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A B S T R A C T

The construction of effective health indicators plays a key role in the engineering systems field: they reflect
the degradation degree of the system under study, thus providing vital information for critical tasks ranging
from anomaly detection to remaining useful life estimation, with benefits such as reduced maintenance costs,
improved productivity or increased machine availability. The reconstruction error of deep autoencoders has
been widely used in the literature for this purpose, but this approach does not fully exploit the hierarchical
nature of deep models. Instead, we propose to take advantage of the disentangled representations of data that
are available in the latent space of autoencoders, by using the latent reconstruction error as machine health
indicator. We have tested our proposal on three different datasets, considering two types of autoencoders
(deep autoencoder and variational autoencoder), and comparing its performance with that of state-of-the-art
approaches in terms of well-known quality metrics. The results of the research demonstrate the capability of
our health indicator to outperform conventional approaches, in the three datasets, and regardless of the type
of autoencoder used to generate the residuals. In addition, we provide some intuition on the suitability of
latent spaces for the monitoring of machinery condition.
1. Introduction

In the last decade there has been a growing interest in the monitor-
ing of machinery condition [1–3]. Machines are critical equipment in
a wide variety of domains, and it has become crucial to optimize and
guarantee safety in their operation, searching for higher productivity
and process efficiency, and benefits such as reduced operating costs,
longer machine life or improved operating uptime [4].

Condition monitoring systems in the literature have traditionally
been focused on knowledge-based [5] or physical-based approaches [6].
However, with the rapid development of smart instruments, digital
communication networks and computing techniques, there is nowadays
an increasing availability of condition monitoring data, which has
brought research attention to data-driven methods for the monitoring
of machine health [7].

In the study of these methods, special efforts have been dedicated
to the construction of health indicators (HIs) [8–10]. HIs reflect the
degradation degree of the system under study, providing valuable input
information for tasks such as fault diagnosis, anomaly detection (AD)
or remaining useful life (RUL) estimation. For example, in the field of
AD, the state of a system is usually declared anomalous when its HI
(or HIs) meets certain conditions such as exceeding a predetermined
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threshold [11,12]. In prognostic tasks, such as RUL estimation, HIs
are also used in many ways: similarity methods estimate the RUL of
machines by comparison of degradation profiles that are built on one or
more HIs [13]; other approaches propose to build degradation models,
based on HI data, to predict the future condition of the machines [14],
etc. The performance of these tasks heavily depends on the quality of
the health indicator [15,16], so the construction of effective HIs plays
a key role in the context of machine health monitoring.

In traditional knowledge-based or physical-based approaches, HIs
are typically manually built, requiring expertise or prior knowledge
of the system that can sometimes be difficult or even impossible to
obtain. Also, these HIs are often designed for a specific degradation
process, and it can be tough to make them generalize well to others.
Hence, constructing a good HI is a challenging work that in data-driven
methods does not rely on the human, but on powerful machine learning
techniques able to extract HIs automatically from process data, also
known as feature learning [17].

As a branch of machine learning, deep learning models have set
in recent years an exciting new trend with a big impact on big data
analysis [18], showing promising results in fields such as image or
voice recognition [19,20], but also in system health management [21].
vailable online 2 April 2022
951-8320/© 2022 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.ress.2022.108482
Received 15 June 2021; Received in revised form 9 February 2022; Accepted 20 M
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

arch 2022

http://www.elsevier.com/locate/ress
http://www.elsevier.com/locate/ress
mailto:anaglezmuniz@gmail.com
mailto:idiaz@uniovi.es
mailto:cuadrado@isa.uniovi.es
mailto:diegogarcia@isa.uniovi.es
https://doi.org/10.1016/j.ress.2022.108482
https://doi.org/10.1016/j.ress.2022.108482
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2022.108482&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Reliability Engineering and System Safety 224 (2022) 108482A. González-Muñiz et al.

a
l
v
p
a
d
t
l
t
t
d
G
a
o

a
m
p
d
f

They are built by stacking multiple processing layers, which conform
compositional hierarchies in which the higher level features are the
composition of the lower level ones, what gives deep models the ability
to find the best representations of data, known as representation learn-
ing [22]. Thanks to this hierarchical nature, they have become powerful
feature learning tools and therefore have attracted many researchers in
the field of HI construction [23–25].

Authors in the literature have used different types of deep tech-
niques for the construction of HIs, being the most popular: convo-
lutional neural networks (CNNs) [26,27], recurrent neural networks
(RNNs) [15,28], Generative Adversarial Networks (GANs) [29] and
deep autoencoders (AEs) [30,31], on which we have focused our re-
search. Deep autoencoders are feed-forward multi-layer neural net-
works in which the desired output is the input itself: they compress
the input data into a lower-dimensional projection and then reconstruct
the output data from this representation. Due to their deep nature, they
have the ability to reduce the dimension of the input in a hierarchical
way, leading to high quality reconstructions of data [32,33]. In the
context of health monitoring, deep autoencoders are usually trained
on normal (healthy) data, so they learn to successfully reconstruct
normal samples, but fail to reproduce anomalous ones, leading to a high
reconstruction error. Hence, reconstruction error has been widely used
in the literature as health indicator [34–37].

However, recent studies have indicated that reconstruction-based
methods are limited by measuring the reconstruction quality only in
the input space, as they do not take advantage of the disentangled
representations of data that are available in the hidden spaces of the
autoencoder. For example, in [38] authors propose a novelty detection
method named reconstruction along projection pathway (RaPP), which
computes the hidden reconstruction error: RaPP compares the hid-
den activations of the input with those of the reconstructed input,
and proves to outperform the traditional reconstruction error-based
approach.

In view of this situation, we propose to explore the potential of
reconstruction error as health indicator, but in a low dimensional space:
the latent space of the autoencoder. We propose to use the latent
reconstruction error as machine health indicator and evaluate its per-
formance for prognostics tasks. In this way, we follow the philosophy of
the RaPP approach, since we aim to exploit the information contained
in the hidden spaces of the autoencoder, but we focus only on the latent
space information. Latent spaces have proved to successfully capture
the underlying structure in data, providing us with low-dimensional,
compact and meaningful representations of the original data [39].
Therefore, latent reconstruction error would result in a disentangled
representation of reconstruction error, that we hypothesize might be
a more robust and, consequently, more suitable health indicator for
prognostics tasks than the reconstruction error itself.

Our proposal consists of a deep autoencoder, which has been trained
to reconstruct samples of healthy behaviour, and a health indicator,
being the latent reconstruction error of the autoencoder. We have tested
this proposal on three different datasets and we have compared its
performance with that of state-of-the-art approaches in terms of mono-
tonicity, trendability and prognosability. The results of the research
demonstrate that our proposal achieves better performance than its
alternative approaches (reconstruction error and RaPP approach). We
also provide some intuition on the suitability of latent spaces for ma-
chine health monitoring. In summary, the contributions of this research
are as follows: (1) we propose a variation of the RaPP approach that
results in a novel deep autoencoder-based health indicator for machine
health monitoring; (2) we provide a geometric interpretation of the
proposal that illustrates the consistency of the health indicator in the
presence of machine degradation.

The rest of this document is organized as follows. In Section 2, we
introduce the theoretical foundation of deep autoencoders and present
different health indicators used in the literature. Section 3 describes the
architecture of the proposed system. The datasets and the results of the
proposal are presented in Section 4. Finally, the conclusions are set out
2

in Section 5. h
2. Related literature

There has been extensive research in the literature concerning
machine health monitoring: we can find several approaches in the
state of the art, depending on the application domain and even the
dataset [7,40]. In the typical scenario, authors deal with highly class-
imbalanced datasets containing mostly normal behaviour data and
few, if any, examples of anomalous behaviour, what makes traditional
discriminative learning schemes unsuitable for health monitoring [41].
The common alternative is to construct a model of normal behaviour
(based on available normal data), so that condition monitoring would
depend on how well new data fit this model: it is a residual error-
based approach in which residuals are used as indicators of machinery
health condition. As detailed below, deep autoencoders have been
successful in this domain, showing great skills in the modelling of
normal behaviour, and providing residuals that are accurate health
indicators.

2.1. Deep autoencoders

With the proliferation in recent years of deep learning techniques,
several authors have used the reconstruction error of deep autoencoders
as health indicator [11,36,37,42]. As we see in Fig. 1, the architecture
of autoencoders consists of an encoder 𝑓enc, which outputs a latent
representation 𝐳 of the input data 𝐱, and a decoder 𝑓dec that reconstructs
the input data (�̂�) from its latent representation 𝐳. In between, there
is a bottleneck (typically one or more low-dimensional layers), so the
identity map is not a possible solution and the model is forced to
learn the underlying low-dimensional structure in data. During the
learning process, the architecture is trained using the gradient descent
method [43] by means of backpropagation [44] in order to minimize
the difference between 𝐱 and �̂�. If the autoencoder is trained with
normal operation data, the resulting model will be able to reconstruct
incoming normal samples with a small reconstruction error, but its
ability to reconstruct novelty samples will be limited, as they do not
resemble the data used for training. Consequently, high reconstruction
errors are associated with system deviations from normal behaviour,
such as machine degradation.

We have also considered the use of variational autoencoders (VAEs)
[45] in our study. VAEs emerged as a probability-based extension of
deep autoencoders and have been gaining popularity in the last years,
showing promising results as generative models with applications in
several fields, such as audio, text, or image generation [46–48]. In
contrast to traditional autoencoders, VAEs impose restrictions on the
distribution of latent variables and, in doing so, learn the probabil-
ity density function of training data. As we can see in Fig. 1, the
VAE consists of an encoder 𝑞𝜙(𝐳|𝐱), being an approximate posterior,
nd a decoder 𝑝𝜃(𝐱|𝐳), being the likelihood of the data x given the
atent variable z. According to this scheme, the encoder becomes a
ariational inference network, mapping input data to (approximate)
osterior distributions over the latent space, and the decoder operates
s a generative network, mapping arbitrary latent coordinates back to
istributions over the original data space. To achieve this, it is assumed
hat input data can be sampled from a unit Gaussian distribution of
atent parameters, so that during the learning process the model is
rained by simultaneously optimizing two loss functions: a reconstruc-
ion loss (as in conventional autoencoders); and the Kullback–Leibler
ivergence 𝐷KL between the learned latent distribution and a prior unit
aussian. So we can understand the VAE as a deep autoencoder with
n additional regularization provided by the 𝐷KL term. In this way, we
btain an autoencoder that works as a generative model.

VAEs are therefore a powerful extension of deep autoencoders
nd are expected to play a significant role in the future of health
onitoring algorithms [21]. Not surprisingly, they have already out-
erformed ordinary autoencoders in reconstruction error-based novelty
etection [49]; and their latent spaces have proven to be powerful
eature extractors, providing compact representations of the data that

ave been successfully used in fault detection applications [50,51].
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Fig. 1. Autoencoder architecture.
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Fig. 2. RaPP approach.
Source: Figure adapted
from [38].

.2. Reconstruction error as health indicator

As mentioned before, when autoencoders are trained on normal
ata, the novelty or degradation degree of an incoming sample is
ypically measured by means of its reconstruction error (1), which
ompares the input sample 𝐱 with its reconstruction �̂�. In this context,
amples with large residual errors are considered more likely to be
ovel [41], as they are far from the manifold described by the trained
utoencoder.

𝑅𝐸𝐶 (𝐱) = ‖𝐱 − �̂�‖2 (1)

Although this approach has proven successful in the literature [11,
6,37,42], it does not really take advantage of one of the most no-
able proven strengths of deep models, which is their ability to learn
ierarchical representations of data [22]. Instead, the reconstruction
long projection pathway (RaPP) approach, recently presented in [38],
roposes to exploit such hierarchical nature by extending the recon-
truction error to the hidden spaces of the autoencoder. Rather than
omparing 𝐱 and �̂� only in the input space, as the ordinary approach
oes, RaPP proposes to project the input and its reconstruction into
he hidden spaces, thus obtaining pairs of activation values that will be
ater aggregated to quantify the novelty of the input.

More formally, let 𝐴 = 𝑓◦𝑔 be the trained autoencoder (where 𝑓 is
he decoder and 𝑔 is the encoder), and 𝑙 be the number of layers in 𝑔.
hen the partial computation of 𝑔 would be defined as: 𝑔∶𝑖 = 𝑔𝑖◦⋯◦𝑔1,
or 1 ≤ 𝑖 ≤ 𝑙. Accordingly, when we feed 𝐱 and �̂� into 𝐴, we obtain
airs (ℎ𝑖, ℎ̂𝑖) of their hidden representations, where ℎ𝑖(𝐱) = 𝑔∶𝑖(𝐱) and
̂ 𝑖(𝐱) = 𝑔∶𝑖(�̂�). This procedure is illustrated in Fig. 2.

For the aggregation of the activations, authors present two metrics,
esulting in two different health indicators (𝜀𝑆𝐴𝑃 and 𝜀𝑁𝐴𝑃 ) derived
3

rom the RaPP approach. The simple aggregation along pathway (SAP) i
or a sample 𝐱 is defined by summing the square of Euclidean distances
or all pairs of activations:

𝑆𝐴𝑃 (𝐱) = ‖ℎ(𝐱) − ℎ̂(𝐱)‖2 (2)

here ℎ(𝐱) = [ℎ0(𝐱),… , ℎ𝑙(𝐱)] and ℎ̂(𝐱) = [ℎ̂0(𝐱),… , ℎ̂𝑙(𝐱)].
The normalized aggregation along pathway (NAP) is an extension

f SAP which proposes to normalize the distances before their aggre-
ation, in order to alleviate the dependency between hidden layers. To
e precise: let distances be 𝑑(𝐱) = ℎ(𝐱)− ℎ̂(𝐱); given a training set 𝐗, let
be a matrix whose 𝑖th row corresponds to 𝑑(𝐱𝑖) for 𝐱𝑖 ∈ 𝐗; and let

̄ be the column-wise centred matrix of 𝐃. In this context, 𝜀𝑁𝐴𝑃 for a
iven sample 𝐱 is defined as follows:

𝑁𝐴𝑃 (𝐱) = ‖(𝑑(𝐱) − 𝜇𝐗)⊤𝐕Σ−1
‖2 (3)

here 𝑑(𝐱) is expressed as a column vector, 𝜇𝐗 is the column-wise mean
f 𝐃, Σ is a diagonal square matrix containing the singular values of
̄ , and 𝐕 is a matrix containing the right singular vectors of �̄�. Note
hat 𝜀𝑁𝐴𝑃 is based on the concept of Mahalanobis distance.

Experiments in the literature [38,52] have shown that these RaPP
ndicators are able to outperform the traditional reconstruction error-
ased approach. Therefore, the information provided by the hidden
paces of the autoencoder has proven to be of great value, and seems
o have great potential in the construction of health indicators.

. Proposed method

Following the philosophy of the RaPP approach, we build our health
ndicator based on the disentangled representations of data provided by
he hidden spaces of the autoencoder. But we focus only on the latent
pace information: we propose to use the latent reconstruction error
s machine health indicator. The motivation for this approach and its
athematical formulation are presented below.

.1. Motivation

Generally, high-dimensional data is considered to lie in a low-
imensional space [53,54], which means that, in most situations, high-
imensional phenomena can actually be dominated by a small amount
f variables. Therefore, a suitable low-dimensional manifold, such as
he latent space of an autoencoder, would reveal the underlying sources
f variation of the phenomena under study.

As explained in Section 2.1, deep autoencoders are trained to project
he input data into a low-dimensional latent space and then reconstruct
he output data from this compressed representation. Thanks to their
ierarchical nature, they have shown a great ability to learn meaningful
epresentations of data and their latent spaces have become power-
ul feature extractors [39,55]. Latent spaces capture the underlying
tructure in data, providing us with compact projections that are more
obust to undesired properties (such as the presence of noise or artefacts
n data) than high-dimensional spaces [56,57].
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Fig. 3. Latent reconstruction error for a set of clusters.
Fig. 4. Latent reconstruction error for a spiral.
Therefore, we propose to compute the reconstruction error in this
latent feature space rather than in the original data space. The latent
reconstruction error will thus result in a disentangled representation of
the reconstruction error, that we hypothesize might be a more robust
and, consequently, more suitable health indicator for prognostics tasks
than the reconstruction error itself. This can be seen in the figures
above, where we illustrate the comparison with two different three-
dimensional (3D) examples: a set of clusters and a spiral (Figs. 3 and 4,
respectively). In both cases, we trained an autoencoder to reconstruct
the 3D data samples (considering they are representative of normal be-
haviour) using a 2D latent space, and then created a grid for which we
computed the reconstruction error 𝜀𝑅𝐸𝐶 and the latent reconstruction
error 𝜀𝐿𝑆 , which are represented by a colour scale going from white
(low error, normal behaviour) to red (high error, faulty behaviour), so
that they reflect the deviation degree from process normal behaviour.
In Fig. 3.c and Fig. 4.c we can see that 𝜀𝑅𝐸𝐶 is sensitive to multiple
sources of variation, while 𝜀𝐿𝑆 (Fig. 3.d, Fig. 4.d) is only sensitive to
deviations from normal behaviour (it is low in high-density areas and
gradually increases towards low-density areas), being an apparently
more consistent health indicator.

It should also be noted that this proposal is a simplification of the
RaPP approach: instead of computing the reconstruction error in all
hidden spaces, we put the focus on the hidden space that provides the
most compact and parsimonious representation of the data, summariz-
ing in a reduced number of factors the main modes of variation of the
process, which is the latent space of the autoencoder. In Section 4, we
will evaluate the performance of our proposal, compared to the RaPP
approach and to the traditional reconstruction error-based solution, in
the presence of a certain deviation from the process normal behaviour,
being machine degradation.

3.2. Latent reconstruction error

The construction of our health indicator starts by training an au-
toencoder (consisting of an encoder 𝑔 and a decoder 𝑓 ) only with
normal data samples. Then, when we receive an incoming sample
whose health we want to evaluate, we project the sample 𝐱 and its
reconstruction �̂� into the latent space of the autoencoder (Fig. 5), pro-
ducing a pair of activation values [ℎ (𝐱), ℎ̂ (𝐱)] that will be aggregated
4

𝑙 𝑙
Fig. 5. Proposed method: we constrain the RaPP approach to the latent space.

to obtain the latent reconstruction error. For the aggregation, we use
the same metrics as the RaPP approach (SAP, NAP), but constrained to
the latent space, so we obtain two different health indicators: 𝜀𝑆𝐴𝑃𝐿𝑆
and 𝜀𝑁𝐴𝑃𝐿𝑆 .

We define the latent reconstruction error 𝜀𝑆𝐴𝑃𝐿𝑆 (for the sake of
clarity, in the previous subsection we used the term 𝜀𝐿𝑆 ) of a sample
𝐱 as the Euclidean distance between its latent representation ℎ𝑙(𝐱) and
the latent representation of its reconstruction ℎ̂𝑙(𝐱):

𝜀𝑆𝐴𝑃𝐿𝑆 (𝐱) = ‖ℎ𝑙(𝐱) − ℎ̂𝑙(𝐱)‖2 (4)

In the same way as in the RaPP approach, we can also normalize
the distances before their aggregation. To be precise, we can compute
𝜀𝑁𝐴𝑃𝐿𝑆 according to Eq. (3), but in this case with distances 𝑑(𝐱) =
ℎ𝑙(𝐱) − ℎ̂𝑙(𝐱).

Hence, our proposal yields two health indicators (𝜀𝑆𝐴𝑃𝐿𝑆 , 𝜀𝑁𝐴𝑃𝐿𝑆 ),
whose performance will be presented in the next section.

4. Results

We have tested our autoencoder-based health indicator on three
different datasets, considering two types of autoencoders, and com-
paring its performance with that of state-of-the-art approaches. In the
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Table 1
Datasets used in this research.

Dataset Sensors Runs Cycles Size Train data Test data

FD001 21 200 33727 33727 × 21 23692 × 21 10035 × 21
FD003 21 519 41316 41316 × 21 31289 × 21 10027 × 21
Mill 6 16 167 8350 × 600 3000 × 600 5350 × 600

following subsections we describe the datasets, the architecture of the
autoencoders and the results of performance in terms of monotonicity,
trendability and prognosability. We also visualize in this section the
latent space of the trained autoencoders, bringing light on the potential
of latent residuals for the monitoring of machinery degradation.

4.1. Datasets

The data used in this research has been taken from three publicly
available datasets, which are presented in Table 1. Datasets FD001 and
FD003 are part of the C-MAPSS repository [58], developed by NASA,
which provides simulated degradation data of turbofan engines with
different operating conditions and fault patterns. The Mill dataset [59],
provided by the BEST lab at UC Berkeley, contains tool wear data from
a milling machine running under various operating conditions.

More in detail, the FD001 dataset contains readings of 21 sensors
for 200 runs (100 engines operating till end-of-life and 100 engines
pruned some time prior to failure), where each run has a different du-
ration, resulting in a dataset with a total of 33727 machine cycles. For
each cycle, there is some additional information available (operational
settings of the engines) that we have not included in our experiments.
The FD003 dataset, which collects operating data from another fleet
of engines, has been constructed in the same way: it consists of 519
runs (260 engines operating till end-of-life and 259 engines pruned
some time prior to failure), resulting in a dataset of 41316 samples.
Regarding data preprocessing, we have normalized both datasets by
means of min–max scaling with range [0,1] (in detail, we have trained
a scaler on the train data and then used it to transform both train and
test data).

The Mill dataset contains readings of 6 sensors for 16 run-to-
failure cases of different duration, recording a total of 167 machine
cycles. In this dataset, each cycle of the machine is defined by 6
snapshot sequences (one per sensor) of size 9000 points, that we have
preprocessed as follows: we have discarded the first and last 2000
points (corresponding to the turning on and turning off of the milling
machine) obtaining vectors of size 5000 points, which we have split
into 50 windows of 100 elements (with no overlapping). Concatenating
the windows of all sensors, we obtain a total of 8350 samples of size
600 elements. Additional information about the machine cycle (such
as operational settings or the type of material) has not been included
in our experiments. Finally, as in the previous scenarios, we have
normalized the dataset by means of min–max scaling with range [0,1]
(we have trained a scaler on the train data and then used it to transform
both train and test data).

Regarding the training and testing of our proposal, we have parti-
tioned the datasets into two sets (train data and test data), as indicated
in Table 1. In detail, we have considered the initial cycles of the
machines to be representative of process normal behaviour and, there-
fore, they have been used to compose the training sets. In particular,
for the Mill dataset we have considered as healthy samples those
corresponding to the first four cycles of machine operation; for datasets
FD001 and FD003, we have chosen as normal samples those with RUL
greater than 80 cycles (in these datasets the RUL of each sample is
a known variable). These normal samples have been used to build a
model of process normal behaviour (Section 4.2); and the remaining
samples have been used as test data in order to assess the performance
5

of our health indicator (Section 4.3).
4.2. Model of normal behaviour

Our health indicator is built on the residuals of a deep autoencoder
that is trained to reconstruct normal data samples, so that residuals
of incoming samples become a measure of their deviation from nor-
mal behaviour. For this purpose, we have trained the autoencoders
detailed below (Table 2, Table 3). It should be noted that we have
used two types of architectures (deep autoencoder and variational
autoencoder), since we aim to evaluate the performance of our HI
considering different architectures for the generation of the residuals.

We have trained three deep autoencoders, one per dataset, using
the minibatch gradient descent [43] and the Adam optimizer [60].
The number of epochs, the batch size, and the architectures of these
models are shown in Table 2, and we have used the rectified linear unit
(ReLU) function [61] as activation function in all their layers (except
in the output and bottleneck layers, where we have used the identity
function).

We have also trained three variational autoencoders, one per
dataset, using the minibatch gradient descent [43] and the rmsprop
optimizer [62]. The number of epochs and the batch size are indicated
in Table 3. The architectures of these models (number of layers and
number of neurons per layer) are also shown in the table, and we
have used the ReLU function [61] as activation function in all their
layers (except in the output and bottleneck layers, where we have used
sigmoidal and identity functions, respectively).

It should also be noted that the tuning of all the parameters men-
tioned in this subsection (Table 2, Table 3) is based on the testing of
different configurations. The chosen configurations are the ones that
yielded the best results in terms of reconstruction error (another option
could be to rely on the latent reconstruction error, but we have chosen
the reconstruction error in order to be consistent with the loss function
of the autoencoder). For the implementation of the architectures, we
have used the Keras framework (with Tensorflow backend), which is
an open source neural network library, widely used by the research
community [63].

Finally, it is worth mentioning that our proposal is based on the as-
sumption that the training datasets are representative of the full range
of expected operating conditions. However, in systems with changing
environments, normal conditions may change over time, potentially
affecting the performance of our proposal. In such cases, a re-training
of the autoencoder —triggered e.g. by a drift detector [64]— may be
required in order to model the actual process normal behaviour.

4.3. Health indicator evaluation

In order to evaluate the performance of our proposal, we have
computed the latent reconstruction error for the test set of each engi-
neering system (FD001, FD003, Mill) based on the residuals of different
architectures (deep autoencoder, variational autoencoder), and com-
pared its performance with that of state-of-the-art approaches. In detail,
we have considered three approaches for the construction of HIs: the
traditional approach 𝜀𝑅𝐸𝐶 , in which residuals are computed in the
input space of the autoencoder; the RaPP approach, in which residuals
are computed in the hidden spaces of the autoencoder (in accordance
with the literature, we have considered the simple 𝜀𝑆𝐴𝑃 and normalized
𝜀𝑁𝐴𝑃 aggregation of residuals); and our approach, which proposes
to compute the residuals in the latent space of the autoencoder (in
the same way, we present two possible indicators, being 𝜀𝑆𝐴𝑃𝐿𝑆 and
𝜀𝑁𝐴𝑃𝐿𝑆 ). In order to evaluate the performance of these approaches,
we have used three well-known quality metrics [65]: monotonicity
(measure of the trend of the HI as the system evolves toward failure),
trendability (measure of similarity between the trajectories of the HI in
multiple run-to-failure experiments) and prognosability (measure of the
variability of the HI at failure relative to the range between its initial
and final values). The obtained results are shown in Table 4, where we
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Table 2
Deep autoencoder architecture for each dataset.

Number of epochs Batch size Number of layers Number of neurons in the layers

Encoder Bottleneck Decoder

FD001 200 800 9 (21,10,20,10) (2) (10,20,10,21)
FD003 200 800 9 (21,10,20,10) (2) (10,20,10,21)
Mill 300 1000 7 (600,200,100) (10) (100,200,600)
Table 3
Variational autoencoder architecture for each dataset.

Number of epochs Batch size Number of layers Number of neurons in the layers

Encoder Bottleneck Decoder

FD001 400 300 11 (21,10,20,10) (2,2,2) (10,20,10,21)
FD003 400 300 11 (21,10,20,10) (2,2,2) (10,20,10,21)
Mill 400 300 9 (600,200,100) (10,10,10) (100,200,600)
Table 4
Results of performance in terms of monotonicity –mono–, trendability –tren– and prognosability –prog– (best results for each metric and dataset are presented in bold font).
i
d

have also included, for ease of comparison, a bar chart for each column
of the table.

According to Table 4, the HIs based on the latent reconstruction
error (𝜀𝑆𝐴𝑃𝐿𝑆 , 𝜀𝑁𝐴𝑃𝐿𝑆 ) lead to better results than state-of-the-art ap-
roaches. This can be seen in the results of the three datasets, and for
oth deep models, except for the prognosability in the FD003 dataset.
herefore, our method has proven to outperform the approaches in the

iterature, in different contexts, and regardless of the type of autoen-
oder used to generate the residuals. We can also notice that the two
ndicators derived from our proposal present good performance, but
specially the normalized aggregation 𝜀𝑁𝐴𝑃𝐿𝑆 .

In addition, we have also considered five time-domain statisti-
cal descriptors commonly used in the literature as health indicators:
skewness, kurtosis, Root Mean Square (RMS) value, crest factor and
variance [66]. To compute these features we have chosen windows of
size 20 samples for FD001 and FD003 datasets, and of 100 samples for
the Mill dataset; we have computed these features for each sensor in
the datasets and reported the best-case results (Table 5). We can see
that, although these indicators achieve good results in some metrics
(monotonicity in FD001 and FD003 datasets for the RMS value, and
prognosability in the Mill dataset), in general terms, they are less
competitive than the indicators automatically extracted by the deep
learning models. In fact, although manually engineered features have
proven successful in many applications, choosing the right features is
not always an easy task, as it may require expertise, prior knowledge
of the machine or a strong mathematical basis.

Finally, we present a comparison of the residual-based health in-
dicators for four test trajectories corresponding to the FD001 dataset
6

(Fig. 6), the FD003 dataset (Fig. 7) and the Mill dataset (Fig. 8). As
we can see in these figures, the HIs built on the hidden reconstruc-
tion error (𝜀𝑆𝐴𝑃 , 𝜀𝑁𝐴𝑃 ) show better performance than the traditional
𝜀𝑅𝐸𝐶 approach, which reports noisy degradation profiles. The 𝜀𝑁𝐴𝑃
ndicator has achieved excellent results in the literature in anomaly
etection applications, being superior to 𝜀𝑆𝐴𝑃 , but here, in the context

of condition monitoring, it presents an undesired property: it shows
an abrupt increase at the end of machine life that can be noticed
in Fig. 6.a.3, Fig. 7.a.3, Fig. 8.a.3 and Fig. 8.b.3. This behaviour
hinders early fault detection, which is a critical aspect in predictive
maintenance applications, and may explain the modest results achieved
by 𝜀𝑁𝐴𝑃 in Table 4. We can also see that the HIs derived from our
proposal (𝜀𝑆𝐴𝑃𝐿𝑆 , 𝜀𝑁𝐴𝑃𝐿𝑆 ) report similar degradation profiles, sharing
a notable particularity: residuals remain low for the first samples of the
trajectory, when the machine has not yet started to degrade, and then
present a gradual increase (representing gradual degradation) until
machine failure. Hence, these HIs appear to be sensitive only to devia-
tions from normal behaviour (which is consistent with the expectations
discussed in Section 3.1), leading to more robust degradation profiles,
and consequently to better performance results, than the state-of-the-
art approaches. We can also notice that all these approaches provide
degradation profiles that reveal the degradation degree of the system
under study, but have no direct physical meaning, which is a typical
aspect of machine learning-based health indicators.

Given the good performance of our proposal observed in the results,
we can say that the degradation profiles provided by the proposed
health indicator represent valuable condition information that could
be used as input data in prognostic tasks, such as RUL estimation
applications. These applications combine the HI with available run-

to-failure sets in order to provide a RUL estimation. In this context,
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Table 5
Results obtained using statistical features (best results for each metric and dataset are presented in bold font; results that outperform deep learning approaches are presented in
underlined font).

FD001 FD003 Mill

HI Mono Tren Prog Mono Tren Prog Mono Tren Prog

𝑆𝐾𝐸𝑊𝑁𝐸𝑆𝑆 0.154 3.278 × 10−20 0.416 0.196 4.791 × 10−20 0.362 0.291 4.000 × 10−03 0.563
𝐾𝑈𝑅𝑇𝑂𝑆𝐼𝑆 0.117 9.828 × 10−19 0.378 0.142 𝟏.𝟑𝟐𝟓 × 𝟏𝟎−𝟎𝟓 0.339 0.292 𝟑.𝟖𝟔𝟎 × 𝟏𝟎−𝟎𝟐 𝟎.𝟕𝟓𝟖
𝑅𝑀𝑆 𝟎.𝟕𝟕𝟕 5.677 × 10−20 𝟎.𝟔𝟓𝟏 𝟎.𝟖𝟑𝟖 3.807 × 10−17 𝟎.𝟔𝟗𝟑 𝟎.𝟑𝟔𝟗 9.000 × 10−04 0.413
𝐶𝑅𝐸𝑆𝑇𝐹𝐴𝐶𝑇𝑂𝑅 0.232 𝟓.𝟕𝟗𝟗 × 𝟏𝟎−𝟎𝟓 0.358 0.264 4.562 × 10−06 0.205 0.270 7.600 × 10−03 0.670
𝑉 𝐴𝑅𝐼𝐴𝑁𝐶𝐸 0.151 3.333 × 10−05 0.595 0.199 2.790 × 10−18 0.108 0.338 7.000 × 10−04 0.656
Fig. 6. HIs built on (a) deep autoencoder and (b) variational autoencoder residuals for four test degradation profiles belonging to dataset FD001.
Fig. 7. HIs built on (a) deep autoencoder and (b) variational autoencoder residuals for four test degradation profiles belonging to dataset FD003.
imilarity-based approaches propose to determine the RUL of the ma-
hine by means of comparison and matching of machine degradation
rofiles [13]; other approaches propose the use of degradation models,
hich identify the dynamics behind the degradation profiles to predict

he future condition of the machine [67]; another popular strategy in
he literature consists in using Support Vector Regressors (SVRs) to
odel the relationship between the health indicator and the RUL of

he machine [68].

.4. Geometric interpretation of our proposal

Proceeding in the same way as in Section 3.1, we can create a grid
n the latent space of the autoencoder and use it as a degradation map
f the monitored process. In particular, we analyse below the process
egradation for the FD001 dataset, based on the deep autoencoder
esiduals.

We can see in Fig. 9 the latent space of the autoencoder, where
e have displayed five degradation maps, each one built on a different
7

health indicator. We have also projected the trajectories of four engines
(the same trajectories shown in Fig. 6), including a vector indicating the
direction of machine degradation and the probability density function
of training data (in colour blue; and estimated by means of KDE
—Kernel Density Estimation— with gaussian kernel).

This map comparison allows us to see how, in all cases, the HI
increases in the direction of machine degradation, thus being consistent
with the nature of the process. However, if we take a broad view of the
maps, we can notice that each HI provides a complementary geometric
interpretation of the latent space. For example, it is noticeable that
the indicators derived from our proposal (Fig. 9.d, Fig. 9.e) yield maps
with smoother and more regularized geometry than the state-of-the-art
approaches (Fig. 9.a, Fig. 9.b, Fig. 9.c), and also better aligned with the
density function of training data (which is representative of machine
healthy behaviour). Therefore, the geometry of our proposal is more
consistent with the degradation of the process, which explains the good

results obtained by 𝜀𝑆𝐴𝑃𝐿𝑆 and 𝜀𝑁𝐴𝑃𝐿𝑆 in Table 4.
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Fig. 8. HIs built on (a) deep autoencoder and (b) variational autoencoder residuals for four test degradation profiles belonging to the Mill dataset.
Fig. 9. Health indicator representation in the latent space of the deep autoencoder for the FD001 dataset: (a) 𝜀𝑅𝐸𝐶 , (b) 𝜀𝑆𝐴𝑃 , (c) 𝜀𝑁𝐴𝑃 , (d) 𝜀𝑆𝐴𝑃𝐿𝑆
, (e) 𝜀𝑁𝐴𝑃𝐿𝑆

.

Finally, in view of these results, we can fully appreciate the in-
formation provided by the health indicators and how it may assist in
the process of decision making in the engineering systems field. As
shown in the previous section (Fig. 6, Fig. 7, Fig. 8), the magnitude
of the health indicator reveals the degradation degree of the system
under study, so we can interpret the indicator as a measure of machine
degradation, thus providing valuable condition information that can
be used as a decision-making aid in the planning of maintenance
actions [69] or as input data in prognostic tasks such as RUL estima-
tion [70]. Furthermore, the visualization of the machine degradation
direction (Fig. 9) could reveal different types of degradation or anoma-
lous behaviour, allowing us to identify which one the machine is
suffering from and therefore to plan the most appropriate maintenance
operations accordingly.

5. Conclusion

In this paper we have proposed the latent reconstruction error of
deep autoencoders as machine health indicator. We have tested our
proposal on three different datasets, considering two types of autoen-
coders (deep autoencoder and variational autoencoder), and comparing
its performance with that of state-of-the-art approaches: the traditional
reconstruction error approach, in which residuals are computed in
the input space of the autoencoder; and the RaPP approach (recently
presented in the literature), in which residuals are computed in the
hidden spaces of the autoencoder. The results of the research (expressed
in terms of monotonicity, trendability and prognosability) have proven
the capability of our health indicator to outperform its competitors, in
the three datasets, and regardless of the type of autoencoder used to
generate the residuals.

Therefore, we could say that the quality of the health indicator is
superior when the residuals are computed in the latent space of the
autoencoder, rather than in hidden or input data spaces, as previously
done in the literature. This suggests that, by providing compact and
disentangled representations of the original data, latent spaces might
8

also be revealing the underlying sources of variation —such as machine
degradation— of the process under study. Hence, our research not only
presents a novel health indicator, but also provides evidence of the
potential of latent spaces for the monitoring of machinery condition.

Regarding future work, we are interested in exploring the applica-
bility of our proposal in hybrid encoder–decoder architectures, such as
deep adversarial autoencoders (AAEs). We are also interested in the se-
mantic analysis of the latent space, so the study of the latent directions
of machine degradation and their connection with the proposed health
indicator will be the topic of our future work.
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