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Using a holographic derivation of a quantum effective action for a scalar operator at strong coupling, we
compute quasiequilibrium parameters relevant for the gravitational wave signal from a first-order phase
transition in a simple dual model. We discuss how the parameters of the phase transition vary with the
effective number of degrees of freedom of the dual field theory. Our model can produce an observable
signal at LISA if the critical temperature is around a TeV, in a parameter region where the field theory has an
approximate conformal symmetry.
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Introduction.—A first-order phase transition in the early
Universe [1–4] would generate gravitational waves (GWs)
[5,6]. If the critical temperature of the transition were
around the electroweak scale 0.1–1 TeV, the GWs would be
potentially observable at future space-based detectors, such
as the Laser Interferometer Space Antenna (LISA) [7,8],
while a critical temperature around the scale of confinement
of the strong interaction (100 MeV) is of interest for pulsar
timing arrays. Recent reports of a possible signal at
NANOgrav [9], which if confirmed would likely be from
merging supermassive black holes [10], have also prompted
an examination of phase transitions as a source [11].
In the standard model (SM), it is well established that

both the confinement and electroweak transitions are
crossovers [12–15]. However, the standard model is
incomplete: for example, it does not account for the dark
matter in the Universe or the baryon asymmetry (see, e.g.,
[16] for a pedagogical review). Numerous extensions have
been put forward to solve these and other problems, which
would also induce a first-order electroweak transition (see,
e.g., [8,17] for reviews). Hence, a search for GWs from the
early Universe is also a search for physics beyond the
standard model.
A first-order phase transition in the early Universe would

proceed through the nucleation, expansion, and merger of
bubbles of the stable phase [3,18–20] (see [21,22] for
pedagogical reviews). The consequent disturbances in the
cosmic fluid would produce GWs [5,6]. Much progress has

been made recently toward an accurate understanding of
the process [8], with the aim of enabling LISA to probe the
physics of an era that is difficult to explore otherwise.
However, if the transition occurs at strong coupling, we

are confronted by the difficulty of computing thermody-
namic and transport properties. In this Letter, we present a
consistent strong-coupling framework for the calculation of
quasiequilibrium properties most relevant for GW produc-
tion, illustrating its use with a simple model.
The GW signal from a first-order phase transition

depends on four main parameters: the nucleation temper-
ature Tn, the transition rate β, the dimensionless transition
strength parameter α, and the wall (phase boundary) speed
vw. The speed of sound also affects the signal [23,24]. The
critical temperature of the phase transition Tc sets the scale.
These parameters control the conversion of energy into
fluid motion and are directly connected to the detailed
shape of the GW power spectrum [25,26], through which
they are accessible at LISA [27]. Hence, their calculation is
of utmost importance to the drive to use GW detectors to
probe high-energy physics.
At weak coupling, perturbative methods can give good

results for the quasiequilibrium parameters Tn, β, and α (for
recent discussion of the calculations and their uncertainties
see [28–30]). In general, vw is a fully nonequilibrium
quantity, having been computed only in various approx-
imations [31–38]. If, however, the extension to the SM is a
strongly coupled field theory, the parameters are much
more difficult to calculate. Historically, lattice methods
have been used for the strictly equilibrium quantities in
specific theories, the critical temperature and the latent
heat: for example, it is known that SUðNÞ Yang-Mills
theory, where N is the number of colors or independent
charges, has a first-order confinement transition for N ≥ 3
(see, e.g., [39]). GW production in such theories has been
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studied in [40,41]. The functional renormalization group
has recently been used for GW production in a scalar field
theory at strong coupling [42].
In recent years, holography has proved a powerful tool to

rework the problem, equating field theories with string
theories in a larger number of dimensions [43,44].
Quantities in a field theory with a large number of degrees
of freedom at strong coupling are computable from
classical solutions in the string theory, which are essentially
solutions to Einstein equations with various fields as
sources of energy momentum. Using holography, thermo-
dynamic properties of phase transitions have been studied
in so-called bottom-up models (where the source fields are
not formally derived from a string theory) [45–47], and
GWs have been considered in the context of neutron star
mergers [48–50] and phase transitions in the early Universe
[51]. Recently, there has also been progress in finding the
wall speed [52–54].
In this Letter, we outline a new method for calculating

the quasiequilibrium parameters α, β, and Tn=Tc. The
method uses a quantum effective action, which we compute
using holography, giving full details in [55]. With it we
construct bubble solutions, taking the system to the stable
phase directly in the field theory, avoiding the need to solve
partial differentials in the gravity dual. The computed
quantities are then used to determine the corresponding
signals using current models of GW production [8]. The
scaling of the results with N in the putative gauge theory is
discussed and scans for all quantities are shown for N ¼ 8,
where the holographic assumption of largeN should still be
valid. Here we define N from L3=κ25 ¼ N2, where κ25 is the
5D gravitational constant and L is the radius of curvature.
We find that the large-N restriction generically pushes

β=Hn (where Hn is the nucleation Hubble rate) to high
values: 103 − 108 in this particular model for N ¼ 8, with
the vast majority of values above 105. This restricts a
detectable GW signal to a corner of parameter space where
the minima in the effective potential are far apart and
breaking of conformal invariance in the trivial vacuum is
1=N suppressed. In this region, a phase transition with
critical temperature around 1 TeV would be observable,
which is around the scale where one would expect physics
beyond the standard model to appear.
Effective action from holography.—By using the holo-

graphic equivalence of the renormalized on-shell gravita-
tional action on a boundary with the generating functional
[56–58] of a quantum field theory, an effective action can
be found. To that end, we begin with the bulk action of a
free scalar field ϕ in five dimensions,

Sbulk ¼
1

2κ25

Z
d5x

ffiffiffi
g

p �
Rþ 12

L2
− ð∂ϕÞ2 −m2ϕ2

�
; ð1Þ

where R is the Ricci scalar and m is the mass parameter.
We will set L ¼ 1 hereafter. We are interested in

homogeneous, isotropic solutions that are asymptotically
five-dimensional anti–de Sitter space (AdS5) with a black
brane in the interior; a suitable ansatz is

ds2¼−e−2χðrÞhðrÞdt2þ dr2

hðrÞþ r2dx⃗2; ϕ¼ϕðrÞ: ð2Þ

Such a black brane solution is dual to a field theory state
with temperature T ¼ e−χðrHÞh0ðrHÞ=4π and entropy den-
sity s ¼ 2πr3H=κ

2
5, both evaluated at the horizon radius rH

of the black brane, where hðrHÞ ¼ 0. Fixing T, one finds a
one-parameter family of solutions. At the boundary r → ∞,
the scalar field falls off as ϕ ∼ ϕ−=rΔ− þ ϕþ=rΔþ , where
Δ� ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

p
. The one-parameter family of solu-

tions determines ϕþ as a function of ϕ−; this can be related
to the generating functional of a Minkowski space con-
formal field theory (CFT) WT , defined on the boundary
r → ∞. We will use here “alternative quantization” in
which ϕþ determines the source J of a field operator Ψ of
the CFT, and ϕ− is related to the expectation value ψ ¼
hΨi=N2 [59], where the factor N2 is chosen for conven-
ience. The boundary field theory effective action at T is
then

ΓT ½ψ � ¼ WT ½J� − N2

Z
d4xψJ; ð3Þ

which includes all thermal effects to leading order in 1=N.
Choosing alternative quantization allows us to deform

the CFT by adding the operators Ψ, Ψ2, and Ψ3, with
couplings Λ, f, and g, respectively. The deformations,
which are implemented through the choice of boundary
conditions at r → ∞ [60], result in a theory with first-order
thermal phase transitions for suitable parameters. We take
the cubic term to be exactly marginal (scaling dimension
four) which amounts to choosingm2 ¼ −32=9 in (1). Thus,
the scaling dimensions for Λ and f are 8=3 and 4=3,
respectively.
We therefore have three scales T, Λ, and f that are

assembled into two dimensionless ratios, chosen to be
Λf ¼ Λ=f2 and T̃ ¼ T=ðjΛj3=8 þ jfj3=4Þ. The overall scale
is a free parameter at this simplified level.
We study the effective action in a derivative expansion

and will need to evaluate it only on static configurations.
The first two terms in the Lorentzian signature are

ΓT ½ψ � ¼ −N2

Z
d4x

�
VTðψÞ þ

1

2
ZTðψÞð∇ψÞ2

�
: ð4Þ

The effective potential VTðψÞ can be found by evaluating
the action on homogeneous solutions. This can be written
in terms of the boundary falloff of the fields in the gravity
dual, giving [55]
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VTðψÞ ¼
h2ðψ ; TÞ

2
þ 7

9
ψϕþðψ ; TÞ þ Λψ þ f

2
ψ2 þ g

3
ψ3:

ð5Þ

Here h2 comes from the boundary falloff of the metric
function h ∼ r2 þ 4ϕ2

−=9r2=3 þ h2=r2, and ψ ¼ − 4
3
ϕ−.

To extract the coefficient of the gradient term ZTðψÞ, we
note that the full quadratic part of ΓT ½ψ � equals the inverse of
the two-point function of Ψ. In momentum space, ZTðψÞ is
then given by the coefficient of the k2 term in a low-
momentum expansion of the inverse of the two-point
function. On the holographic side, this can be computed
by a standard fluctuation analysis [61]. For our solutions, the
k4 term is negligible [55], validating the derivative expansion.
Fixing the theory means fixing Λf and g; here we restrict

to the region −∞ < Λf ≤ 0 and 0 ≤ g < γ3 ≈ 0.278
(g > γ3 renders the potential unbounded from below). In
a large part of this, shown in color in the figures below, the
theory displays a first-order thermal phase transition.
Gravitational wave parameters.—We can use the flat-

space field theory we have constructed to study phase
transitions in the early Universe, as relaxation rates at
temperature T are expected to be much faster than the
Hubble rate HðTÞ. The phase transition proceeds through
localized fluctuations of ψ into the stable phase, just large
enough so that the pressure difference overcomes the
surface tension. The probability of both quantum and
thermal fluctuations is computed from the continuation
of the effective action (4) to Euclidean signature [1,4]. The
holographic construction ensures periodicity in the imagi-
nary time coordinate, with period 1=T [62]. The most
probable fluctuation, the critical bubble, is in the form of a
bubble with a spatial O(3) symmetry, invariant in the
imaginary time coordinate [4]. The rate per unit volume
of bubble nucleation pðtÞ increases rapidly from zero
below Tc, a change quantified by the transition rate
parameter β ¼ −d logðpÞ=dt. To a good approximation it
can be written pðtÞ ¼ p0 exp½−ΓbðTÞ�, where Γb is the
Euclidean action for the critical bubble, whose time
dependence is a consequence of the nonzero cooling rate
in the expanding Universe. The transition rate parameter is
evaluated at Tn, the peak of the globally averaged bubble
nucleation rate per unit volume. Hence, given that the
temperature decreases as dT=dt ¼ −HðTÞT,

β=Hn ¼ T
d
dT

ΓbðTÞjTn
: ð6Þ

To find the critical bubble, we extremize the O(3)-sym-
metric action

ΓOð3Þ ¼
4πN2

T

Z
dρ ρ2

�
1

2
ZTðψÞðψ 0Þ2 þ VTðψÞ

�
; ð7Þ

looking for solutions representing a bubble of stable phase
surrounded by metastable phase. We solve numerically the

resulting Euler-Lagrange equation with boundary condi-
tions ψð∞Þ ¼ 0 ¼ ψ 0ð0Þ, where the field is defined to
vanish at the metastable minimum, and ψð0Þ is the shooting
parameter. The asymptotic boundary condition is imposed
at a suitably large finite radius, which we take as
20ðjΛj3=8 þ jfj3=4Þ. This value is large enough to satisfy
the boundary condition for all bubbles we consider.
The phase transition can be thought to start when the

nucleation rate per unit volume reaches one bubble per
Hubble volume per Hubble time, that is, p ¼ H4. The
nucleation temperature is reached shortly after, so an
approximation to Tn can be found through ΓbðTnÞ∼
4 log ðMP=TcÞ. Hence, for Tc ≈ 100 GeV, bubble nuclea-
tion occurs when the action drops to about 150 [19].
To understand how the results depend on N, note that the

bubble action Γb is generally a monotonic function of
temperature below Tc. The action diverges quadratically
[19] at Tc and goes to zero at some lower temperature T0

where the effective potential barrier between the vacua
vanishes. As the prefactor of the action scales as N2,
sufficiently large N will push Tn down toward T0. We call
this the large supercooling case. We assume that the
temperature dependence near T0 is a power law Γb ∼
N2ðT − T0Þx with x > 0, the form followed by theories
with a canonical gradient term and a quartic potential,
where x ¼ 3=2 [19]. Fitting a similar power law to our data,
we find a value of x ≈ 1.4–1.5. Equation (6) and the
definition of Tn then quickly lead to β=Hn ∼ N2=x. Thus,
for large N, β=Hn increases with N.
In practice, we are interested in finite but large N. Then,

it is possible that, instead, Tn ≈ Tc. In this small super-
cooling case, one can approximate the solution as a so-
called thin wall bubble, consisting of a large ball of the
stable phase surrounded by a spherical phase boundary,
thin compared with its radius. In this case, Γb ∼ N2ðTc −
TÞ−2 [63], which leads to β=Hn ∼ N−1, decreasing with N.
Thus, there can exist models with an “optimal” value of N,
which minimizes β=Hn while still being large enough for
the large-N limit to give accurate results at leading order. In
fact, for certain parameter values, this is the case for our
holographic model; however, despite this, the β=Hn values
remain large. The full range of β=Hn for our parameter
space is displayed in Fig. 1 on the right, along with the ratio
Tn=Tc in the left plot. The small supercooling limit Tn ≈ Tc
is approached at the leftmost boundary for both plots.
The energy available for conversion into fluid motion is

quantified by the transition strength α, which depends on
the enthalpy density w ¼ Ts and the pressure P in the two
phases. Writing θ ¼ w=4 − P, the transition strength
parameter is then defined as [26,67]

α ¼ 4

3

θhðTÞ − θlðTÞ
whðTÞ

����
Tn

; ð8Þ
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where subscripts h and l denote the phases stable at high
and low temperatures, respectively.
The enthalpy density can be found from the solution to

the gravity dual, κ25Ts ¼ −2h2 − ð16=9Þϕþψ , and the
pressure is available from VT evaluated at its minima.
The values for α are shown in the left plot of Fig. 2.
The N dependence of α in cases of small and large

supercooling follows from linear expansion of α near a
reference temperature T�, αðTnÞ¼αðT�Þþα0ðT�ÞðTn−T�Þ,
where T� is either Tc or T0. The values αðT�Þ, being ratios,
are independent ofN. However, the next term grows withN
in the small supercooling case, and decreases as N−2=x in
the large supercooling case.
We do not yet have a simple way to calculate the bubble

wall velocity vw. To estimate the wall speed, we adapt a
result from [52–54] that at small velocities, vw is propor-
tional to the pressure difference divided by the high-T
phase energy density at Tn. To extrapolate to larger
velocities, we assume

uw ¼ γwvw ¼ C
Pl − Ph

εh

����
Tn

; ð9Þ

where C is an O(1) constant and γw is the Lorentz factor.
The pressure difference divided by the energy density is
shown in the right plot of Fig. 2; to estimate the wall speed
we set C ¼ 1. It is not important to get a precise value for
uw at high γw, as the hydrodynamic solution for the flow set
up by the expanding bubble, and hence the GW signal,
depends only on vw. The same argument for N scaling can
be made for uw as can be made for α.
Finally, collating the information gained on α, β=Hn, Tn,

and vw we calculate the maximum of the GW power
spectrumΩgw;0 and the frequency at which it occurs in units
of Tc. We use the standard LISA Cosmology Working
Group model [8], improved with a numerical kinetic energy
suppression factor [68], as described in [51]. We take
c2s ¼ 1=3, as in the region where there is strong super-
cooling (and a detectable signal) the sound speed is close to
the conformal value. We plot maxðΩgw;0Þ as a function of
our parameters in Fig. 3.
The maximum of the spectrum, which is independent of

the temperature of the phase transitions, takes a broad range
of values between 10−34 and 10−10. A value above about
10−13 would be observable at LISA, if the peak frequency

FIG. 1. Scans of the nucleation temperature Tn=Tc (left) and the transition rate β=Hn at Tn (right).

FIG. 2. Scan of the transition strength α (left) and pressure change over energy density at Tn (right).
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was in the range of highest sensitivity 10−2 − 10−3 Hz. We
find that Tc would need to be in the range 0.3–1.8 TeV for a
signal to be detected. This puts the critical temperature in a
range relevant for models of strong dynamics leading to
electroweak symmetry breaking, such as composite Higgs
models (see, e.g., [69] for a review).
Discussion.—In this Letter, we outlined the construction

of the effective action for a holographic strongly coupled
field theory and used it to compute the equilibrium and
quasiequilibrium quantities relevant for GW production in
a first-order phase transition in the early Universe. Details
of the construction of this action are presented in [55]. The
effective action describes a scalar field at nonzero temper-
ature, computed in a derivative expansion. That such an
action is needed to describe a phase transition has already
been argued [70,71]; it is also known that hydrodynamics
alone is insufficient to describe the bubble’s evolution after
nucleation [52].
We illustrated the effective action method with a simple

holographic 5D theory with a massive free scalar, which in
alternative quantization is dual to a 4D CFT that can be
deformed by simple relevant or marginal operators. The
theory has first-order transitions over a wide region of
dimensionless coupling ratio space.
Using an estimate for the phase boundary speed moti-

vated by numerical simulations of a similar system [52], we
computed the GW power according to current state of the
art [8,26,51]. While the transition is supercooled and strong
over a large-parameter region, in the sense that a large
fraction of the available potential energy is converted into
kinetic energy of the fluid, the transition is also generally
rapid, completing in less than 10−3 of the Hubble time,
which reduces the signal strength. In our parametrization of
the model, only a relatively small region would be
observable at LISA, if the critical temperature is around
1 TeV. The favored region has relatively small coupling
Λ ≈ 0 and a cubic coupling g close to the bounded-
ness limit.

In the parameter range leading to an observable signal,
the phenomenology of the holographic model conforms
quite well with the nearly conformal dynamics described in
[72], including large supercooling followed by a strong
transition and a peaked frequency in the millihertz range
with a critical temperature of the order of TeV. The nearly
conformal physics can be understood from the fact that,
when Λ ¼ 0, the breaking of conformal invariance by the
coupling f in the trivial vacuum ψ ¼ 0 is suppressed in the
large-N limit. In addition, the large-N limit favors super-
cooling; since the height of the potential barrier increases
with N, the transition is delayed at the metastable trivial
vacuum until it is on the verge of becoming unstable.
The model is a very simplified one, intended to dem-

onstrate the effective action method for computing GWs
from phase transitions in strongly coupled field theories. It
also gives general predictions for the behavior of the
parameters with N. Furthermore, the observation that
TeV-scale phase transitions lead to observable signals
motivates the exploration of more realistic models, which
could be incorporated into a strongly coupled model of
electroweak symmetry breaking (see, e.g., [73,74]).
The method does not yet allow us to compute vw. It

would be very interesting to look for terms in the effective
action coupling the scalar to the fluid, similar to those
known to appear in weakly coupled theories [31,75,76].
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