines the true ground state of the
theory.
If ψ coincides with the ground state, further expanding to

quadratic order in δψ leads to

Γ½ψ þ δψ � ¼
Z

d4x

�
−VðψÞ − 1

2
V 00ðψÞðδψÞ2

−
1

2
ZðψÞ∂μδψ∂μδψ þ…

�
: ð9Þ

In order to extract the coefficients in the effective action we
compare the expansions in (6) and (9). Going to momentum
space and expanding the correlators Γ2 around zero
frequency and vanishing spatial momenta (we omit the
dependence on ψ and factor out a Dirac delta imposing
momentum conservation),

Γ̃2ðkÞ ¼ Γ̃2ð0Þ þ
1

2

∂2Γ̃2

∂ki∂kj
����
k¼0

kikj þ…; ð10Þ

one can deduce that

V 00ðψÞ ¼ −Γ̃2ð0Þ; ZðψÞ ¼ −
1

6
δij

∂2Γ̃2

∂ki∂kj
����
k¼0

: ð11Þ

We will be interested in constructing the effective action
up to (at least) second order in the derivative expansion;
that is, we want to compute VðψÞ and ZðψÞ. We do this in
the framework of holographic duality, which lets us study a
strongly coupled quantum field theory by solving a
classical gravitational one. The essential relationship in
the holographic dictionary is the equivalence between the

renormalized on-shell gravitational action and the field
theory generating functional W½J�. Thus, if one can come
by a set of solutions to the gravitational field equations
corresponding to different sources J (meaning different
near-boundary falloffs for the fields of interest), one can
simply evaluate the gravitational action on these solutions
to find W½J� and then Legendre transform to obtain
Γ½hΨiJ�.
Of course, even the solution of classical field equations

for arbitrary boundary conditions can be extremely chal-
lenging. However, assuming unbroken translational sym-
metry in the field theory directions one can typically find
such solutions numerically for a large class of theories,
including the simple gravity plus scalar theories we focus
on later in the paper. This lets us compute Γ½ψ � in the limit
of uniform fields and sources, i.e., the effective potential.
To access derivative terms in the effective action, we then

perturb away from these uniform solutions. The essential
insight is that from (11), the value of ZðψÞ at some
particular value of ψ is just given by the leading terms
in the low-momentum expansion of the two-point corre-
lators. This is readily done in holography by solving the
gravitational field equations linearized around a particular
background solution.
Note that, since we will be interested in the effective

action at some nonzero temperature, the Lorentz invariance
displayed in, for example, (9) will be broken. We will
mainly be interested in static field configurations and so
limit ourselves to computing the coefficient of the spatial
derivatives. Generalizing by including derivatives with
respect to time is straightforward.
Previous authors have discussed computing the field

theory effective action through holography [19–23]. Of
these, several make use of (fake) superpotential formula-
tions on the gravity side to derive analytical expressions for
the effective action. In simplifying limits such as close to
conformality these are very useful. In order to describe
thermal phase transitions, as our aim is here, further
(numerical) work is typically needed. Our approach is in
some sense more direct, employing numerics from the
outset; the effective potential analysis in Refs. [19,20] are
the closest in spirit.

A. Holographic duality

We now give a brief introduction to holographic duality
and argue that the approach we outlined for computing the
effective action in a derivative expansion is quite natural
and convenient in this setting.
Holographic duality relates a d-dimensional quantum

field theory with a D ¼ ðdþ 1Þ-dimensional gravitational
theory in an (asymptotically) anti–de Sitter (AdS) spacetime
of radius L. The AdS behavior corresponds to a fixed point
in the UVof the QFT. If the space is AdS throughout, then
the dual is a conformal field theory (CFT), while asymp-
totically AdS spacetimes correspond to perturbations of the
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fixed point by some relevant operators. Well-understood
examples of this duality originate in string theory, where the
QFT is typically a gauge theory with some amount of
supersymmetry. To be able to suppress quantum and string
effects in the bulk, rendering the gravitational theory
classical, one must typically take the limit of many degrees
of freedom and strong coupling. If the dual QFT is a gauge
theory, the former can be realized as a large-N limit whereN
is the rank of the group. In CFTs the number of degrees of
freedom can be associated with the central charge (in two
dimensions), conformal anomaly coefficients (in even
dimensions), or other quantities. We will refer to N as the
“number of colors,” even if the dual field theory is
not known.
In slightly more detail, the gravitational constant ∝κ25

(whose inverse multiplies the 5D gravity action), made
dimensionless by dividing by the appropriate power of the
radius of curvature L, is related to the number of degrees of
freedom. When the dual field theory is a rank-N gauge
theory, in particular, we typically have a relation of the form

L3

κ25
∝ N2: ð12Þ

Since we work in a bottom-up setting, the detailed form of
this relationship is not known. For simplicity, we will set
L3=κ25 ¼ N2, treating N as a free parameter related to the
number of degrees of freedom, while keeping in mind it is
not necessarily equal to the rank of some gauge group.
The field theory effective action we compute through

holography will also have this large prefactor N2. This is
important for bubble nucleation, since a large bubble action
exponentially suppresses the nucleation rate. We will
discuss this issue in detail in Sec. IV. For now, we only
note that we will explicitly add this factor of N2 in (9),
writing it as

Γ½ψ þ δψ � ¼ N2

Z
d4x

�
−VðψÞ − 1

2
V 00ðψÞðδψÞ2

−
1

2
ZðψÞ∂μδψ∂μδψ þ…

�
: ð13Þ

Thus, in the rest of the paper, the quantities VðψÞ and ZðψÞ
are Oð1Þ, while the full effective action is OðN2Þ.
Through holographic duality, the operator Ψ is associ-

ated with a scalar field ϕ in a gravitational theory. The
gravitational theory admits classical solutions which are
asymptotically anti–de Sitter—near the boundary of these
spacetimes, the metric approaches the form

ds2 ¼ r2

L2
ημνdxμdxν þ

L2

r2
dr2; r → ∞; ð14Þ

and the field ϕ will fall off as

ϕðr; xÞ ¼ ϕ−ðxÞ
rΔ−

þ ϕþðxÞ
rΔþ

þ…; ð15Þ

where Δ� ¼ d
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
4
þm2L2

q
.

In a typical realization of holographic duality, the
operators dual to classical fields on the gravity side will
be some form of gauge-invariant single-trace operators,
meaning they contain a single trace over color indices.
A deformation of the theory consisting of introducing a
source for a scalar single-trace operator like Ψ is realized in
the gravity dual by imposing a boundary condition such
that ϕ− is nonzero. One can also study deformations by
operators with two or more traces; due to large-N factori-
zation, such operators have a simple description on the
gravity side. These will prove useful for us in the next
section, as they provide “knobs” to turn in order to make
our simple gravity dual exhibit first-order phase transitions.
For relevant multitrace deformations to be possible, the

mass of the scalar field must be close to the Breitenlohner-
Freedman bound, in the range

−
�
d
2

�
2

≤ m2L2 ≤ −
�
d
2

�
2

þ 1: ð16Þ

In this range, the value of the mass allows for alternate
quantization, where the coefficient of the subleading falloff
ϕþ is fixed and identified as the source J of the dual
operator. In this case the leading falloff ϕ− is proportional
to the expectation value hΨiJ of the operator.
Once in alternate quantization, multitrace deformations

are implemented by generalizing the boundary condition on
the scalar field [24], allowing ϕþ to be given by an arbitrary
function of ϕ−. More specifically, if we want to deform our
theory by some general multitrace deformation WðΨÞ, we
should impose the boundary condition

ϕþ ¼ δWðhΨiÞ
δhΨi ; ð17Þ

where we recall that hΨi is proportional to ϕ−. For
example, in the theory we discuss in the next section,
we show through careful holographic renormalization that
hΨi ¼ −4ϕ−=3. Then, deforming by, say, a double-trace
deformation WðΨÞ ¼ fΨ2=2 means imposing the boun-
dary condition

ϕþ ¼ fhΨi ¼ −
4

3
fϕ−: ð18Þ

The multitrace deformations we implement have a
straightforward effect on the field theory effective action;
a deformation by an n-trace operator Ψn simply adds a
term ∝ψn to the effective potential. For single-trace
deformations (n ¼ 1) this is in fact a general result for
all field theories, following from the behavior of the
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Legendre transform under a shift. The fact that multitrace
deformations lead to simple polynomial contributions is, on
the other hand, only true in the large-N limit (see,
e.g., [21]).

III. CONCRETE EXAMPLE: CFT WITH
A DIMENSION-4=3 OPERATOR

We now apply the general ideas from the previous
section to study a remarkably simple gravitational theory
whose field theory dual enjoys a first-order phase transition
at nonzero temperature for a range of parameters. We work
in a bottom-up setting, meaning we select a simple gravity
theory capturing the features we are interested in. In this
case, besides gravity with a negative cosmological con-
stant, all we need is a scalar operator which can act as order
parameter for the phase transition. We thus take the
gravitational action to be

Sbulk ¼
1

2κ25

Z
d5x

ffiffiffiffiffiffiffi
−G

p
½R − ∂μϕ∂μϕ − PðϕÞ�: ð19Þ

Here R is the scalar curvature, G is the metric of the five-
dimensional asymptotically AdS spacetime, ϕ is the scalar
field, and κ25 is the 5D gravitational constant. The potential
for the scalar field ϕ is taken to have the minimal form

PðϕÞ ¼ −
12

L2
þm2ϕ2; ð20Þ

with m2L2 ¼ −32=9 [25]. Through a constant rescaling of
the metric G and the parameter m, we reduce the L
dependence in the action to an overall factor of L3, which
combines with κ5 into N2 as discussed around (12). The
value of m2 is within the range of masses allowing two
possible quantizations—we will select the alternate quan-
tization, meaning that the dual operator has dimension
Δ ¼ 4=3. Choosing alternate quantization allows for
relevant multitrace deformations, which provides us
with useful knobs to turn (in addition to a single-trace
deformation and temperature) to arrive at a theory with a
first-order (thermal) phase transition. We will consider
deformations of the original dual CFT, with a scalar
operator Ψ and action SCFT, by single-, double-, and
triple-trace deformations,

SCFT → SCFT þ
Z

d4x

�
ΛΨþ f

2
Ψ2 þ g

3
Ψ3

�
: ð21Þ

The choice of Δ ¼ 4=3 for the operator is convenient as it
means that the triple-trace deformation is marginal. Thus,
the coupling g is dimensionless, while Λ and f have
dimensions 8=3 and 4=3, respectively.

A. Finding background solutions

Since we want to study the field theory at nonzero
temperature, we search for black brane solutions of the
gravitational theory. A convenient ansatz is

ds2 ¼ −e−2χðrÞhðrÞdt2 þ dr2

hðrÞ þ r2dx⃗2; ð22Þ

and ϕ ¼ ϕðrÞ. The equations of motion for our system can
then be written as follows:

χ0ðrÞ þ r
3
ϕ0ðrÞ2 ¼ 0; ð23Þ

h0ðrÞ þ hðrÞ
�
2

r
þ r
3
ϕ0ðrÞ2

�
þ r
3
PðϕðrÞÞ ¼ 0; ð24Þ

ϕ00ðrÞ þ ϕ0ðrÞ
r

−
2rPðϕðrÞÞϕ0ðrÞ þ 3P0ðϕðrÞÞ

6hðrÞ ¼ 0: ð25Þ

The equations allow for an AdS solution. Near the
boundary of asymptotically AdS solutions, the fields fall
off as

ϕ ¼ ϕ−

r4=3
þ ϕþ
r8=3

þ…;

h ¼ r2 þ 4

9

ϕ2
−

r2=3
þ h2

r2
þ…;

χ ¼ χ0 þ
2

9

ϕ2
−

r8=3
þ…: ð26Þ

We use standard numerical methods, implemented using
Mathematica’s NDSolve function, to look for hairy black
brane solutions. We begin by noting that (24) and (25)
involve only hðrÞ and ϕðrÞ [and not χðrÞ]. We solve these
two equations by expanding them in a power series near the
black brane horizon at r ¼ rH, imposing that hðrÞ goes to
zero there and that ϕðrÞ is regular. The resulting near-
horizon series solution has two parameters that are not
fixed by the equations of motion; the horizon radius rH
and the value of the scalar at the horizon ϕðrHÞ≡ ϕH. For
each choice of rH and ϕH, we can numerically integrate the
two equations from the horizon to the AdS boundary to
obtain a solution for hðrÞ and ϕðrÞ. We then plug the
solution for ϕðrÞ into (23) and solve it for χðrÞ, imposing
χ0 ¼ 0 to recover the standard AdS metric near the
boundary.
Resulting black brane solutions will be dual to the field

theory at nonzero temperature. The temperature and
entropy density are set by the Hawking temperature and
horizon area of the black brane, given by

T ¼ e−χðrHÞh0ðrHÞ
4π

and s ¼ 2πr3H
κ25

: ð27Þ
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We want to construct the field theory effective potential at
fixed temperature. Using the near-horizon expansion, the
above expression for the temperature can be seen to take the
form

T ¼ −
eχðrHÞPðϕHÞrH

12π
: ð28Þ

We see that given one of the free parameters, say ϕH, we
can tune the other one, rH, to set the temperature. We use
this to set T ¼ 1 for all our black brane solutions—all the
results we give will thus be in units of temperature. Note
that if we had fixed rH in some other way, say by setting
rH ¼ 1 (fixing the entropy), we would have to rescale the
solutions such that they all have the same temperature
before Legendre transforming to get the effective potential.
Having fixed the temperature, we are left with a one-

parameter family of solutions, one for each ϕH. It is useful
for our purposes to parametrize the solutions by the
quantity ψ ¼ − 4

3
ϕ−, which as we show in Appendix A

equals the expectation value of the scalar operator in the
dual field theory. We visualize our family of solutions by
plotting the coefficients h2 and ϕþ from (26) as functions of
ψ in Fig. 1.

B. Effective potential

There are two, essentially equivalent, ways of construct-
ing the field theory effective potential. From (3) and (13)
we see that, for uniform fields and sources, the effective
potential can be written as

VðψÞ ¼ −wðJÞ þ ψJ; ð29Þ

where we defined wðJÞ ¼ W½J�=ðβV3N2Þ with V3 being
the volume along the spatial directions of the dual field
theory and β ¼ 1=T being the extent of the Euclidean time
direction. Note that we have also implicitly redefined ψ by
a factor of N2 ¼ κ−25 as compared with Sec. II, as is also

done in Appendix A, see (A12). From the holographic
dictionary, we have βV3N2wðJÞ ¼ SOS, where SOS is the
full on-shell gravitational action (including all counter-
terms). In Appendix A we go through the holographic
renormalization for our theory, which gives us expressions
for w, ψ , and J in terms of the coefficients in the asymptotic
expansion (26). The end result is (A23), which we
reproduce here for convenience,

VðψÞ ¼ h2ðψÞ
2

þ 7

9
ψϕþðψÞ þ Λψ þ f

2
ψ2 þ g

3
ψ3: ð30Þ

From our family of black brane solutions we can extract the
functions h2ðψÞ and ϕþðψÞ (which are plotted in Fig. 1),
allowing us to evaluate VðψÞ. Note that, as mentioned in
the previous section, the addition of single-, double-, and
triple-trace deformations give linear, quadratic, and cubic
contributions to the effective potential, respectively; this
should be true in general for a holographic theory in the
classical gravity limit.
As an alternative road to the effective potential, intro-

duced in [19], we note that (still assuming uniform fields
and sources)

dVðψÞ
dψ

¼ JðψÞ: ð31Þ

Since we can easily extract the curve JðψÞ from our family
of black brane solutions using the results obtained from
holographic renormalization in Appendix A, we can simply
integrate it (numerically) to obtain VðψÞ up to a constant.
And this constant can in fact be fixed by noting that the
effective potential at small ψ corresponds to the free energy
of pure AdS-Schwarzschild, which is easily obtained. We
have checked that these two approaches compute the
effective potential agree.
For the Λ ¼ f ¼ g ¼ 0 theory, which we refer to as the

undeformed case, this procedure gives us the dash-dotted
blue curve in Fig. 2. As one might have expected from such
a simple gravity dual there are no exciting features, only a
convex potential with a single minimum. Since the gravity
theory is symmetric under ϕ → −ϕ, VðψÞ is an even
function. At small field values it goes as

VðψÞ ¼ V0 þ
V2

2
ψ2 þOðψ4Þ: ð32Þ

As small ψ is equivalent to large temperatures, in this limit
the background approaches AdS-Schwarzschild. Then, V0

can be seen to simply equal the free energy density of this
solution,

V0 ¼ fAdS−Sch ¼ −
π4

2
≈ −48.70: ð33Þ

FIG. 1. The coefficients h2 (lower blue curve) and ϕþ (upper
red curve) from (26) as functions of ψ ¼ − 4

3
ϕ−, all in units of

temperature.
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Moreover, as we show in Appendix B, the coefficient V2

can be found exactly by computing the scalar two-point
function in an AdS-Schwarzschild spacetime; the result
being

V2 ¼
9π17=6

Γð1=6Þ3 ≈ 1.337; ð34Þ

matching our numerical results well. The explicit temper-
ature dependence of the coefficients in the effective
potential follows from simple dimensional analysis:
V0 ∼ T4 and V2 ∼ T4=3. Since V2 > 0, increasing the
temperature will tend to stabilize the trivial vacuum
ψ ¼ 0. Our strategy will be to introduce additional terms
that destabilize the trivial vacuum at zero temperature, in
such a way that we can produce a phase transition when V2

becomes dominant and the trivial vacuum becomes the
favored state at high temperature.
At large field values or small temperatures, the effective

potential grows as

VðψÞ ∼ γ3
3
jψ j3 with γ3 ≈ 0.278; ð35Þ

as shown by the dotted black line in Fig. 2. The cubic
behavior is dictated by the scale invariance of the theory at
zero temperature. The full potential cannot be well fitted by
a simple polynomial.
We now consider deforming the theory by single-,

double-, and triple-trace deformations. As discussed in
Sec. II A, this will add to the undeformed effective potential
a term linear, quadratic, or cubic in ψ , respectively. We
want to consider fixing the theory, i.e., fixing all couplings,
and then tuning the temperature in order to look for a
thermal phase transition. Of course, by “tuning temper-
ature” we really mean tuning some dimensionless ratio of
temperature to some other scale; in our case, it is conven-
ient to define

T̃ ¼ T

jΛj3=8 þ jfj3=4 ; ð36Þ

which remains well defined when Λ or f (but not both) are
zero. In particular, we can just as well tune T̃ by keeping T
fixed and tuning Λ and f together (keeping their dimen-
sionless ratio fixed), which is more convenient from a
holographic point of view.
Let us emphasize that all the nontrivial strongly coupled

physics is in some sense contained in the undeformed
effective potential of Fig. 2, which is given by the numeri-
cally determined functions h2ðψÞ and ϕþðψÞ in (30). The
polynomial contributions from single- and multitrace
deformations are on their own reminiscent of a weakly
coupled effective description, albeit with the notable differ-
ence that the “order parameter” ψ has dimension-4=3,
meaning the usual ψ4 term is irrelevant. We now describe
the effective potential and possible phase transitions that
result from turning on different combinations of couplings.

1. Single-trace deformation (f = g = 0)

Adding a single-trace deformation simply shifts the
minimum of the undeformed potential around while still
keeping the potential convex, not leading to any phase
transition or other interesting features.

2. Double-trace deformation (Λ= g = 0)

Adding a double-trace deformation is more interesting;
for f < −V2, it destabilizes the vacuum at ψ ¼ 0, leading
to a double-well potential. The resulting theory thus has
a second-order thermal phase transition, breaking the
ψ ↔ −ψ symmetry as T̃ crosses the critical value V−3=4

2

from above. This case was studied in [26].

3. Triple-trace deformation (Λ= f = 0)

Importantly, for large triple-trace deformations g > γ3,
the potential becomes unbounded from below. Staying
below this value, we note that the resulting potential is no
longer convex (but still bounded) within the narrow range

0.2675≲ g < γ3 ≈ 0.278: ð37Þ

In particular g ¼ 0.276 results in Fig. 3. But since the
triple-trace deformation is marginal, this is still a CFT and
thus has no phase transitions as a function of temperature.

4. Single- and triple-trace deformation
(f = 0 and Λ, g ≠ 0)

Within the interval (37), the now nonconvex potential
displays a first-order phase transition. The critical temper-
ature depends on g; for g ¼ 0.276, it is T̃ ≈ 0.844. With this
value of g, we also display the potential for a few different
T̃ around the transition in Fig. 4.

FIG. 2. The quantum effective potential of the undeformed
theory (dash-dotted blue) and the kinetic term (solid red,
discussed in the next subsection).
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5. Double- and triple-trace deformation
(Λ= 0 and f , g ≠ 0)

With g ¼ 0, a negative double-trace deformation induces
a second-order phase transition. Any 0 < g < γ3, however,
instead leads to a first-order transition. This can be seen by
considering the undeformed potential; for small ψ , it can be
expanded as in (32). Adding the quadratic and cubic
contributions from the double- and triple-trace deforma-
tions modifies this to be

VðψÞ ¼ V0 þ
1

2
ðV2 þ fÞψ2 þ g

3
ψ3 þOðψ4Þ: ð38Þ

Assuming f > −V2, i.e., above the temperature T̃ where
the second-order phase transition would set in, this cubic
potential has a minimum at ψ ¼ 0, a maximum at

ψ ¼ −
V2 þ f

g
; ð39Þ

and then dips below Vð0Þ ¼ V0 at

ψ ¼ −
3

2

V2 þ f
g

: ð40Þ

If the small-ψ expansion is valid out to this point, this
shows that the minimum at ψ ¼ 0 has become metastable
leading to a first-order phase transition. But for any given
g ≠ 0, the small-ψ expansion will in fact be valid as long as
f is close enough to −V2. This guarantees that as we lower
the temperature T̃ we will always encounter a first-order
transition before the quadratic term goes negative and
causes a second-order transition. For g ¼ 0.276, Fig. 5
shows the effective potential for a few different temper-
atures around the critical value of T̃ ≈ 6.72.

6. Single-, double- and triple-trace deformation

In the general case with all couplings nonzero, it is
convenient to define a dimensionless coupling

Λf ≡ Λ
f2

ð41Þ

in addition to the already dimensionless g. We then fix the
theory by fixing Λf and g, and tune T̃ to look for a phase
transition. The case Λf → −∞ corresponds to the case
listed in Sec. III B 3 with a first-order transition within a
narrow region of g. The case Λf ¼ 0 corresponds to the
case listed in Sec. III B 4 with a first-order transition for any
g, except for g ¼ 0 which gives a second-order transition.
The full two-dimensional space of couplings interpolates
between these cases. Within some extended region the
theory will have a first-order phase transition.
Figure 6 shows a phase diagram of the theory with fixed

Λf as a function of T̃ and g. Each of the colored
curves corresponds to a line of first-order transitions for
a certain fixed value ofΛf; each of these lines terminate in a

FIG. 3. The quantum effective potential of the theory with a
triple-trace deformation, g ¼ 0.276.

FIG. 4. The effective potential for the theory with a single- and
triple-trace deformation, for a few different values of T̃ around the
phase transition (at T̃c ≈ 0.844). The temperature values are
T̃ ≈ 0.934, 0.881, 0.844, 0.802, and 0.757 from the top down.

FIG. 5. The effective potential for the theory with a double- and
triple-trace deformation, for a few different values of T̃ around the
phase transition (at T̃c ≈ 6.72). The temperature values are
T̃ ≈ 8.926, 7.768, 6.724, 6.006, and 3.344 from the top down.
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second-order critical point. Note that while we use the
labels “high-T phase” and “low-T phase,” these are not
distinct phases in the sense that one can move from one to
the other without any sharp transitions by tuning g. The
exception is Λf ¼ 0, where the first-order line extends over
the whole allowed range of g, except for g ¼ 0 which
corresponds to a second-order phase transition.

C. Kinetic term

Having discussed the effective potential and the resulting
phase structure, we move on to the kinetic term, charac-
terized by the function ZðψÞ in (13). Note first of all that the
nonzero temperature breaks Lorentz invariance, so time and
spatial derivatives will not appear on equal footing. We are
mainly interested in studying static configurations, and so
restrict to finding the coefficient of the spatial derivatives;
this is what we mean by ZðψÞ in the following.
As discussed in Sec. II, we will determine this function

by computing the two-point correlator as a function of
the expectation value in a low-momentum expansion (at
zero frequency). Holographically, this is done by a linear-
ized fluctuation analysis around a given uniform back-
ground solution. We take advantage of the translational
symmetry by writing the fluctuations as plane waves and
use the rotational symmetry to align the momentum in the x
direction. Making the common gauge choice HMr ¼ 0 for
the metric fluctuation HMN , we then have the ansatz

ds2 ¼ −e−2χðrÞhðrÞð1þ eikxHttðrÞÞdt2 þ
dr2

hðrÞ
þ r2ð1þ eikxHxxðrÞÞdx2
þ r2ð1þ eikxH⊥ðrÞÞðdy2 þ dz2Þ
þ 2r2eikxHtxðrÞdtdx; ð42Þ

ϕ ¼ ϕðrÞ þ eikxφðrÞ: ð43Þ

Here we have also used the fact that even in the presence of
the fluctuations there is an SO(2) rotational symmetry,
which restricts which metric components the scalar mode
can couple to.
Plugging in this ansatz into the equations of motion and

expanding to linear order, one quickly notes that Htx
decouples from the other modes. With a bit more work,
Hxx can be eliminated, leaving us with three coupled
ordinary differential equations (ODEs), first order in
derivatives of Htt and second order in derivatives of H⊥
and φ.
Next, one can show that the following linear combina-

tions of modes are invariant under residual gauge trans-
formations,

ZϕðrÞ ¼ φðrÞ − r
4
ϕ0ðrÞH⊥ðrÞ; ð44Þ

ZHðrÞ ¼ −e−2χðrÞhðrÞHttðrÞ
−
r
4
e−2χðrÞ½h0ðrÞ − 2hðrÞχ0ðrÞ�H⊥ðrÞ; ð45Þ

and that they satisfy a set of two coupled second-order
linear ODEs, which we relegate to Appendix C due to their
unwieldiness. Near the AdS boundary, these two modes
decouple, and the solution asymptotes to

ZϕðrÞ ¼
Z−
ϕ

r4=3
þ Zþ

ϕ

r8=3
þ…;

ZHðrÞ ¼ Zþ
Hr

2 þ Z−
H

r2
þ…: ð46Þ

From the holographic renormalization analysis in
Appendix A we see that this small perturbation on the
gravity side corresponds to perturbing the source (single-
trace coupling) of the dual scalar operator by

δΛ ¼ Zþ
ϕ þ 4

3
W00ðψÞZ−

ϕ ; ð47Þ

where we pick

WðψÞ ¼ f
2
ψ2 þ g

3
ψ3 with ψ ¼ −

4

3
ϕ−: ð48Þ

This perturbation then gives rise to a small change in the
scalar expectation value

δhΨi ¼ −
4

3
Z−
ϕ : ð49Þ

A generic solution to the linearized equations will source
not only the scalar mode Zϕ but also the operator dual to
ZH. To compute the scalar two-point function, we must

FIG. 6. Phase diagram of the dual field theory as a function of T̃
and g, for various values of Λf ranging from 0 to −∞ and with
N ¼ 1. The curves take values of Λf ¼ 0, − 4

9
, −1, −4, −16,

−100, and −∞ (top down).
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then impose the boundary condition Zþ
H ¼ 0. The two-

point function in momentum space is simply the ratio

hΨΨi ¼ δhΨi
δΛ

: ð50Þ

Since we are interested in the low-momentum limit of
the two-point function, we expand the gauge-invariant
modes as

ZiðrÞ¼Zð0Þ
i ðrÞþk2Zð2Þ

i ðrÞþ… with i∈ fϕ;Hg; ð51Þ

plug this into the fluctuation equations, and solve order by
order in k2. Similarly expanding the coefficients in (46) as

Z�
i ¼ Z�ð0Þ

i þ k2Z�ð2Þ
i þ… ð52Þ

we are able to write the two-point function as

hΨΨi ¼ −
4

3

Z−ð0Þ
ϕ

Zþð0Þ
ϕ þ 4

3
W00ðψÞZ−ð0Þ

ϕ

−
4

3

Z−ð2Þ
ϕ Zþð0Þ

ϕ − Z−ð0Þ
ϕ Zþð2Þ

ϕ

ðZþð0Þ
ϕ þ 4

3
W00ðψÞZ−ð0Þ

ϕ Þ2
k2 þ…: ð53Þ

Now we use the fact that the part of the effective action
quadratic in ϕ—i.e., Γ2 in the notation of Sec. II—equals
the inverse of this two-point function. This can be used to
derive the following expressions:

Γ2 ¼ −
�
3

4

Zþð0Þ
ϕ

Z−ð0Þ
ϕ

þW00ðψÞ
�

þ 3

4

Z−ð2Þ
ϕ Zþð0Þ

ϕ − Z−ð0Þ
ϕ Zþð2Þ

ϕ

ðZ−ð0Þ
ϕ Þ2

k2 þ…: ð54Þ

The first term, of order k0, should just equal the second
derivative of the effective potential. We can compare this
with the results from the previous subsection to check our
numerics; doing so we find excellent agreement. The
second term, at order k2, is what we are really interested
in, as it determines ZðψÞ,

ZðψÞ ¼ 3

4

Z−ð2Þ
ϕ Zþð0Þ

ϕ − Z−ð0Þ
ϕ Zþð2Þ

ϕ

ðZ−ð0Þ
ϕ Þ2

: ð55Þ

Note that each Z�ðiÞ
ϕ here can be regarded as a function of ψ ,

obtained by solving the fluctuation equations in the
gravitational background with ψ ¼ − 4

3
ϕ−. Importantly,

we note that ZðψÞ is independent of the multitrace
deformations specified by WðψÞ, meaning the kinetic term
will be the same for the entire class of theories we study.

The resulting ZðψÞ is shown in solid red in Fig. 2. It is an
even function, admitting an expansion similar to 32 for
small ψ (large temperatures). At large ψ (small temper-
atures) it goes as ψ−1=2 (see the dashed black curve), which
is required by scale invariance to make the kinetic term
have dimension four.

D. Higher-derivative terms

It is straightforward to continue the work of the previous
subsection and compute the two-point function up to higher
order in k2. By the same reasoning as above, this should
provide information about higher-derivative terms in the
effective action. A complication arises though, since start-
ing at four derivatives, the number of independent terms
grows rapidly. Some of these terms involve several external
momenta, and require information from higher-order cor-
relation functions to determine. Computing these is beyond
the scope of this paper. We have, however, computed the
two-point function up to order k4, which lets us extract the
four-derivative term ∇2ψ∇2ψ . This allows us to verify that
this term is negligible in the context of bubble nucleation—
discussed in the next section—thus providing evidence that
the small derivative expansion is applicable there.

IV. BUBBLE NUCLEATION
AND N DEPENDENCE

One important motivation for going after the effective
action is to understand the phase structure and phase
transitions of a field theory. First-order phase transitions
proceed through bubble nucleation, which can be studied
by finding unstable classical solutions of the effective
action that interpolate between the two phases [27–29].
At an arbitrary temperature, the resulting equations of
motion should be solved in Euclidean space with the
appropriate periodicity imposed in the time direction,
leading in general to a partial differential equation.
Typically this is simplified into an ordinary differential
equation by focusing on the high- and low-temperature
limits, leading to two actions: a zero temperature action
with Oð4Þ symmetry arising from purely quantum fluc-
tuation effects causing bubble nucleation [27,28] and a
nonzero temperature, and Oð3Þ symmetric action arising
from both thermal and quantum fluctuations [29].
Note that while an Oð3Þ symmetric typically exists

for any temperature, the Oð4Þ solution only exists at
zero temperature, where Oð4Þ is an exact symmetry.
Nonetheless, it is a good approximation to a true solution
as long as the length of the thermal circle is large (and thus
the temperature small) compared with the bubble radius.
Motivated by this, we study both Oð3Þ and Oð4Þ solutions.
We assume that the function multiplying the kinetic term in
the Oð4Þ case is the same as in the static Oð3Þ case, which
is what was computed in the previous section. This is a
reasonable assumption since the Oð4Þ solution is expected
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to matter more at low temperatures, where the Oð4Þ
symmetry is nearly restored.
After integrating along the angular direction in Euclidean

spacetime, the Oð4Þ symmetric action is

ΓOð4Þ ¼ 2π2N2

Z
∞

0

dρρ3
�
1

2
ZðψÞ

�
dψ
dρ

�
2

þVðψÞ
�
; ð56Þ

while for the Oð3Þ symmetric action we integrate along the
angular spatial directions and the Euclidean time circle

ΓOð3Þ ¼
4πN2

T

Z
∞

0

dρρ2
�
1

2
ZðψÞ

�
dψ
dρ

�
2

þVðψ ;TÞ
�
: ð57Þ

Note that in each case ρ takes a different meaning: in the
Oð4Þ symmetric configuration it is the radial direction in
full Euclidean four-dimensional spacetime, while in the
Oð3Þ symmetric configuration ρ is the radial direction
along the three-dimensional space. As earlier, we pull our a
factor of N2, all other quantities then being of order N0.
To evaluate these integrals we first need to find the field

profiles ψðρÞ, by solving the equations of motion derived
from the effective action. For the Oð4Þ symmetric bubble,
the equation of motion is

d2ψ
dρ2

þ 3

ρ

dψ
dρ

þ 1

2

∂ψZðψÞ
ZðψÞ

�
dψ
dρ

�
2

−
∂ψVðψÞ
ZðψÞ ¼ 0; ð58Þ

while for the Oð3Þ symmetric bubble it is

d2ψ
dρ2

þ 2

ρ

dψ
dρ

þ 1

2

∂ψZðψÞ
ZðψÞ

�
dψ
dρ

�
2

−
∂ψVðψÞ
ZðψÞ ¼ 0: ð59Þ

These are solved with the well-known “shooting method”
with boundary conditions ψð∞Þ ¼ ψ 0ð∞Þ ¼ 0 where the
initial minimum is shifted to always appear at V ¼ 0. An
example of a bubble profile is shown in Fig. 7 which solves
the Oð3Þ equation of motion (59).
How steeply the profile transitions from one phase to

another details the “thickness” of the bubble wall. Whether
the wall is in the thin, thick, or intermediate regime will
determine how important quantities will change when
considering the number of colors N of the theory, as
shown shortly.
In our holographic model, a complete picture of how the

bubble action depends upon the temperature is built up by
selecting a particular value of the triple-trace coupling g and
coupling ratio Λf, then varying the temperature T̃. There is
therefore one graph of the action for each parameter set
g;Λf, all of which appear similar in shape to Fig. 8.
Another aspect which must be taken into consideration is

the fact that we have used a small derivative (or low-
momentum) expansion for the effective action, truncated at
two derivatives. As it is not immediately clear whether the
higher-order terms will be negligible, we explored what

consequence including the term ∂2ψ∂2ψ has on the bubble
action. As discussed in Sec. III D, this term in the effective
action can be obtained by computing the scalar two-point
function to order k4. The importance of the effect can be
judged by the size of the ratio E4=E2, where E2 is the
contribution to the energy from including the k2 term and
E4 is the contribution to the energy from including the k4

term, shown in Fig. 9. This is plotted against the scaled
temperature defined as ðT̃ − T̃0Þ=ðT̃c − T̃0Þ, where T̃c is
the dimensionless critical temperature, and T̃0 is the
dimensionless lower critical temperature at which the
metastable minimum disappears.
As can be seen in this figure E4 is a negative contribution

with magnitude of less than 1% of the k2 contribution, and

FIG. 7. Graph of an Oð3Þ bubble solution with N ¼ 1 nor-
malized by the low-T phase value ψ l against the radius. The thick
dashed vertical black line in the middle denotes the radius of the
bubble ρb, and the vertical dashed red lines encompass the bubble
thickness. The parameter values are g ¼ 0.27, Λf ¼ 0 with the
bubble occurring at temperature T̃ ≈ 2.83, below the critical
temperature for this parameter set of T̃c ≈ 3.08.

FIG. 8. Graph of the Oð3Þ bubble action against the temper-
ature T̃ for triple-trace coupling g ¼ 0.27, Λf ¼ 0, and with
N ¼ 1.
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this remains valid in general. We therefore determine that
the higher-derivative terms can be safely ignored, at least
for the correction quadratic in the fields, and that the k2

term will probably give a very good approximation to the
true kinetic function ZðψÞ.
The quantities important in the companion Letter [17] all

rely upon the characteristics of the action curve demon-
strated by Fig. 8, and, in particular, which action fulfills the
criterion

ΓðTÞ ¼ min½ΓOð3ÞðTÞ;ΓOð4ÞðTÞ�; ð60Þ

as this could drastically change the temperature at which
the bubble nucleates and which region of thickness the
bubble is in. We therefore also perform the check of
calculating the Oð3Þ and Oð4Þ bubble actions for each
temperature value and comparing the sizes, with one
illustration of this seen in Fig. 10. The action obtained
from the Oð3Þ bubble is consistently significantly lower
than from the Oð4Þ bubble and thus will dominate the
calculation of the subsequent quantities.

A. Phase transitions in the early Universe
and large-N scaling

Much recent effort—including that of our companion
Letter [17] and previous paper [9]—has gone into
modeling phase transitions in the early Universe using
holography, with the hope of finding models that lead to
observable gravitational wave signals. In this context, it is
important to understand the impact of the large-N limit
that holography usually involves. As mentioned in
Sec. II A, the (effective) action obtained from holography
scales as L3=κ25 ∼ N2, meaning that in the strict large-N
limit bubble nucleation will not occur as the bubble
action becomes infinite. In practice we are of course
interested in N values which are finite, while still being
large enough to ignore finite-N corrections.
In cosmological applications, important quantities

which are determined from the effective action include
the nucleation temperature Tn, the transition strength α,
and the transition rate β=Hn. The nucleation temperature
is defined as the temperature at which bubble nucleation
will occur (specifically when the nucleation rate per unit
volume drops to one bubble per Hubble volume per
Hubble time). Through energy considerations (see [17])
this is found to always occur at Γ ≈ 150, and so
changing the scale of the action by changing N will
invariably alter the temperature at which bubbles are
nucleated. We demonstrate this in Fig. 11 for various
values of N up to N ¼ 8, which is the value we take to
produce results in the companion Letter. (N ≈ 1 is of
course outside the plausible range of the large-N
expansion; here we are mainly interested in visualizing
the impact of changing N on the cosmological
parameters.)
It is very straightforward to numerically invert the

action curve to find out how the nucleation temperature
depends upon N. In Fig. 12 we show the nucleation
temperature dependence upon N for the same two sets of
parameters as in Fig. 11, demonstrating the change in
shape as the N scaling progresses from near the thin-wall
limit to the thick-wall limit. We note, in particular, that as
N → ∞, the nucleation temperature always approaches
the lower critical temperature T0, where the barrier
between the vacua in the effective potential vanishes
and the bubble action goes to zero.
The transition rate β=Hn can be expressed as

β

Hn
¼ T

d
dT

Γðψ ; TÞjTn
; ð61Þ

where Hn is the Hubble parameter evaluated at the
nucleation temperature. As the transition rate actively
involves a derivative with respect to Γ, the N2 scaling of
the holographic action has a substantial effect. For
sufficiently large N, we have as already mentioned Tn ≈
T0 placing us in the thick-wall limit. We observe that the

FIG. 9. Graph of the ratio of k4 and k2 energy contributions in
the kinetic coefficient ZðϕÞ against the temperature T̃ for triple-
trace couplings g ¼ 0.20, 0.24, 0.26, and 0.2774 (top down on the
left), with Λf ¼ 0. All curves are for value N ¼ 1.

FIG. 10. Graph of the ratio of Oð3Þ bubble action over Oð4Þ
bubble action against the temperature T in units of the source Λ
for triple-trace couplings g ¼ 0.20, 0.24, 0.26, and 0.2774
(bottom up on the left), with Λf ¼ 0. All curves are for
value N ¼ 1.
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temperature dependence of the action in our model is
well fitted by a power law near T0,

Γ ∼ N2ðT − T0Þα; ð62Þ

with α > 0. Using this and the fact that Tn occurs when
Γ ≈ 150, we get

N2ðTn − T0Þα ∼ 150: ð63Þ

Then, using this in Eq. (61), we find

β

Hn
∼ TnN2αðTn − T0Þα−1 ∼ TnN2αð150N−2Þα−1α

∼ 150
α−1
α TnαN2=α; ð64Þ

implying that β=Hn ∼ N2=α. Thus, for sufficiently large
N, the transition rate diverges rendering the gravitational
wave signal unobservable.
However, for more moderate values of N it is possible

to instead sit close to the thin-wall limit, Tn ≈ Tc.

The quadratic divergence in this limit, Γ∼N2ðTc−TÞ−2,
then leads in a similar way to β=Hn ∼ N−1, decreasing
with N in accordance with lattice results for the surface
tension [30].
The above analytic results for the N scaling in the

thin- and thick-wall limit can be confirmed numerically,
as shown in Fig. 13. On the left, we see that as the
action at Γ ≈ 150 for N ¼ 1 begins close to the lower
critical temperature T0 for g ¼ 0.27, it is dominated by
the thick-wall N scaling result, always increasing the
transition rate with N. For g ¼ 0.01 on the right,
however, we see that the action at Γ ≈ 150 for N ¼ 1
begins in the thin-wall regime close to Tc, with β=Hn
decreasing as N increases slightly; then as N increases
further it transitions through the intermediate and then
into the thick-wall regime where it again ends up
dominating and increasing the transition rate. In this
case there is an “optimal” N ≈ 8 which minimizes the
transition rate (leading to easier to observe gravitational
wave signals), while still potentially being large enough
to avoid significant finite-N corrections.

FIG. 11. The solid red curves show a section of the graph of theOð3Þ bubble action against the temperature T̃ for g ¼ 0.27 and Λf ¼ 0
(left) and the complete graph for g ¼ 0.01 and Λf ¼ 0 (right). As N is increased, the point where the action equals 150, which sets the
nucleation temperature, is pushed to the left. The legend applies for both plots.

FIG. 12. Graph of the nucleation temperature T̃n against N for triple-trace coupling g ¼ 0.27 and Λf ¼ 0 (left) and g ¼ 0.01 and
Λf ¼ 0 (right) showing the effect of N scaling.
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B. Domain wall solutions

As a special case of the study of bubble nucleation, we
can also consider the limit T → Tc, often referred to as
the thin-wall limit since the bubble wall here becomes
small compared to the overall size of the bubble.
Precisely at T ¼ Tc there is no bubble nucleation (as
the bubble action diverges) but one can instead have
coexistence of the two phases, separated by a domain
wall with some particular surface tension. Determining
the surface tension is interesting both since it can be
related to the nucleation rate near Tc and since it
determines properties of possible mixed phases.
Domain walls in mixed phases have already been studied
using dynamical solutions of the Einstein equations
[12,31–35] and with an effective action phenomenologi-
cally derived from a holographic model [18]. Here, we
investigate the domain wall solutions using an effective
action which is rigorously derived in a gradient expan-
sion using the rules of holography.
The surface tension σ is calculated through the formula

σ ¼
Z

∞

−∞
dx

�
1

2
ZðϕðxÞÞð∇ϕðxÞÞ2 þ VðϕðxÞÞ

�
; ð65Þ

which represents the surface tension of a domain wall
extending along the x ¼ 0 plane, with the domain wall field
profile here being related to the bubble field profile through
ϕ ¼ ψ − ψh at Tc, where ψh is the value of the field at the
high-T phase minimum. This integral can be performed by
finding the profile of the field ϕðxÞ numerically through the
equation of motion

d2ϕ
dx2

þ 1

2

∂ϕZðϕÞ
ZðϕÞ

�
dϕ
dx

�
2

−
∂ϕVðϕÞ
ZðϕÞ ¼ 0: ð66Þ

We utilize Mathematica’s FindRoot function to first
locate the extrema in our effective potential and then the
NDSolveValue function with the shooting method. We

shoot from the local maximum to each of the minima,
providing an initial guess of the derivative of the field at the
local maximum and varying it until the solution reaches the
minimum and stays there for a sufficient distance.
It is interesting to compare the resulting solution to a

simple analytic approximate expression with Lagrangian
L ¼ 1

2
ð∂μϕÞ2 − VðϕÞ, which is exact when the potential is

an even quartic function. The domain wall solution to this
then takes the form of a hyperbolic tangent [18],

ϕtanhðxÞ ¼
ϕb

2

�
1þ tanh

�
x
Lw

þ δ

��
: ð67Þ

Here ϕb is the value of the field in the broken minimum, Lw
is the thickness of the wall, and δ is a parameter allowing

FIG. 13. Graph of the transition rate β=Hn against N for triple-trace coupling g ¼ 0.27 and Λf ¼ 0 (left) and g ¼ 0.01 and Λf ¼ 0
(right) showing the effect of N scaling.

FIG. 14. Profile of the difference between the field and its high-
T phase minimum ϕ ¼ ψ − ψh normalized by its maximum value
ϕl, the thin-wall approximation to the profile, the difference
between the two, and the energy of the profile for g ¼ 0.1;
Λf ¼ 0. All curves are for value N ¼ 1.
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for a shift in the domain wall. Once we have the field profile
from the numerical solver, we can use a fitting function
such as PYTHON’s curve_fit to find the values of Lw and δ
which best approximate the actual solution.
In Fig. 14 we plot the analytic tanh solution over the

actual solution for parameter set g ¼ 0.1, Λf ¼ 0, along
with the difference between the two solutions in the form of
ðϕðxÞ − ϕtanhðxÞÞ=ϕl and the scaled energy density E in
units of the source Λ, where the energy density is given
through

E ¼ 1

2
ZðϕðxÞÞð∇ϕðxÞÞ2 þ VðϕðxÞÞ: ð68Þ

The effective potential for this parameter set has minima
which are close together, and the curve between the minima
is well approximated by a quartic function, which is also

seen in how closely the tanh approximation overlays the
actual field profile. As is evident from the middle plot of
Fig. 14, the difference between the approximate solution
and the actual solution for the scalar field is never greater
than 5 × 10−4. The difference in energy density E between
actual and tanh-fit is similarly good, never increasing past
3 × 10−3 (seen in Fig. 16).
In Fig. 15, however, for parameter set g ¼ 0.2774,

Λf ¼ 0, the minima of the effective potential are far away
from each other, and the curve between the minima is not
close to a simple quartic. Thus the tanh-fit performs
significantly worse here; the differences between the actual
and approximate solution are about 100 times larger than in
the previous case. Another interesting feature for this
parameter set in Fig. 15 is how skewed the energy density
is in the bottom plot. For domain walls taking a tanhlike
form we see a nicely symmetric energy distribution like in
Fig. 14, which again demonstrates how far the departure is
from this approximation. This departure is greatly pro-
nounced for E, with the difference in results off by tens of
percents (close to 30% difference where the effect is most
noticeable). This is again about 100 times larger than in the
previous case and is also seen in Fig. 16.
Once we have found how the field behaves between the

two minima, we can input it into Eq. (65) to be able to
calculate the surface tension. We produce a scan of this
quantity in Fig. 17, with the surface tension in units of the
source. Near the left-hand boundary where g is small and
the minima are close together, we see that the surface
tension is small and goes explicitly to zero at the boundary.
On the right-hand side, however, where g is large and the
minima are far away from one another, the surface tension
reaches values over 100. In this area of parameter sets, the
values found effectively drop their dependences on Λf as
the minima are so far apart that the difference is negligible.
A note here is that, although the surface tension will scale
with N, it scales uniformly and so will not distort different
parts of the parameter space in different ways.

FIG. 15. Field profile and thin-wall approximation, difference
between the two, and energy of the profile for g ¼ 0.2774;
Λf ¼ 0. All curves are for value N ¼ 1.

FIG. 16. Plots of the difference between the actual energy density solution E and the tanh approximation energy density solution Etanh
scaled by the maximum value of the actual energy density Emax for the cases g ¼ 0.1, Λf ¼ 0 on the left and g ¼ 0.2774;Λf ¼ 0 on the
right. Both curves are for value N ¼ 1.
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V. DISCUSSION AND OUTLOOK

In this paper we discussed the computation of the
quantum effective action in a strongly coupled theory
using holographic duality. The effective action was com-
puted in a derivative expansion, and we focused on
extracting the effective potential and the (noncanonical)
two-derivative kinetic term. Higher-derivative terms can, in
principle, be included in a straightforward fashion; how-
ever, the number of possible terms grows quickly at higher
order, and higher-order correlation functions must be
computed, requiring considerably more effort.
Our methods for constructing the effective action are

general, applying to any holographic model. It is, however,
interesting to note a possible complication. One of the ways
to construct the effective potential was to integrate the
source J with respect to the field ψ , implying that J should
be a single-valued function of ψ . We know that there is a
one-parameter family of solutions to the bulk theory,
meaning that one can construct a curve in the ðψ ; JÞ plane,
but we know of no reason why the function JðψÞ is
guaranteed to be single valued, as it happens to be in the
simplified model.
As a concrete example of our approach we studied a

simple bottom-up gravity theory, with a scalar field whose
mass allows it to be identified with a dimension-4=3
operator in the dual field theory. Turning on a temperature
and deforming the putative dual CFT by single-, double-,
and triple-trace operators, we mapped out a surprisingly
rich phase diagram.
Our main motivation for computing the effective action

was to study first-order phase transitions mediated by
bubble nucleation. Thus we proceeded to find “bounce”
solutions to the equations of motion obtained from the
effective action and studied their properties. An interesting
application of this technology is to early-Universe cosmol-
ogy, where a first-order phase transition can give rise to
potentially observable gravitational waves. Our companion
Letter [17] will discuss this in more detail, including the

computation of all quasiequilibrium gravitational wave
parameters in our simple toy model.
Bubble nucleation is based on the idea of fluctuations,

quantum or thermal, which allow the system to overcome
the potential barrier between the false and true vacua. In the
gravity dual, such fluctuations are suppressed by the large
parameter L3=κ25. For a holographic theory to make an
observable prediction in the case of gravitational waves
signals (for example), it is thus vital to set this parameter
(which is roughly dual to the degrees of freedom or N2 in a
gauge theory) to some finite value. With this in mind, we
briefly discussed theN dependence of our results. The main
takeaway is that, while indeed the transition rate always
diverges for L3=κ25 ∼ N2 large enough, there can, in
general, exist a range of N where the transition rate is
somewhat suppressed compared with the naive extrapola-
tion to N ¼ 1.
As we elaborate on in more detail in the companion

Letter [17], the simple holographic model studied herein
leads, for most of the parameter range, to large transition
rates, implying difficult-to-observe gravitational wave sig-
nals. It would be interesting to explore more models in this
way and ideally isolate properties of the gravity dual
leading to observable signals.
In addition to cosmological applications, the framework

outlined here might also find uses in holographic models of
nuclear physics at nonzero charge density [36–38]. Here,
one would be concerned with, e.g., the possible first-order
transition between the nuclear and chirally restored quark
matter phases. If no other scalar condensation would occur
in this transition, the order parameter would simply be the
charge density, jumping from one nonzero value to another.
The corresponding source would then be the chemical
potential. However, since chiral symmetry will be restored,
a careful implementation of holographic renormalization is
crucial when identifying the source and the expectation
values of the dual operator and, therefore, also in the
computation of the effective action.
The chiral transition is particularly interesting in astro-

physical contexts. For example, to address the question if
the quark matter phase is realizable in stellar processes, one
needs to know the relevant timescales of the phase con-
version process. In addition to the pressure difference
between the phases, a key ingredient setting the timescale
is the surface tension [39], the computation of which we
have also discussed here. Indeed, the surface tension is
relevant for bubble nucleation of quark matter in super-
novae [40,41], neutron star mergers [42–44], and for a
possible quark-hadron mixed phase in the interior of
quiescent neutron stars [45,46].
Ideally, as with the equation of state, the surface tension

should be calculated from the underlying fundamental
theory, QCD. The density regimes, where two available
perturbative approaches, chiral effective theory and pertur-
bative QCD, are valid are far apart such that at a possible

FIG. 17. Scan of the domain wall surface tension σ in units of
the source, with N ¼ 1.
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first-order transition at least one of them, very likely both,
cannot be trusted [47].
Previous estimates of the surface tension were either

performed in the framework of chiral models that lack the
nuclear matter ingredient or employed two different models
for nuclear and quark matter, which are glued together at
the phase transition, treating the surface tension as a free
parameter [48]. We desire a self-consistent framework where
both phases are available at once, (e.g., [37]) and so can
determine the surface tension by following standard com-
putations [27–29] extended to the context of deconfinement
phase transitions [49,50]. One of the major goal of our
program is to show how the quantum effective action is
obtained using gauge/gravity duality and then predicting the
surface tension and all other quasistationary parameters [17]
at the deconfinement phase transition. This goal is achieved
by extending our work to nonzero chemical potential.
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APPENDIX A: BOUNDARY ANALYSIS AND
HOLOGRAPHIC RENORMALIZATION

It is convenient to define the function

kðrÞ≡ r2e−χðrÞ½rh0ðrÞ − 2hðrÞ − 2rhðrÞχ0ðrÞ�; ðA1Þ

since it can be shown using the equations of motion that it is
constant, k0ðrÞ ¼ 0. Evaluating this function on the horizon
and on the AdS boundary gives the equality

r3He
−χðrHÞh0ðrHÞ ¼ −4h2 þ

128

27
ϕ−ϕþ; ðA2Þ

where we have used the asymptotic solution (26). This can
be rewritten in terms of the temperature and entropy density
(27) as

h2 ¼ −
κ25Ts
2

þ 32

27
ϕ−ϕþ: ðA3Þ

Turning now to the gravity action (19), we can use the
equations of motion to show that on shell it can be written
as a total derivative in the radial coordinate,

Sbulk !on-shell 1

κ25

Z
d4xdr

�
−∂r

� ffiffiffiffi
G

p hðrÞ
r

��

¼ −
1

κ25

Z
d4x

� ffiffiffiffi
G

p hðrÞ
r

�
r∞

rH

: ðA4Þ

Here we have integrated from the horizon rH to some cutoff
surface at a radius r∞. As usual the on-shell action diverges
as the cutoff is taken to infinity, requiring renormalization
through the addition of counterterms defined on the cutoff
surface. In the present case, these are

SCT ¼ 1

κ25

Z
d4x

ffiffiffi
γ

p ½c0 þ c1ϕðrÞnμ∂μϕðrÞ

þ c2ϕðrÞ2 þ c3ϕðrÞ3�; ðA5Þ

where γ is the determinant of the induced metric γij on the
cutoff surface, and the ci’s are constants to be fixed shortly.
Note that the cubic term only gives a finite contribution as
the cutoff is taken to infinity. Terms of even higher order
vanish at the boundary and are therefore not necessary to
include. We also include a Gibbons-Hawking term

SGH ¼ 1

κ25

Z
d4x

ffiffiffi
γ

p
K; ðA6Þ

where K is the trace of the extrinsic curvature Kij.
The complete gravity action including boundary terms is

then SC ¼ Sbulk þ SGH þ SCT. Requiring that SC is finite as
r∞ → ∞ imposes constraints on the counterterms,

c0 ¼ −3 and c2 ¼
2

3
ð2c1 − 1Þ: ðA7Þ

The finite result for the complete action on shell can then be
written in terms of the constants of the near-boundary
expansion as

SC !on-shell βV3

κ25

�
−
h2
2
þ
�
28

27
−
4

3
c1

�
ϕ−ϕþ þ c3ϕ3

−

�
: ðA8Þ

Here we have also carried out the integration in the
Euclidean time direction, giving a factor of β ¼ 1=T,
and the three spatial directions, giving a formally infinite
volume factor which we denote by V3. If we instead vary
our action—including the counterterms—with respect to
the scalar field ϕ, we find the following:

δϕSC ¼ 1

κ25

Z
d4x

�
−
4

3
c1ϕ−δϕþ

þ
�
4

3
ð1 − c1Þϕþ þ 3c3ϕ2

−

�
δϕ−

	
: ðA9Þ

This variation should vanish on solutions, but there are
several possible ways to make that happen.
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1. Standard quantization

In the standard case, the leading falloff ϕ− is fixed. With
this choice, the dual CFT has a dimension-8=3 (single-
trace) operator Ψ. A geometry with boundary condition
ϕ− ¼ 0 is dual to an undeformed state of this CFT, and a
geometry obeying ϕ− ¼ Λ is dual to a state of the deformed
CFT SCFT → SCFT þ ΛΨ.
Fixing ϕ− means δϕ− ¼ 0. To make the variation of the

action above vanish on solutions, we are forced to set
c1 ¼ 0. The expectation value of the dual operator is then
given by

κ25
δϕSC
δϕ−

¼ 4

3
ϕþ þ 3c3ϕ2

−: ðA10Þ

Note that the constant c3 of the finite counterterm is still
unfixed and that the expectation value depends on it. The
on-shell action becomes

SC !on-shell βV3

κ25

�
−
h2
2
þ 28

27
ϕ−ϕþ þ c3ϕ3

−

�
: ðA11Þ

2. Alternate quantization

In the mass range (16), one can instead choose to fix the
subleading falloff ϕþ—this is the choice we are mainly
interested in, since it also allows for multitrace deforma-
tions. With this choice, the dual CFT has a dimension-4=3
single-trace operator Ψ. A geometry with boundary con-
dition ϕþ ¼ 0 is dual to an undeformed state of this CFT,
and a geometry obeying ϕþ ¼ Λ is dual to a state of the
deformed CFT SCFT → SCFT þ ΛΨ.
Fixing ϕþ means δϕþ ¼ 0. To make the variation of the

action vanish on solutions, we are then forced to set c1 ¼ 1
and c3 ¼ 0. Then the expectation value of the dual operator
is given by

ψ ≡ κ25
δϕSC
δϕþ

¼ −
4

3
ϕ−: ðA12Þ

The on-shell action becomes

SC !on-shell βV3

κ25

�
−
h2
2
−

8

27
ϕ−ϕþ

�
: ðA13Þ

3. Double- and triple-trace deformation

We now consider deforming the alternate quantization
CFT by a double- and triple-trace deformation. This
requires the addition of a new, noncovariant counterterm
to the action. We thus define the full action to be
SC ¼ Sbulk þ SGH þ SCT þ SW , with

SW ¼ 1

κ25

Z
d4x

ffiffiffiffi
G

p
½ψW0ðψÞ −WðψÞ� ðA14Þ

and ψ given by (A12). As in the previous subsection, we set
c1 ¼ 1. The on-shell action becomes

SC !on-shell βV3

κ25

�
−
h2
2
−

8

27
ϕ−ϕþ þ c3ϕ3

−

þ ψW0ðψÞ −WðψÞ
�
; ðA15Þ

and its variation is

δϕSC ¼ 1

κ25

Z
d4x

�
−
4

3
ϕ−δϕþ þ 3c3ϕ2

−δϕ−

þ 16

9
ϕ−W00ðψÞδϕ−

	

¼ 1

κ25

Z
d4x

�
−
4

3
ϕ−δ

�
ϕþ −

9

8
c3ϕ2

− þW0ðψÞ
�	

:

ðA16Þ

We can see that in this setup, the constant c3 simply shifts
the cubic term in W, so we will set c3 ¼ 0 and instead let

WðψÞ ¼ f
2
ψ2 þ g

3
ψ3; ðA17Þ

giving

SC !on-shell βV3

κ25

�
−
h2
2
−

8

27
ϕ−ϕþ þ 8

9
fϕ2

− −
128

81
gϕ3

−

�

ðA18Þ

and

δϕSC ¼ 1

κ25

Z
d4x

�
−
4

3
ϕ−δ

�
ϕþ −

4

3
fϕ− þ 16

9
gϕ2

−

�	
:

ðA19Þ

The variation now vanishes on solutions with the boundary
condition

ϕþ −
4

3
fϕ− þ 16

9
gϕ2

− ¼ J; ðA20Þ

with J a constant. This very general boundary condition
allows for a single-, double-, and triple-trace deformation of
the original CFT.
The field theory generating functional W½J� is equal to

the gravitational on-shell action. For uniform fields and
sources, we define wðJÞ≡ κ25W½J�=ðβV3Þ; then we can
write
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wðJÞ ¼ −
h2ðJÞ
2

−
8

27
ϕ−ðJÞJ þ

40

81
fϕ2

−ðJÞ −
256

243
gϕ3

−ðJÞ:
ðA21Þ

Here we have used (A20), and we emphasize that in this
expression, h2 and ϕ− should be regarded as functions of J,
which we need to solve the full gravitational equations of
motion to determine.
To get an expression for the effective potential, we

substitute (A12), (A20), and (A21) into (29), giving

VðψÞ ¼ −wðJÞ þψJ ¼ h2ðψÞ
2

þ 7

9
ϕþðψÞψ þ f

2
ψ2 þ g

3
ψ3:

ðA22Þ

Note that all the nontrivial information is contained within
the coefficients h2 and ϕþ, which as we indicate should
now be regarded as functions of ψ ¼ − 4

3
ϕ−; these must be

extracted from numerical solutions. Meanwhile, the multi-
trace deformations give simple polynomial contributions.
We can furthermore include also the possibility of a single-
trace deformation ΛΨ by shifting J → J − Λ in (A20)
before substituting it into (29), giving

VðψÞ ¼ h2ðψÞ
2

þ 7

9
ϕþðψÞψ þ Λψ þ f

2
ψ2 þ g

3
ψ3: ðA23Þ

APPENDIX B: EXACT RESULT FOR
THE EFFECTIVE POTENTIAL AT

LARGE TEMPERATURES

As explained in Sec. II, the second derivative of the
effective action gives the inverse of the two-point function.
In the gravitational bulk, two-point functions can be
computed by a fluctuation analysis. For our particular
holographic model, we derived (54), which we reproduce
here,

Γ2 ¼ −
�
3

4

Zþð0Þ
ϕ

Z−ð0Þ
ϕ

þW00ðvÞ
�
þ 3

4

Z−ð2Þ
ϕ Zþð0Þ

ϕ − Z−ð0Þ
ϕ Zþð2Þ

ϕ

ðZ−ð0Þ
ϕ Þ2

k2

þ…: ðB1Þ

Here, the first term of order k0 should equal the second
derivative of the effective potential.
In general we can only determine these terms numerically.

However, in the limit of small field values—or equivalently,
large temperatures—the background approaches pure AdS-
Schwarzschild, where it is possible to find an analytic
solution. In this background, the two gauge-invariant modes
in (44) decouple, and the equation forZϕðrÞwith k ¼ 0 takes
the form

Zð0Þ00
ϕ ðzÞ − 3þ z4

z − z5
Zð0Þ0
ϕ ðzÞ þ 32

9

Zð0Þ
ϕ ðzÞ

z2 − z6
¼ 0; ðB2Þ

where we have switched to the radial coordinate
z ¼ rH=r. This can be solved in terms of hypergeometric
functions as

Zð0Þ
ϕ ðzÞ ¼ c1z4=32F1½1=3; 1=3; 2=3; z4�

þ c2z8=32F1½2=3; 2=3; 4=3; z4�: ðB3Þ

Regularity on the horizon z ¼ 1 imposes

c2
c1

¼ −
Γð2=3Þ3

Γð1=3Þ2Γð4=3Þ : ðB4Þ

Expanding the result near the AdS boundary at z ¼ 0, we
then find

Zþð0Þ
ϕ

Z−ð0Þ
ϕ

¼ −
π3=2r4=3H

18Γð7=6Þ3 : ðB5Þ

Plugging into (B1) and expressing the result in units of
temperature, where for AdS-Schwarzschild T ¼ rH=π, this
provides the coefficient V2 in the small-field (or high-T)
expansion of the effective potential (32). The result is

V2 ¼
9π17=6

Γð1=6Þ3 ; ðB6Þ

which is what we quote in (34). This also agrees with the
analysis in [26].

APPENDIX C: GAUGE-INVARIANT
FLUCTUATION EQUATIONS

The gauge-invariant modes introduced in (44) satisfy the
two coupled linear second-order differential equations,

Z00
ϕðrÞþAZ0

ϕðrÞþBZ0
HðrÞþCZϕðrÞþDZHðrÞ¼ 0 ðC1Þ

Z00
HðrÞþEZ0

HðrÞþFZ0
ϕðrÞþGZHðrÞþHZϕðrÞ¼0; ðC2Þ

with

A ¼ 1

r
−
rPðϕÞ
3hðrÞ ; ðC3Þ

B ¼ e2χðrÞrð3P0ðϕÞ þ 2rPðϕÞϕ0ðrÞÞ
hðrÞθðrÞ ; ðC4Þ
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C ¼ −
4r2ϕ0ðrÞ2PðϕÞ

θðrÞ −
6rϕ0ðrÞP0ðϕÞ

θðrÞ −
k2

r2hðrÞ

−
rϕ0ðrÞP0ðϕÞ þ 3r2P00ðϕÞ

3hðrÞ ; ðC5Þ

D¼ r2e2χðrÞð3P0ðϕÞþ2rPðϕÞϕ0ðrÞÞðPðϕÞ−hðrÞϕ0ðrÞ2Þ
6hðrÞ2θðrÞ ;

ðC6Þ

E ¼ rPðϕÞ
3

�
36

θðrÞ −
1

hðrÞ
�
−
2

3
rϕ0ðrÞ2 þ 5

r
; ðC7Þ

F ¼ 0; ðC8Þ

G ¼ −
9k2 þ r4PðϕÞϕ0ðrÞ2

9r2hðrÞ þ 12PðϕÞ
θðrÞ þ 4

r2

þ r2ϕ0ðrÞ4
9

−
4

3
ϕ0ðrÞ2; ðC9Þ

H ¼ e−2χðrÞ

9hðrÞθðrÞ ðθðrÞ − 18hðrÞÞ

× ð12rhðrÞPðϕÞϕ0ðrÞ þ θðrÞP0ðϕÞÞ; ðC10Þ

and where we defined

θðrÞ≡ hðrÞðr2ϕ0ðrÞ2 þ 6Þ − r2PðϕÞ: ðC11Þ
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