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Abstract: Forecasting medical costs is crucial for planning, budgeting, and efficient decision making
in the health industry. This paper introduces a proposal to forecast costs through techniques such
as a standard model of long short-term memory (LSTM); and patient grouping through k-means
clustering in the Keralty group, one of Colombia’s leading healthcare companies. It is important to
highlight its implications for the prediction of cost time series in the health sector from a retrospective
analysis of the information of services invoiced to health companies. It starts with the selection of
sociodemographic variables related to the patient, such as age, gender and marital status, and it is
complemented with health variables such as patient comorbidities (cohorts) and induced variables,
such as service provision frequency and time elapsed since the last consultation (hereafter referred
to as “recency”). Our results suggest that greater accuracy can be achieved by first clustering and
then using LSTM networks. This implies that a correct segmentation of the population according
to the usage of services represented in costs must be performed beforehand. Through the analysis,
a cost projection from 1 to 3 months can be conducted, allowing a comparison with historical data.
The reliability of the model is validated by different metrics such as RMSE and Adjusted R2. Overall,
this study is intended to be useful for healthcare managers in developing a strategy for medical cost
forecasting. We conclude that the use of analytical tools allows the organization to make informed
decisions and to develop strategies for optimizing resources with the identified population.

Keywords: cost; LSTM neural networks; cluster; health; cohorts

1. Introduction

Healthcare is one of the largest industries and services of the global economy, one
that has been significantly increasing until it becoming one of the biggest challenges of
our time [1]. According to the World Health Organization (WHO), healthcare represented
7.56% of Europe’s gross domestic product (GDP) in 2015 [2]. In 2018, the total healthcare
expenditure of the United States was 16.8% of its GDP (the highest in the world) (WHO-
GDP) [2]. The national healthcare expenditure of the United States in 2018 was USD
3.8 trillion, but forecasts show that these costs will increase up to USD 6.2 trillion dollars by
2028 [3]. Among others, one reason for this increase is the misuse of medication and the
duplication of procedures by doctors [4].

In Colombia, according to the National Government, public health issues have been
prioritized to guarantee equality; thus, for 2020, the budget was USD 8 billion, with an
8.12% increase since 2019, when it was USD 7.45 billion [5,6]. In this sense, the public health
sector became one of the national sectors with the highest allocation of resources in the
national budget.

To be in line with the General Health and Social Security System (SGSSS), the Keralty
organization, one of the main actors in the Colombian health system [7], designed the
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integrated care model from a four-goal perspective: (i) the value generated by interventions
relative to health results; (ii) the experience of assisting people; (iii) cost-efficiency (sustain-
ability, adequate and smart use of resources); and (iv) the experience and involvement of
health teams that perform interventions—all this within a framework in which the focus
is the care provided to people and the individual and aggregated results obtained for the
incurred costs (efficiency).

The Colombian health system has two regimes: public and private. The Public Social
Security and Health Regime (General Health and Social Security System, SGSSS) provides
universal health coverage to the entire Colombian population and access to basic quality
healthcare through the payment of fair premiums. The efficiency and quality of the service
are the foremost priorities: the regime intends to improve health conditions by allocating
resources for primary care, prevention in rural and vulnerable areas, and making sure that
all health services meet the highest possible standards based on the available resources [8].
The general social security system has two regimes: contributive and subsidized. The
contributive regime covers formal workers, pensioners, and independent workers, while
the subsidized plan covers any other person who cannot afford it [9,10].

In the private health regime, people voluntarily choose a private and supplemental
health insurance policy once they have fulfilled their economical obligation to contribute to
the SGSSS [9]. In the private health regime, prepaid health service companies finance the
risk that a person may face when getting sick. This means that a person voluntarily selects
a healthcare plan to pay in advance for any type of expenses related to an eventual sickness.
This means that the client agrees to pay a fee for the service, and the company must issue
a financing contract with the coverage conditions of the plan and the corresponding rate.
Both the public and private regimes require the anticipation of medical costs to facilitate
their planning.

The implementation of advanced analytics projects allows the different companies of
the Keralty group to anticipate potential changes in medical costs [7]. This article presents
two proposals based on the exploration of variables such as comorbidities, seniority, res-
idence, age, gender, and economic situation, among others. It is critical to understand
how to project costs. First, prediction through LSTM networks and the use of grouping
by characteristics allows segmenting the population to project the costs of a particular
population using LSTM networks.

LSTM stands for “long short-term memory”, introduced as an improved RNN algo-
rithm in 1997 [11]. LSTMs are an extension of previous RNNs which are able to retain a
memory in the long term and use it to learn patterns in longer sequences of source data.
Before LSTMs, RNNs were forgetful. They could retain a memory, but only about the steps
of the process in its immediate past. LSTMs, however, introduce loops that can generate
long-lasting gradients [12,13]. They can retain the long-term patterns they discover as they
run along with their loops.

The other technique we used was clustering: it could also be considered an exploratory
data analysis (EDA) technique that helps discover hidden patterns or data structures. The
clustering technique may also work as an independent tool to obtain information about data
distribution [11]. A cluster is the collection of data objects that resemble each other within
the same group (class or category), and which are different from the objects of the other
clusters [13]. Clustering is an unsupervised learning technique where there are predefined
classes and previous pieces of information that define how data must be grouped or labeled
in separate classes.

There are a variety of clustering algorithms, and the most popular ones include
hierarchical clustering [14,15], Gaussian mixture models [16,17], and others within the
Sklearn package [18]. In our case, we used k-means, an algorithm that consists of dividing
the data points of x by a set of k clusters, where each data point is allocated to its closest
cluster. This method is defined by the target function which tries to minimize the sum of all
the squared distances within one cluster and for all clusters [19,20]. This work shows the
process of grouping and the classification of accredited health entities using k-means [21].
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This allowed the accredited health sector institutions to be grouped into two large clusters.
The first was defined as institutions in the process of financial consolidation; and the second
cluster was defined as large health institutions. The business profiles of the institutions
under study were thus defined.

Specifically, we summarize our contribution as follows. First, we predict the medical
cost of a healthcare organization using the described techniques and suggest an avenue
of improvement in further work: namely that understanding how and why cost-drivers
increase may provide information about the risk factors and the possible starting points for
defining preventive measures and strategies.

This paper is structured as follows. In Section 2, we show related works. In Section 3,
we describe the methodology and information about the data, data-processing operations,
and the methods we used to evaluate the problem. In Section 4, we first present the results
obtained with the LSTM networks and continue presenting the results obtained from
combining cluster segmentation with LSTM networks. We then proceed in Section 5 to
discuss the results to finally summarize the conclusions and directions for future research.

2. Related Work

The cost forecast is one of the main objectives of different time series methods when
these methods are applied in diverse fields. A time series is a sequence of measurements
over time rarely mapped in equal intervals. Time series forecasting can be applied to diverse
sectors, and in this case, specifically to the prediction of medication costs as performed
in papers by, e.g., Jaushic and Shruti [12,22], using different techniques such as ARIMA
and LSTM. Another work by Kabir [23] using RL, RNN, and LSTM showed a sustainable
approach to forecast the future demands of hospital beds, considering the hospital capacity
and the population of the region in order to plan the future increase in required hospital
beds. Scheuer [24] used electronic medical records for Finnish citizens over sixty-five years
of age to develop a sequential deep learning model to predict the use of health services in
the following year using RNN and LSTM networks. Another work which uses clustering
techniques is that by Mahmoud [25]. This author studied hip fracture care in Ireland and,
using k-means clustering, showed that elderly patients are grouped according to three
variables: age, length of stay, and time to surgery. According to Mahmoud, the cost of
treating a hip fracture was estimated to be approximately EUR 12,600. He identified hip
fractures as one of the most serious injuries with long hospital admissions.

In addition, Miroslava [26] used k-means to find the most appropriate clinical vari-
ables between 23 and 26 variables capable of efficiently separating patients diagnosed
with type 2 diabetes mellitus (T2DM) with underlying diseases such as arterial hyperto-
nia (AH), ischemic heart disease (CHD), diabetic polyneuropathy (DPNP), and diabetic
microangiopathy (DMA).

The following Table 1 provides a summary of the related papers and their input variables.

Table 1. Models and input variables from related papers.

Paper Method Cost Variables No-Cost Variables

Kaushik (2017) [12] Arima, LSTM Medication cost

Demographic variables of patients (age, gender,
region, year of birth) and clinical variables of
patients (type of admission, diagnoses, and

procedure codes)

Shruti (2020) [22] Arima, LMP, LSTM Medication cost

Predict the average weekly expenditure of patients
on certain pain medications, selecting two
medications that are among the ten most

prescribed pain medications in the US
Kabir (2021) [23] RL, RNN, LSTM Bed cost Number of beds, occupation, and patients

Scheuer (2020) [24] Lasso, LightGBM, LSTM Cost of visits by
family doctor

Number of patients, number of visits, average
visits per patient, procedure codes, and diagnoses
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3. Materials and Methods

This study explores two different approaches to forecasting medical costs in the
Colombian public health insurance. The steps of the methodology applied to meet the
objectives of this paper are shown in Figure 1.
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3.1. Data Collection

In this research, we used datasets from the Keralty health company [7]. The data
for this retrospective analysis were obtained from one of the modules of medical and
affiliate accounts of the Core Beyond Health application developed by Sonda [27]. This
includes invoices from medical services corresponding to patient assistance through the
public health plan. We also used the Vacovid repository (Proprietary Source) to obtain the
information of patients that are classified within any health conditions or cohorts. The
dataset contains all the information available on the costs of services received by the users
between 2017 and 2021. Figure 2 shows the datasets and the variables of each data source.

Algorithms 2022, 15, x FOR PEER REVIEW 5 of 21 
 

 
Figure 2. Variables by source. 

3.2. Data Processing 
In this step, we transformed raw data into an adequate and understandable format. 

In the real world, datasets contain errors. Therefore, this step solves errors and the da-
tasets become easy to manage [28]. Below, we briefly describe the most important data we 
followed in each dataset:  

The following transformations from the data: 
1. Dates are converted into DateTime Y%–M%–D% and thus dates are formatted; 
2. Empty fields of dates are denoted by 1900–01–01; 
3. Empty fields are mapped in 0 values; 
4. The “TotalComorbidities” field is created, allowing to identify the number of diag-

noses or cohorts of a patient;  
5. Category values are encoded; 
6. Mappings to a dictionary of types of documents; 
7. Exceedingly small provision values of less than 1000 are disregarded;  
8. DateTime Y%–M%–D% dates are formatted;  
9. The “Number” and “InvoicedValue” fields are converted into int. format. 

After unifying and cleaning the dataset, we ended up with a total of 160.463.128 en-
tries about the invoices for the provided medical services. Table 2 shows the variables 
selected to work in the simulators with a 5% sample corresponding to 3.202.610 services 
with 34 different attributes. The output variable in this study is “InvoicedValue”.  

Table 2. Selected attributes. 

Id Column Entries Description 
0 ProvisionDate 3.202.610 Service provision date 
1 Identification 3.202.610 Affiliate identification 
2 ProvisionCode 3.202.610 Provision identification 
3 Number of services 3.202.610 Number of invoiced services 
4 InvoicedValue 3.202.610 Invoice value 
5 Principal_Group_id 3.202.610 Principal grouping, e.g., surgery 
6 Group_1_id 3.202.610 e.g., hospital surgery 
7 Group_2_id 3.202.610 e.g., abdominal/neck/neurosurgery 
8 Group_3_id 3.202.610 e.g., bariatric appendicectomy  
9 Gender 0—84.011 Gender 

Figure 2. Variables by source.

3.2. Data Processing

In this step, we transformed raw data into an adequate and understandable format. In
the real world, datasets contain errors. Therefore, this step solves errors and the datasets
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become easy to manage [28]. Below, we briefly describe the most important data we
followed in each dataset:

The following transformations from the data:

1. Dates are converted into DateTime Y%–M%–D% and thus dates are formatted;
2. Empty fields of dates are denoted by 1900–01–01;
3. Empty fields are mapped in 0 values;
4. The “TotalComorbidities” field is created, allowing to identify the number of diag-

noses or cohorts of a patient;
5. Category values are encoded;
6. Mappings to a dictionary of types of documents;
7. Exceedingly small provision values of less than 1000 are disregarded;
8. DateTime Y%–M%–D% dates are formatted;
9. The “Number” and “InvoicedValue” fields are converted into int. format.

After unifying and cleaning the dataset, we ended up with a total of 160,463,128 entries
about the invoices for the provided medical services. Table 2 shows the variables selected
to work in the simulators with a 5% sample corresponding to 3,202,610 services with
34 different attributes. The output variable in this study is “InvoicedValue”.

Table 2. Selected attributes.

Id Column Entries Description

0 ProvisionDate 3,202,610 Service provision date
1 Identification 3,202,610 Affiliate identification
2 ProvisionCode 3,202,610 Provision identification
3 Number of services 3,202,610 Number of invoiced services
4 InvoicedValue 3,202,610 Invoice value
5 Principal_Group_id 3,202,610 Principal grouping, e.g., surgery
6 Group_1_id 3,202,610 e.g., hospital surgery
7 Group_2_id 3,202,610 e.g., abdominal/neck/neurosurgery
8 Group_3_id 3,202,610 e.g., bariatric appendicectomy

9 Gender
0—84,011
1—1,965,111
2—1,153,488

Gender
0—no data

1—men
2—women

10 BirthDate 3.202,610 Date of birth of the affiliate
11 DeathDate 3,202,610 Date of death of the affiliate
12 MaritalStatus 3,202,610 Marital status (married/single/divorced)

13 Stratum

Socioeconomic stratum
0—1,168,949 0—no data
1—22,069 1—low–low
2—19,375 2—low
3—1,937,099 3—medium–low
4—26,785 4 —medium
5—7088 5—medium–high
6—21,275 6–high

14 Sisben 3,202,610 Marks if a beneficiary of social programs
15 WeeksContributedLastYear 3,202,610 Weeks contributed to the last year
16 ContinuousContributedWeeks 3,202,610 Weeks contributed since first affiliation
17 Regime 3,202,610 Contributive or subsidized
18 City 3,202,610 City where the service was provided
19 Rural 3,202,610 People living in the countryside. not in cities

20 CKD No—3,060,478
Yes—142,132 If patient has a chronic kidney disease

21 COPD No—3,058,721
Yes—143,889 If patient has COPD
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Table 2. Cont.

Id Column Entries Description

22 AHT No—2,318,889
Yes—883,721 If patient has arterial hypertension

23 Diabetes No—2,841,842
Yes—360,768 If patient has diabetes

24 Cancer No—3,047,414
Yes—155,196 If patient has cancer

25 HIV No—3,180,665
Yes—21,945 If patient has HIV

26 Tuberculosis No—3,201,777
Yes—833 If patient has tuberculosis

27 Asma No—3,139,088
Yes—63,522 If patient has asthma

28 Obesity No—2,404,289
Yes—798,321 If patient has obesity

29 Transplant No—3,190,156
Yes—12,454 If patient has transplant

30 SeniorAdultProfile_id 3,202,610 Marks if a person is a senior adult
31 FrailInterpretation_id 3,202,610 Score to measure frailty diagnosis
32 AllocatedProvider_id 3,202,610 Provider allocated for vaccination

33 TotalComorbidities

Number of cohorts of a person
0—1,842,012 0—no cohorts
1—588,168 1—with one cohort
2—439,766 2—with two cohorts
3—237,582 3—with three cohorts
4—75,496 4—with four cohorts
5—17,284 5—with five cohorts
6—2183 6—with six cohorts
7—119 7—with seven cohorts

34 Age 3,202,610 Age

In Table 3, we show the Spearman correlation coefficients between the selected vari-
ables and the invoiced values for patients who are not marked with any morbidity: “With-
out comorbidity” means that it is not classified under any health cohort, as well as those
marked with at least one morbidity “With one morbidity” designates patients belonging to
at least one or more health cohorts. Similarly, in Table 4, we show the Pearson correlation
coefficients between the listed variables and the invoiced value for patients within each
cohort or pathology. This process allowed us to identify the most statistically significant
variables that can be associated with the medical cost.

Table 3. Correlation of variables with or without morbidity with the InvoicedValue.

Variable Without Comorbidity With One Morbidity

Gender −0.007411 −0.001028
Principal_Group_id −0.002513 0.056446

Stratum 0.017053 0.042861
City 0.072799 0.034980

SeniorAdultProfile_id 0.003306 0.002666
FrailInterpretation_id 0.000963 −0.000554
AllocatedProvider_id 0.081264 0.072986

Age_Provision −0.049595 0.043494
WeeksContributedLastYear 0.003423 0.022014

ContinuousContributedWeek 0.002380 0.038922
Number of services 0.400405 0.443571
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Table 4. Correlation with the InvoicedValue field.

Variable CKD COPD AHT Diabetes Cancer HIV Tuber Asma Obesity Transplant

Gender 0.017622 0.000404 0.004497 0.004986 −0.009991 −0.002089 0.270194 0.046490 −0.023649 0.028032
Principal_Group_id 0.079713 0.212875 0.082054 0.095878 −0.009113 −0.416173 0.257335 0.161863 0.068553 −0.450470

Stratum 0.028784 0.049269 0.043887 0.052435 −0.022120 −0.037370 −0.112660 0.068190 0.043283 −0.029483
City 0.007663 −0.018505 0.027033 0.020959 0.003355 0.212705 0.224876 −0.027337 0.036065 0.065647

SeniorAdultProfile_id 0.025530 0.029828 0.000947 −0.005390 0.044711 0.017209 0.080920 0.006746 −0.008730 0.061342
FrailInterpretation_id −0.018983 0.017184 −0.002330 −0.018542 0.030893 0.030642 0.063878 −0.001963 −0.013096 0.028646
AllocatedProvider_id 0.006603 0.084994 0.070379 0.083724 0.053718 0.108541 0.272037 0.107602 0.070681 0.055575

Age_Provision 0.046911 0.054943 0.079575 0.086535 −0.034936 −0.006842 −0.261186 0.120718 0.024812 −0.040887
WeeksContributed-

LastYear 0.019178 0.016896 0.020329 0.020762 −0.004686 0.000072 0.202423 0.060753 0.018878 0.039546
ContinuousContr-

ibutedWeeks 0.031204 0.039401 0.041397 0.051791 −0.018609 −0.045660 −0.072248 0.088931 0.038706 −0.046542
Number of services 0.469864 0.541773 0.456648 0.480466 0.425494 0.251777 0.706559 0.485456 0.439157 0.304911

The only variable that has a relationship with the cohorts with a correlation coefficient
close to 0.5 which is “Number of services”; if a coefficient that is assigned is a substan-
tial (negative or positive) number, it has influence on the prediction. Conversely, if the
coefficient is zero, it has no impact on the prediction.

3.3. Model Implementation

The cost forecast was performed under two proposals: cost analysis by selecting the
variables using LSTM neural networks, and finally, segmentation through the Cluster to
analyze the cost of each cluster using the same techniques. Our deep learning LSTM regres-
sion model was developed, with Keras [29,30] and Sklearn [31], using Python programming
language [32]. We also used Streamlit [33], which allowed us to create a web application to
display our results, and Google Cloud Platform AI Platform [34], to train the automatic
learning models, host the model in the Cloud and finally make the model available for the
users on cloud storage. The usage of LSTM networks is motivated by the long and short-
term seasonalities involved in the medical cost time series, such as Christmas, summer, and
weekdays. This makes the usage of LSTM models more appropriate.

3.3.1. LSTM Networks

This neural network, over time, can connect three pieces of information: current input
data; the short-term memory received from the preceding cell (the so-called hidden state);
and the long-term memory of more remote cells (the so-called cell state)—from which the
RNN cell produces a new hidden state [12]. Figure 3 shows an LSTM memory cell.

Machine learning algorithms work best when numerical inputs are scaled to a standard
range. Normalization and standardization are the two most popular techniques for scaling
numerical data before modeling. Normalization scales each input variable separately to
the range of 0–1, which is the range for floating-point values where we have the highest
accuracy. Standardization scales each input variable separately by subtracting the mean
(called centering) and dividing by the standard deviation to change the distribution to have
a mean of zero and a standard deviation of one.
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To normalize the data and feed the LSTM, we used MinMaxScaler from sklear.preprocessing
to scale our data between -1 and 1. The feature range parameter was used to specify the
range of the scaled data. Then, we converted the training and test data into a time series
problem; we must predict a value in time T based on the month data. To train the LSTM
network with our data, we needed to convert the data into a 3D format in the form accepted
by LSTM. This means that the input layer expects a 3D data matrix when fitting the model
and making predictions, even if the specific dimensions of the matrix contain only one
value, for example, a sample or a feature. When defining the input layer of your LSTM
network, the network assumes that you have one or more samples and requires that you
specify the number of time steps and the number of features.

There is not a general rule as to how many nodes or how hidden layers must be elected,
and very often a trial-and-error approach may yield the best results for each problem [37].
As this is a simple network, we started trying with four neurons, then with eight, and
finally, a test was performed with sixteen neurons, which was the first parameter of the
LSTM layer. The second parameter was “return sequences”, which was established in
false, as we did not add more layers to the model. The last parameter was the number
of indicators [12]. We also added an exclusion layer to our model to prevent overfitting.
Finally, we added a dense layer at the end of the model; the number of neurons on the
dense layer was established at 1, as we wanted to predict a single number value in the
output. In this paper, we used the Adam optimizer [38] and we used mean squared error
as the loss metric [39] to show the implementation of the LSTM network.

Some of the parameters that can be modified and which are very important to achiev-
ing the good performance of the model are the activation function and the cost function.
Activation functions largely control what information is propagated from one layer to the
next. By combining non-linear activation functions with multiple layers, network models
are able to learn non-linear relationships. The most commonly used activation functions
are relu and sigmoid. The activation function relu will generate an output equal to zero
when the input is negative, and an output equal to the input when the input is positive.
As such, the activation function retains only the positive values and discards the negative
ones, giving them an activation of zero. The sigmoid activation function takes any range of
values at the input and maps them to the range of 0–1 at the output.

Another parameter is the cost function, also called the loss function, which quantifies
the distance between the actual value and the value predicted by the network. In other
words, it measures how incorrect the network is when making predictions. In most cases,
the cost function returns positive values. The network’s predictions are improved when
the cost value is close to zero.

An epoch corresponds to the number of times that the algorithms will be executed. In
each cycle (epoch), all the training data pass through the neural network so that it learns
about them:

model = Sequential()
model.add(LSTM(2))

model.add(Dropout(0.2))
model.add(Dense(1))

model.compile(optimizer=‘adam’, loss=‘mean_squared_error’)
model.fit(batch_size=1, verbose=0, epochs = 20, shuffle = False)

(1)

A long short-term memory network (LSTM) is one of the most popular neural net-
works for analyzing time series. The ability of an LSTM to remember previous information
makes it ideal for such tasks [40].

3.3.2. Clusters

In this case, we use it to try to identify patients with the same characteristics, as shown
in Figure 4.
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To implement the k-means clustering algorithm, one must first choose a k value, i.e.,
the number of clusters to be formed. Then, one must randomly select k data points from
the dataset as the centers/initial centers of the clusters. Then, the distance between the
data point and the cluster’s centroid is calculated; as such, each datum is assigned to the
cluster with the closest centroid. For each cluster, the new mean is estimated based on the
data points of the conglomerate. This does not end until the mean of the clusters remains
stable under a predetermined variation limit or until the maximum number of iterations
is reached.

For the clustering process carried out in this paper, we considered the related co-
morbidities, namely “Age”; “WeeksContributedLastYear”, corresponding to the weeks
contributed to in the last year; “ContinuousContributedWeeks”, corresponding to the
weeks contributed since first affiliation—in addition to two new variables which are “fre-
quency”, corresponding to the number of services provided a to patient; and “recency”,
corresponding to the last time they received medical assistance. In addition, the cohort
variables are used for CKD, COPD, AHT, diabetes, cancer, HIV, tuber, asthma, obesity,
and transplant.

We determined the most suitable number of clusters through the elbow method [41,42].
To this end, we varied the number of clusters from 1 to 20 and calculated the WCSS (within-
cluster sum of squares). This designates the sum of squared distances between each point
and the centroid in the calculated clusters. The point after which the curve does not
decrease quickly is the appropriate value for K, as shown in Figure 5.
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Figure 5. The elbow method is used to determine the number of clusters [41,42].

After choosing the number of clusters, a manual description of the characteristic of
each cluster was made to be able to identify each group, as seen in Table 5.

To confirm the result of the optimal number of clusters indicated by the elbow tech-
nique, we ran the silhouette method, which is also a method for finding the optimal number
of clusters, interpretation, and the validation of the consistency of data within clusters. See
Table 6. The silhouette method calculates the silhouette coefficients of each point, which
measure the extent to which a point resembles its own cluster compared to other clusters.
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Table 5. Cluster manual description.

Cluster Description

0 HighAge, COPD-AHT
1 YoungAdult, HEALTHY
2 Adult, AHT-OBESITY
3 SeniorAdult, AHT
4 Adult, OBESITY
5 SeniorAdult, AHT-DIABETES-OBESITY
6 Inactive
7 SeniorAdult OBESITY-AHT
8 SeniorAdult, HEALTHY
9 SeniorAdult, CANCER-AHT
10 HighAge, CKD-AHT
11 Young, HEALTHY, LittleUse
12 Adult, CANCER
13 HighAge, COPD-AHT-OBESITY
14 Young, HEALTHY, RecentUse

Table 6. Silhouette score for k (clusters).

K (Clusters) Silhouette Score

4 0.41823
5 0.43770
6 0.30693
7 0.32616
8 0.333503
9 0.34014
10 0.31921
11 0.32706
12 0.33285
13 0.344021
14 0.30254
15 0.34314

In this case, the optimal number of clusters is 5; however, for a better differentiation of
patients with different medical conditions in cohorts and according to suggestions from
clinical experts inside in our organization, in the interest of observing, over a period of time,
which of these groups did or did not have the expected outcome associated with mortality,
higher fatality events and higher cost events, it was decided that a total of 15 clusters would
be used.

4. Results

After applying the clustering and training predictive models using the LSTM network,
we found a set of features that give the best performance. These features are shown in
Table 7 below.

Table 7. Proposed models with specific parameters.

Method Parameters

LSTM 16, batch_input_shape= (1, X_train. shape[1], X_train.shape[2]), stateful=True)
Clustering n_cluster = 15, scale_method = ‘minmax’, max_iter = 1000

For both models, the LSTM network model and clustering were executed and the data
were grouped into two variables, namely ProvisionDate and InvoicedValue, to predict the
cost of services for more than 1,558,613 patients in the sample between 2017 and 2021. The
first 80% were used to train the models, and the remaining 20% were used to assess them.
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4.1. LSTM Networks

For a summary of the model run with sixteen hidden memory cells, see (2):

________________________________________________
Layer(type) Output Shape Param#
===============================
lstm_8(LSTM) (1, 16) 1280
dropout_8(Dropout) (1, 16) 0
dense_8 (Dense) (1, 1) 17
===============================
Total params: 1297
Trainable params: 1297
Non-trainable params: 0

(2)

For the result of the execution of the last three epochs, see (3):

Epoch 18/20
46/46 [================] − 0 s 1 ms/step − loss: 0.0739
Epoch 19/20
46/46 [================] − 0 s 1 ms/step − loss: 0.0643
Epoch 20/20
46/46 [================] − 0 s 1 ms/step − loss: 0.0690

(3)

Table 8 shows the RMSE for standard models with different numbers of memory cells.
The lowest RMSE was obtained (=89.03) for a standard LSTM with 16 hidden memory cells.

Table 8. Results for the different memory cells.

No. of Layers No. of Memory Cells RMSE

1 standard LST 4 104,06
6 93,12
8 93,78

10 92,12
12 94,28
14 95,99
16 89,03

One of the features is the prediction of a particular population, showing the current
and projected cost. This feature allows us to filter by conditions such as gender, healthcare
regime, marital status, and whether they have a cohort or condition such as diabetes, CKD,
hypertension. Additional cohort variables can be projected for one to three months. Figure 6
shows the result with the following filters: woman as gender and diabetes condition.
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4.2. Clustering

In this section, we visually explore the discovered clusters to look for relations and
insights. The clusters are examined with respect to patient characteristics, outcomes, and
standards of care considering variables such as age, frequency, and recency. A discussion is
then presented to better interpret these results.

4.2.1. Distribution by Age Cluster (in Years)

First, we explored the clusters discovered in terms of age. In the Figure 7, the behavior
of age is represented by the identified clusters, in which we can see that the clusters (0, 3, 7,
8, 10, 12 and 13) show older people with some health condition, in comparison with the
other clusters that show that the population is concentrated on younger people.
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4.2.2. Distribution by Frequency of Use Cluster

Second, we explored the variable frequency, as shown in Figure 8, where it can be
observed that all the people in the groups are attending medical consultations quite often.
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4.2.3. Distribution by Cluster of Last Attention Time (Recency)

We also explored the users by the variable recency, as can be seen in Figure 9, that
measures the time elapsed since the last medical service. All of them have recently seen a
doctor, unlike cluster 11 which comprises young patients which have not seen a doctor for
a long time. The rest of the clusters have had at least one visit recently.

4.2.4. Distribution by Cluster of Weeks Contributed since Last Year

This corresponds to the number of weeks contributed since the last year Figure 10,
showing outliers in clusters 1 and 4. The rest of the clusters show that all patients are
continuous since their affiliation date. Cluster 14 shows people who are newly enrolled.
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4.2.5. Distribution by Cluster of Continuous Contributed Weeks

This shows the number of weeks that the users have been affiliated since their first
date of affiliation, as shown in Figure 11. It can be noticed that cluster 8 aggregates old
healthy users that have been affiliated for a prolonged period.
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The model was evaluated with 4 and 16 memory cells, showing the reliability when
first segmented by cluster, for all clusters except for clusters 1 and 3, where with 16, its
results are better. As shown in the Table 9, it is preferable to use 4 memory cells.

After defining the clusters, and according to the cluster selection, we predicted the cost
again using LSTM networks; this feature allows you to choose which cluster and over what
period to project it. In this case, we chose cluster 3, resulting in the following projection as
seen in Figure 12.
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Table 9. Result for clusters with different RSMEs.

Cluster Description Number RMSE (4) RMSE (16)

0 HighAge, COPD-AHT 43.403 58,69 61,71
1 YoungAdult, HEALTHY 380.158 601,59 623,36
2 Adult, AHT-OBESITY 122.125 83,70 105,02
3 SeniorAdult, AHT 123.463 34,14 27,02
4 Adult, OBESITY 205.765 97,57 206,74
5 SeniorAdult, AHT-DIABETES-OBESITY 71.647 129,95 211,48
6 Inactive 154.907 274,06 418,10
7 SeniorAdult OBESITY-AHT 64.867 31,27 107,55
8 SeniorAdult, HEALTHY 71.372 89,20 98,81
9 SeniorAdult, CANCER-AHT 36.429 29,17 52,67
10 HighAge, CKD-AHT 51.153 85,02 114,07
11 Young, HEALTHY, LittleUse 411.973 463,20 445,10
12 Adult, CANCER 37.006 51,94 69,43
13 HighAge, COPD-AHT-OBESITY 33.504 15,15 25,98
14 Young, HEALTHY, RecentUse 11.3965 122,09 167,99

As such, patients were better modeled and performance was slightly increased, instead
of working with the optimal values in performance provided by the elbow and silhouette
methods (see Tables 9 and A1 for details of the performance of both approaches). It is also
important to note that the allowance of 15 clusters, instead of 5, has also helped to identify
two clusters of inactive patients (6) and ‘Young and Healthy with Little Use’ patients
(cluster 11) whose predictability is not reliable (R2 < 0) and could be biasing the models
when using only five clusters.
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We reviewed previous cost prediction model studies, namely a standard short-term
memory model (LSTM) and a stacked LSTM model, to predict the monthly drug cost of
more than 50,000 patients between 2011 and 2015. For the single-layer LSTM model, they
obtained an RMSE value of 14.617 and an R2 value of 0.8048. For the stacked LSTM model,
the RMSE value was 13.693 and an R2 value of 0.8159 [12]. Another works predicted the
average weekly expenditure of patients on certain pain medications, with different models
such as Arima, MLP, and LSTM selecting two medications among the 10 most prescribed
pain medications in the US; the LSTM result yielded an RMSE value for medicine A of
143,69 and an R2 value of 0.77 [22].

Below are the metrics we adopted for each model. These are: root mean square error
(RMSE) [43,44]; mean absolute percentage error (MAPE) [45]; R2; and adjusted R2 [46]. The
most common metric used for regression purposes is the root mean square error (RMSE)
and it represents the square root of the average distance between the actual value and the
predicted value. This indicates the absolute adjustment of the model to the data; how close
are the observed data points to the model’s predicted values. The RMSE measurement is an
absolute mean of adjustment. As the square root of a variance, the RMSE can be interpreted



Algorithms 2022, 15, 106 15 of 19

as a standard deviation of the unexplained variable, and it has the useful property of
being in the same units as the response variable. Lower RMSE values indicate a better
adjustment [47,48].

Mean absolute percent error (MAPE) measures the average percentage error. It is
calculated as the average of the absolute percentage errors. MAPE is sensitive to scale
and becomes meaningless for low volumes or data with zero demand periods. When
aggregated or used with multiple products, the MAPE result is dominated by low volume
or zero products [45].

R-squared and adjusted R-squared are often used for explanatory purposes and explain
how well the selected independent variables explain the variability in their dependent
variables. The coefficient of determination or R2 is another measure used to assess the
performance of a regression model. The metric helps us compare our current model to a
constant baseline and tells us how much better our model is. The constant baseline is chosen
by taking the mean of the data and drawing a line at the mean. R2 is a scale-free score
which implies that regardless of whether the values are excessively large or excessively
small, R2 will always be less than or equal to 1 [22].

Adjusted R2 represents the same meaning as R2 but is an improvement on it. R2 suffers
from the problem that scores improve in increasing terms even though the model is not
improving. The adjusted R2 is always smaller than R2 as it adjusts for increasing predictors
and only shows an improvement if there is a real improvement [46].

In summary, when the LSTM network model is executed with the selected data, in this
case, women in the diabetes cohort, the data are grouped into two variables, “Provision-
Date” and “InvoicedValue”, which are those used in the network. The results are shown in
Table 10.

Table 10. LSTM network model results.

Model RMSE MAPE R2 Adj. R2

LSTM networks 89,03 36,25% 0.89 0.835

After segmenting patients and executing the LSTM network again for all clusters, we
obtained the following results shown in Table 11.

Table 11. LSTM network model results after segmenting patients.

Cluster Description RMSE MAPE R2 Adj. R2

0 HighAge, COPD-AHT 58,69 28,25% 0.881 0.821
1 YoungAdult, HEALTHY 601,59 25,42% 0.925 0.888
2 Adult, AHT-OBESITY 83,70 15,80% 0.940 0.910
3 SeniorAdult, AHT 34,14 4,93% 0.996 0.993
4 Adult, OBESITY 97,57 17,42% 0.940 0.910
5 SeniorAdult, AHT-DIABETES-OBESITY 129,95 41,43% 0.818 0.727
6 Inactive 274,06 2405,8% 0.031 −0.453
7 SeniorAdult OBESITY-AHT 31,27 12,16% 0.941 0.912
8 SeniorAdult, HEALTHY 89,20 60,38% 0.753 0.629
9 SeniorAdult, CANCER-AHT 29,17 9,67% 0.994 0.991

10 HighAge, CKD-AHT 85,02 17,93% 0.878 0.818
11 Young, HEALTHY, LittleUse 463,20 341,29% 0.206 −0.191
12 Adult, CANCER 51,94 17,28% 0.959 0.939
13 HighAge, COPD-AHT-OBESITY 15,15 9,42% 0.971 0.957
14 Young, HEALTHY, RecentUse 122,09 21,37% 0.956 0.934

5. Discussion

The purpose of this paper was to show techniques for predicting the costs of patients.
The first model is an approach to simulate costs considering the decrease or increase in a
particular population of a certain cohort. With the projected cost for each cohort, in case it
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decreases or increases, we can have an estimate of the costs that the company could save
so that it can implement strategies such as investing in promotion and prevention plans
for cohorts.

When we made the prediction with the initial values filtered by woman as gender and
with diabetes using the LSTM networks, we observed that the RMSE metric shows that, on
average, the mean prediction error corresponds to 89.03. In this case, MAPE indicates that,
on average, the forecast is wrong by 36.25%. For R2, 89% of the variations of the dependent
variable are explained by the independent variables of our model. We see that the R2

is high, indicating a high linear relationship between ProvisionDate and InvoicedValue.
Finally, the adjusted R2 value is 83% of the variability explained by the model, considering
the number of independent variables, as shown in Table 10.

With the other approach, when we do the clustering first using the k-means technique
with its fifteen groups and then run the LSTM network for each of the clusters as shown
in Table 11, we obtain better results. For RMSE, for clusters 0, 2, 3, 7, 8, 9, 10, 12, and 13,
they have a better average mean prediction error for each one. MAPE has a lower forecast
error for clusters 0, 2, 3, 4, 7, 9, 10, 12, 13, and 14. The R2 for all clusters indicates a high
relationship between the variables InvoicedValue and Date. Finally, the adjusted R2 value
for all clusters has a higher percentage of variability explained by the model. The values
for clusters 1, 5, 11, and 14 have a high percentage of adjusted R2, which can be interpreted
as good. However, it shows an RSME as an average prediction error that is high enough to
project. Clusters that did not perform as well, e.g., young, HEALTHY, and LittleUse are
users with little history, and therefore it is more complex to predict their behavior.

The main implication of our results is that combining the use of the clustering algo-
rithms to identify patient groups with deep learning LSTM networks to predict future
costs for these groups enables a more accurate prediction of the costs of patients for health-
care providers.

6. Conclusions

The results demonstrate the feasibility of segmenting the population by cluster
(k-means), and finally the LSTM network to project the cost of each group. Having a
tool that allows the organization to know the cost for the next month or up to three months
allows it to better provision resources. We do not consider it appropriate to project beyond
three months because the model may lose reliability. The results obtained show the validity
of the initial approach—which remains probabilistic—based on care events, which can be
improved with the incorporation of clinical variables.

This first phase estimates the probabilistic projection of costs grouped by population
segments to address a second phase of the project, which aims to consolidate a patient-
focused cost model based on their medical records in such a way that it allows us not
only to predict the potential services and costs related to each patient, but also to identify
the potential operational, clinical, and administrative strategies to improve the quality of
life of patients, preventing the accelerated development of diseases and/or events that
impair their health and consequently provide a better life expectancy and reduce future
costs related to these potential events. This approach allows us to help health organizations
to be ready for providing healthcare by optimizing costs, giving an accurate diagnosis
of diseases, improving service quality by grouping patients, optimizing resources, and
improving clinical results [49].

By having more variables for a person, such as demographic variables, the identifi-
cation of a provisioning event, clinical, diagnostic, and risk variables, and the cost of all
the services provided, either with their own infrastructure or third-party infrastructure,
the results are more accurate. With all the patient’s related variables over time and their
cost, it is possible to predict the risks and costs of a person and thus be able to implement
survival models.

The goal is to have projected monthly costs, which can be used to assess a chronic
patient or a recurring patient and their cost pattern, and model through clusters in cohorts
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to provide preventive care, allowing the health system to reduce costs and significantly
improve the quality of life of patients.
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Appendix A

As indicated by the elbow and silhouette methods, the result of running with 5 clusters
is shown, highlighting a slight increase in performance.

Table A1. Result of running with 5 clusters.

Cluster R2 Adj. R2

0 0.91 0.87
1 0.95 0.91
2 0.92 0.82
3 0.98 0.92
4 0.97 0.96

References
1. Yang, C.; Delcher, C.; Shenkman, E.; Ranka, S. Machine Learning Approaches for Predicting High Utilizers in Health Care.

In Proceedings of the International Conference on Bioinformatics and Biomedical Engineering, Granada, Spain, 26–28 April
2017; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Springer: Cham, Switzerland, 2017; Volume 10209 LNCS, pp. 382–395.

2. Current Health Expenditure (CHE) as Percentage of Gross Domestic Product (GDP) (%). Available online: https:
//www.who.int/data/gho/data/indicators/indicator-details/GHO/current-health-expenditure-(che)-as-percentage-of-
gross-domestic-product-(gdp)-(-) (accessed on 19 January 2022).

3. Morid, M.A.; Sheng, O.R.L.; Kawamoto, K.; Ault, T.; Dorius, J.; Abdelrahman, S. Healthcare Cost Prediction: Leveraging
Fine-Grain Temporal Patterns. J. Biomed. Inform. 2019, 91, 103113. [CrossRef] [PubMed]

4. Sushmita, S.; Newman, S.; Marquardt, J.; Ram, P.; Prasad, V.; de Cock, M.; Teredesai, A. Population Cost Prediction on Public
Healthcare Datasets. In Proceedings of the 5th International Conference on Digital Health 2015, Florence, Italy, 18–20 May 2015;
ACM International Conference Proceeding Series. Association for Computing Machinery: New York, NY, USA, 2015; Volume
2015, pp. 87–94.

5. Ministerio de Salud y Protección Social $31.8 Billones Para La Salud En 2020. Available online: https://www.minsalud.gov.co/
Paginas/31-8-billones-para-la-salud-en-2020.aspx (accessed on 4 January 2022).

6. El Presupuesto de La Nación de 2021 Destinará $75 Billones Para Deuda, 6.7% Del PIB. Available online: https://www.
larepublica.co/economia/presupuesto-de-la-nacion-de-2021-destinara-75-billones-para-deuda-67-del-pib-3038167 (accessed on
5 January 2022).

7. About Keralty—Keralty. Available online: https://www.keralty.com/en/web/guest/about-keralty (accessed on 3 May 2021).
8. Giedion, U.; Díaz, B.Y.; Alfonso, E.A.; Savedoff, W.D. The Impact of Subsidized Health Insurance on Access, Utilization and

Health Status in Colombia. Utilization and Health Status in Colombia (May 2007). iHEA 2007 6th World Congress: Explorations in

https://github.com/sandovaldanny/Prediction_Health_Cost
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/current-health-expenditure-(che)-as-percentage-of-gross-domestic-product-(gdp)-(-)
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/current-health-expenditure-(che)-as-percentage-of-gross-domestic-product-(gdp)-(-)
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/current-health-expenditure-(che)-as-percentage-of-gross-domestic-product-(gdp)-(-)
http://doi.org/10.1016/j.jbi.2019.103113
http://www.ncbi.nlm.nih.gov/pubmed/30738188
https://www.minsalud.gov.co/Paginas/31-8-billones-para-la-salud-en-2020.aspx
https://www.minsalud.gov.co/Paginas/31-8-billones-para-la-salud-en-2020.aspx
https://www.larepublica.co/economia/presupuesto-de-la-nacion-de-2021-destinara-75-billones-para-deuda-67-del-pib-3038167
https://www.larepublica.co/economia/presupuesto-de-la-nacion-de-2021-destinara-75-billones-para-deuda-67-del-pib-3038167
https://www.keralty.com/en/web/guest/about-keralty


Algorithms 2022, 15, 106 18 of 19

Health Economics Paper. 2007, p. 199. Available online: https://www.researchgate.net/publication/228233420_The_Impact_of_
Subsidized_Health_Insurance_on_Access_Utilization_and_Health_Status_in_Colombia (accessed on 4 February 2022).

9. Plan Obligatorio de Salud. Available online: https://www.minsalud.gov.co/proteccionsocial/Paginas/pos.aspx (accessed on
8 January 2022).

10. Paho—Health in the Americas—Colombia. Available online: https://www.paho.org/salud-en-las-americas-2017/?p=2342
(accessed on 3 May 2021).

11. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
12. Kaushik, S.; Choudhury, A.; Dasgupta, N.; Natarajan, S.; Pickett, L.A.; Dutt, V. Using LSTMs for Predicting Patient’s Expenditure

on Medications. In Proceedings of the 2017 International Conference on Machine Learning and Data Science (MLDS 2017), Noida,
India, 14–15 December 2017; pp. 120–127. [CrossRef]

13. Graves, A. Generating Sequences with Recurrent Neural Networks. arXiv 2013, arXiv:1308.0850.
14. Tu, L.; Lv, Y.; Zhang, Y.; Cao, X. Logistics Service Provider Selection Decision Making for Healthcare Industry Based on a Novel

Weighted Density-Based Hierarchical Clustering. Adv. Eng. Inform. 2021, 48, 101301. [CrossRef]
15. Zhang, Z.; Murtagh, F.; van Poucke, S.; Lin, S.; Lan, P. Hierarchical Cluster Analysis in Clinical Research with Heterogeneous

Study Population: Highlighting Its Visualization with R. Ann. Transl. Med. 2017, 5, 75. [CrossRef] [PubMed]
16. Abbi, R.; El-Darzi, E.; Vasilakis, C.; Millard, P. A Gaussian Mixture Model Approach to Grouping Patients According to Their

Hospital Length of Stay. In Proceedings of the 2008 21st IEEE International Symposium on Computer-Based Medical Systems,
Jyvaskyla, Finland, 17–19 June 2008; pp. 524–529. [CrossRef]

17. Santos, A.M.; de Carvalho Filho, A.O.; Silva, A.C.; de Paiva, A.C.; Nunes, R.A.; Gattass, M. Automatic Detection of Small Lung
Nodules in 3D CT Data Using Gaussian Mixture Models, Tsallis Entropy and SVM. Eng. Appl. Artif. Intell. 2014, 36, 27–39.
[CrossRef]

18. 2.3. Clustering—Scikit-Learn 1.0.2 Documentation. Available online: https://scikit-learn.org/stable/modules/clustering.html
(accessed on 24 January 2022).

19. Implementing a K-Means Clustering Algorithm from Scratch|by Zack Murray|the Startup|Medium. Available online: https:
//medium.com/swlh/implementing-a-k-means-clustering-algorithm-from-scratch-214a417b7fee (accessed on 8 January 2022).

20. K-Means Clustering: Algorithm, Applications, Evaluation Methods, and Drawbacks|by Imad Dabbura|towards Data Sci-
ence. Available online: https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-
drawbacks-aa03e644b48a (accessed on 8 January 2022).

21. Fontalvo-Herrera, T.; Delahoz-Dominguez, E.; Fontalvo, O. Methodology of Classification, Forecast and Prediction of Healthcare
Providers Accredited in High Quality in Colombia. Int. J. Product. Qual. Manag. 2021, 33, 1–20. [CrossRef]

22. Kaushik, S.; Choudhury, A.; Sheron, P.K.; Dasgupta, N.; Natarajan, S.; Pickett, L.A.; Dutt, V. AI in Healthcare: Time-Series
Forecasting Using Statistical, Neural, and Ensemble Architectures. Front. Big Data 2020, 3, 4. [CrossRef]

23. Kabir, S.B.; Shuvo, S.S.; Ahmed, H.U. Use of Machine Learning for Long Term Planning and Cost Minimization in Healthcare
Management. medRxiv 2021. [CrossRef]

24. Scheuer, C.; Boot, E.; Carse, N.; Clardy, A.; Gallagher, J.; Heck, S.; Marron, S.; Martinez-Alvarez, L.; Masarykova, D.; Mcmillan,
P.; et al. Predicting Utilization of Healthcare Services from Individual Disease Trajectories Using RNNs with Multi-Headed
Attention. Proc. Mach. Learn. Res. 2020, 116, 93–111. [CrossRef]

25. Elbattah, M.; Molloy, O. Data-Driven Patient Segmentation Using K-Means Clustering: The Case of Hip Fracture Care in Ireland.
ACM Int. Conf. Proc. Ser. 2017, 1–8. [CrossRef]

26. Nedyalkova, M.; Madurga, S.; Simeonov, V. Combinatorial K-Means Clustering as a Machine Learning Tool Applied to Diabetes
Mellitus Type 2. Int. J. Environ. Res. Public Health 2021, 18, 1919. [CrossRef] [PubMed]

27. Salud—SONDA. Available online: https://www.sonda.com/industrias/salud/ (accessed on 4 January 2022).
28. Kotsiantis, S.B.; Kanellopoulos, D.; Pintelas, P.E. Data Preprocessing for Supervised Leaning. Int. J. Comput. Inf. Eng. 2007, 1,

4104–4109. [CrossRef]
29. Keras: The Python Deep Learning API. Available online: https://keras.io/ (accessed on 1 February 2022).
30. Keras|TensorFlow Core. Available online: https://www.tensorflow.org/guide/keras?hl=es-419 (accessed on 1 February 2022).
31. Pedregosa FABIANPEDREGOSA, F.; Michel, V.; Grisel OLIVIERGRISEL, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Vanderplas,

J.; Cournapeau, D.; Pedregosa, F.; Varoquaux, G.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12,
2825–2830.

32. Welcome to Python.org. Available online: https://www.python.org/ (accessed on 19 January 2022).
33. Streamlit • The Fastest Way to Build and Share Data Apps. Available online: https://streamlit.io/ (accessed on 8 January 2022).
34. Google Introducción a AI Platform|AI Platform|Google Cloud. Available online: https://cloud.google.com/ai-platform/docs/

technical-overview?hl=es-419 (accessed on 4 January 2022).
35. Shiranthika, C.; Shyalika, C.; Premakumara, N.; Samani, H.; Yang, C.-Y.; Chiu, H.-L. Human Activity Recognition Using CNN &

LSTM. Available online: https://www.researchgate.net/publication/348658435_Human_Activity_Recognition_Using_CNN_
LSTM (accessed on 17 January 2022).

36. Illustration of an LSTM Memory Cell.|Download Scientific Diagram. Available online: https://www.researchgate.net/figure/
Illustration-of-an-LSTM-memory-cell-7_fig1_348658435 (accessed on 19 January 2022).

https://www.researchgate.net/publication/228233420_The_Impact_of_Subsidized_Health_Insurance_on_Access_Utilization_and_Health_Status_in_Colombia
https://www.researchgate.net/publication/228233420_The_Impact_of_Subsidized_Health_Insurance_on_Access_Utilization_and_Health_Status_in_Colombia
https://www.minsalud.gov.co/proteccionsocial/Paginas/pos.aspx
https://www.paho.org/salud-en-las-americas-2017/?p=2342
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1109/MLDS.2017.9
http://doi.org/10.1016/j.aei.2021.101301
http://doi.org/10.21037/atm.2017.02.05
http://www.ncbi.nlm.nih.gov/pubmed/28275620
http://doi.org/10.1109/CBMS.2008.69
http://doi.org/10.1016/j.engappai.2014.07.007
https://scikit-learn.org/stable/modules/clustering.html
https://medium.com/swlh/implementing-a-k-means-clustering-algorithm-from-scratch-214a417b7fee
https://medium.com/swlh/implementing-a-k-means-clustering-algorithm-from-scratch-214a417b7fee
https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a
https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a
http://doi.org/10.1504/IJPQM.2021.115290
http://doi.org/10.3389/fdata.2020.00004
http://doi.org/10.1101/2021.10.06.21264654
http://doi.org/10.2/JQUERY.MIN.JS
http://doi.org/10.1145/3014812.3014874
http://doi.org/10.3390/ijerph18041919
http://www.ncbi.nlm.nih.gov/pubmed/33671157
https://www.sonda.com/industrias/salud/
http://doi.org/10.5281/ZENODO.1082415
https://keras.io/
https://www.tensorflow.org/guide/keras?hl=es-419
https://www.python.org/
https://streamlit.io/
https://cloud.google.com/ai-platform/docs/technical-overview?hl=es-419
https://cloud.google.com/ai-platform/docs/technical-overview?hl=es-419
https://www.researchgate.net/publication/348658435_Human_Activity_Recognition_Using_CNN_LSTM
https://www.researchgate.net/publication/348658435_Human_Activity_Recognition_Using_CNN_LSTM
https://www.researchgate.net/figure/Illustration-of-an-LSTM-memory-cell-7_fig1_348658435
https://www.researchgate.net/figure/Illustration-of-an-LSTM-memory-cell-7_fig1_348658435


Algorithms 2022, 15, 106 19 of 19

37. Choosing the Right Hyperparameters for a Simple LSTM Using Keras|by Karsten Eckhardt|towards Data Science. Available
online: https://towardsdatascience.com/choosing-the-right-hyperparameters-for-a-simple-lstm-using-keras-f8e9ed76f046
(accessed on 19 January 2022).

38. Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on
Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2014.

39. Metrics. Available online: https://keras.io/api/metrics/ (accessed on 15 January 2022).
40. Nielsen, A. Practical Time Series Analysis: Prediction with Statistics and Machine Learning; O’Reilly Media: Sebastopol, CA, USA,

2019; p. 480.
41. K-Means Clustering from Scratch in Python|by Pavan Kalyan Urandur|Machine Learning Algorithms from Scratch|Medium.

Available online: https://medium.com/machine-learning-algorithms-from-scratch/k-means-clustering-from-scratch-in-python-
1675d38eee42 (accessed on 1 March 2022).

42. Umargono, E.; Suseno, J.E.; Vincensius Gunawan, S.K. K-Means Clustering Optimization Using the Elbow Method and Early
Centroid Determination Based on Mean and Median Formula. In Proceedings of the 2nd International Seminar on Science and
Technology (ISSTEC 2019), Yogyakarta, Indonesia, 25 November 2019. [CrossRef]

43. Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning-Data Mining, Inference, and Prediction,
2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2009; p. 282.

44. Willmott, C.J.; Matsuura, K. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing
Average Model Performance. Clim. Res. 2005, 30, 79–82. [CrossRef]

45. Forecast KPI: RMSE, MAE, MAPE & Bias|towards Data Science. Available online: https://towardsdatascience.com/forecast-
kpi-rmse-mae-mape-bias-cdc5703d242d (accessed on 4 March 2022).

46. Why Not MSE or RMSE A Good Enough Metrics for Regression? All about R2 and Adjusted R2|by Neha Kushwaha|Analytics
Vidhya|Medium. Available online: https://medium.com/analytics-vidhya/why-not-mse-or-rmse-a-good-metrics-for-regression-
all-about-r%C2%B2-and-adjusted-r%C2%B2-4f370ebbbe27 (accessed on 2 March 2022).

47. How Do You Check the Quality of Your Regression Model in Python?|by Tirthajyoti Sarkar|towards Data Science. Available
online: https://towardsdatascience.com/how-do-you-check-the-quality-of-your-regression-model-in-python-fa61759ff685
(accessed on 8 January 2022).

48. What Does RMSE Really Mean?|by James Moody|towards Data Science. Available online: https://towardsdatascience.com/
what-does-rmse-really-mean-806b65f2e48e (accessed on 8 January 2022).

49. Muniasamy, A.; Tabassam, S.; Hussain, M.A.; Sultana, H.; Muniasamy, V.; Bhatnagar, R. Deep Learning for Predictive Analytics
in Healthcare. In Proceedings of the International Conference on Advanced Machine Learning Technologies and Applications,
Jaipur, India, 13–15 February 2020; Springer: Cham, Switzerland, 2020; Volume 921, pp. 32–42.

https://towardsdatascience.com/choosing-the-right-hyperparameters-for-a-simple-lstm-using-keras-f8e9ed76f046
https://keras.io/api/metrics/
https://medium.com/machine-learning-algorithms-from-scratch/k-means-clustering-from-scratch-in-python-1675d38eee42
https://medium.com/machine-learning-algorithms-from-scratch/k-means-clustering-from-scratch-in-python-1675d38eee42
http://doi.org/10.2991/ASSEHR.K.201010.019
http://doi.org/10.3354/cr030079
https://towardsdatascience.com/forecast-kpi-rmse-mae-mape-bias-cdc5703d242d
https://towardsdatascience.com/forecast-kpi-rmse-mae-mape-bias-cdc5703d242d
https://medium.com/analytics-vidhya/why-not-mse-or-rmse-a-good-metrics-for-regression-all-about-r%C2%B2-and-adjusted-r%C2%B2-4f370ebbbe27
https://medium.com/analytics-vidhya/why-not-mse-or-rmse-a-good-metrics-for-regression-all-about-r%C2%B2-and-adjusted-r%C2%B2-4f370ebbbe27
https://towardsdatascience.com/how-do-you-check-the-quality-of-your-regression-model-in-python-fa61759ff685
https://towardsdatascience.com/what-does-rmse-really-mean-806b65f2e48e
https://towardsdatascience.com/what-does-rmse-really-mean-806b65f2e48e

	Introduction 
	Related Work 
	Materials and Methods 
	Data Collection 
	Data Processing 
	Model Implementation 
	LSTM Networks 
	Clusters 


	Results 
	LSTM Networks 
	Clustering 
	Distribution by Age Cluster (in Years) 
	Distribution by Frequency of Use Cluster 
	Distribution by Cluster of Last Attention Time (Recency) 
	Distribution by Cluster of Weeks Contributed since Last Year 
	Distribution by Cluster of Continuous Contributed Weeks 


	Discussion 
	Conclusions 
	Appendix A
	References

