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Resumen
Debido al límite de difracción de la luz, el potencial de la nanociencia y la nan-
otecnología no puede ser explotado con luz ordinaria. Sin embargo, la excitación de
polaritones en la intercara entre un metal y un aislante provee una forma de con-
centrar la luz (reducir su longitud de onda) sin aumentar su frecuencia (su energía).
Recientemente, se ha descubierto que los materiales laminares (materiales de van der
Waals, vdW) poseen la mayor capacidad, de entre todos los materiales conocidos,
de confinar la luz en la nanoescala. Sin embargo, la dispersión de polaritones en el
plano de estos materiales es isótropa, lo que conlleva dificultades a la hora de con-
trolar su propagación y desarrollar aplicaciones. Además, los polaritones excitados
en materiales polares (conocidos como fonón-polaritones) presentan la desventaja de
poder ser excitados únicamente en bandas estrechas de frecuencias (conocidas como
Reststrahlen Bands, RB) en el espectro infrarrojo.

En esta tesis, se introduce por primera vez la propagación anisótropa en el plano
de polaritones en materiales polares en la fase alfa del trióxido de molibdeno. El caso
más extremo se conoce como propagación hiperbólica, donde los polaritones pueden
propagar solo a lo largo de unas determinadas direcciones del plano, lo que nos brinda
unas oportunidades sin precedentes para la focalización de la luz en la nanoescala.
Además, se desarrolla un modelo teórico para explicar su comportamiento, así como
unos dispositivos ‘prueba de concepto’ para explotar dichas capacidades. Por otro
lado, el problema de la excitación de los fonón-polaritones en las RB es abordado me-
diante la intercalación de átomos alcalinos en la estructura cristalina del pentaóxido
de vanadio, consiguiendo desplazamientos de las RB de más de 100cm−1. Asimismo,
se encuentra que los tiempos de vida de los polaritones en estos materiales marcan
récords, alcanzando los 8 ps y que el intercalado no afecta a los mismos. Finalmente,
se estudia desde un punto de vista fundamental el origen físico de los mecanismos de
pérdidas que limitan la propagación de polaritones en trióxido de molibdeno y que,
por tanto, nos impiden explotar el máximo rendimiento polaritónico que se podría
dar a dispositivos basados en esta tecnología.





Summary
Due to the diffraction limit of light, the potential of nanoscience and nanotechnology
cannot be exploited with ordinary light. However, the excitation of polaritons at
the interface between a metal and an insulator provides a way to concentrate light
(reduce its wavelength) without increasing its frequency (its energy). Recently, it
has been found that lamellar materials (van der Waals materials, vdW) possess the
greatest ability, among all known materials, to confine light at the nanoscale. How-
ever, the in-plane dispersion of polaritons in these materials is isotropic, which leads
to difficulties in controlling their propagation and developing applications. Further-
more, polaritons excited in polar materials (known as phonon-polaritons) have the
disadvantage of being able to be excited only in narrow frequency bands (known as
Reststrahlen Bands, RB) in the infrared spectrum.

In this thesis, in-plane anisotropic propagation of polaritons in polar materials is
introduced for the first time in the alpha phase of molybdenum trioxide. The most
extreme case is known as hyperbolic propagation, where polaritons can propagate
only along certain in-plane directions, giving us unprecedented opportunities for
nanoscale light focusing. In addition, a theoretical model is developed to explain
their behavior, as well as ‘proof-of-concept’ devices to exploit these capabilities. On
the other hand, the problem of phonon-polariton excitation in RBs is addressed by
intercalating alkali atoms in the crystal structure of vanadium pentaoxide, achieving
RB shifts of more than 100 cm−1. It is also found that the lifetimes of polaritons in
these materials set records, reaching 8 ps and that the intercalation does not affect
them. Finally, we study from a fundamental point of view the physical origin of the
loss mechanisms that limit the propagation of polaritons in molybdenum trioxide
and, therefore, prevent us from exploiting the maximum polariton performance that
could be given to devices based on this technology.
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1

Introduction and State of the
Art

In this thesis, the study of the propagation of light at nanoscale will be studied in
Van der Waals nanomaterials presenting high in-plane structural anisotropy, i.e.,
anisotropic propagation of ‘nanlight’ or polaritons. Particularly, in this chapter, we
will give an introduction to the field of polaritonics, as well as a definition of polari-
tons as a way to beat the diffraction limit and confine light at the nanoscale. A brief
preface to the physics of polaritons is provided for two different kinds of polaritons:
plasmon polaritons and phonon polaritons. Van der Waals materials are introduced
as one of the best platforms to support ultra-confined light at the nanoscale. The fun-
damental differences between polaritons in van der Waals materials and polaritons
in bulk materials are highlighted. Hyperbolicity is introduced as an extreme type of
anisotropic propagation of polaritons and the opportunities of hyperbolic polaritons
are summarized. The scattering-type scanning near-field optical microscopy tech-
nique is shortly introduced as a nanophotonic tool for visualizing the flow of light at
the nanoscale. Finally, the scope and organization of the thesis is given in the last
section.

1.1 | Nanooptics
Understanding light-matter interactions has brought society to develop more in the
last 100 years than in the rest of its existence. Quantum mechanics was born thanks
to the study of atomic line spectra in selected materials when illuminated with light
of a certain frequency [1]. We can either use matter to control light, for example,
laser emission can be controlled through modifications of the gain medium and the
pump source [2, 3], or we can use light to control matter, for example, manipulating
molecules and cells by means of a laser beam in optical tweezers [4]. However, cou-
pling light and matter at particular frequencies faces a fundamental problem: the
diffraction limit of light, which states that the smallest resolvable distance between
two objects cannot be smaller than half of the wavelength of the imaging light [5]. As
such, the diffraction limit establishes a restriction over how much an electromagnetic
wave can be shrinked to control and explore new optical phenomena. This has im-
portant consequences for instance in the mid infrared spectral region, where techno-
logically important organic materials or biological substances have unique absorption
spectra [6] but their sizes are much smaller (less than 1µm) than the wavelength of
light (MIR, from λ0 = 2.5µm to λ0 = 25µm with λ0 representing the wavelength
of light). Additionally, near-field thermal emission of warm micro- and nano-objects
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(temperatures higher than 300K) correspond to wavelengths within the MIR and
their control and management is critical for industrial purposes. Therefore, the po-
tential of nanoscience and nanotechnology cannot be fully exploited with ordinary
light.

Polaritons provide a way to overcome this problem and bring light to much
smaller volumes [7]. They are hybrid light-matter electromagnetic waves that arise
from the coupling of photons with dipolar excitations in matter (i.e., the electron
cloud in metals, optical phonons in polar materials, or electron-hole pairs in semi-
conductors, see Figure 1.1) with the same frequency (energy) than light with which
they are excited [8, 9]. Due to their confinement capability, polaritons hold promises
for applications at the nanoscale such as biosensing [6, 10], nanochemistry [11], pho-
tocatalysis [12], near-field thermal management [13, 14] or nanolight trafficking [15],
among others. Nevertheless, due to the reduced polaritonic wavelength, λp, with re-
spect to the wavelength of excitation light, λ0, a momentum mismatch ∆k = kp−k0
must be overcome in order to excite them, with kp = 2π/λp the polariton momentum
and k0 = 2π/λ0 the momentum of the excitation light.

Figure 1.1: Polaritons Polaritons are hybrid light-matter excitations involving
different dipolar phenomena: conduction electrons in metals (plasmon polaritons),
optical phonons in polar materials (phonon polaritons), excitons in semiconductors
(exciton polaritons), cooper pairs in superconductors (cooper pair polaritons) and
magnetic resonances in magnetic materials (magnon polaritons). Illustration adapted
from [8].

Surface Plasmon Polaritons
Among all types of polaritons [8, 16], surface plasmon polaritons (SPPs, Figure
1.2A) are by far the most studied [9, 17, 18]. They arise from the interaction
between light and the collective oscillations of the electron cloud in metals or highly
doped semiconductors and can be described in terms of their complex permittivity
or dielectric constant, ε. In particular, noble metals (Au, Ag, Pt, etc.) possess
two main contributions to the permittivity at visible and infrared frequencies: one
related to the free conduction electron cloud (or Drude contribution) and the other
to the interband excitations, which take place at approximately 2.5 eV and higher
energies. For the sake of simplicity, we will only consider here the contribution of
the free electrons. Consequently, the permittivity of noble metals can be modelled
as (See Figure 1.2B) [19]:

εm(ω0) = 1−
ω2
p

ω2
0 + iγω

(1.1)
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where γ denotes the damping term (which takes into consideration phenomena
such as electron-electron scattering, or electron-phonon scattering, among others)
and ωp is the plasma frequency, that is, the frequency below which electrons are
moving in the opposite direction to the electric field preventing the field to pene-
trate into the metal, what corresponds to a negative permittivity. Above the plasma
frequency, electrons in metals cannot vibrate at the same rate as the incident elec-
tromagnetic field and the wave penetrates the metal, what corresponds to a positive
permittivity. Solving the Maxwell’s equations at the interface between a metal and a
dielectric material (supposing the interface placed at the plane z = 0), we found that
SPPs are transversal magnetic (TM) polarized waves propagating along the interface
of the dielectric and the metal with the following dispersion relation, kxSPP (ω0), (See
Figure 1.2C) [20]:

kxSPP (ω0) = k0(ω0)

√
εdεm

εd + εm
=

ω0

c

√
εdεm

εd + εm
(1.2)

where εd and εm represent the permittivities of the dielectric and metal media,
respectively. Also, an expression for the normal component of the wavevector can be
obtained in the metal (m) and dielectric (d):

kj,zSPP (ω0) = k0(ω0)
εj√

εm + εd
; j = m, d (1.3)

Propagating solutions along the metal-dielectric interface require a real kxSPP .
This could be fulfilled if the terms εdεm and εd + εm are both positive or both
negative. Besides, to obtain a solution bounded to the interface, purely imaginary
‘z’ components of the wavevector are required in both media. Consequently, the
term εm + εd must be negative and, therefore, to guarantee the excitation of SPPs,
the metal and dielectric materials must fulfill the conditions [19]:

εd(ω0) · εm(ω0) < 0

εd(ω0) + εm(ω0) < 0
(1.4)

Hence, SPPs can only be excited at the interface between two materials as long
as: i) they present different sign in their dielectric function (i.e., a metal and a di-
electric) and ii) the absolute value of the metal’s permittivity exceeds that of the
dielectric, which is the case for a metal/air interface in the visible (VIS) and MIR
regimes. Note that, since the factor

√
(εdεm)/(εd + εm) is larger than 1, SPPs are

confined waves, kSPP (ω0) > k0(ω0), as mentioned above.

The real part of the SPPs wavevector accounts for the SPP wavelength, whereas
the imaginary part represents its damping. Accordingly, the SPP wavelength is given
by:

λx
SPP =

2π

Re(kxSPP )
=

2π

k0(ω0)
Re

(√
εd + εm
εd · εm

)
= λ0Re

(√
εd + εm
εd · εm

)
(1.5)

The SPP propagation length along the interface, Lp, is defined as the distance at
which the SPP electric field decreases by a factor 1/e. Since the SPP electric field is
supposed to be given by a plane wave [19]:

|E⃗| ∝ exp(ikxSPPx) = exp(iRe(kxSPP )x) exp(−Im(kxSPP )x), (1.6)
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Figure 1.2: Properties of Surface Plasmon Polaritons A Oscillating electron
clouds in metals. Yellow spheres denote the atoms in the metal lattice while the
blurred yellow area denote the electron cloud. ’+’ and ’−’ symbols are added together
with red dashed arrows to illustrate the electric field. The dielectric material is
represented by the blue region whereas the metallic material is represented by the
yellow region B Permittivity function of a metal. ωp represents the plasma frequency,
where the metal permittivity changes from negative to positive values and ceasing
the reflection of the impinging electromagnetic field. C The dispersion of SPPs
(red curve) is shown together with the light’s dispersion (black dashed curve) for
comparison. At a given frequency, ω0, the polaritons wavevector has an absolute
value, kxSPP , larger than the light wavevector, k0. D SPP confinement at the interface
between a metal and a dielectric. The SPP electric field decreases faster in the metal
(smaller normal decay length Lm) than in the dielectric (higher normal decay length
Ld). The yellow shadowed regions in B, C and D represent the frequency range
where the metal’s permittivity presents negative values.

the SPP propagation length along the interface will be given by Lx
p = 1/Im(kxSPP ).

In the same way, the SPP decay length into the dielectric and the metal is defined
as the distance at which the SPP electric field decreases by a factor 1/e along the
direction perpendicular to the interface. Consequently, Lj,z

p = 1/Im(kj,zSPP ) with j
either the metal or the dielectric (Figure 1.2D). It can also be shown [21], that
the SPP is associated with an enhancement of the electric field intensity, which has
been widely investigated as a means for increasing the Raman scattering signal of
inorganic and organic materials, leading to the development of the so-called surface-
enhanced Raman scattering (SERS) [22, 23]. Exploiting the field enhancement of
SPP materials, enhancement factors higher than 107 for the Raman signal have been
reported [19].
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Surface Phonon Polaritons
Apart from SPPs, another interesting type of polaritons are surface phonon po-
laritons (SPhPs) [24, 25]. These confined waves are hybrid electromagnetic waves
resulting from the coupling of photons with optical phonons in polar materials, that
is, bound charges oscillating coherently in the crystal lattice [26]. The spectral range
where SPhPs can be excited is directly related to the spectral range where the polar
material presents a negative permittivity. This happens in the so-called Reststrahlen
Band (RB), which is a narrow frequency band defined between the transverse optical
phonon (TO) and the longitudinal optical phonon (LO) where the bound changes
oscillate in such a way that they reflect the incident radiation (Figure 1.3A) [24].
RBs are typically found at MIR and terahertz (THz) frequencies. Remarkably, as
SPhPs arise from the coupling to phonons, they do not suffer from the common
electron-electron scattering processes (typically known as ohmic losses) present in
metals (and consequently in SPPs), resulting in long SPhPs lifetimes of the order of
picoseconds (note that SPPs lifetimes are on the order of femtoseconds [27]). The
physics behind the excitation of SPhPs is mainly the same as for SPPs, so all the
equations and results presented in Section 1.1.1 apply also for SPhPs. However, the
permittivity of a polar material, εp, is differently modelled theoretically by employing
Lorentz oscillators (Figure 1.3B):

εp(ω) = ε∞ +
∑
j

ω2
LO,j − ω2 − iωγLO,j

ω2
TO,j − ω2 − iωγTO,j

(1.7)

where ε∞ is the high-frequency dielectric constant, ωTO and ωLO are the TO
and LO frequency positions, respectively, γTO and γLO represent the TO and LO
damping factors and j an index that describes the number of TO-LO pairs present
in the polar material.

Re
al

(ε
p)

Frequency

ωTO ωLO

0

Polarizable Atoms
Bonded to the Crystal La�ce

A B

Figure 1.3: Properties of Surface Phonon Polaritons A Oscillating lattice-
bounded charges in polar materials. Atoms are depicted as green and grey circles
and their respective movements as green and grey arrows. Red dashed lines illustrate
the electric field. B Permittivity of polar materials at infrared frequencies showing
a Reststrahlen Band (yellow shadowed region) between the TO and LO phonon
frequencies where the dielectric constant reaches negative values.

To better analyze the differences between SPhPs and SPPs it is useful to compare
some of their properties. It can be shown [28] that for phononic and plasmonic
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nanospheres of the same radius, the electric field enhancement associated with SPhPs
can be up to 3 times higher than that of SPPs (both with respect to the excitation
electric field). Moreover, the quality factor, Q, of the phonon-polaritonic resonance,
defined as the ratio between the peak position of the resonance and its full-width at
half-maximum (FWHM), can be also larger by a factor up to 7.5 compared to that of
SPPs. A complete comparison between the field enhancement provided by a phonon-
polaritonic material, for example silicon carbide, SiC, and a plasmon-polaritonic
material, for example gold, Au, inside and outside the SiC RB can be found in [29].

1.2 | Van der Waals Crystals. Novel Polaritons
with unprecedented properties in the Mid-
Infrared spectral range

With the advent of 2D materials after the isolation of graphene (an atomically thick
sheet of carbon atoms covalently bonded in a honeycomb lattice by hybrid sp2 or-
bitals (Figure 1.4A) in 2004 [30], countless attention has been given to the van
der Waals materials family, which covers all the known substances composed of ei-
ther mono- or multi-atomic planes held together by van der Waals forces, regardless
of their physical behaviour (metals, insulators, semiconductors, magnetic materi-
als, etc.). Due to their unprecedented optoelectronic properties, new fundamental
physics [31, 32, 33] and applications [34, 35] have been rapidly explored in vdW
materials, including graphene, transition metal dichalcogenides (TMDs, i.e., WSe2,
WS2, MoSe2, MoS2) [36] and hexagonal boron nitride (h-BN) [37]. Importantly,
these properties also include the excitation of surface polaritons, as recently reported
[38, 39, 40, 41, 42, 43, 44]. In particular, due to the inherent anisotropy of a lay-
ered system, in-plane and out-of-plane opposite-sign permittivities can be found in
vdW materials at certain frequency ranges of the electromagnetic spectrum [8, 7].
This unique behavior makes them suitable material platforms in order to support
polaritonic waveguides with the highest degree of confinement. In fact, polariton
wavelengths deep below the excitation wavelength exhibiting confinement factors
λ0/λp > 70 have been reported [45, 46], demonstrating van der Waals materials as
ideal hosts for trapping light at the nanoscale. Moreover, it has been reported that
polaritons in van der Waals materials can be straightforwardly controlled via either
external stimuli [38, 39, 44], passive tuning of the material thickness [40, 41, 42],
or surface nanopatterning [47].

In addition, exfoliating and preparing van der Waals materials samples is an
easy task that can be carried out in almost any laboratory. The only technical re-
quirements are a suitable tape, a bulk crystal of the van der Waals material to be
studied and an optical microscope [30]. Thinning down the material by folding and
unfolding the bulk crystal on the tape allows to exfoliate van der Waals flakes with
a desired thickness. Indeed, due to the layered nature of the materials, fully flat
samples are readily obtained. Artificial structures assembled from a variety of van
der Waals materials known as ‘van der Waals heterostructures’ [48] can also be eas-
ily fabricated by means of the so-called dry transfer technique [49, 50], leading to
systems with intertwined properties. This is a key aspect of van der Waals materi-
als, as fabrication of dissimilar structures of common bulk materials usually rely on
expensive and time-consuming epitaxial growth techniques. Hence, van der Waals
crystals provide powerful building-blocks for polariton research. Further details of
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the exfoliation procedure and the dry-transfer method will be given in Section 2.1.

Interestingly, new polaritonic effects have been visualized in stacks of vdW ma-
terials, such as hybrid plasmon-phonon polaritons [51, 52] with electrical gating
and thickness control without detriment of their lifetime, plasmon polariton pho-
tonic crystals and superlattices [53, 54], or diffraction-less polaritonic canalization
[55, 56, 57, 58, 59]. For the sake of clarity, the following subsections introduce the
main features of plasmon and phonon polaritons in van der Waals materials, high-
lighting the main differences with respect to the previously introduced SPPs and
SPhPs in bulk materials such as Au and SiC, respectively.

Surface Plasmon Polaritons in Graphene
Due to the exotic linear electronic band structure with zero band gap of graphene at
the K and K’ points of the Brillouin zone (Figure 1.4B) [60], plasmonic modes in
graphene were widely studied theoretically [61, 62, 63] before their first visualiza-
tions (Figure 1.4C) [38, 39, 64]. Modelling of the graphene optical conductivity
typically includes two main electronic contributions: one describing electronic in-
traband transitions (transitions occurring inside the conduction band) and another
describing electronic interband transitions (transitions from the valence band to the
conduction band). In the spectral region where we are interested, i.e., MIR and THz
frequencies, the intraband transition contribution vanishes, and the optical conduc-
tivity is dominated by the interband transitions:

σG(ω0) ≈
σ0
πℏ

4EF

γ − iω0
(1.8)

where σ0 = πe2/2h, with e the electron elementary charge and h the Planck’s
constant, ℏ is the reduced Planck’s constant, and EF is the Fermi energy. By solving
the Maxwell equations in a system considering a 2D graphene sheet with conductivity
σ embedded between two different dielectrics, ε1 and ε2, one can easily derive the
isotropic dispersion relation for graphene plasmons (Figure 1.4D) (supposing the
nonretarded regime, i.e, the momentum of graphene plasmon polariton, kG, is much
higher than the momentum of light, kG ≫ ω0/c, which is indeed the case)[62, 65]:

kG(ω0) =
πℏε0
e2EF

(ε1 + ε2)

(
1 +

i

γω0

)
ω2
0 (1.9)

with ε0 the permittivity of free space. As a difference to SPPs in noble met-
als, there is a square root dependence of the SPP frequency with the wavevector,
ω0 ∝

√
kG (note that propagating solutions are related to Re(kG)). The relation

between the excitation wavelength and the polariton wavelength, i.e., the polaritonic
compression factor [60] can be found as:

λG

λ0
=

4α

ε1 + ε2

EF

ℏω
(1.10)

where α = e2/(4πε0ℏc) ≈ 1/137 is the fine-structure constant. Since EF ∝
√
n,

being n the carrier density [32], the graphene confinement factor can be tuned
through both varying the excitation wavelength and/or the electronic carrier con-
centration, i.e., applying a voltage to the graphene flake [60]. As an example, at
λ0 = 8µm and EF = 0.64 eV (corresponding to reasonable real values), we obtain
a graphene SPP wavelength of 190nm, that is 42 times shorter than the incident
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wavelength [62].
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Figure 1.4: Plasmon Polaritons in Graphene A Graphene crystalline struc-
ture showing the characteristic honeycomb lattice and cell parameter a = 1.42

√
3Å.

Violet circles denote carbon atoms. B Electronic band structure of graphene at the
proximities of the high-symmetry points K and K’. The valence and the conduction
band touch at one point known as Dirac point. C Propagating SPPs in graphene
launched by a gold antenna taken at a temperature of 300K and a gating voltage of
75V . Bright fringes represent the polaritonic oscillations. Image taken from [64].
D Graphene SPP dispersion calculated for a Fermi energy of 0.64 eV (the graphene
layer is supposed to be freestanding). The dispersion is visualized using a false color-
plot of the imaginary part of the Fresnel reflection coefficient, rp, for p-polarized
waves. White dashed lines represent the dispersion of free-space light in order to
highlight the momentum mismatch with SPPs in graphene.

These theoretical predictions for graphene SPPs were experimentally visualized
in 2012 by two independent groups [38, 39] employing a scatterring-type near-field
optical microscope (s-SNOM). Due to the ultra-high confinement of graphene SPPs,
controlling them at the nanoscale become soon a scientific hot topic where the s-
SNOM played a key role in both their excitation and visualization. Indeed, focusing
and lensing capabilities were experimentally demonstrated through the use of Au
nanoantennas [66], and photonic Moiré crystals composed of two rotated sheets of
graphene were introduced to control their optical phenomena through local changes
in the electronic band structure [54].

Phonon Polaritons in hexagonal Boron Nitride
Hexagonal boron nitride is a polar uniaxial vdW material with a crystalline structure
similar to that of graphene (Figure 1.5A). Formerly, it was used as a substrate for
improving some graphene properties such as the electron mobility [37, 67]. Due
to its intrinsic anisotropy, h-BN possesses two optical phonons at MIR frequencies,
which give rise to two not overlapping RB at MIR frequencies [40, 68] where PhPs
exist. The first of these optical phonons represent an in-plane movement of the
nitrogen and boron atoms in opposite directions, yielding the so-called upper RB
(Re(εx) = Re(εy) ≡ Re(εt) < 0; Re(εz) > 0) between 1370 and 1610 cm−1 (7.32
to 6.21µm). The second optical phonon corresponds to an out-of-plane movement
of the nitrogen and boron atoms in opposite directions, yielding the so-called lower
RB (Re(εz) < 0;Re(εt) > 0) between 760 and 820 cm−1 (12.77 and 12.08µm) (see
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Figure 1.5B).

h-BN is an insulator with an indirect bandgap of 5.9 eV [69] in contrast to
graphene, so, PhPs in h-BN cannot be controlled in situ by simply applying a voltage
to the layers. However, the dispersion of the polaritonic modes propagating along
an h-BN slab depend on its thickness, d, as demonstrated by Dai et al. [40]:

kp(ω0) = q(ω0) + iκ(ω0) = −Ψ

d

[
arctan

(
ε1
εtΨ

)
+ arctan

(
ε2
εtΨ

)
+ πl

]
, (1.11)

where Ψ = −i
√

εz/εt, εt and εz are the in-plane and out-of-plane permittivi-
ties, ε1 and ε2 the superstrate and substrate permittivities, and q(ω0) and κ(ω0) are
the real and imaginary parts of the complex phonon-polaritonic wavevector, kp(ω0),
respectively. As such, PhPs in h-BN can be passively tuned during the sample fab-
rication by simply controlling the thickness of the crystal, allowing to demonstrate
highly-confined SPhPs modes [40]. Moreover, as opposed to all polaritonic cases
presented above, these two last equations show that PhPs propagating in h-BN are
not surface waves such as graphene SPPs but volume modes [68] (Figures 1.5C,
D), which can exhibit high order excitations propagating inside the flake. Note that
in this subsection the acronym PhP has been used instead of SPhP to account for the
polaritonic volume nature. Additionally, due to the highly-confined nature of PhPs,
which yields ultra-slow polaritonic group velocities, and the absence of ohmic losses,
polaritonic lifetimes, τ = Lp/vg, can be up to 1 ps [70]. Indeed, longer lifetimes were
demonstrated by isotopically enriching the material, reaching experimental values of
2 ps [71] (note that graphene SPPs and SPPs in noble metals exhibit at least one
order of magnitude lower values). Interestingly, PhPs were also found in monolayers
of h-BN [72].

Notably, PhPs propagating in both RBs present different trends. Whereas in
the upper RB HPhPs propagate with both a positive group velocity (v⃗g = ∇

k⃗
ω(k⃗),

parallel to S⃗) and phase velocity (v⃗ph = (ω0/k)u⃗k, parallel to k⃗), in the lower RB
they propagate with a positive group velocity but a negative phase velocity [70].
This is an exotic polaritonic behavior, as it implies that the maximum propagation
length of the upper RB occurs for frequencies close to the TO phonon, whereas in
the lower RB it happens in the proximities of the LO phonon frequency.

As mentioned previously, heterostructures fabricated of graphene and h-BN allow
merging the unique features of graphene SPPs and h-BN PhPs in a single device due
to the excitation of hybrid plasmon-phonon-polaritons (Figure 1.5D, right panel).
These heterostructures provide a versatile tool for controlling the flow of light at the
nanoscale as its properties can be tuned both by adding free carriers to the system
or by changing the h-BN thickness [52, 51, 73].

Several proof-of-concept devices for technological applications have been real-
ized employing h-BN. For example, regarding surface-enhanced infrared absorption
(SEIRA) spectroscopy, Autore et al. [6] reported that small amounts of organic
molecules can be detected on h-BN nanoribbons thanks to the near-field enhance-
ment provided by the PhP resonances. This device was further improved by the same
group employing isotopically enriched h-BN, as it boosted the quality factors of the
polaritonic resonances [74]. On the other hand, a photonic crystal made of h-BN was
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Figure 1.5: Phonon-Polaritons in h-BN A h-BN crystallographic structure.
Nitrogen atoms are represented by red spheres and boron atoms are depicted with
grey spheres. The h-BN cell parameters are a = b = 2.51Å and c = 6.69Å (interlayer
distance). The space group is P-6 (number 174). B h-BN permittivity in the MIR
spectral range showing two RBs. C IR near-field images of SPhPs propagating
in a h-BN slab for two different frequencies. The thickness of the h-BN flake is
256nm. Image taken from [40]. D Phonon polariton dispersions in h-BN (left
pannel) and h-BN with a graphene layer on top (right panel, EF = 0.64 eV ). The
h-BN thickness is 150nm in both cases. High-order modes can be seen inside the
h-BN RBs in both cases. The coupling between graphene SPPs and h-BN PhPs
results in electromagnetic hybrid modes with dispersion away from the RB (they
inherit plasmonic properties). The horizontal dashed lines represent the frequency
limits of the h-BN RBs.

also demonstrated supporting highly confined angle- and polarization-independent
resonances [75]. Also, light trafficking applications were demonstrated by employing
phase-change materials [76, 77].

Hyperbolic Polaritons
Within the h-BN RBs, the permittivity tensor reaches negative values along either
the in-plane crystallographic directions or the out-of-plane crystallographic direction,
preserving positive values along the other (Figure 1.5B). This is in stark contrast
with all isotropic cases presented above, as propagation of polaritons is forbidden
along some directions (those presenting positive permittivity). Hence, the isofre-
quency curve (IFC, a slice of the polaritonic dispersion in the momentum space at
a constant frequency) no longer describes a sphere (|⃗k| = k2x + k2y + k2z = ω2/c2),
but a hyperboloid, |⃗k| = h2t /εz + k2z/εt = ω2/c2 [78]. Notice that either εt or εz are
negative within the RBs. Materials presenting hyperbolic IFC are called hyperbolic
media. In isotropic materials, polaritons are able to propagate along all directions
with parallel wavevectors and Poynting vectors, S⃗ = Re(E⃗ × H⃗∗)/2, whereas in hy-
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perbolic media polaritons are only able to propagate along certain directions with
a varying angle between the wavevector and the Poynting vector. Parallel S⃗ and
k⃗ are found along the crystalline directions and perpendicular S⃗ and k⃗ along the
asymptotes. S⃗ is always defined by the normal to the IFC (Figure 1.6A) in k⃗ space
[79, 80, 81].

Hyperbolic media hold promises for negative refraction of light [82] and subwave-
length imaging [81]. Close to the asymptotes directions, arbitrary large polaritonic
wavevectors yield extremely small polaritonic volumes (limited theoretically only
by the cell parameters of the material), leading thus to potential applications were
extremely deep subwavelength polaritonic propagation of polaritons are needed. Fur-
thermore, since the emission pattern of polaritons excited by dipolar sources in hyper-
bolic media is described by the Green’s function (which physically relates the electric
field generated in r⃗ by any arbitrary polarization field in r⃗ ′ [83]), the number of avail-
able polaritonic wavevectors per solid angle along the directions close to the asymp-
totes augment greatly, yielding strongly directional polaritonic ray-like propagation.
Since the hyperboloid asymptotes in h-BN are given by tan θ(ω) = i

√
εt(ω)/εz(ω)

[84, 85, 68], hyperbolic polaritons in a h-BN slab propagate like reflecting rays at
the top and bottom faces (Figure 1.6B).

Out-of-plane hyperlensing and hyperfocusing capabilities exhibiting long-distance
super-resolution and waveguiding were implemented thanks to the hyperbolic nature
of PhPs in h-BN (Figure 1.6C) [84, 85, 86].

However, the main limitation of PhPs in h-BN arise from their natural out-of-
plane hyperbolicity. For nanophotonic applications it would be more interesting
to develop compact platforms where in-plane propagation of hyperbolic polaritons
could be realized [87]. Li et al. [47] proposed an h-BN nanostructured metasurface
as a possible solution. By applying the effective medium theory they found the
grating parameters needed to modify the out-of-plane hyperbolicity into an in-plane
hyperbolicity. However, although this approximation was able to amplify the phonon-
polaritonic confinement in the metasurface with respect to the unpatterned h-BN, the
fabrication process prevents the system to be suitable for integrated flat polaritonic
applications, as the polaritonic quality factor, Q = Re(kt)/Im(kt), and lifetimes were
reduced by a factor of 35%.

1.3 | s-SNOM as Nanophotonics Tool
Scattering-type scanning near-field optical microscopes (s-SNOM) have played a fun-
damental role in polaritonics [88, 89, 90, 91, 92, 93]. Contrary to far-field micro-
scopes, where transmitted or reflected light by a sample is collected while being
illuminated, near-field microscopes rely on inspecting the optical properties of sam-
ples by approaching a nanoprobe to their near field. Upon illumination, objects
produce both propagating and non-radiative fields (evanescent waves) at their sur-
face, also known as near-fields. The material information encoded into the near-field
is generally lost in typical far-field microscopy schemes as the field decays within
ranges of tens of nanometers. Near-field microscopes allow radiating and collect-
ing in the far-field the near-field information scattered by nanoscale probes in close
contact to the specimen. As such, s-SNOM has been applied to extract locally and
with nm resolution information about Raman spectra [94, 95], IR spectra [96, 97],
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Figure 1.6: Hyperbolic Polaritons in h-BN A Phonon polaritonic isofrequency
contour (IFC) in h-BN at ω0 = 1550 cm−1. Green arrows represent the PhP wavevec-
tor whereas the blue arrows represent the Poynting vector. k⃗ and S⃗ are parallel along
the ‘x’ and ‘y’ axes and perpendicular along the asymptotes. B Out-of-plane hyper-
bolic rays propagating in a 150nm-thick h-BN flake launched by a vertical dipole
at ω0 = 1450 cm−1. The polariton rays are reflected at the interfaces. C Lensing
with hyperbolic PhPs in h-BN. A sketch of the phenomenon is depicted in the upper
panel. Polaritons launched by a buried Au circular antenna (depicted as a yellow
rectangle between h-BN and SiO2) can be seen in the top interface of the h-BN flake.
Depending on the excitation frequency, two circumferences with different radii will
be obtained. At a certain frequency, hyperbolic rays will be launched purely along
the vertical direction, enabling thus a perfect circle to be observed in the image. At
that frequency, the system turns out to be a perfect lens. The left bottom panel show
the experimental AFM measurements of the Au disks before placing the h-BN slab
on top. The right bottom panel shows a s-SNOM image taken at ω0 = 1515 cm−1

in a 395nm-thick h-BN flake. The near-field rings are concentric with the Au disks.
Image taken from [84]

fluorescence [98] or even the complex permittivity of materials [41, 99].

Specifically, s-SNOM systems are based on atomic force microscopes (AFM) in
which an oscillating metal-coated AFM tip illuminated by a laser raster scans the
sample (see Figure 1.7)∗. The metal tip serves as both confiner and enhancer as
well as scatterer of the light, working as a near-field nanoantenna and near-field

∗For a more detailed explanation of the working principle of s-SNOM see Section 2.3

12



nanorecorder at the same time. The tip thus allows wavelength-independent reso-
lution, limited only by the diameter of the tip. Furthermore, due to the reduced
dimensionality of the tip apex, when metallized and illuminated it provides the nec-
essary momentum to give rise to polaritonic excitation [89, 90, 100].

To understand the information extracted by s-SNOM, the near-field interaction
between the tip and the sample can be calculated using a simple point-dipole model
[101]. By representing the AFM tip as a small dipolar sphere, it enables reproducing
qualitatively the s-SNOM images. This simple model was further extended by con-
sidering the tip as a prolate spheroid [102], allowing to reproduce the image contrast
measured by the AFM tip in a more accurate fashion. Indeed, ultra-high phonon
polariton field enhancements were predicted and experimentally verified thanks to
this model [29].

To effectively remove the background signals that introduce artifacts into the
near-field images, it has also been introduced a pseudoheterodyne detection tech-
nique in s-SNOM. The technique consists of a Michelson interferometer attached to
the light path of the system, acting as a reference beam. By demodulating the near
field signals at higher harmonics of the tip resonance frequency [91, 93], it allows
measuring the polaritonic near-field amplitude and phase with fully background sup-
pression. The technique will be fully introduced in Section 2.3.

Sample

Incident Beam

Sca�ered Beam

Oscilla�ng
Metal-Coated

AFM Tip

Ω

Detector

Laser

Beam
Spli�er

Vibra�ng Reference Mirror
(Michelson Interferometer)

M

Reference
Beam

Parabolic
Mirror

Figure 1.7: Sketch of a s-SNOM s-SNOM working principle. Light emitted by a
laser is divided into two optical paths by a beam splitter. The first path is brought
to a parabolic mirror focusing the light on the oscillating metal-coated AFM tip.
The typical oscillation frequencies Ω are 300 kHz. The AFM tip both excites and
scatters the polaritons back to the far-field, returning the scattered radiation from
the same optical path. The other path is directed to a vibrating reference mirror
(which acts as a Michelson interferometer) returning by the same path. The mirror
vibrating frequency M is about 400Hz. Both signals are merged again in the beam
splitter and driven to the detector. Further details will be provided in Section 2.3.

Manipulating and steering deep-subwavelength polaritons can be performed by s-
SNOM. Typically, polaritons launched by the illuminated s-SNOM tip travel through
the material getting reflected by boundaries. While back-reflecting, they form and
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standing-wave pattern due to the interference with the polariton travelling forth.
Therefore, the periodicity of polaritonic waves measured by s-SNOM consists of half
the polariton wavelength, λp/2. These waves are called ‘tip-launched’ polaritons.
Furthermore, boundaries may also launch polaritons with a periodicity equal to the
polariton wavelength, λp, the so-called ‘edge-launched’ polaritons. Altogether, s-
SNOM images typically exhibit polaritonic doublets due to both contributions [103].

Some of the proof-of-concept devices, or research areas, realized recently thanks
to s-SNOM systems include planar graphene plasmon polariton waveguides [38],
polaritonic focusing of polaritons with tailored nanoantennas [15, 66, 104] planar
polaritonic refractor and lenses [105], programmable polaritonic optical elements
employing phase-change materials [77, 105, 106, 107], superlenses and hyperlenses
[84, 85, 108], photocurrent nanoscopy [109] or fundamental polaritonic studies at
terahertz regimes [46, 110].

1.4 | Scope and Organization of the Thesis
The present dissertation will be focused on the study of in-plane hyperbolic phonon-
polaritons in van der Walls materials, namely, the alpha-phase molybdenum trioxide,
α-MoO3, and the alpha phase vanadium pentoxide, α-V2O5. This study is organized
as follows: In Chapter 2 an introduction to the techniques employed in this thesis is
presented. In particular, the exfoliation of van der Waals materials, Fourier transform
infrared spectroscopy (FTIR), scattering type scanning near-field optical microscopy
(s-SNOM), scattering type near-field nanospectroscopy (nano-FTIR) and full-wave
numerical simulation techniques are described in detail. Chapter 3 describes the
in-plane anisotropic and hyperbolic propagation of polaritons in the vdW material
α-MoO3. Excitingly, ultra-slow group velocities and ultra-high polaritonic lifetimes
are found for these polaritons. Thus, taking advantage of the unique opportuni-
ties afforded by hyperbolic vdW crystals, we demonstrate the first proof-of-concept
nanophotonic devices that enable ultra-focusing of light at the nanoscale. Chapter
4 presents a novel route to spectrally shift the RBs in layered materials, expanding
the frequency ranges of polaritons. This is achieved by intercalating the vdW semi-
conductor α-V2O5 with alkaline and alkaline-earth atoms. A full understanding of
propagating polaritons in this material is also provided. In Chapter 5 the fundamen-
tal limits of polaritons in terms of lifetimes are investigated. Using cryogenic FTIR
and s-SNOM measurements, supported by ab initio DFT calculations, we provide an
in-depth understanding of the inherent damping mechanisms of in-plane hyperbolic
polaritons.
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2

Experimental Techniques

In this chapter an introduction to the experimental techniques employed throughout
the thesis is provided. These include the exfoliation of vdW materials and the use
of the dry-transfer method, Fourier Transform Infrared Spectroscopy, and the most
widely employed technique over the thesis, the s-SNOM. s-SNOM Nano-Spectroscopy
(carried out at the Nanooptic group at CIC nanoGUNE) is also introduced based on
the previous mentioned FTIR and s-SNOM techniques. Finally, a brief introduction
to full-wave numerical simulations is provided.

2.1 | Exfoliation of vdW Materials and Dry-transfer
Technique

Controlling the number layers in vdW materials is essential to predict their behavior
and engineer their properties on demand [48, 111, 112]. For example, the wave-
length of h-BN phonon polaritons varies as a function of the slab thickness [40], as
shown in the previous chapter. Layered stacks of different van der Waals materials
result in physical systems with richer physics and enhanced characteristics compared
to isolated layers [52]. Strain fields lead to blue shifts of Raman peaks in a h-BN
monolayer, while they lead to red shifts in bilayers [113]. The bandgap of some vdW
materials, such as MoS2, depend directly on the number of vdW layers, being direct
in the monolayer case (with an enhancement of the luminescence quantum emission
more than a factor 104 [36]) and indirect otherwise. Therefore, the exfoliation of
van der Waals flakes and their deterministic placement on a desired substrate play
a fundamental role in the study of the opportunities offered by these materials [50].

In this section, we will introduce the exfoliation and dry-transfer techniques used
to obtain 2D crystals with different thicknesses on arbitrary substrates. Although a
wide number of exfoliation methods have been developed in the last decade [114], we
will focus in this thesis on the standard mechanical cleavage procedure that was used
for the very first isolation of graphene in 2004 [30]. Specifically, it will be used a top-
down method for thinning down the vdW bulk crystal using a commercially available
tape. Afterwards, a dry-transfer setup will be used for the transfer of selected crystals
on arbitrary substrates with a micrometer resolution in the positioning of the crystals
[49].

The mechanical exfoliation method consists in several steps (Figure 2.1A):

■ The vdW bulk crystals are placed on top of a commercial tape (Nitto SPV
224PRM LB, in the following, ‘blue tape’).
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■ Part of the tape is folded onto the bulk crystal and retraced gently. By pro-
ceeding this way, the bulk crystal is divided into two pieces.

■ By repeating the last step several times, one can thin down the bulk crystal pro-
gressively until an arbitrary distribution of relatively thin crystals is observed
over the tape.

■ Once thinned down, the blue tape with the crystals is put into contact with
a stamp of polydimethylsiloxane (PDMS, Gelpak WF-20/1.5-X4) that was
treated with ozone during 1-2 minutes to enhance the adhesion of the crys-
tals to the PDMS. This allows picking up a larger number with larger lateral
dimensions. To facilitate its handling, the PDMS stamp is attached to a mi-
croscope slide by a doubled sided tape.

■ Finally, the PDMS is examined in the optical microscope either in transmis-
sion or reflection mode to select those crystals with approximately the desired
thicknesses (Figure 2.1B).

Typically, a variety of randomly distributed flakes with different color is observed
on the PDMS stamp. The optical contrast between the different flakes, and between
the flakes and the PDMS, is governed by the Fresnel coefficients [115] which, in turn,
are dictated by the thickness dependence of each layer (supposing we are dealing with
an air/vdW flake/PDMS system) [5]. Hence, the thickness of the flakes determines
its color, and thus, a flake with a desired thickness can be easily identificated by just
inspecting the PDMS substrate with the optical microscope [116, 117]. Note that
the adhesion forces between the flakes and the PDMS material arise from the PDMS
viscoelastic behavior, governed by vdW forces [49]. Figure 2.1C shows optical
images for two crystals with different thicknesses, and therefore different colors.

The flakes attached to the PDMS stamps are released on the target substrate
by using the dry-transfer technique. This setup consists of different parts, such as
micrometer screws to manipulate the relative position of the flake and the target
substrate, and an optical microscope to observe in-situ the transfer process (see
Figure 2.2). In the following, we describe the steps typically followed with a dry-
transfer technique:

■ The PDMS containing the exfoliated flakes is attached with a double-sided
tape at the border of a glass slide, which in turn is attached to a micrometer
XYZ stage (with the PDMS facing down).

■ The substrate on which the crystals will be transferred is attached on the
substrate holder using a vacuum pump.

■ In this configuration, since the PDMS is an optically transparent material, both
the flake on the PDMS and the substrate surface can be seen simultaneously.
With the help of the optical microscope and the XYZ micrometer screws, the
relative position between the selected flake and the substrate can be easily
modified. Once this is done, the PDMS stamp with the crystal is approached
towards the substrate surface until they get into contact with each other.

■ Then, the substrate is heated up to around 150◦C at which the PDMS stamps
lose their viscoelastic behavior and, therefore, an almost 100% releasing yield
is obtained.

■ Finally, to release the crystal on the substrate, the glass slide is lifted up slowly.
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After this process, the sample is annealed at 180 − 200◦C during 3 − 5 minutes
to ensure a better adherence between the substrate and the flake.
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Figure 2.1: Exfoliation Procedure A Sketch of the exfoliation procedure. The
images show the folding-unfolding process to thin-down and exfoliate the bulk vdW
crystal on the PDMS stamp in 9 steps. The PDMS stamp is inspected through
the microscope after this process. B Image of the Leica optical microscope (leica-
microsystems.com) employed in this thesis to identify suitable flakes. C Optical
image of two different MoO3 flakes with thicknesses d = 150nm and d = 54nm.
The color of the flake depends on its thickness.

1

2

3

4

BA

controller

transfer
system

obje�ves

micrometer
screws

sample
holder

slide
holder

slide
holders glass

slide PDMS

substrate

vdW Flake
on a PDMS

Stamp
Glass
Slide

Glass
Slide

Glass
Slide

Substrate
with

Markers

Contact
Between the

Flake and
the Substrate

Flake
Released

on the Desired
Posi�on

Figure 2.2: Dry-Transfer Process A Images of the HQGraphene dry-transfer
system employed in this thesis. The substrate is firmly attached to the substrate
holder thanks to a vacuum pump. The controller allows us to regulate the tempera-
ture of the substrate holder between 0 and 200◦C. B Sketch of the transfer procedure
in 4 steps. By increasing the temperature above 150◦C the PDMS viscoelasticity
decreases strongly, allowing us to release the flake with almost a 100% yield.
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2.2 | Far-Field Characterization: Fourier Trans-
form Infrared Spectroscopy (FTIR)

Infrared spectroscopy is a powerful technique for characterizing the optical proper-
ties of materials. Particularly interesting is to characterize vibrational motions of
molecules, lattice vibrations in solids or plasmonic excitations in metals that are
present at certain resonant frequencies. The specific spectrum of such resonances
for a given material can be used as a ’fingerprint’ to unequivocally identify the ma-
terial. In this regard, Fourier transform infrared spectroscopy (FTIR) is a widely
employed technique that allows to obtain the full mid-infrared (MIR) spectra of a
sample (either in transmission or reflection) with high spectral resolution. Basically,
in this technique light from a broadband source (typically a filament or a small coil)
is driven through a Michelson interferometer and then focused on the sample. The
reflected/transmitted signal is afterwards detected and processed on a computer to
display the resulting spectrum.

Figure 2.3 sketches a typical FTIR spectroscopy system in reflection mode.
Moreover, Figure 2.4 show some pictures of the FTIR system available at Uni-
versity of Oviedo. Light from an IR broadband source passes through a Michelson
interferometer (dashed square) that consists of a beam splitter (green line) that di-
vides the beam into two rays, one driven to a fixed mirror and another to a vibrating
reference mirror, creating an optical path difference between them (i.e., a phase dif-
ference). Upon reflection, both beams interfere in the beam splitter and are brought
thorough a polarizer and an objective to the sample. The reflected beam is collected
at a detector using another beam splitter. Importantly, the detected signal Ir(ω) is
normalized to the signal of a material with an optically flat-response in the MIR,
IBakcground(ω) (all FTIR measurements in this thesis were taken in reflectance using
gold as normalization substrate). As such, the ratio R = Ir(ω)/IBackground(ω) is
the resulting FTIR reflectivity spectrum of the sample (given by Equation 2.4 and
explained in the following pages).

Regardless of measuring reflection or transmission spectra, the spectra obtained
will be governed by the refractive index, n̂(ω) = n(ω) + iκ(ω), which is the square
of the relative permittivity of a material, ε̂(ω) = ε′(ω) + iε′′(ω). Commonly, the
real part of the refractive index n(ω) is simply called as ‘refractive index’ and the
imaginary part κ(ω) as the ‘absorption index’. The reflectivity, R, is defined as the
fraction of the incident energy that is reflected, such as [5]:

R = |r|2 =
∣∣∣∣Er

E0

∣∣∣∣2 (2.1)

with E0 being the incident electric field, Er the reflected electric field, and r the
Fresnel reflection coefficient. Typically, this last equation is splitted into two cases
depending on the polarization of the incident light: p polarization (or transversal
magnetic waves, TM) and s polarization (or transversal electric waves, TE).

Supposing that we are dealing with a system composed of three different media
(each of them with a reflective index n̂1, n̂2 and n̂3, such as the one depicted in
Figure 2.5), the reflectivity will be given by the following relation [5]:
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Figure 2.3: Sketch of a FTIR System in Reflectance Mode Light from an IR
source is sent to a Michelson interferometer (black dashed line box). This consists of
a beam splitter (green line) that divides the beam into two rays, one driven to a fixed
mirror and another to a vibrating reference mirror, creating an optical path difference
between them (i.e., a phase difference). Upon reflection, both beams interfere in the
beam splitter and are brought thorough a polarizer and an objective to the sample.
The reflected beam is collected at a detector using another beam splitter.
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Figure 2.4: FTIR System Images of the FTIR system employed in this thesis
at University of Oviedo. Left image represent the whole system which has one
module for the IR lamp and the Michelson interferometer and other module with
the objectives and detector. Right image shows a zoom-in of the objectives module
with the IR polarizer.

R =

∣∣∣∣ r12 + r23e
2iβ

1 + r12r23e2iβ

∣∣∣∣2 (2.2)
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Figure 2.5: Transmitted and Reflected Light Passing Through a Dielec-
tric Film Sketch of the propagation of electromagnetic waves through a thin film of
thickness h (with refractive index n̂2(ω)) embedded between two semi-infinite me-
dia (with refractive index n̂1(ω) and n̂3(ω)). Light impinging from medium 1 into
medium 2 can be partially reflected and transmitted. The same principle works for
light impinging from medium 2 on medium 3. The interface between media 1 and
2 is labelled as ‘Interface 12’, and the interface between media 2 and 3 is labelled
as ‘Interface 23’. The reflection/transmission angles for each medium are labelled as
θ1, θ2 and θ3.

where r12 and r23 are the Fresnel reflection coefficients at the first (between
media 1 and 2) and second (media 2 and 3) interfaces, β = 2πn2h cos(θ2)/λ0 with
h the thickness of the second layer, and θ2 is the angle between the electric field
propagating in the medium 2 and the z direction. Typically, the first medium is air,
the second medium the sample, and the third medium the substrate (SiO2 and BaF2

are among the most widely used). The last equation is general and valid for both s
and p polarizations [118]. However, the expressions for r12 and r23 depend on the
polarization of light [119]. The following relations account for the Fresnel reflection
coefficient r depending on whether we have s or p polarization:

rs,ij =
ni cos θi − nj cos θj
ni cos θi + nj cos θj

; rp,ij =
ni cos θjnj cos θi

ni cos θj + nj cos θi
(2.3)

With ij denoting the interface between medium i and medium j (this is, 12 or
23). Therefore, depending on the illuminating conditions, the measured reflectivity
spectra will have a contribution from both s-polarization and p-polarization signals:

R =
1√
2
(αRs + (1− α)Rp) (2.4)

with α a value ranging from 0 to 1. In the optical configuration of the FTIR
system used in this thesis (see Figure 2.4), the average incident angle is θ1 ≈ 15◦,
so normal incidence can be taken as a good approximation (θ1 = θ2 = θ3 = 0◦) and
the above equations can be notably simplified.

FTIR reflectivity spectra provide a useful tool to extract the sample permittivity
for the measured frequency range. This information is very important to predict the
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propagation properties of polaritons (as shown in the previous chapter, polaritons
such as SPPs in graphene or PhPs in h-BN are strongly affected by the permit-
tivities of the substrate and superstrate used) and makes FTIR a key technique in
nanophotonics (typically also the permittivity of polaritonic materials has only been
studied in the visible range, being its infrared properties widely unknown). A detailed
description of the working principle of the FTIR technique is given in the reference
[120]. In the following, we also provide a detailed description of a Michelson interfer-
ometer due to its special relevance in both FTIR and in s-SNOM, as we will see later.

As shown in the sketch of Figure 2.3 (black dashed rectangle), a Michelson
interferometer divides an incident beam into two through a beam-splitter. One of
them impinges on a fixed mirror and is reflected back to the beam-splitter whereas
the other is brought to a movable mirror and also back-reflected to the beam-splitter,
causing an optical path difference (phase difference) between both beams. As such,
an interference at the beam-splitter is obtained as a function of the path difference,
δ. The electric fields from both arms A and B are:

EA = |EA|eiω0t; EB = |EB|eiω0t+ϕ (2.5)

with ϕ = 4πω0δ (ω0 in spectroscopic units, i.e., ω0 = λ−1
0 where λ0 is the incident

wavelength). The intensity measured at the detector will be thus given by:

ID(δ) = |EA + EB|2 = |EA|2 + |EB|2 + 2|EA||EB| cos (4πω0δ) (2.6)

If both trajectories are identical then δ = 0 and the interference will be con-
structive, being the measured intensity maximum. On the other hand, if the path
difference is half of the incident wavelength, δ = λ0/4, the interference will be de-
structive and the measured intensity minimum. Assuming that the norm of the
incident electric field is divided by 2 at the beam splitter then |EA| = |EB| = |E0|/2,
and the last equation can be simplified to:

ID(δ) =
1

2
I0 (1 + cos (4πω0δ)) (2.7)

where I0 = |E0|2. However, this assumption is only valid for ideal cases, and
the real signal detected may change due to different factors such as the quality of
the beam-splitter or the response of the detector. Hence, a wavenumber-dependent
factor R0 is introduced to account for such instrumental deviations:

ID(δ) =
1

2
I0R0 (1 + cos (4πω0δ)) (2.8)

We can identify two different terms in the last equation: a constant one that does
not depend on the optical path difference δ, and a modulated term that does depend
(the cosine) which is called the interferogram and is the only important component
in spectroscopic measurements:

S(δ) =
1

2
I0R0 cos (4πω0δ) = B0 cos (4πω0δ) (2.9)

With B0 = I0R0/2.

When dealing with broadband sources, the interferogram is represented by an
integral [120]:
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Figure 2.6: Spectra and Interferograms for Different Light Emission
Sources Spectrum (left panel) and interferogram (right panel) for: A a single fre-
quency, B two well-defined frequencies, C two gaussian sources, a broad one (red
curve) and a narrow one (blue curve), and D a real lamp emission source (black-body
source) showing also the CO2, water and other atmospheric absorption bands.

S(δ) =

∫ ∞

−∞
B(ω) cos (2πωδ)dω (2.10)

According to the Fourier inversion theorem, the spectrum of the interferogram
reads:

B(ω) =

∫ ∞

−∞
S(δ) cos (2πωδ)dδ (2.11)

Since S(δ) is an even function it is only needed to calculate the integral from
δ = 0 to δ = ∞. Let us consider the simplest case: a source that emits radiation
at well-defined wavelengths. The resulting interferogram will be an infinitely peri-
odic repetition of a modulated sinusoidal envelope (right panels in Figure 2.6A, B).

In case of broadband Gaussian sources (Figure 2.6C), the interferogram shows
an exponentially decaying modulated envelope. The narrower the width of the
spectral source, the wider the interferogram envelope. On the other hand, typical
FTIR sources are based on the black-body emission of a filament or a coil, leading
to interferograms such as the one shown in Figure 2.6D. The obtained infrared
spectrum upon performing the Fourier transform shows the particular envelope of
the black-body radiation plus characteristic dips due to the atmospheric absorp-
tion (mainly CO2 and water). These atmospheric absorption mechanisms introduce
undesired contributions that should be removed properly, as well as other factors
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in the spectra panels, the higher the moving reference mirror distance, the larger the
spectral resolution obtained.

such as the finite displacement of the mirror that cause a broadening of the emis-
sion lines. This is typically done by normalizing the FTIR spectra taken on the
sample to the FTIR spectra taken out of it (background signal) using the relation
Bsample(ω)/BBackground(ω). In particular, since FTIR measurements can be done in
both reflection and transmission mode, the normalization to the background signal
is carried out differently. For transmission measurements, the background spectrum
is taken by removing the sample, while for reflection mode it is taken on a MIR flat
material, such as silicon or gold.

It is interesting to note that equation (Equation 2.11) states that theoretically
we can obtain the spectrum with infinitely-high resolution. However, in the experi-
ment, this is limited by the maximum range of the moving mirror, which eventually
dictates the finite achievable resolution of the system ∆ω (defined as the inverse of
the maximum moving mirror distance dt). As an example, let us assume that we
have a source that emits radiation at two well-defined wavelengths (Figure 2.6B),
due to the maximum distance attainable with the reference moving mirror, dt, we
will only be able to measure a part of the complete interferogram. Depending on
the distance dt, both emission lines of the source may not even be resolved (Figure
2.7A). However, if dt is doubled, both emission lines can now be resolved (Figure
2.7B). As shown in Figure 2.7C, only by taking a sufficiently long distance dt (for
example 8 times compared to the case in Figure 2.7A), both emission lines will be
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resolved with high-resolution.
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Figure 2.8: Apodization of an Interferogram Interferogram (left panel) and
spectrum (right panel) for: A a well-defined double frequency source, B broad (red)
and narrow (blue) boxcar truncation functions and Blackman-Harris function (black),
C truncated interferograms resulting from the multiplication of the broad (red) and
narrow (blue) boxcar truncation functions, which model the finite moving distance of
the reference mirror. When the distance is large enough (red curve), both frequen-
cies are resolved. However, clear oscillatory artifacts are observed. If the moving
distance of the reference mirror is not large enough (blue curve), the frequencies
cannot be resolved. D Interferogram resulting from the multiplication of the broad
(red) boxcar truncation function of C by the Blackman-Harris function. In this case,
both frequencies can be clearly identified (right panel) without the introduction of
artifacts.

Furthermore, there is another effect related to the limited movement of the refer-
ence mirror that might result in non-desired oscillatory artifacts in the surroundings
of the source emission frequencies. Mathematically, the effect of a limited displace-
ment of the reference moving mirror corresponds to the convolution of the Fourier
transform of the infinitely-long interferogram (arising from the two-line perfect emis-
sion source) and a boxcar truncation function (this is, a rectangular filter where
wider boxcar truncation functions correspond to longer reference mirror distances)
[120]. Figure 2.8 shows how the truncation affects an infinitely long interferogram
composed of two well-defined frequencies (ideally represented in Figure 2.8A). If
the boxcar truncation is wide (red line in Figure 2.8B), meaning long moving mir-
ror distances (red line in Figure 2.8C), the spectrum shows clearly both emission
frequencies with oscillatory artifacts at its sides. On the other hand, if the trun-
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cation function is narrow enough (blue line in Figure 2.8B), the frequencies are
no longer resolved (blue line in Figure 2.8C). A way to minimize this problem is
the so-called apodization. Apodization is carried out by multiplying the measured
interferogram by a function which is maximum at the interferogram center and de-
cays to zero at its border (black line in Figure 2.8B). Blackman-Harris functions
are typically employed. The apodized spectra (Figure 2.8D) does not show the
non-desired oscillations; however, there is a cost in terms of spectral resolution (note
that the black peaks in the right panels of Figure 2.8D are broader than the red
peaks in the right panels of Figure 2.8C).

Another limitation in FTIR is given by the fact that data cannot be acquired
at an infinite sampling rate. Data acquisition cards possess a limited acquisition
speed, giving rise to datasets with a finite number of points. The distance between
points, i.e., the spectral resolution, is found to be exactly 1/dt. Thus, the maximum
moving distance of the reference mirror moving distance establish the best spectral
resolution we can achievable with our experimental system. This issue can be par-
tially tackled by adding zeros artificially to both sides of the interferogram. This is
known as zero-filling or padding and, although the spectrum gets smoother, no new
information is obtained as since the spectral resolution is not improved (Figure 2.9).
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Figure 2.9: Zero Filling of an Interferogram Interferograms (left panel) and
spectra (right panel) for: A two well-defined frequencies, B after apodization (the
obtained points, red circles, are connected by dashed lines, and C after apodization
and zero filling. Both frequencies can be resolved in this case. Original points (red
circles) are also shown for a clear visualization.

Importantly, to improve the signal-to-noise ratio in FTIR measurements, the
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interferograms obtained are averaged over several scans (Figure 2.10).
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Figure 2.10: Averaging in FTIR Averaged spectra of pentance aftger 2 (red), 5
(blue), 10 (green) and 25 (black) scans. The higher the number of scans, the better
the signal-to-noise ratio.

2.3 | Near-Field Characterization: Scattering-Type
Scanning Near-Field Optical Microscopy
(s-SNOM)

Scattering-type (or apertureless) scanning near-field optical microscopy (s-SNOM)
allows to excite and collect highly confined polaritons, such as those studied in this
thesis. In particular, the phonon-polaritonic optical signal can be simultaneously
obtained in amplitude and phase with wavelength-independent resolution [90, 121,
122].

s-SNOM (Figure 2.11) is an optical technique that is based technically on an
atomic force microscope (AFM), which allows to obtain high-resolution topographic
images of any type of material. Basically, AFM consists of a nanometric sized can-
tilevered tip that is scanned across the sample surface while the tip-sample distance
is maintained constant. A feedback control system is employed in order to ascertain
the tip amplitude does not decrease below a preselected value. For this purpose,
a laser beam is focused onto the tip’s cantilever. The variations of the cantilever
due to the roughness of the sample lead to a displacement of the reflected beam
from its equilibrium position which are detected through a photodiode. Typically,
a tapping mode is employed in which the cantilever tip oscillates vertically at its
mechanical resonance frequency. A piezoelectric actuator attached to the sample
holder is used to scan the sample with nanometer resolution. The sample surface
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interacts once per oscillation period by the tip with a tapping amplitude typically
less than 100nm. As will be shown later in this chapter, the tip oscillation will help
us to completely remove the background from the signal . Therefore, together with
the optical image, the s-SNOM is able to record the topography of the sample surface.

What differentiates an s-SNOM system from an AFM system is that the tip is
in this case also illuminated by high-power continuous wave laser sources (top im-
age in Figure 2.11) employing a parabolic mirror. The incident electromagnetic
field is concentrated at the very apex of the tip, providing sufficient momentum
to the incident field to effectively excite PhPs in van der Waals materials. Simul-
taneously, the tip also backscatters in all directions towards the far-field (Figure
2.12A) the near fields excited at the surface of the material under investigation.
These are collected by a detector, which can be a photomultiplier for visible light,
a bolometer for terahertz radiation or a mercury calcium telluride (MCT) for in-
frared light (top image in Figure 2.11). Importantly, the radius of the tip apex
determines the maximum resolution achievable in s-SNOM, since it establishes the
volume in which the incident field is concentrated independently of the wavelength
of the incident radiation (it can be seen as the available wavevector distribution in
the reciprocal space). In general, the sharper the tip, the stronger the electric field
and the higher the field confinement it produces [93]. All s-SNOM measurements
at single frequencies presented in this thesis were performed using platinum- and
iridium-coated silicon tips (ARROW-NCPt-50, NanoWorld AG) with tip radii of
about 20nm exhibiting mechanical resonances of about Ω ≈ 250 − 300 kHz. As
a source we employed a mid-infrared tunable quantum cascade laser (QCL) from
Daylight solutions (MIRcat-1400, DRS) emitting in the frequency range 850 cm−1 to
1695 cm−1 while an MCT detector from Kolmar Technologies (KLD-0.1-J1/11/DC)
was used as a detector.

Figure 2.11 show the s-SNOM system, lasers and detectors employed to excite
and probe polaritonic signals at University of Oviedo.

To describe the physical meaning behind the optical contrast recorded by s-
SNOM, several theoretical models were developed during the 1990s (Figure 2.12A)
[89, 101]. The simplest, known as the point-dipole model (Figure 2.12B), presents
the AFM tip as a small sphere of radius a with a vertically oriented electric dipole
and the sample as an isotropic infinite half-space. Importantly, retardation effects
are ignored and the electrostatic approximation is assumed. Thus, the polarizability
of the dipole is represented by [92, 93]:

α = 4πa3
εt − εi
εt + 2εi

(2.12)

With εt is the permittivity of the dipole (the AFM tip) and εi is the permittivity
of the surrounding media, typically air (εi = 1). The dipole moment induced in
the AFM tip is therefore p0 = αE0, where E0 represents the illuminating electric
field. This dipole moment acts on the sample, creating a mirror dipole (according to
the mirror image method) with a moment p′ = pβ, being β the so-called dielectric
surface response function:

β =
εs − 1

εs + 1
(2.13)

Where εs is the dielectric function of the sample. This mirror acts back on the
AFM tip dipole, increasing the strength of its dipole moment. Again, this increase
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Figure 2.11: s-SNOM Images of the s-SNOM system employed in this thesis at
the University of Oviedo.

in dipole moment acts back on the mirror dipole, and so on. As a result, the total
dipole moment can be seen as an infinite geometric series:

p = p0

∞∑
n=0

gn =
p0

1− g
(2.14)

where the factor g represents the enhancement in the relative probe-dipole mo-
ment after each reflection. It is therefore related to the dielectric surface response
function g ∝ β. After some algebra, it can be shown [93] that the total dipole
moment takes the form:

p = E0
α(1 + β)

1− αβ
16π(a+H)3

(2.15)
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where H is the distance between the sample surface and the tip at its lowest
position in the oscillation.
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Figure 2.12: Tip-Sample Interaction Model A Sketch of a metal-coated AFM
tip being illuminated. The impinging beam produces a hot spot in the tip apex
enhancing the electric field Ez in the vicinity of the sample. The tip acts also as
a detector scattering the near fields into the far field. The induced charges in the
sample are depicted by yellow circles with ‘+’ and ‘−’ symbols. Red dashed lines
represent the electric field induced. B Point dipole model. The tip is modelled as a
small sphere at its apex with an electric dipole moment p⃗. A mirror dipole is induced
in the sample, p⃗ ′ acting back in the tip dipole and so on. C Finite dipole model.
The tip is modelled as a prolate spheroid with charges Q0 and −Q0 at the spheroid
focii. As in B, the system induces mirror charges Q′

i which, in turn, acts back on
the system.

Although this simple model was successfully used to explain the non-linear near-
field optical contrast obtained between different materials, and the prediction of
strong polaritonic resonances when the real part of the sample permittivity ap-
proaches −1 [29], it fails to reproduce the near-field obtained by performing a tip-
surface approach curve (i.e., recording |E⃗z| as a function of tip-sample distance z),
and the spectral position of the resonance, among others [92, 102]. The reason
behind these discrepancies is attributed to an underestimation of the lightning rod
effect at the tip apex. Therefore, another model was developed to depict the AFM
tip more accurately. In particular, the finite-dipole model describes the AFM tip as
an elongated spheroid instead of a point dipole (Figure 2.12C), where only charges
located near the lower vertex of the spheroid (with a total length less than the inci-
dent illumination wavelength) are taken into account for the near-field interaction.
Within this approximation, it is possible to find an analytical approach that quan-
titatively describes the non-linear near-fields produced by the tip-sample interaction.

Apart from the near-fields scattered by the tip, ENF , there exist also background
signals, Eb, which strongly affect the measurement and, in fact, their total contri-
bution can be even higher. However, the background field varies in ‘z’ at incident
wavelength λ0 scales, therefore, variations in the detected signal due to vertical move-
ment of the tip (typically less than 100nm and much smaller than λ0) will come from
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the pure near-field signal. Hence, demodulation of the signal at higher harmonics of
the tip vibration frequency Ω seems to be a feasible option to enhance the near-field
contribution over the scattered background:

ENF =

∞∑
n=0

ENF
n einΩt (2.16)

Eb =
∞∑
n=0

Eb
ne

inΩt (2.17)

However, the scattered signal is proportional to |EScattered|2 = |ENF +Eb|2 and
even at large n, products between the near-field signal and the background will be
measured. Consequently, an additional approach is necessary to suppress the back-
ground contribution.

Interferometric detection was proposed and confirmed as a suitable technique to
overcome this problem. First, a ‘heterodyne’ interferometric detection scheme was
introduced [88] to successfully suppress the background contribution. Subsequently,
it was upgraded to a ‘pseudo-heterodyne’ configuration due to its simplicity and bet-
ter applicability to the system (Figure 2.13A). The ‘pseudo-heterodyne’ detection
technique is based on a Michelson interferometer, in which the interference from a
phase-modulated reference beam and the scattered wave are led to the detector and
demodulated at the higher harmonics of the AFM tip resonance frequency, providing
complete background-free information on the amplitude and phase of the near-field
signal [91]. The piezoelectric actuator, which sinusoidally controls the motion of the
reference beam, is set to a frequency, M = 400Hz, which is much smaller than the
resonance frequency of the tip. Mathematically, the electric field of the reference
beam, ER, can be also Fourier expanded:

ER =

∞∑
n=0

ρmeimMt (2.18)

Where ρm is the Fourier series coefficient for the m-th component. Therefore,
the total detected signal ETotal = EScattered + ER = ER + Eb + ENF will present
sidebands νn,m = nΩ+mM around the harmonics of the tip resonance frequency. At
these sideband frequencies (Figure 2.13B), the background signal is fully removed
[93].

By selecting a modulation amplitude of approximately 0.21λ0 with λ0 the illumi-
nation wavelength, the n-th harmonic near-field electric field, En, can be fully recov-
ered from the output voltage, u, produced at the detector. If we call un,j the voltage
measured at an n-th harmonic and j-th maximum of the sideband, then the near-field
electric field turns out to be proportional to the output voltage En ∝ (un,2 + iun,1).
[91]. Thus, the background-free near-field amplitude and phase of the n-th harmonic
are obtained by taking the real and imaginary part of En, respectively.

Experimentally, harmonic resonant frequencies of the tip are easily detected us-
ing a lock-in system. For the infrared regime, the third harmonic is often used to
completely suppress the background contribution and measure the pure near-field
signal [93].
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Figure 2.13: Interferometric Detection A Scheme of the pseudo-heterodyne
configuration employed in our s-SNOM system. The incident light is splitted into
two beams by a beam-splitter. The reflected beam by the reference mirror, ER, and
the beam scattered by the AFM tip, Eb+ENF , are paired again at the beam splitter
which, in turn, brings them to the MCT detector. B Schematic of the sideband
maxima in the vicinity of the harmonic frequencies of the resonantly oscillating AFM
tip. The black maxima m = 0 still present background contribution. Reproduced
from [93].

Fourier Transform Infrared NanoSpectroscopy (nanoFTIR)

Fourier transform infrared nanospectroscopy (nanoFTIR) is a spectroscopic tech-
nique based on an s-SNOM system. It takes advantage of its wavelength-independent
spatial resolution to obtain nanoscale resolved absorption spectra of samples. As a
difference to the original s-SNOM configuration presented above, the nanoFTIR sys-
tem employs an asymmetric Michelson interferometer and supercontinuum coherent
infrared laser as the light source, i.e., a difference frequency generator (DFG) laser.
In contrast to the single wavelength s-SNOM system presented above, the Michelson
interferometer in nanoFTIR does not oscillate sinusoidally, but moves linearly up to
1500µm with high accuracy. In the commercial s-SNOM system used in this the-
sis for nanoFTIR measurements (carried out in the Nanooptics group led by Prof.
Rainer Hillenbrand ata CIC nanoGUNE), the nanoFTIR module is placed on the
right hand side of the apparatus (see Figure 2.14).

As in the normal s-SNOM configuration, the vertical oscillation of the tip allows
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Figure 2.14: nanoFTIR System Images of the nanoFTIR system at CIC
nanoGUNE (San Sebastián, Spain) employed during this thesis. Top image shows
the current commercially available s-SNOM system (neaSNOM) with both s-SNOM
module (left circle) and nanoFTIR module (right circle). Bottom image shows a
zoom-in of the microscope, presenting both the Michelson interferometer (left part)
for the s-SNOM configuration and the asymmetric Michelson interferometric (right
part) for the nanoFTIR measurements.

us to demodulate the signal (in this case, the interferogram) into background-free
higher harmonics [123]. The near-field spectrum is obtained by Fourier transforming
the n-th interferogram. However, pure information about the near-field interferogram
is not obtained directly, since the measurement is affected by instrumental charac-
teristics: En(ω) = σn(ω)F (ω)Ei(ω) with En(ω) the scattered near-field, σn(ω) the
scattering near-field coefficient, Ei(ω) the incident field and F (ω) the set-up response
function [124]. Therefore, to remove instrumental characteristics from the measured
signal, normalization is needed. Silicon or gold are frequently used as normalization
substrates, since their near-field response is flat in the MIR regime. Materials with
absorption mechanism or other kind of resonances in the MIR regime are not suitable
as normalization references. It should be noted that in order to perform effective nor-
malization, the reference spectra and near-field spectra of the sample must be taken
with the same system settings, i.e., same tip, tapping amplitude, optical alignment,
etc. Therefore, the normalized spectra ηn(ω) will take the form:

ηn(ω) =
Esample

n (ω)

Ereference
n (ω)

=
σsample
n (ω)F (ω)Ei(ω)

σreference
n (ω)F (ω)Ei(ω)

∝ σsample
n (ω) (2.19)
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Where we have considered for the last step that the near-field scattering coef-
ficient of the reference σreference

n (ω) is constant over the MIR regime. Hereafter,
this normalized near-field spectra will be referred to simply as nanoFTIR spectra.
Consequently, near-field nanoFTIR spectra will take the form ηn(ω) = sn(ω)e

iϕn(ω)

with sn(ω) = ssample
n (ω)/sreferencen (ω) the amplitude and ϕn(ω) = ϕsample

n (ω) −
ϕreference
n (ω) the phase.

Analogous to FTIR, zero-filling, apodization and averaging techniques are used
to improve the quality of nanoFTIR measurements in the same way as they are
applied in far-field FTIR measurements.

2.4 | Finite Element Method (FEM) Simulations:
COMSOL

As a means of validating the experimental data presented in this thesis, full-wave
simulations of near-field phenomena were also performed. It is common in physics
to deal with problems expressed in terms of partial differential equations (PDEs),
even though they can only be solved in a few simple cases. PDEs are differential
equations that describe the changes of a system in more than one independent vari-
able. Nowadays, thanks to the rapid development of computational engineering, it
is possible to model these non-trivial problems and find highly accurate numerical
solutions by performing intelligent approximations. The set of approximations per-
formed to estimate PDEs is called the finite element method (FEM).

In FEM simulations, the space is discretized into not necessarily uniform subre-
gions representing the different components of the simulated system. Each subregion
may have its own mesh and may be linked by boundary conditions at their interfaces.
In general, the denser the mesh, the closer the numerical solution will be to the real
problem and the longer the computation time.

In our particular case, we are dealing with electromagnetic waves, and therefore,
our system is fundamentally described by Maxwell’s equations:

∇× B⃗ = µ0J⃗ + µoε0
∂E⃗

∂t
(2.20)

∇× E⃗ = −∂B⃗

∂t
(2.21)

∇ · E⃗ =
ρ

ε0
(2.22)

∇ · B⃗ = 0 (2.23)

Where E⃗ and B⃗ are the electric and magnetic fields, J⃗ is the current density in
the system, t is time and µ0 and ε0 are the vacuum permeability and permittivity.

All simulations presented in this thesis were implemented in COMSOL Mul-
tiphysics [125]. The metal-coated AFM tip is represented as a vertical-oriented
dipole. The z component of the simulated electric field, Ez, plays the role of the
background-free signal detected by the MCT module. The dipole is located at a
height approximately equal to the tip oscillation amplitude and the simulated Ez

field distribution is also recorded at these height values.
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3

Propagating Phonon-Polaritons
in α-MoO3

In this chapter, α-MoO3 is presented as a van der Waals material that supports
phonon-polaritons with hyperbolic and elliptic in-plane propagation. Furthermore, it
is shown that the dispersion of phonon-polaritons in α-MoO3 is thickness-dependent,
while their lifetime does not depend upon thickness. Record-high lifetimes and deeply
subdiffractional polariton wavelengths are reported, as well as exotic ray-like polariton
propagation, as visualized by s-SNOM measurements and corroborated by COMSOL
simulations. Finally, proof-of-concept focusing devices are demonstrated that open
the door to nanoscale light steering light with unprecedented capabilities. The results
showed in this chapter have been published in Ma et at. ‘In-plane anisotropic and
ultra-low-loss polaritons in a natural van der Waals crystal’, Nature 562, 557–562
(2018) and Martín-Sánchez et al. ‘Focusing of in-plane hyperbolic polaritons in van
der Waals crystals with tailored infrared nanoantennas’, Science Advances 7, eabj0127
(2021).

3.1 | The van der Waals crystal α-MoO3

α-MoO3 is a lamellar material that offers wide opportunities for all kinds of appli-
cations [126, 127]. For example, due to their cytotoxicity, α-MoO3 nanoplates were
shown to be potential tools for the treatment of invasive breast cancer cells [128].
In addition, its potential as a gas sensor was also reported [127]. Gases or molecules
embedded in α-MoO3 can reduce or oxidize the material resulting in variations in
the layers conductivity that can be measured [129].

Crystal Structure

The thermodynamically stable α-MoO3 phase presents an orthorhombic crystal struc-
ture with space group Pbnm (or Pnma, number 62), lattice constants a = 3.962Å,
b = 13.855Å and c = 3.699Å and four formula units per unit cell (Z = 4) [127].
This lamellar structure consists of planar double layers of irregular MoO6 octahe-
dra held together by vdW forces along the vertical [010] crystal direction. Inside
the octahedron the interactions between the atoms are dominated by covalent and
ionic bonds. The thickness of each layer is ≈ 0.7nm. Along the [100] crystal di-
rection, MoO6 octahedra share oxygen corners while forming edge-sharing zig-zag
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chains along the [001] crystallographic direction. Depending on the coordination,
three different types of oxygen atoms are identified [126]:

■ The terminal Ot which bonds exclusively to one Mo atom with a bond distance
of 1.67Å.

■ The asymmetric Oa which bonds to two different Mo atoms with average bond
distances of 1.74Å and 2.25Å.

■ The bridging Os which bonds to three different Mo atoms being two of them
with an average distance of 1.95Å and the other one with a length of 2.33Å.

Figure 3.1 shows the crystal structure of α-MoO3, together with its lattice unit
cell, the MoO6 octahedra and an optical image of an α-MoO3 flake. As a consequence
of this structural anisotropy, the optical properties are expected to be anisotropic as
well.
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Figure 3.1: Crystal Structure of α-MoO3 A Schematic of the unit cell of α-
MoO3. The unit cell consists of a periodic repetition of MoO6 distorted pyramids
pointing alternately up and down with the M atom (pink circles) in the center of
the pyramid defined by the O atoms (red circles). B Optical image of α-MoO3

flakes on a PDMS substrate measured in transmission mode. Due to the anisotropic
crystal structure, α-MoO3 exfoliates as rectangles with well-defined edges and easily
recognizable crystallographic directions. C Schematic of the MoO6 pyramids with
the three non-identical oxygen atoms marked. D Schematic of the layered structure
of α-MoO3.

Far-Field Optical Characterization by FTIR
According to group theory, there are 45 optical modes at k = 0 for the α-MoO3

Pbnm space group [130]:

■ 17 IR active modes: 3B1u + 7B2u + 7 B3u

■ 24 Raman active modes: 8Ag + 8B1g + 4B2g + 4B3g
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■ 4 silent modes: 4Au

We are interested in the MIR active modes that present a TO-LO splitting and
could give rise to the Reststrahlen Bands of α-MoO3 in the MIR regime, i.e. the
B2u Mo-Ot stretching mode defined between ωTO = 962 cm−1 and ωLO = 1010 cm−1

along the [010] crystal direction, the B3u Mo-Oa-Mo stretching mode between ωTO =
818 cm−1 and ωLO = 974 cm−1 along the [100] crystal direction and the B1u Mo(3)-
Os stretching mode defined between ωTO = 545 cm−1 and ωLO = 851 cm−1 along the
[001] crystal direction [127]. It must be mentioned that, although the phonon modes
of the material were studied from a fundamental point of view [131], the α-MoO3

IR dielectric constant was not reported at the beginning of this thesis.

To characterize the far-field optical response of the material, we perform polarization-
resolved FTIR spectroscopy on a α-MoO3 flake on a BaF2 substrate (BaF2 is an
inorganic material that does not exhibit phonon resonances or other excitations in
the MIR regime, making it an ideal substrate for spectroscopic purposes in that fre-
quency range). Figure 3.2 shows the resulting spectra for a thick α-MoO3 flake
using polarized illumination along both in-plane directions ([100] and [001]). They
support our previous assumption about the anisotropy of the optical properties as
the optical response of the material strongly depends on light’s polarization.
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Figure 3.2: FTIR Reflectivity Measurements of α-MoO3 α-MoO3 reflectivity
measurements taken along the [100] (upper panel, red line) and [001] (lower panel,
blue line) directions. Two bands of high-reflectivity are found, one along each crystal-
lographic direction, ranging together from ω0 = 600 cm−1 to ω0 = 975 cm−1, approx-
imately. A peak is found along both polarizations at approximately ω0 = 1007 cm−1,
which is explained by the non-normal incidence of light on the sample due to the
technical configuration of the FTIR system. The position of the peak coincides with
the position of ωLO along the [010] crystal direction.

A broad high-reflectance band can be observed along each polarization. This
band is observed approximately between ωTO = 820 cm−1 and ωLO = 960 cm−1 along
the [100] direction and approximately between ωTO = 582 cm−1 and ωLO = 820 cm−1

along the [001] direction. Therefore, we can assign these high-reflectivity bands to
the presence of a RB along each direction. In addition, we can observe a small peak
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along both in-plane polarizations at approximately 1007 cm−1. This is due to the
presence of the B2u mode that gives rise to the RB along the [010] direction. In prin-
ciple, as light is polarized along the [100] or [001] directions, we should not be able
to detect this resonance. However, due to the characteristics of the FTIR system,
the light is not incident perpendicularly on the sample, and the wavevector k0 of the
illumination light forms a small angle of ≈ 10◦ with the vertical direction, allowing
us to observe faint features from the sample vertical direction ([010] crystallographic
direction).

Hence, based on these FTIR findings, i.e. the existence of RBs dependent on the
incident polarization, we can expect the excitation of anisotropic phonon-polaritons
in the α-MoO3 MIR regime.

3.2 | Visualization of In-Plane Hyperbolic Phonon-
Polaritons in α-MoO3

To visualize the propagation of polaritons in α-MoO3 in the different RBs, we per-
formed polariton interferometry employing a s-SNOM system, as explained in Sec-
tion 2.3. A Pt-Ir coated silicon tip is illuminated with p-polarized light. Figure
3.3A shows s-SNOM near-field images of a 250nm-thick α-MoO3 flake taken at
ω0 = 990 cm−1 (within the RB arisen from the B2u phonon along the [010] crystal
direction) and ω0 = 900 cm−1 (within the RB arisen from the B3u phonon along the
[100] crystal direction) on a SiO2-on-Si substrate. Unfortunately, due to technical
limitations of the available lasers, we cannot perform measurements within the RB
arising from the B1u phonon mode along the [001] crystal direction.

In the s-SNOM images, in-plane polaritons excited by the tip propagate along
the surface of the material, get back-reflected at the flake edges, and are scattered
away by the tip to the far-field. Therefore, due to interference between the incident
and reflected polaritons, a standing wave is formed with a periodicity equal to half
the wavelength of the polariton. In addition, polaritons can also be launched from
the edges of the flake with a periodicity equal to the polariton wavelength. Both
effects occur simultaneously, leading to the formation of fringe doublets, as observed
in Figure 3.3A (characterized by a fringe of higher intensity due to edge launched
polaritons and fringes of lower intensity due to tip launched polaritons) [40, 103].

Interestingly, at ω0 = 990 cm−1 we observe bright and dark fringes parallel to
both edges of the flake with slightly different periodicity, being λx = 950nm and
λy = 1200nm for the [100] and [001] directions, respectively. It should be noted
that these values are one order the magnitude smaller than the incident wavelength
(λ0 = 10.1µm), which accounts for the highly-confined nature of PhPs in α-MoO3.
The anisotropy becomes even stronger at ω0 = 900 cm−1, as only fringes along the
[100] direction are distinguishable.

To better understand these observations, we performed nanoFTIR line scans
along the [100] and [001] crystal directions (Figure 3.3B). Two different spectral
regions are observed along the [100] direction, which exhibit contrasting behavior.
The lower region, from about ωTO = 820 cm−1 to ωLO = 960 cm−1 clearly shows a
reduction of the polariton wavelength with increasing frequency. On the other hand,
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Figure 3.3: Real-Space Imaging and Nano-Spectroscopy of an α-MoO3

Flake A Near-field amplitude images s4 (fourth-harmonic) of an α-MoO3 flake with
thickness d = 250nm at illuminating frequencies ω0 = 990 cm−1 (top panel) and
ω0 = 900 cm−1 (bottom panel). B Bottom row, nano-FTIR spectral line scans along
the [100] and [001] crystal directions (indicated by arrows in the bottom panel of A,
showing the near-field amplitude s2 (normalized to the near-field amplitude on the
SiO2 substrate, s2,SiO2) as a function of the distance between the tip and flake edge.
Dotted lines mark the approximate longitudinal and transversal phonon modes in
α-MoO3 (TO1, 820 cm−1; LO1/TO2, 963 cm−1; LO2, 1003 cm−1). The top row show
zooms of the boxed areas in the bottom row. C Dispersion of PhPs along the [100]
and [001] directions in the U-RB (top panel) and L-RB (bottom panel, see text).
Grey lines in both panels are guides to the eye. Grey shaded areas indicate the
spectral regions outside the RBs.

in the upper spectral region, from about ωTO = 960 cm−1 to ωLO = 1010 cm−1, i.e.
much narrower than the lower region, the polaritons do not present as many fringes
and show an increase of the polariton wavelength with increasing frequency.

These spectral regions are indeed the RBs previously shown in Section 3.1.2.
Hereafter, the RB comprised between ωTO = 962 cm−1 and ωLO = 1010 cm−1 will
be referred as ‘upper’ Reststrahlen Band (U-RB), and the region between ωTO =
818 cm−1 and ωLO = 974 cm−1 will be referred as ‘lower’ Reststrahlen Band (L-RB).
On the other hand, the measurement along the [001] crystal direction exhibits dis-
persive fringes only within the upper band (with the same increase of the polariton
wavelength with increasing frequency than along the [100] direction). Interestingly,
the absence of fringes along the [001] crystal direction within the L-RB is a clear
indication of a non polaritonic activity and, therefore, of a strongly anisotropic po-
laritonic nature within this spectral region.
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The dispersion curves of phonon-polaritons extracted from experimental monochro-
matic s-SNOM images along both [100] and [001] crystal directions are shown in
Figure 3.3C. For the U-RB, the polaritonic dispersions along both directions are
slightly separated according to the aforementioned difference in the PhPs periodicity.
This result corroborates that PhPs in this RB also propagate anisotropically. For the
L-RB, only data along the [100] direction is displayed as there is no propagating po-
laritons along the [001] direction. Note that in the U-RB a large wavevector value, i.e.
a short wavelength, is revealed with respect to the L-RB. Remarkably, and following
previous observations from nanoFTIR measurements, PhPs in the U-RB propagate
with a different slope than in the L-RB. This effect derives from the concept of phase
velocity, which is explained below. The phase velocity is defined as the ratio of the
angular frequency of a wave to its wavenumber at that frequency, vph,i = ω0/ki along
the direction i = x, y, z, and represents the velocity at which any component of the
wave travels (e.g. a maximum). On the other hand, group velocity is defined as the
velocity at which the envelope of a wave travels, v⃗g = ∇

k⃗
ω0(k⃗), and represents the

velocity at which the energy stored in the wave travels. Indeed, the phase velocity
points along the direction of the wavevector k⃗ while the group velocity points along
the direction of the Poynting vector S⃗. A positive group velocity must be expected
in both regimes, i.e. polaritonic propagation collinear to the flow of light (parallel to
the Poynting vector), otherwise it would imply backward propagation of polaritons,
or in other words, a violation of the causality principle. Therefore, a positive slope
of the polaritonic dispersion has to be present in both regimes and, consequently,
negative values for the polaritonic wavenumber |⃗kp| are expected. By plotting the
complex-valued s-SNOM signal we can discern the nature of this effect [70]. Figure
3.4 shows the imaginary part of the s-SNOM signal as a function of its real part at
ω0 = 990 cm−1 (upper band) and ω0 = 900 cm−1 (lower band). As demonstrated in
[70] for this type of graphs, a clockwise rotating spiral is considered a negative phase
velocity propagation, while counterclockwise spirals are related to a positive phase
velocity propagation. Indeed, we observe a clockwise behavior in the U-RB, while
in the L-RB the spiral displays a counter-clockwise rotation. This further verifies
that in the U-RB the polaritonic wavevector takes negative values (antiphase) along
both in-plane directions, while in the L-RB the polaritonic wavevector takes positive
values. Negative phase velocity of phonon-polaritons was also found in the so-called
type-I Reststrahlen Band of h-BN [70].

All-Angle Polariton Interferometry

To better visualize the in-plane anisotropic propagation of PhPs in α-MoO3, we
fabricated a disk on a 144nm-thick α-MoO3 flake on a SiO2/Si substrate and per-
formed s-SNOM polaritonic interferometry measurements on it. As the disk has any
curvature in the plane, we can probe the propagation of the PhPs reflected from
it along any direction in the plane. Figure 3.5A, B show the s-SNOM near-field
images measured in the U-RB (at ω0 = 983 cm−1) and L-RB (at ω0 = 893 cm−1),
respectively. In the U-RB, the interference pattern shows an elliptical shape with its
longest PhP wavelength along the [001] crystal direction, which continuously reduces
to its smallest value along the [100] crystal direction. Interestingly, in the L-RB, the
interference pattern presents convex wavefronts with the longest wavelength along
the [100] crystal direction, which continuously reduces to zero along the [001] crystal
direction, as there is no appreciable propagation of polaritons.
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To obtain the in-plane isofrequency curves (IFC, a slice of the polariton disper-
sion in the momentum-frequency space defined by a plane of constant frequency,
ω0), we perform the Fourier transform of the experimental s-SNOM images (Figure
3.5C, D). In the U-RB, an ellipsoid is found with the largest wavevector along the
[100] direction. Therefore, the upper RB is also termed as ‘elliptic’ band. On the
other hand, a hyperbola is revealed in the L-RB with well-defined polariton wavevec-
tor along the [100] direction but forbidden propagation along the [001] crystalline
direction. In the following, the term ‘hyperbolic’ band will be also used to refer
the L-RB. Thus, the U-RB exhibit in-plane propagation of elliptic PhPs, while the
L-RB presents in-plane hyperbolic propagation of PhPs. Note that for the U-RB the
IFC presents two different ellipses, with the wavevector values of the larger ellipse
being doubled with respect to the smaller ellipse. This result is attributed to the
contribution of both tip and edge polariton excitation in the α-MoO3 disk.

Our experimental results are eventually dictated by the anisotropy of the dielec-
tric permittivity. Hence, a complete understanding of the in-plane propagation of
PhPs in α-MoO3 relies on the estimation of the (unknown) permittivity of this vdW
crystal. To extract the anisotropic permittivity of α-MoO3 in the MIR regime, we
model the α-MoO3 flake as a 2D conductive layer of zero thickness placed on the
plane z = 0 [41]:

σ̂ =

(
σxx 0
0 σyy

)
(3.1)

Where σx and σy denote the α-MoO3 conductivity along the ‘x’ ([100]) and y’
([001]) directions. Expressing the fields above (z > 0) and below (z < 0) the layer
and applying the boundary conditions for the electric and magnetic fields (namely,
the tangential, or in-plane, component of the electric field is continuous across the
interface, E⃗1,t = E⃗2,t, and the tangential component of the magnetic field strength
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Figure 3.5: In-Plane Elliptical and Hyperbolic PhPs in an α-MoO3 Disk
A, B Near-field amplitude images s4 of an α-MoO3 disk with a thickness d = 144nm.
The imaging frequencies are ω0 = 983 cm−1 (U-RB; A), and 893 cm−1 (L-RB; B).
Dashed white lines indicate the [100] and [001] crystal directions. C, D Absolute
value of the Fourier transform |s4(kx, ky)| of the near-field images in A and B,
respectively, revealing the iso-frequency curves (IFCs) for each RB. Solid white lines
show the IFCs of the PhPs obtained by fitting Equation 3.2 for each case. Scale bars
are 50k0 and 20k0, for the U-RB and L-RB respectively, with k0 being the momentum
of light in free space. E, F Calculated near-field amplitude images |Ez(x, y)| for an
α-MoO3 disk at σ0 = 983 cm−1 (U-RB; E) and 893 cm−1 (L-RB; F).

obeys the relation e⃗z × (H⃗1 − H⃗2) = 2α̂E⃗1,t, with e⃗z a unitary vector along the z
direction and α̂ = 2πσ̂/c a normalized conductivity tensor), we find the following
expression for the dispersion relation of polaritons in a 2D anisotropic layer placed at
z = 0 and embedded between two isotropic media with permittivities ε1 (for z > 0)
and ε2 (for z < 0):
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[
k2xαxx + k2yαyy +

k0k
2
t

2

(
ε1
kz1

+
ε2
kz2

)][
k2yαxx + k2xαyy +

k2t
2k0

(kz1 + kz2)

]
−

− k2xk
2
y(αxx − αyy)

2 = 0

(3.2)

Where k0 = ω0/c = 2π/λ0 is the wavevector of light in free space, k2t = k2x + k2y

is the in-plane polaritonic wavevector, kz1,2 =
√
ε1,2k20 − k2x − k2y is the out-of-plane

polaritonic wavevector, and ε1,2 is the permittivity of the substrate/superstrate (in
this case, air and silicon oxide). Employing the last equation with αx and αy as
fitting parameters and neglecting absorption, we find for the U-RB (ω0 = 983 cm−1)
αx = −0.12i (εx = 2.6) and αy = −0.16i (εy = 3.7) , while for the U-RB (ω0 =
893 cm−1) we find αx = 0.26i (εx = −6.4) and αy = −0.07i (εy = 1.7). To extract
the material permittivity from these values, we need to recover the thickness depen-
dence of the conductivity tensor. Conductivity and permittivity are related through
σ̂ = (cd/2iλ0)ε̂ [41]. Hence, for polariton propagation to occur, we must have posi-
tive values of α in the U-RB along both directions, since negative ε is a requirement
for polariton excitation. Note that although with our model we cannot extract the
permittivity value for the out-of-plane [010] crystalline direction, we can infer its
sign as follows. A negative in-plane permittivity component and a positive out-of-
plane permittivity component would lead to a positive polaritonic phase velocity,
which would contradict the experimental negative phase velocity found previously
in this regime. Consequently, for the upper RB to have a negative phase velocity,
the in-plane components of the permittivity must be positive and the out-of-plane
component negative, i.e. negative α values in the plane and positive α values out of
the plane. Besides, in the lower RB the α values extracted are fully consistent with
a positive phase velocity of polaritons along the [100] crystal direction (we found
a negative permittivity along the [100] crystal direction and a positive permittivity
along the [001] crystal direction) considering a positive permittivity along the [010]
crystal direction. The images simulated by FEM are shown in Figure Figure 3.5E,
F. Both the shape of the polaritonic pattern and the simulated wavelength match the
experimental results. Consequently, our simple model for an anisotropic polariton
dispersion allows us to extract the permittivity values of the in-plane components
and the sign of the out-of-plane component for highly anisotropic materials by means
of PhPs interferometry measurements and fittings of the IFC. In fact, these extracted
permittivity values are consistent with the correlative near- and far-field studies per-
formed to extract the MIR permittivity of α-MoO3 along the three crystallographic
axes performed subsequently [132].

Although we have modelled the α-MoO3 flake as a 2D conducting layer embedded
between two media, the dispersion depends on the thickness of the flake as mentioned
above. Let us find the thickness dependence of the dispersion relation (Eq. 3.2)
in the case of polariton propagation along the [100] axis. Assuming ky = 0, Equa-
tion 3.2 transforms into the product of two factors. If we further assume that the
polariton momentum is much larger than the momentum of light, kx ≫ k0, we can
approximate kzi =

√
εik0 − k2x − k2y ≈ ±ikx, becoming:

kx ≈ −ε1 + ε2
2iαxx

k0 = −ε1 + ε2
dεxx

(3.3)

Therefore, the polariton wavevector depends approximately only on the permit-
tivity of the substrate, superstrate and material along the studied crystal direction,
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as well as on its thickness. Figure 3.6A shows the in-plane hyperbolic PhPs thick-
ness tuning in α-MoO3. Monochromatic s-SNOM images were taken to extract
the dispersion of PhPs from four different flakes with thicknesses of about 250nm,
130nm, 80nm and 55nm. It is clearly observed that the wavevector of the polari-
tons increases with decreasing thickness and, therefore, the lower the thickness, the
higher the polariton confinement. For example, at an illuminating wavelength of
λ0 = 10.8µm (ω0 = 926 cm−1), we find for a 55nm thick flake a polariton wave-
length of λx = 180nm, which is about 60 times smaller. In addition, we have
plotted the experimentally extracted wavevector values for these four thicknesses
at ω0 = 902 cm−1 to represent the inverse dependence of kx on thickness (Figure
3.6B). The experimental points fit well with our theoretical equation, where a value
of εx = −5.1 was employed (extracted from the 144nm-thick α-MoO3 disk using
Equation 3.2), thus supporting the validity of our model.
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Figure 3.6: Thickness Tunability of In-Plane Hyperbolic and Elliptic PhPs
in α-MoO3 A Experimental (dots) PhPs dispersions along the [100] direction in α-
MoO3 for a varying flake thickness d (lines are guides to the eyes). B Experimental
(dots) and calculated (line) dependence of kp upon d.

Direct Visualization of Propagating Hyperbolic Phonon-Polaritons in
α-MoO3

Another solution to confine light into nanometer volumes and excite polaritons by
overcoming the momentum mismatch is to employ metallic optical nanoantennas
[15], which, when illuminated, produce near-field plasmonic modes that enhance the
electric field [133, 134, 135]. These plasmonic modes can be tuned either by chang-
ing the illuminating frequency or the nanoantenna length [136], which is typically
designed to excite the fundamental mode due to its superior field enhancement. In
the case of using rod-shaped metallic nanoantennas, in-plane dipolar moments ex-
hibiting near-fields with opposite polarities at the rod extremities are formed [66].

Following this technological strategy to launch polaritons, we fabricated a gold
rod-shaped nanoantenna (with a length of 3.5µm,a width of 0.22µm,and a height of
0.032µm) on top of a 225nm-thick α-MoO3 flake with its long axis aligned along the
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Figure 3.7: Visualization of In-Plane Hyperbolic Polaritons in α-MoO3

A AFM topographic image of the Au nanoantenna (light grey vertical line at the
bottom) fabricated on a 225nm-thick α-MoO3 by standard lithographic processes.
B Amplitude s-SNOM s3 image taken at ω0 = 900.3 cm−1 (hyperbolic L-RB) in the
same region as shown in A. For a better visualization of PhPs, the color scale has
been saturated. Black dashed lines indicate the asymptotes of the hyperbola and
the angular section where there is polaritonic propagation. The PhPs wavefronts
along the [100] crystal direction are indicated by green horizontal lines. The PhP
wavevector k⃗p and Poynting vector S⃗ are collinear and perpendicular to these lines
along this direction. C Amplitude s-SNOM s4 image taken at ω0 = 983 cm−1 (elliptic
U-RB) in the same region as shown in A. PhPs propagate along all directions. D
COMSOL simulation showing the real part of the electric field vertical component
Re(Ez) obtained by mimicking the experiment in B. The α-MoO3 flake was modelled
as a 2D conductivity layer in accordance with Equation 3.2. Black dashed lines
indicate the directions of the asymptotes of the hyperbola. Green lines are depicted to
show the polaritonic wavefronts along propagation directions close to the asymptotes.
The PhP wavevector k⃗p and the PhP Poynting vector S⃗ are almost perpendicular.

[100] crystal direction. Details about the antenna fabrication can be found in refer-
ences [66, 104]. Figure 3.7A shows an AFM topography image of the sample with
the nanoantenna. Upon illumination (Figure 3.7B, C), near-field amplitude fringes
revealing the propagation of PhPs are observed in the surroundings of the antenna at
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both ω0 = 900.3 cm−1 (hyperbolic L-RB, Figure 3.7B) and ω0 = 983 cm−1 (elliptic
U-RB, Figure 3.7C). However, there are striking differences between both images.
In the hyperbolic band, PhPs are observed only within a conical section (delimited
by black dashed lines in the figure) exhibiting a convex contour with its origin at the
nanoantenna extremity. On the other hand, in the elliptic band, PhPs are observed
along all directions exhibiting a concave contour. To corroborate theoretically this
exotic PhP behavior, a COMSOL simulation was performed in the L-RB considering
α-MoO3 as a 2D conductive layer in accordance with Equation 3.2. The calcu-
lated near-field image obtained (Figure 3.7D) is in excellent agreement with the
experiment, reproducing all the characteristics of hyperbolic PhPs. These include a
direct dependence of the wavelength as a function of the angle of propagation within
the hyperbolic cone. As such, PhPs propagating along the [100] crystal direction
present the longest wavelength λp, while PhPs propagating along the hyperbolic
asymptotes present the shortest wavelength. Furthermore, PhPs propagate along
the [100] crystal direction with their wavevector k⃗p (green arrow in Figure 3.7B)
and the Poynting vector S⃗ (black arrow), which determines the direction at which
the energy flows, pointing along the same direction, as typically observed in isotropic
media. However, when approaching the asymptotes (black dashed lines in Figure
3.7D), the wavefronts are tilted (green lines perpendicular to k⃗p) with respect to the
Poynting vector, exhibiting a clear signature of the propagation of light in strongly
anisotropic media [5]. Further details about launching of in-plane hyperbolic PhPs
with Au nanoantennas will be provided in Section 3.4.

3.3 | Lifetimes of In-plane Hyperbolic Phonon
Polaritons in α-MoO3

To further evaluate the optical properties of in-plane PhPs in α-MoO3, we extracted
the lifetimes, τ . Lifetime is defined as τ = Lp/vg, where Lp is the decay or propa-
gation length defined in Chapter 1 (the length at which the polariton electric field
decays by a factor 1/e) and vg the group velocity, representing how long the polari-
tons exist. As will be shown in the following subsections, the low group velocities of
in-plane PhPs in α-MoO3 together with their extremely long lifetimes, make them
ideal candidates for light-matter applications such as ultrasensitive biosensors.

Extracting the Decay Length of PhPs in α-MoO3

The decay length of PhPs is extracted by fitting s-SNOM line profiles of the PhPs
amplitude to an exponentially decay sinusoidal function. Assuming both tip- and
edge-launched PhPs, the fitting equation takes the form [103]:

ξ(x) = ξ0 +Ae−x/Lp sin

(
2π(x− xc0)

λ

)
1

x
+Be−2x/Lp sin

(
4π(x− xc1)

λ

)
1√
x

(3.4)

where ξ is the s-SNOM amplitude signal, ξ0 is an offset parameter, Lp is the
polariton decay length, λ is the polariton wavelength, xc0 and xc1 are offsets for the
sine functions, and A and B are the edge- and tip-launched polariton amplitudes,
respectively. The factors 1/x and 1/

√
x are incorporated to account for the geometri-

cal spreading factor of edge- and tip-launched polaritons, respectively (edge launched
PhPs are considered as plane waves while tip launched PhPs are considered as circu-
lar waves). Furthermore, the equation also incorporates a factor of two in both the

46



decay length and wavelength of tip-launched PhPs to consider their standing wave
nature (note that they travel back and forth with respect to the tip). Figure 3.8
shows a typical fitting for PhPs in α-MoO3 in the U- and L-RBs along the [100]
crystallographic direction.
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Figure 3.8: Fitting of Decay Lengths Near-field s-SNOM profiles taken along
the [100] crystal direction of the flake shown in Figure 3.3A at ω0 = 990 cm−1 in
the U-RB (blue dots, upper panel) and ω0 = 930 cm−1 L-RB (red dots, lower panel)

Extracting the Group Velocity of PhPs in α-MoO3

The group velocity is defined by vg,i = ∂ω0/∂ki; i = x, y, z. To extract the group
velocity of PhPs in α-MoO3, we thus perform derivatives of the experimentally ex-
tracted PhPs dispersions. In particular, we first fit the experimental dispersion
curves by a generic potential function y(x) = axb, and then we perform a numerical
derivative of the resulting curve. Figure 3.9 shows the obtained group velocity (in
c units, with c the spped of light) in the L-RB for flakes with different thicknesses
whose dispersion is shown in Figure 3.6. As PhPs are more confined (lower PhP
wavelengths, λp) for the thinner flakes, the group velocities are lower with respect to
the thicker flakes. This is a direct consequence of the thickness-dependent PhPs dis-
persion: a ‘flatter’ PhP dispersion is extracted for the thinner samples (see Figure
3.6A), leading to lower group velocities when taking the derivative, as the slope of
the curve is lower.

For the 250nm-thick flake show in Figure 3.3, the extracted group velocity
presents a value of vg = 769828m/s, i.e. 2.5 · 10−3 c (c is the speed of light),
in the L-RB (at ω0 = 930cm−1). In the U-RB (at ω0 = 990 cm−1) a value of
vg = 347759m/s, i.e. 1.2 · 10−3 c was obtained along the [100] crystalline direction.
Note that propagating PhPs in h-BN exhibit values of the order of 10−2 c, which is
one order of magnitude higher than the values obtained in α-MoO3, indicating the
ultra-slow propagation of PhP in the latter.
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Lifetimes of PhPs in α-MoO3

As mentioned above, the PhP lifetime can be now calculated using the expression
τ = Lp/vg for both the L-RB and the U-RB. The calculated values are taken for
the flake with a thickness d = 250nm whose dispersion is shown in Figure 3.3.
In the L-RB (hyperbolic regime), we obtain a lifetime of τHyper = 1.9 ± 0.3 ps at
ω0 = 930 cm−1, i.e. one order of magnitude longer that the longest plasmon-polariton
lifetimes ever observed in graphene [52] and of the same order as the best values
reported for PhPs in h-BN [71]. In the U-RB (elliptic regime), we obtain a lifetime
of τEllip = 8 ± 1 ps at ω0 = 990 cm−1, i.e. four times longer than the best values
reported until now in isotopically enriched h-BN [71]. As such, these results clearly
reveal the ultra-low-loss character of PhPs in α-MoO3. Note that the RBs in α-MoO3

are narrow compared to the type-II RB in h-BN, leading to much flatter dispersion
relations, which in turn causes the PhPs in α-MoO3 to propagate with extremely
small group velocities, resulting in relatively short propagation lengths. Therefore,
s-SNOM images of propagating PhPs in α-MoO3 do not show as many oscillation
fringes as e.g. PhPs in h-BN. Additionally, our studies reveal that the lifetimes of
PhPs in α-MoO3 are independent upon the flake thickness (Figure 3.10) [41, 137].
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Figure 3.10: Lifetimes of PhPs in α-MoO3 Lifetimes (symbols) extracted at
ω0 = 890 cm−1 (hyperbolic L-RB) for four flakes with different thicknesses d = 80,
100, 130 and 220nm. No thickness dependence is observed.
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3.4 | Nano-Optics using In-Plane Hyperbolic PhPs
in α-MoO3

In-plane hyperbolic polaritons promise unprecedented control of light at the nanoscale
in planar integrated devices, where focusing typically constitutes a basic building
block for applications, such as nanoimaging, low-temperature nanophotocatalysis
[138], nanobiosensing [6, 74, 139] or thermal management at the nanoscale [140].
As mentioned in Chapter 1, h-BN has proven to be a suitable platform for studying
ray-like propagation of polaritons [141], hyperlensing effects [84] and focusing of
polaritons [86]. However, the out-of-plane nature of PhPs in h-BN limits its practi-
cal implementation in planar integrated devices. In a recent technological attempt,
h-BN slabs were patterned into stripes to form an artificial metasurface where PhPs
propagate with a hyperbolic dispersion in the plane [47]. However, this technological
has proven to be inefficient, as the propagation of PhPs is greatly damped due to
damage induced during the fabrication process. In this sense, the ultra-low-loss na-
ture of in-plane hyperbolic PhPs in α-MoO3 offer unique opportunities as a natural
platform for planar technologies in nanooptics. In this section, we will demonstrate
metal nanoantennas in α-MoO3 flakes as the first optical element to deeply focus
PhPs at nanometer-sized focal spots with enhanced field confinement.

It is worth noting that, unlike the work on PhPs in α-MoO3 shown in the previous
sections, in the following sections we employ the precise dielectric function of α-MoO3

over a wide frequency range covering both RBs. This is because the permittivity was
extracted in parallel to this thesis work in our research group through correlative
far- and near-field studies on multiple flakes of different thicknesses. Details can be
found elsewhere [132]. The εi, i = [100], [010], [001], components of the dielectric
permittivity for α-MoO3 along the [100], [010] and [001] crystallographic directions
are plotted in Figure 3.11 (real part) and its parameters summarized in Table 3.1.
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Figure 3.11: Permittivity of α-MoO3 IR dielectric function of α-MoO3 along
the three crystallographic axes. The shaded regions indicate the three Reststrahlen
bands, corresponding to phonons on each of the crystallographic axes: [001], [100],
and [010]. Adapted from [132].

As clearly shown by the PhP IFC in the L-RB of α-MoO3, the propagation
of PhPs is allowed only along a set of directions, which defined a region given by
[84, 104]:

| tan(θ(ω0))| <

√
−εx(ω0)

εy(ω0)
(3.5)
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Crystallographic Axes ωTO (cm−1) ωLO (cm−1) γ (cm−1) ε∞
[100] 506.7 534.3 49.1
[100] 821.4 963.0 6.0 5.78
[100] 998.7 999.2 0.35
[010] 956.7 1006.9 1.5 4.47
[001] 544.6 850.1 9.5 6.07

Table 3.1: Permittivity of α-MoO3 Parameters for the IR dielectric function of
α-MoO3, extracted from correlative far- and near-field experiments. Adapted from
[132].

With θ(ω0) the angle that forms the asymptotes of the hyperbola with the [001]
axis. In the limit when | tan(θ(ω0))| =

√
−εx(ω0)/εy(ω0), the relation represents

the equation of the asymptotes. Figure 3.12 shows the analytic IFC (calculated
using the dispersion equation for electromagnetic modes in slabs of biaxial crystals
[142]) for PhPs in a 165nm-thick α-MoO3 flake at an illumination wavelength of
λ0 = 11.05µm (or ω0 = 905 cm−1). The wavevector and the Poynting vector of
PhPs are also indicated in the figure for a random direction different from the [100]
crystal axis showing that they are not collinear, i.e. the direction of propagation of
the energy flux is not perpendicular to the wavefronts, as is the case for plane waves.
This is a unique property of hyperbolic PhPs. Another was already mentioned in
Chapter 1, as the asymptotes of the hyperbola are reached, the number of available
PhP wavevectors increases, resulting in highly directional propagation of the PhPs.
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Figure 3.12: Isofrequency Curve of In-Plane Hyperbolic PhPs in α-MoO3

IFC of in-plane hyperbolic PhPs in a 165nm-thick α-MoO3 slab at an illuminating
wavelength λ0 = 11.05µm (ω0 = 905cm−1). PhPs with high-|⃗k| wave vectors are
indicated by k⃗H , together with their Poynting vector S⃗.

Focusing of Nanolight using in-plane hyperbolic PhPs in α-MoO3

To understand the ray-like character of in-plane hyperbolic PhPs in α-MoO3, we can
study the near-field pattern created by a point dipole source placed above an α-MoO3

flake. To do that, it is useful to use the Dyadic Green’s function (DGF), Ĝ(r⃗ − r⃗ ′).
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Physically, it relates the electric field created by a source (e.g. the polariton field
created by a point dipole) at a point r⃗ with the initial electromagnetic field at the
dipole position r⃗ ′, and it can be calculated according to:

E⃗(r⃗) = k20

∫
d3r⃗ ′Ĝ(r⃗ − r⃗ ′)E⃗0(r⃗

′) (3.6)

with k0 = ω0/c. In addition, when Fourier transformed, Ĝ(k⃗) describes the effi-
ciency of excitation of an electromagnetic mode with a given wavevector/momentum
k⃗ and it is also related to the density of optical states (DOS). Specifically, the dis-
persion relation of PhPs expressed in Equation 3.2 can be obtained from the DGF
calculating its poles. Interestingly, since the polaritonic electric fields are typically
characterized by strong vertical components (z axis) , only the z component of the
DGF, Ĝz needs to be considered. Moreover, s-polarized plane waves possess no
projection on the z axis, so only the contribution due to p-polarized waves is re-
quired [104]. Figure 3.13A shows the calculated Ĝz(k⃗x, k⃗y) in momentum space
at ω0 = 905 cm−1 for a 165nm-thick flake (a vertically oriented dipole is used as
PhPs excitation source), where the maxima are obtained close to the directions of
the asymptotes of the hyperbolic IFC. In real space, the integrated near field along
all in-plane directions yields a pattern that exhibits narrow lobes (yellow dashed lines
in Figure 3.13A, B), which indicate the directions along which the density of prop-
agating polaritonic modes is maximum. Hence, ray-like propagation of polaritons
along the hyperbolic asymptotes is fully associated with a high density of polaritonic
modes closely along the IFC asymptotes.

1 µm

dipole

B

-40

-20

0
min max

S
α-MoO3

[001]

[100]

k x (µ
m

-1
)

ky (µm-1)

A

kH

Gzz(kx,ky)

C min max

[001]

[100]

X 
(µ

m
)

Y (µm)

|Ez|

kH S
kHS

10-1

1

-1

0

dipole

1 µm

[001]

[100]

min max

|Ez|

|Ez|

Gzz(kx,ky)

-40 -20 0 20 40

|Ez|

θ ≈ 20⁰

Figure 3.13: Ray-Like In-Plane Propagation of PhPs in α-MoO3 A Color
plot: Analytical calculation of the Green’s function Ĝz(k⃗x, k⃗y) in momentum k⃗-space,
for a 165nm-thick α-MoO3 slab at λ0 = 11.05µm. The polaritonic IFC contour is
shown as maxima in the color plot. The yellow dashed line corresponds to the field
intensity, absolute value of Ĝ(r⃗− r⃗ ′) as a function of the polar angle at the distance
r0 from the dipole source. The white and green dashed arrows are the Poynting
vector S⃗ and k⃗H wavevectors of PhPs propagating along in-plane directions closely
aligned with the asymptote of the hyperbolic IFC. The near-field intensity shows a
maximum DOS at an angle θ with respect to the [100] crystal direction. B Numerical
simulation of the electric |Ez| (color plot) excited by a point electric dipole placed
above the α-MoO3 slab together with the polar distribution of the electric field in real
space (yellow dashed lines) shown in A. C Near field, |Ez|, calculated analytically
for two vertical point dipoles on α-MoO3. A focal spot is obtained upon interference
of ray-like PhPs with k⃗H wave vectors (dashed circle).

To visualize the in-plane propagation of PhPs along the surface of α-MoO3, we
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have analytically calculated the near-field distribution, Ez(x, y), in real space us-
ing two distant point dipoles as excitation sources (Figure 3.13C). In this figure,
the strongly directional propagation of ray-like PhPs is clearly revealed leading to
the formation of a focal spot upon their constructive interference, marked with a
white dashed circle. Based on these calculations, we study the possibility of focus-
ing in-plane PhPs by using metal nanoantennas that can be used for an efficient
launching of PhPs in van der Waals materials. Figure 3.14A shows the real part of
the z-component of the electric field, Re(Ez(x, y)), obtained by full-wave numerical
simulations at an illumination wavelength of ω0 = 905 cm−1 for a metal disk nanoan-
tenna placed on top of an α-MoO3 slab. The PhPs launched by the Au disk present
a series of convex wavefronts within a triangular region (marked by black dashed
arrows) that shows a focal spot at its apex. Note that this convex antenna geometry
is in stark contrast to the typical nanoantennas with a concave geometry used for
focusing in-plane polaritons in isotropic media (See right inset in Figure 3.14A)
[15, 66]. By taking a horizontal profile of the electric field intensity, |Ez(x, y)|2, in
the image (which corresponds to the [001] α-MoO3 crystalline axis, marked with the
red dashed line), a full width at half maximum (FWHM) of ≈ 390nm is obtained
for the focal spot, which corresponds to a subwavelength size of ≈ λ0/28 (left inset
of Figure 3.14A), being λ0 the illuminating wavelength.

This exotic focusing effect obtained for a convex geometry of the nanoantenna
can be understood by the Huygens principle in hyperbolic media. Specifically, by
considering the Au disk nanoantenna as a system composed of an infinite number of
point-like dipoles placed along the edge of the Au disk that emit polaritons whose
wavefronts interfere. Figure 3.14B shows the full-wave numerical simulation where
a discrete number of point dipoles are situated at the periphery of a circular contour
mimicking the disk nanoantenna. Contrary to the case of isotropic media where
the energy flows equally in all in-plane directions (Figure 3.14C), and, therefore,
a parallel wavefront to the nanoantenna edge is obtained, in hyperbolic media, the
interference of propagating ray-like polaritons with high-⃗k (k⃗H) leads to the forma-
tion of a focal spot. Interestingly, the result obtained closely reproduces the image
obtained when a complete Au disk nanoantenna is used (Figure 3.14A), thus con-
firming that the formation of the peculiar convex fringes are due to the interference
of polaritons with high k (k⃗H) launched by the edge of the nanoantenna.

To experimentally demonstrate these theoretical results, we fabricated an Au
disk nanoantenna on top of a 165nm-thick α-MoO3 flake and performed s-SNOM
polariton nanoimaging at different incidence wavelengths λ0. Figure 3.15 shows the
images obtained at λ0 = 10.70, 10.85 and 11.05µm (corresponding to ω0 = 934.6,
921.6 and 905cm−1, respectively). All experimental images (top row in the figure)
display the convex wavefront effect emerging from the Au nanoantenna predicted by
the simulations, with the eventual formation of a focal spot. Full-wave numerical
simulations fully reproduce these experimental results (bottom row in the figure).
Interestingly, we observe that by increasing λ0 (decreasing ω0) both the width of
the focal spot and the focal distance (f , defined as the distance measured from the
focal spot to the nanoantenna edge along a perpendicular line, white vertical line
in top-right image) vary. In particular, f takes values that range from ≈ 0.6µm at
λ0 = 10.70µm up to ≈ 1.7µm at λ0 = 11.05µm. On the other hand, the spot sizes
(extracted by taking profiles along the horizontal direction, corresponding to the
α-MoO3 [001] crystal direction, as indicated by arrows in the experimental images)
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Figure 3.14: Focusing of In-Plane Hyperbolic Polaritons in α-MoO3 A
Simulated near field, Re(Ez), produced by a metal Au disk nanoantenna: The ex-
citation and interference of PhPs with k⃗H wave vectors lead to a focal spot (yellow
dashed circle). The right inset shows the analogous case for an in-plane isotropic
medium using a rod-like metal nanoantenna with a concave extremity. The left inset
shows the electric field amplitude, |Ez|2, along the dashed red line (normalized to
the intensity at the white cross). B Simulated near field, Re(Ez), for a discrete
distribution of point electric dipoles localized along the periphery of a virtual disk:
A convex interference pattern and focal spot (yellow dashed circle) are revealed, re-
sembling the results obtained in A. C Simulated near-field distribution, Re(Ez), on
a disk-like Au nanoantenna at λ0 = 11.05µm in an in-plane isotropic medium.

takes FWHM values (Figure 3.16A) that range from ≈ 310nm at λ0 = 10.70µm
to ≈ 430nm at λ0 = 11.05µm, i.e. in the order of λ0/34, which indicate a deep
subwavelength character.

The particular wavelength-dependent curvature of the hyperbolic IFC governs
the propagation direction of PhPs with high-wavevector that leads to the formation
of the foci (note that the propagation direction of hyperbolic PhPs in real space is
given by the Poynting vector), as shown in the analytically calculated IFCs in Figure
3.16B. Therefore, while the angle of the Poynting vector dictates the wavelength-
dependent focal distance, the wavevector (or wavelength of the polaritons) establishes
the size of the focal spot. The foci size, FWHM, and the focal distance as a function
of the illuminating wavelength is shown in Figure 3.16C for both experiment and
simulation. An excellent agreement is found. It should be noted that although
metal disks might be an interesting way to focus PhPs into deeply sub-wavelength
confined focal spots, the contribution of polaritons with low-⃗k (those propagating
along directions within the IFC asymptotes) cannot be ruled out, which would indeed
contribute to increase the size of the obtained focal spot. In this regard, metal
nanoantennas with optimized geometries will be presented in the following section.

Optimization of the nanoantenna design for focusing of nanolight
The focusing effect described above arises from the interference of PhPs with high-⃗k
values, which could potentially take almost infinitely large values. However, it should
also be noted that higher polaritonic wavevectors also imply lower polariton propaga-
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Figure 3.15: Planar Focusing of In-Plane Hyperbolic PhPs with Au Disk
Nanoantennas Experimental (Re(s3); top row) and simulated (Re(Ez); bottom
row) near-field images of PhPs launched by an Au disk nanoantenna fabricated on
top of a 165nm-thick α-MoO3 crystal for illuminating wavelengths λ0 = 10.70µm
(left), λ0 = 10.85µm (middle), and λ0 = 11.05µm (right). The interference of PhPs
with k⃗H wave vectors launched from the edges of the nanoantenna results in a focal
spot with a varying FWHM size and f as a function of λ0. The dashed arrows mark
the angle θ.

tion lengths, thus establishing a trade-off between the two quantities. Furthermore,
apart from high-⃗k PhPs, Au metal nanoantennas also launch polaritons with a rel-
atively large wavelength along the α-MoO3 [100] direction, which contributes to a
broadening of the foci.

Therefore, to further reduce the size of the foci, rod-like trapezoidal Au nanoan-
tennas with an optimized geometry are proposed to: 1) favour the excitation of high-⃗k
PhPs along a well-defined direction; 2) avoid the excitation of PhPs with relatively
low |⃗k| wavevectors (large wavelengths). Using these trapezoidal-shaped nanoan-
tennas, the focal distance can be calculated by simple geometrical considerations,
as shown schematically in Figure 3.17B. After performing some optimizations by
numerical simulations to maximize the near-field intensity at the focus position, an
optimal nanoantenna geometry was found in which the edges of the extremities of
the trapezoidal nanoantennas form an angle of ≈ 44◦ with respect to the α-MoO3

[100] crystalline direction at λ0 = 11.05µm (ω0 = 905 cm−1) (see Figure 3.17A)
with a separation between the nanoantennas of d = 320nm. The metal nanoantenna
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Figure 3.16: Foci Size and Focal Distance A Experimental near-field amplitude
|s3|2 profiles along the ’y’ axis at positions marked with an arrow in Figure 3.14
for λ0 = 10.70µm (red), λ0 = 10.85µm (blue), and λ0 = 11.05µm (green). A deep
subwavelength spot size of λ0/34 (≈ 310nm) is measured for λ0 = 10.70µm. B
Analytical IFCs for a 165nm-thick α-MoO3 crystal at λ0 = 10.70µm (red), λ0 =
10.85µm (blue), and λ0 = 11.05µm (green). The Poynting vector S⃗ of PhPs with
k⃗H wave vectors forms wavelength-dependent angles θ with respect to the x axis. C
Dependence of the experimental, simulated, and analytically calculated values of the
spot size (FWHM) and f with λ0 (gray lines serve as a guide for the eye).

was fabricated on a 165nm-thick α-MoO3 flake. More details on the optimization
can be found elsewhere [104].
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Figure 3.17: Understanding the Focusing of In-Plane PhPs in α-MoO3

Employing Rod-Like Trapezoidal Nanoantennas A Topographic AFM image
of a double rod-like trapezoidal Au nanoantenna separated by a distance d = 320nm
on an α-MoO3 crystal. The slope of the nanoantennas edges at both extremities
present an angle of ≈ 44◦ with respect to the [100] direction. The green dashed
arrows illustrate the propagation of PhPs with k⃗H wave vectors excited from the
edges of the nanoantennas (λ0 = 11.05µm) that interfere at the focal spot marked
with a red circle. B Focusing of PhPs excited by four electric point dipoles placed
along the sidewall of rod-like trapezoidal nanoantennas on an α-MoO3 slab. The
black dashed arrows represent the Poynting vector of polaritons with wavevectors
k⃗H . The interference of polaritons gives rise to a focal spot marked by a red circle.
The x-axis and y-axis correspond to the [100] and [001] crystalline directions in α-
MoO3, respectively.
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Figure 3.18A shows the s-SNOM image, Re(s3), obtained for a rod-like trape-
zoidal Au nanoantenna fabricated on a 165nm-thick at an illumination wavelength
of λ0 = 11.05µm. We observe the propagation of high-⃗k PhPs (excited by the
metal nanoantennas) that finally interfere producing a focused spot at a distance
f = 790nm. By taking a profile along the α-MoO3 [001] crystal direction passing
through the focal spot (marked with a red arrow), we extract a FWHM of ≈ 225nm,
which corresponds to a deeply subwavelength size of ≈ λ0/50, or λp/4.5 (λp ≈ 1µm
along the α-MoO3 [100] crystalline axis). Note that in the previous section we
showed a foci size of ≈ λ0/34 using an Au disk nanoantenna. To further verify our
experimental results, we perform full-wave numerical simulations of the nanoantenna
(Figure 3.18B). An excellent agreement with the experimental results for both the
focal distance f and the focal spot size (FWHM, taken along the direction marked
with the blue arrow) is obtained. Profiles along the foci extracted from both the
experimental (red curve) and simulated (blue curve) images are displayed in Figure
3.18C.
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Figure 3.18: Optical Nanoantennas for an Improved Planar Nanofocusing
of In-Plane Hyperbolic PhPs in α-MoO3 A Experimental near-field image,
Re(s3), of rod-like trapezoidal nanoantennas on an α-MoO3 slab. B Simulated near-
field images, Re(Ez), of rod-like trapezoidal nanoantennas on an α-MoO3 slab. C
Comparison between experimental/simulated near-field amplitude |s3|2/|Ez|2 profiles
taken along the y axis ([001] direction) at positions marked by a red/blue arrow in A
and B, respectively. A deep subwavelength focusing of λ0/50 (λp/4.5) is obtained.

It should be highlighted the possibility of varying the focal distance f by either
changing the illumination frequency or increasing/decreasing the separation between
the trapezoidal rods. Moreover, numerical simulations show that by reducing the
distance between the trapezoidal rod-like nanoantennas, the focal distance can be
lowered well below the diffraction limit when compared to the case of having PhPs
in an isotropic medium. [104].

3.5 | Conclusions
To summarize, in this chapter we have explored the main physical characteristics of
PhPs in α-MoO3 within the MIR L- and U-RBs. PhPs propagate along all in-plane
directions in the U-RB (from ωTO ≈ 960 cm−1 to ωLO ≈ 1010 cm−1) with the largest
polaritonic wavelength along the [001] crystal direction and the shortest along the
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[100] crystal direction. By Fourier transforming the s-SNOM images of propagating
PhPs, the in-plane k⃗-space dispersion displays an ellipse in the U-RB, thus being
coined as the ‘elliptic band’. On the other hand, in the L-RB (from ωTO ≈ 820 cm−1

to ωLO ≈ 970 cm−1) PhPs propagate with the largest wavelength along the [100]
crystal direction while no PhPs are observed along the [001] crystal direction. By
Fourier transforming the s-SNOM images in the L-RB, the in-plane polaritonic dis-
persion in k⃗ space shows for the very first time in-plane hyperbolic propagation of
phonon-polaritons, thus coining this RB as the ‘hyperbolic’ band. Moreover, PhPs
in the elliptic band propagate with negative phase velocity while in the hyperbolic
band the phase velocity takes positive values. Also, the polariton confinement is
higher in the elliptic band than in the hyperbolic band. Using a simple 2D model,
the in-plane permittivities in both bands can be extracted and the sign of the z-
component can be deduced. The model also predicts an inverse dependence of the
polaritonic wavevector on the thickness of the α-MoO3 flake which exactly matches
the experimental results. Furthermore, PhPs in both bands are found to propagate
with extremely small group velocities resulting in thickness-independent lifetimes of
the same order of magnitude that the best values reported so far for hyperbolic PhPs
and four times longer than the best values reported so far for any sub-diffractional
polariton.

For applications in the field of nanooptics, the in-plane propagation of PhPs in α-
MoO3 is very interesting for the development of a planar technology. Importantly, as
the first optical element to manipulate light at the nanoscale, metallic nanoantennas
with tailored geometries are demonstrated to provide foci with a FWHM that is 50
times smaller than the wavelength of the incident radiation. This achievement hold
promises for the development of optical circuitry at the nanoscale with unprecedented
capabilities.
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4

Spectral Tuning of PhPs in a
van der Waals material by ion

intercalation

In this chapter we will present α-V2O5 as a van der Waals material that supports
PhPs in the MIR spectral range. To study the properties of these PhPs, we will first
extract an accurate dielectric function of α-V2O5 with the help of s-SNOM measure-
ments, transfer matrix and DFT calculations. More Importantly, we will show that
by intercalating the crystal structure with Na atoms (forming the α’-NaV2O5 crystal)
it is possible to extend (up to 30 cm−1) the RB in which the PhPs exist. Finally, we
will show that such an intercalation process does not affect the long lifetimes (up to
6 ps) and large quality factors (up to 3.5) of PhPs. The results showed in this chapter
have been published in Taboada-Gutiérrez et al. ‘Broad spectral tuning of ultra-low-
loss polaritons in a van der Waals crystal by intercalation’, Nature Materials 19,
964–968 (2020).

4.1 | Introduction to α-V2O5

In recent years, there has been intensive research on deeply confined polaritons, and
in particular on PhPs. Although PhPs present unique properties, such as ultrahigh
confinement and long lifetimes, they also present a major drawback: they can only be
excited in narrow spectral bands (RBs) of a few van der Waals materials. Therefore,
it would be very interesting, both from a fundamental and technological point of
view, to find an efficient strategy to shift or modify the RBs, thus allowing PhPs to
be controlled over wider frequency ranges. In this Chapter we will show that this
problem can be addressed by intercalating alkali atoms at certain positions in the
crystal structure of the van der Waals material α-V2O5. α-V2O5 is a low-cost and
abundant material that has been studied via intercalation for its use in applications
such as photocatalysis [143], as electrodes in lithium-ion batteries [144, 145] or as
gas sensors [146]. In this case, α-V2O5 is presented as a material that supports
ultra-low-loss PhPs whose dispersion is tunable by controlling the crystal thickness.
Importantly, by intercalating the material with alkali atoms (sodium and calcium,
without modifying the space group of the material), an unprecedented spectral shift
of its RBs can be obtained, allowing PhPs to be excited in broadband frequency
ranges.
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Crystal Structure
The thermodynamically stable alpha phase of V2O5 (α-V2O5) crystallizes in a Pmmn
(number 59) orthorhombic crystal structure with lattice parameters a = 11.512Å,
b = 4.368Å and c = 3.564Å and two formula units per unit cell (Z = 2) [147].
It is a layered material where the individual layers with a thickness of 3.779Å are
held together by van der Waals forces along the [010] crystalline direction (‘z’, in the
following). Each layer is composed of a periodic repetition of VO5 square pyramids
that pointing alternatively up and down share edges or corners. As in α-MoO3, three
different kinds of oxygen atoms can be identified [148]:

■ The vanadyl oxygen Ov which bonds exclusively to one V atom with a bond
distance of 1.464Å and constitutes the apex of the pyramid.

■ The bridge oxygen Ob which bonds to two different V atoms and connects the
chains together with a bond distance of 1.896Å.

■ The chain oxygen Oc which bonds to three different V atoms, two inside a
pyramid pointing down (or up) and the other one inside a pyramid pointing
up (or down) with average distances of 1.910Å and 1.997Å, respectively.

Figure 4.1 shows the α-V2O5 crystal structure along with the material unit cell
together with its basic constituent VO5 pyramid and an optical image with a few
α-V2O5 flakes on a SiO2/Si substrate.
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Figure 4.1: α-V2O5 Crystal Structure A Schematic of the α-V2O5 unit cell.
The unit cell consists of a periodic repetition of distorted VO5 pyramids pointing
alternatively up and down. The V atom (blue circles) are located in the center
of the pyramid, which is defined by the O atoms (red circles). B Optical image of
some α-V2O5 flakes exfoliated on a SiO2/Si substrate. Due to the anisotropic crystal
structure of α-V2O5 the flakes present a rectangular shape with well-defined edges
and easy-recognizable crystallographic directions (larger/shorter sides correspond to
the [001]/[100] crystal directions, respectively). C Schematic of the VO5 pyramids
with the three non-identical oxygen atoms labeled. D Schematic of the layered
structure of α-V2O5.
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MIR optical properties: Far-Field Characterization by FTIR
Based on group theory, for the α-V2O5 Pmmn space group there are 42 modes at
the Γ point (k = 0): 3 of them correspond to translations while the other 39 are
optical modes [149]:

■ 15 IR active modes: 6B1u+3B2u+6B3u which corresponds to vibrations along
the [010], [001] and [100] crystalline directions, respectively.

■ 21 Raman active modes: 7A1g+3B1g+7B2g+4B3g

■ 3 silent modes: 3A1u

The IR permittivity of α-V2O5 was first reported by Clauws and Vennik in 1976
[150] from FTIR polarized reflectance measurements (Figure 4.2), which showed
three RBs (shadowed regions), each along a different crystallographic direction, as
predicted in reference [149]. Specifically, the active modes that present resonances
in the MIR regime and give rise to the α-V2O5 Reststrahlen Bands (due to the
TO-LO splitting) are the following: i) the B1u V-Ov stretching mode along the [010]
crystal direction between ωTO = 974 cm−1 and ωLO = 1040 cm−1 (hereafter RB1), ii)
the B3u Oc-V-Ob stretching mode along the [100] crystal direction between ωTO =
766 cm−1 and ωLO = 965 cm−1 (hereafter RB2) and iii) the B2u V-Oc stretching
mode along the [001] crystal direction between ωTO = 506 cm−1 and ωLO = 844 cm−1

(hereafter RB3) [149]. Another narrow band between ωTO = 981 cm−1 and ωLO =
987 cm−1 polarized along the [100] direction is theoretically predicted [149], however,
experimental reports only reveal an extremely small band between ωTO = 980.5 cm−1

and ωLO = 982 cm−1 [150]. Table 4.1 summarizes the extracted parameters by
Clauws and Vennik of the MIR permittivity function of α-V2O5.
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Figure 4.2: Reflectance Measurements and Extracted Permittivity of α-
V2O5 Reflectivity (upper panel) and permittivity (lower panel) of α-V2O5 along the
three crystallographic directions. Three reststrahlen Bands each along a different
crystal direction can be observed. Adapted from reference [150]).

The α-V2O5 crystals studied in this thesis were synthesized via a purification
method and subsequent single crystal growth by the group of Professor Kimura at
University of Tokyo [151]. We first carried out polarization resolved FTIR spec-
troscopy on α-V2O5 flakes (Figure 4.3) placed on a BaF2 substrate (transparent

61



Axis ωTO (cm−1) γTO (cm−1) ωLO (cm−1) γLO (cm−1)

[100] 767.5 30.0 959.0 50.0
[010] 975.5 2.5 1038.0 2.5
[001] 506.5 21.0 842.5 18.0

Table 4.1: Reported Parameters of the MIR permittivity of α-V2O5 α-
V2O5 dielectric constant parameters in the MIR regime (adapted from [150]).

in the frequency range of interest). The resulting spectra, obtained for both the
[100] and [001] in-plane directions of a 280nm-thick α-V2O5 flake, show a strong
peak at ω0 = 773 cm−1 and a weak peak at ω0 = 982 cm−1 when polarized along
the [100] crystal direction. On the other hand, when polarized along the [001] crys-
tallographic direction, a small peak is observed at ω0 = 1038 cm−1. These peak
positions are in excellent agreement with some of the TO and LO phonon positions
reported by Clauws and Vennik [150]. We stress that the FTIR reflectivity spec-
tra shown in Figure 4.2 were performed on relatively thick flakes or single crystals
(thickness > 1µm), and therefore all resonances are clearly revealed. However, in
our thin flake only strong resonances (phonons) can be detected, i.e., only the TO
phonon positions can be extracted from these measurements. In general, excitation
of LO phonons (longitudinal vibrations) is not allowed employing transverse elec-
tromagnetic waves. However, note that when dealing with longitudinal waves along
the out-of-plane crystallographic direction ([010] crystallographic direction, perpen-
dicular to the vdW layers), they manifest as transverse waves along the orthogonal
directions (in-plane directions). Moreover, in our FTIR system light does not im-
pinge perpendicularly to the sample, and consequently light is not 100% s-polarized.
Indeed, there is a small p-polarization contribution which let us have access to some
information about the vibrational modes along the [010] direction. In this case, the
LO position of the RB1 can be recognized as shown in Figure 4.3. Consequently,
we can assign that peak positions ω1

TO = 773 cm−1 and ω2
TO = 982 cm−1 as TO

vibrations along the [100] crystallographic direction and ωLO = 1038 cm−1 as a LO
vibrational mode along the [010] crystalline direction. This data will serve as input
to fine tune the dielectric permittivity of the material by also performing ab initio
calculations and near-field imaging, as it will be shown in Section 4.4.

800 1000 1200
0.0

0.1

0.2

0.3

Re
fle

ct
an

ce

ω0 (cm-1)

 [100]
 [001]

ωLO,[010] = 1038 cm-1

ωTO,[100] = 982 cm-1

ωTO,[100] = 773 cm-1

Figure 4.3: Experimental Reflectivity from an α-V2O5 flake FTIR in-plane
polarized reflectance of a 280 nm-thick α-V2O5 flake.
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4.2 | Near-Field optical properties of α-V2O5: s-
SNOM characterization

To study the excitation and propagation of PhPs in different RBs of α-V2O5, we
performed s-SNOM near-field nanoimaging at different illuminating frequencies. In
particular, Figure 4.4A, B and C show the resulting near-field amplitude im-
ages taken on a 105nm-thick α-V2O5 flake on a SiO2/Si substrate at ω0 = 1031,
1026 and 1020 cm−1, respectively. Bright fringes parallel to all flake edges are ob-
served with different periodicities depending on the crystal direction, indicating in-
plane anisotropic propagation of PhPs. This anisotropy can be further examined
by extracting profiles along both the [100] and [001] in-plane directions (right pan-
els in the figure). At ω0 = 1026 cm−1 (Figure 4.4B) polariton wavelengths of
λp,[100] = 915nm and λp,[001] = 800nm are measured along the [100] and [001] crys-
tal directions, respectively (note that, as explained in the previous chapter, PhPs
excited by the tip result in near-field fringes with a λp/2 spacing. However, polari-
tons simultaneously launched by the flake edges with a periodicity equal to λp cannot
be excluded. As such, polaritonic doublets due to both contributing effects are also
expected to be observed [103]). Apart from revealing the anisotropic propagation of
PhPs in α-V2O5, these near-field profiles also show a deep-subwavelength confine-
ment of light, as the ratio λ0/λ

[001]
p results in values as large as 12 (for λ0 = 9.75µm)

and thus λp ≪ λ0

The polariton dispersion curves corresponding to the [100] and [001] crystal di-
rections (Figure 4.4D) (extracted from s-SNOM single frequency measurements as
those shown in Figure 4.4A, B and C are slightly shifted with respect to each
other, clearly indicating the in-plane anisotropic propagation of PhPs in α-V2O5

within the RB1. Remarkably, the PhPs wavelength increases with the frequency, an
indication of a negative phase velocity (see Section 3.2). This is further corroborated
by plotting the imaginary part of the s-SNOM signal s3 as a function of its real part,
observing a counterclockwise rotating spiral (Figure 4.5) [41, 70].

We now study the PhPs propagation at frequencies within the RB2 of α-V2O5,
i.e., at frequencies between 766 and 965 cm−1. Figure 4.6A shows experimental s-
SNOM images taken at ω0 = 855 and 875 cm−1. In contrast to PhPs in RB1, PhPs in
RB2 are only visible along the [100] crystal direction, showing a wavelength (see pro-
files in Figure 4.6B) of λp[100] = 950nm at ω0 = 875 cm−1 (λ0 = 11.43µm). Apart
from revealing a strong anisotropic propagation of PhPs, these near-field profiles
also show a deep-subwavelength confinement of light, as the ratio λ0/λ

[100]
p results in

values as large as 12 (for λ0 = 11.43µm) and thus λp ≪ λ0.

Unfortunately near-field s-SNOM nanoimaging of PhPs in RB3 (from ω0 =
506 cm−1 to 844 cm−1) of α-V2O5 is not possible to perform at the moment due
to the lack of suitable lasers∗

∗Current quantum cascade laser (QCL) technologies do not offer high-power continuous-wave
laser sources at operating frequencies around α-V2O5 RB3 [152].
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Figure 4.4: Near-Field Nanoimaging of PhPs in RB1 of α-V2O5 A-C left
panel: Experimental near-field amplitude images s3 obtained on an α-V2O5 flake
with thickness d = 105nm at incident frequencies ω0 = 1031 (A), 1026 (B) and
1020 cm−1 (C). Right panel: Profiles along the [100] (green lines) and [001] (blue
lines) crystal directions, extracted along the profiles shown in the near-field amplitude
images to the left. λp[100] and λp[001] are the polariton wavalengths along the [100]
and [001] crystal directions, respectively. D Dispersions of PhPs along the [100]
(green circles) and [001] (blue symbols) crystal directions. Grey lines are guides for
the eye. Grey shaded areas indicate the spectral regions outside the RB1.

4.3 | Intercalation with Na atoms: From α- V2O5

to NaV2O5

Doping and intercalation of the α-V2O5 structure has been studied in depth for the
integration of this material in different technologies and applications, such as photo-
catalysis, electrodes in Li-ion batteries or electrochromic devices [153]. It has been
demonstrated that the α-V2O5 crystalline structure can be intercalated with Li, Na,
Cs, Mg, Ca, K, Ag and Cu, among others [154, 155, 156, 157, 158, 159, 160],
some of them even modifying the magnetic structure of the material.
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Figure 4.6: Near-Field Nanoimaging of PhPs in RB2 of α-V2O5 A Near-
field amplitude s-SNOM images s2 of an α-V2O5 flake with thickness d = 155nm at
incident frequencies ω0 = 875 cm−1 (upper panel) and ω0 = 855 cm−1 (lower panel).
B Near-field s2 profiles extracted along the [100] crystal directions in the images
shown in A (red lines).

Independent of the doping atom, multiple crystalline phases exist depending on
the doping content. Intercalation is possible due to the reduction of some V5+ atoms
into V4+. Among all the intercalated materials, α’-NaV2O5 has certainly attracted
much more attention and debate than any other due to the presence of an exotic
magnetic phase transition below T = 34K [154, 161, 162, 163, 164]. The nature
of this transition is still controversial and will not be studied in this thesis. In this
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Section, the intercalation of Na (from an experimental and theoretical point of view)
and Ca (from a theoretical point of view) in the α-V2O5 structure will be studied.
In both cases the Pmmn space group is preserved.

As a natural consequence of the crystal distortion mediated by the intercalation
of foreign atoms in α-V2O5, a change in the vibrational resonances of the phonons
in the crystal and, consequently, a change in the frequency range of the RBs can be
expected. In this regard, the effect of intercalation on the polaritonic response in
vdW crystals has been scarcely studied [165], and will be addressed in this section.
Figure 4.7 presents the structure of α’-NaV2O5 together with its unit cell and an
optical image of a flake on a SiO2/Si substrate. As mentioned above, α’-NaV2O5

maintains intact the Pmmn space group of α-V2O5: lattice parameters a = 11.315Å,
b = 4.80Å and c = 3.615Å (see Figure 4.7A, note the increasing of the interlayer
distance, b parameter, due to the presence of the Na atoms from 4.37Å to 4.80Å). As
a consequence of the intercalation of Na atoms, the pyramids are slightly modified.
The V-Ov (vanadyl oxygen) distance increases to 1.60Å, while the V-Ob (bridge oxy-
gen) distance does not change. The V-Oc (chain oxygen) bond lengths are 1.957Å
and 1.969Å. Finally, Na-Ob distance is 2.294Å and the Na-V separation is 3.328Å.
The layer thickness also expands to 4.152Å (without considering Na atoms), where
Na atoms are preferentially located between the layers (see Figure 4.7C).
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Figure 4.7: Crystal Structure of the Intercalated α’-NaV2O5 Crystal A
Schematic of the unit cell of α’-NaV2O5. As in α-V2O5, the unit cell consists of a
periodic repetition of VO5 distorted pyramids pointing alternatively up and down
with the V atom (blue circles) in the center of the pyramid defined by the O atoms
(red circles). The sodium atoms (yellow circles) are intercalated in the layered struc-
ture. B Optical image of an α’-NaV2O5 flake on a SiO2/Si substrate. C Schematic
of the layered structure of α’-NaV2O5.

To study the effect of the intercalation on the propagation of PhPs, we firstly ex-
plore the spectroscopic response of α-V2O5 by performing nanoscale Fourier-transform
infrared spectroscopic (nanoFTIR) measurements along both the [100] and [001] in-
plane directions (Figure 4.8A) on a 245nm-thick α-V2O5 flake on a SiO2 substrate.
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We observe three different spectral bands: from ≈ 975 cm−1 to ≈ 1040 cm−1 (RB1);
from ≈ 800 cm−1 to ≈ 975 cm−1 (RB2), and from ≈ 750 cm−1 (the lowest frequency
reached by our nanoFTIR system) to ≈ 800 cm−1 (RB3), which agree well with RB1,
RB2 and RB3 shown in Figure 4.2. In RB1, we find polariton fringes propagating
along both in-plane directions, showing an increasing wavelength λp with increasing
frequency (verifying the negative phase velocity of PhPs in RB1, as shown in Section
4.2). The periodicities of these PhPs are slightly different along both in-plane direc-
tions, revealing their elliptic nature. In contrast, in RB2 we find fringes that only
propagate along the [100] direction (highlighted with a white dashed line in the fig-
ure), with no visible fringes along the [001] direction. Therefore, as expected from the
results of Section 4.2, PhPs in RB2 of α-V2O5 propagate with a strongly anisotropic
dispersion (hyperbolic). Moreover, λp decreases with increasing frequency, indicat-
ing that PhPs in RB2 have a positive phase velocity. Finally, in RB3 we find fringes
along the [001] direction (highlighted with white dashed lines), indicating again the
existence of in-plane hyperbolic PhPs, which, however, are now in-plane orthogo-
nal to those in RB2. Taken together, these nanoFTIR results confirm the strongly
anisotropic propagation of PhPs along both in-plane directions within different RBs
of α-V2O5.

The investigation of the effects of the Na intercalation on the structure of α-V2O5

is presented below. Figure 4.8B shows nanoFTIR line scans of a 150nm-thick α’-
NaV2O5 flake along the [100] and [001] crystal directions in the frequency range from
ω0 = 750 cm−1 to ω0 = 1050 cm−1. We observe a bright band that, interestingly,
looks very similar to RB1 in α-V2O5, but red-shifted. Within this band we observe
amplitude fringes, indicating the existence of PhPs. They show and increasing pe-
riodicity with increasing frequency, revealing a negative phase velocity, similar to
PhPs in RB1 of α-V2O5. Apart from these PhPs we do not observe other amplitude
fringes in the nanoFTIR spectra of α’-NaV2O5: the hyperbolic bands RB2 and RB3

in α-V2O5 seem to be suppressed or largely shifted upon Na intercalation.

To better analyze the effect of intercalation on the propagation of PhPs in RB1

of α-V2O5, we extract the dispersion for both pristine and Na-intercalated flakes
from monochromatic s-SNOM images (Figure 4.9A). A clear redshift of ≈ 30 cm−1

from center to center of the RB1s is found (α-V2O5 is represented with solid circles
while α’-NaV2O5 is represented with open circles, black and orange colors indicate
the [100] and [001] crystal directions, respectively). The values of ωTO and ωLO are
indicated with solid and dashed lines, respectively. Grey shaded regions show the
frequency areas outside of the RB1s. These results unequivocally demonstrate that
RB1 can be largely shifted by the intercalation of Na atoms in the α-V2O5 crystal
structure, or in other words, the dispersion of PhPs can be tuned in a broad range
via the intercalation of Na atoms into the polaritonic material.

To better understand the effects of Na intercalation in the α-V2O5 structure and
the apparent suppression of RB2 and RB3, we calculate the phonon dispersions of α’-
NaV2O5 from density functional theory (DFT) (performed by Ion Errea at Donostia
International Physics Center (DIPC). DFT (also known as ab initio, or first principles
calculations) is a method for determining the atomic and molecular structure of ma-
terials, bond lengths and angles, etc., from the first principles of quantum mechanics
(i.e., finding the ground state of the quantum-mechanical system) [166, 167, 168].
The theory is based on changing the frame of the the N -electron wavefunction prob-
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Figure 4.8: Nano-FTIR Line Scans on α-V2O5 and Intercalated α’-NaV2O5

A Upper panel: Illustration of the α-V2O5 lattice structure (orthorhombic). The
red spheres represent oxygen atoms, the blue atoms represent vanadium atoms, and
the blue pyramids show the polyhedral structure defined by the oxygen atoms. The
crystal structure consists of bilayers of distorted VO5 pyramids stacked along the
[010] direction via vdW interactions (interlayer distance b = 0.44nm). Lower Panel:
nanoFTIR spectral line scans along the [100] and [001] directions of a α-V2O5 flake
showing s3/s3,Au (near-field amplitude s3 normalized on Au, s3,Au) as a function
of distance between the tip and the flake edge. Solid horizontal lines mark the
approximate transversal optic (TO) phonon modes in α-V2O5 (TO1, 975 cm−1; TO2,
770 cm−1), separating RB1−3. Dashed lines are guides for the eye of signal maxima.
The flake thickness is d = 245nm. B Upper panel: Illustration of the α’-NaV2O5

lattice structure (orthorhombic). The red spheres represent oxygen atoms, the blue
atoms represent vanadium atoms, the yellow atoms represent sodium atoms and the
blue pyramids show the polyhedral structure defined by the oxygen atoms. The
crystal structure consists of bilayers of distorted VO5 pyramids with sodium atoms
intercalated and stacked along the [010] direction via vdW interactions (interlayer
distance b = 0.48nm). Lower panel: nanoFTIR spectral line scans along the [100]
and [001] directions of a α’-NaV2O5 flake showing s3/s3,Au (near-field amplitude s3
normalized on Au, s3,Au) as a function of distance between the tip and the flake edge.
The solid horizontal line approximately mark the transversal optic phonon mode in
α’-NaV2O5 (TO, 950 cm−1), defining RB’1. The flake thickness is d = 150nm.

lem of the system Ψ(x⃗1, x⃗2, x⃗3, . . . x⃗N ) (thus 3N independent variables) and all the
equations involved by a simpler problem based on the charge density ρ(r⃗) which
depends on only 3 variables (the spatial variables x, y and z). In our case, we have
employed DFT to obtain the phonon frequencies, the polarization vectors, the effec-
tive charges, and the high-frequency limit of the dielectric function. The calculations
were implemented in the open source software Quantum Espresso [42]. These cal-
culations were performed within the Perdew, Burke, and Ernzerhof parametrization
of the exchange-correlation functional [169]. Once calculated these parameters, the
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Figure 4.9: Dispersion of PhPs and Calculated Permittivity in α-V2O5

and Intercalated α’-NaV2O5 Crystals A Dispersion of PhPs along the [100] and
[001] directions in an α-V2O5 (full symbols) flake with thickness d = 105nm and an
α’-NaV2O5 (empty symbols) flake with thickness d = 190nm. Dashed and continu-
ous horizontal lines mark the approximate transverse and longitudinal optic phonon
modes in α-V2O5 (transverse optic, 980 cm−1; longitudinal optic, 1040 cm−1) and
α’-NaV2O5 (transverse optic, 945 cm−1 and longitudinal optic, 1015 cm−1), respec-
tively. Grey lines are guides for the eye. Grey shaded areas indicate the spectral
regions outside the RBs. B Real part of the permittivities for α-V2O5 (continuous
lines) and α’-NaV2O5 (dashed lines) extracted from ab initio calculations along the
principal [100], [010] and [001] axes (red, blue and green lines, respectively). The
Reststrahlen bands RB1˘3, and RB’1˘3 for α-V2O5 and α’-NaV2O5, are indicated
in bright and dark shading, respectively. Green shaded regions represent RB1 and
RB’1; red shaded regions represent RB2 and RB’2 and grey shaded regions represent
RB3 and RB’3.

dielectric tensor of α’-NaV2O5 was extracted within the perturbation theory [170].

The extracted phonon modes (along with those obtained for pristine α-V2O5)
are then used in a 4 parameter Lorentz oscillators model (Equation 1.7) to retrieve
the theoretical permittivities for both crystal structures (Figure 4.9B). Table 4.2
lists the as-obtained ωTO, ωLO, ε∞ and γ parameters of the model. The RBs in
the intercalated material are referred to as RB’1−3. Starting with α-V2O5, we find
three RBs (RB1−3 marked with shaded regions) within the frequency range shown
(from ω0 = 450 cm−1 to ω0 = 1200 cm−1). They are directly related to each of
the crystal directions (red, blue and green lines for the [100], [001] and [010] crystal
directions). For α’-NaV2O5, we also obtained three RBs (RB´1−3 marked with
shaded regions), but they typically appear narrower and with their center shifted
with respect to RB1−3 in α-V2O5. For example, RB´1 in α’-NaV2O5 (along the
[010] crystal direction) is redshifted (about 50 cm−1), RB´2 (in-plane hyperbolic in
α-V2O5) is blue-shifted (≈ 76 cm−1) and much narrower (narrowing from 174 cm−1

to 2.5 cm−1), and RB´3 (in-plane hyperbolic in α-V2O5) is ref-shifted (≈ 38 cm−1)
and narrower (from 341 cm−1 to 166 cm−1). These values explain the absence of
RB´2 and RB´3 in our nanoFTIR experiments, as the nanoFTIR system has a
limited resolution of 6.6 cm−1, i.e. approximately the width of RB´2.
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Effects of intercalation of Ca atoms in α-V2O5: comparative studies
Following the same procedure as above, in this subsection we theoretically study
the effect of intercalating Ca atoms, instead of Na, in the polaritonic activity of
α-V2O5. As reported, the intercalated compound α’-CaV2O5 is isostructural with
α’-NaV2O5 (Pmmn space group) [155, 157, 171, 172]. The lattice parameters are
a = 11.547Å, b = 5.075Å and c = 3.617Å (Figure 4.10), and the layer thickness
expands to 4.389Å. This is due to the atomic radius of Ca which is larger than the
atomic radius of Na leading also to a longer distance between layers (b along the [010]
crystal direction). Therefore, the Vanadium-Oxygen distances are also modified: the
V-Ov (vanadyl oxygen) distance increases up to 1.69Å, the V-Ob (bridge oxygen)
distance (which retained the α-V2O5 bond length upon Na injection) increases to
1.95Å, and the V-Oc (chain oxygen) distances increase to 1.97Å and 2.01Å.

b = 5.075 Å

a 
= 

11
.5

47
 Å

c = 3.617 Å

[100]

[001]

[010]

b

Vanadium

Oxygen

Calcium

A B

Figure 4.10: Crystal Structure of α’-CaV2O5 A Schematic of the α’-CaV2O5

unit cell. As in α-V2O5 and α’-NaV2O5, the unit cell consists of a periodic repetition
of VO5 distorted pyramids pointing alternatively up and down with the V atom (blue
circles) in the center of the pyramid defined by the O atoms (red circles). Calcium
atoms (green circles) are intercalated in the layered structure at certain positions. B
Schematic of the layered structure of α’-CaV2O5.

In particular, the ωTO, ωLO, ε∞ and γ parameters extracted from these calcula-
tions for the permittivity of α’-CaV2O5 are shown in Table 4.2 (together with those
previously extracted for α-V2O5 and α’-NaV2O5).

Figure 4.11 plots the calculated permittivity for α’-CaV2O5, α’-NaV2O5 and
α-V2O5. Remarkably, the permittivity of α’-CaV2O5 also presents three RBs (re-
ferred to as RB”1−3) each along a different crystal direction. They typically appear
narrower and with their center shifted with respect to RB1−3 in α-V2O5. For ex-
ample, RB”1 in α’-CaV2O5 (along the [010] crystal direction) is redshifted (about
143 cm−1), RB”2 is red-shifted (44 cm−1) and much narrower (from 174 cm−1 to
15.4 cm−1), and RB’3 (in-plane hyperbolic in α-V2O5) is also ref-shifted (96 cm−1)
and narrower (from 341 cm−1 to 16.4 cm−1). As a difference to RB”2 and RB”3,
RB”1 in α’-CaV2O5 resembles RB1 and RB’1 in α-V2O5 and α’-NaV2O5, respec-
tively. However, in this case, RB”1 is further shifted to low frequencies compared
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Material Axis ωTO (cm−1) ωLO (cm−1) ε∞ γ (cm−1)

[100] 805.4 820.7 40.24 0.7
α’-CaV2O5 [010] 868.55 923.56 6.429 0.56

[001] 536.2 557.2 22.54 9.6

α’-NaV2O5
[010] 946.82 982.1 8.969 0.56
[001] 523.2 690.2 6.036 9.6
[100] 770.0 944.3 6.559 8.1

α-V2O5 [010] 1004.4 1073.4 3.899 0.56
[001] 474.4 815.6 6.142 9.6

Table 4.2: Permittivity Parameters Calculated from First Principles Pa-
rameters (for a Lorentz oscillators model) ωTO, ωLO, γ, and ε∞ for the phonon
modes in α’-CaV2O5, α’-NaV2O5 and α-V2O5 extracted from ab initio calculations
and perturbation theory.

to RB1 and RB’1, reaching a spectral distance from center to center of approxi-
mately 145 cm−1 with respect to RB1 in α-V2O5 and 70 cm−1 with respect to RB’1
in α’-NaV2O5. Note that the experimental frequency difference obtained between
α-V2O5 and α’-NaV2O5 was approximately 30 cm−1, while the theoretical difference
is ≈ 55 cm−1.

From these permittivities, we can plot the theoretical PhPs dispersions using the
transfer matrix method† (Figure 4.12). We will focus our study in RB1, RB’1 and
RB”1, i.e., the RBs that emerge for the [010] crystal direction. The monotonic spec-
tral shift of these RBs induced by the intercalation of atoms results in similar shifts
of the PhPs dispersions, which are centered around ω0 = 1040 cm−1, ω0 = 965 cm−1

and ω0 = 895 cm−1 for PhPs in α-V2O5, α’-NaV2O5 and α’-CaV2O5, respectively.
This effect clearly shows the great potential of intercalation (using different atoms)
to tune the polaritonic dispersion in α-V2O5 over broad spectral ranges. The non-
monotonic shift of the other RBs (also for the widths) along the [100] and [001] crystal
axes (Figure 4.11B) indicate a more complex atomic interaction along these direc-
tions.

In principle, one could also consider intercalation of atoms according to atom
content rather than just atom character, e.g. α’-NaxV2O5 with 0 < x < 1, as a
way of tuning the polaritonic response of the material. However, it should be noted
that different crystalline phases can be produced depending on the atom content.
In fact, the symmetry of the unit cell can change dramatically giving rise to totally
different space groups, even transforming the material into a non-van der Waals
material [145, 154, 177, 178]. In this regard, further theoretical studies including
DFT calculations will be necessary to predict the spectral positions of the IR active
vibrations of the intercalated material and thus its Reststrahlen bands.

†The transfer matrix method is a matrix formalism that relates the incident electromagnetic
field impinging on a stratified media with the reflected and transmitted field through the Fresnel
reflection and transmission coefficients [173, 174, 175]. This formalism can predict the existence
of polaritons since the polaritonic dispersion is contained in the poles of the reflection coefficients
[21, 176].
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Figure 4.11: Permittivities of α-V2O5, α’-NaV2O5, and α’-CaV2O5 from
First Principles A Illustration of the orthorhombic lattice structure of layered
α-V2O5 (red spheres, oxygen atoms; blue spheres, vanadium atoms), α’-NaV2O5

(yellow spheres, sodium atoms), and α’-CaV2O5 (green spheres, calcium atoms).
The orthorhombic structure of α-V2O5, α’-NaV2O5, and α’-CaV2O5 is based on
bilayers of distorted VO5 square pyramids stacked along the [010] direction - with
interlayer distances b1 = 0.44nm, b2 = 0.48nm, b3 = 0.5nm, respectively - via
vdW interactions. B Real-part (left panels) and imaginary part (right panels) of
the permittivities for α-V2O5 (black line), α’-NaV2O5 (red line), and α’-CaV2O5

(blue line) extracted from ab initio calculations along the principal [100], [010], and
[001] axes (upper, middle, and lower panels, respectively). The Reststrahlen bands
RB1−3, RB’1−3, RB”1−3 for α-V2O5, α’-NaV2O5, and α’-CaV2O5 are indicated in
black, red, and blue colors, respectively.

4.4 | Extracting the experimental dielectric per-
mittivity of α-V2O5

To perform both numerical and analytical calculations of PhPs in α-V2O5, it is cru-
cial to have an accurate dielectric function of the material. As mentioned in Section
4.1.2, the α-V2O5 dielectric function data available to date are presented in refer-
ence [150], which does not provide the value of ε∞ for any crystallographic direction.
Therefore, in this section a more accurate experimental dielectric function of α-V2O5

is extracted. For this purpose, we carry out a correlative study that combines ex-
perimentally extracted dispersions of PhPs in α-V2O5, DFT calculations (performed
with the help of Dr. Ion Errea at Donostia International Physics Center (DIPC))
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Figure 4.12: Dispersion of PhPs in α-V2O5, α’-NaV2O5, and α’-CaV2O5

Dispersion of PhPs along the [010] direction in RB1 of α-V2O5, RB’1 of α’-NaV2O5,
and RB”1 of α’-CaV2O5. Dashed lines indicate the TO an LO phonon frequencies
calculated from first principles.

and transfer matrix calculations.

In particular, we extract the α-V2O5 dielectric function by considering the fol-
lowing correlative procedure: i) we use as a first guess the ε∞i (i =[100], [010], [001])
values derived from ab initio calculations; ii) we extract the γTO/LO parameters from
the values reported in reference [150]; iii) we plot the PhPs dispersion curves em-
ploying the transfer matrix formalism using the the ωTO

i and ωLO
i values taken from

reference [150], and iv) we fine-tune the calculated dispersions to fit the experimental
points extracted from s-SNOM images (taken at discrete wavelengths along the [100]
and [001] crystal directions on a 315nm-thick α-V2O5 flake transferred on a BaF2

substrate for RB1, and on a 155nm-thick α-V2O5 flake on a SiO2 substrate for RB2).

Figure 4.13 shows the calculated PhPs dispersion curves using the transfer ma-
trix (color plots) [175] and analytical calculations (red lines) [142] for RB1 of α-V2O5

(Figure 4.13A) along both the [100] (left panel) and [001] (right panel) crystal di-
rections. The experimental results along both in-plane directions are superimposed
in the figure (white dots) showing an excellent agreement with the theoretical calcu-
lations. Similar results are found for RB2 of α-V2O5 (Figure 4.13B). The real part
of the resulting dielectric function of α-V2O5 is presented in Figure 4.14, in good
agreement with that in reference [150] (Figure 4.2). Table 4.3 lists the extracted
parameters (ωTO, ωLO, γ and ε∞) of the permittivity assuming the same γ value for
both TO and LO phonons.
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Figure 4.13: Dispersion of PhPs in α-V2O5 A Dispersion of PhPs in a 315nm-
thick α-V2O5 flake on a BaF2 substrate along the [100] (left panel) and [001] (right
panel) crystal directions. The false color plot represents the imaginary part of the
Fresnel reflection coefficient [175],Im(rp(kp, ω0)). The analytically calculated disper-
sion curves are shown with red lines [142]. The experimental data extracted from
monochromatic s-SNOM images are superimposed (white circles). B Dispersion of
PhPs in a 155nm-thick α-V2O5 flake on a SiO2 substrate along the [100] crystal
direction. The false color plot represents the imaginary part of the Fresnel reflection
coefficient [175], Im(rp(kp, ω0)). The analytically calculated dispersion curves are
shown with red lines [142]. The experimental data extracted from monochromatic
s-SNOM images are superimposed (white circles).

Crystallographic Axes ωTO (cm−1) ωLO (cm−1) γ (cm−1) ε∞
[100] 765 952 40 6.6
[010] 976 1037 2 3.9
[001] 506 842 19 6.1

Table 4.3: Extracted Parameters for the Permittivity Function of α-V2O5

α-V2O5 permittivity parameters along the [100], [010] and [001] crystal directions.
The parameters are fitted by using DFT and transfer matrix calculations combined
with experimentally extracted PhP dispersion curves.
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4.5 | Lifetime and Quality Factor of PhPs in
Pristine and Intercalated α-V2O5

Apart from extracting the dispersion of PhPs in α-V2O5 and intercalated α’-NaV2O5,
we studied the PhPs lifetime in both crystals. This parameter is fundamental to val-
idate intercalation as a suitable technological strategy to tune the spectral range of
PhPs in vdW crystals. For this purpose, we fabricated gold nanoantennas (disks) on
top of both crystals and performed near-field s-SNOM nanoimaging at frequencies
within the RB1s of each material, i.e. from ω0 = 974 cm−1 to ω0 = 1040 cm−1 in
α-V2O5, and from ω0 = 950 cm−1 to ω0 = 1012 cm−1 for α’-NaV2O5. Due to its
circular geometry, the Au disk acts as an efficient polaritonic launcher along all di-
rections, enabling a direct visualization of the anisotropic propagation of PhPs. The
s-SNOM images at frequencies ω0 = 1010 cm−1 in α-V2O5 and ω0 = 973 cm−1 in
α’-NaV2O5 flakes (Figure 4.15A) reveal the propagation of PhPs along all in-plane
directions leading to a nearly circular PhP wavefront. As such, these results indicate
a similar in-plane elliptic propagation of PhPs in both vdW crystals. Note that the
Au nanoantenna is not a good reflector for PhPs (due to their volume nature) so
tip-launched PhPs can be neglected (no doublets are observed) [103].

To extract the PhPs lifetime, we first plot line profiles in the s-SNOM images
along the [001] direction (dashed lines) and fit them (Figure 4.15B) with an expo-
nentially decaying sine-wave function corrected by the geometrical spreading factor:

ξ(x) = ξ0 +Ae−x/Lp sin

(
2π(x− x0)

λ

)
1√
x

(4.1)

where ξ is the s-SNOM amplitude signal, ξ0 is a vertical offset, Lp is the polari-
tonic decay length, λ is the polariton wavelength and xc0 is an offset for the sine
function. Equation 4.1 allows us to extract the PhPs wavelength and decay length
simultaneously. In contrast to Equation 3.2 introduced in Chapter 3, Equation
4.1 only considers polaritons launched with λp periodicity, i.e. only considers PhPs
launched by the nanoantenna. Furthermore, since polaritons excited by a gold disk
propagate as circular waves, a 1/

√
x geometrical factor is used instead of the 1/x

factor typically used for edge-launched polaritons. The extracted PhPs decay lengths
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are Lp = 1.40µm for α-V2O5 at ω0 = 1010 cm−1 and Lp = 1.15µm for α’-NaV2O5

at ω0 = 973 cm−1. On the other hand, the extracted dispersion and numerically
calculated group velocities of PhPs in both materials are shown in Figure 4.16 for
a clear comparison. A group velocity vg = 7.3 · 10−4 c was found for α-V2O5 at
ω0 = 1010 cm−1 while vg = 6.7 · 10−4 c was found for α’-NaV2O5 at ω0 = 973 cm−1,
with c the speed of light. Note that these values of vg are an order of magnitude
lower than those reported for α-MoO3 in Section 3.3 and two orders of magnitude
lower than those reported for PhPs in h-BN. With these values, and according to
τ = Lp/vg, we obtain PhPs lifetimes of τ[001] = 6 ± 1 ps for PhPs in α-V2O5 at
ω0 = 1010 cm−1 and τ[001] = 4 ± 1 ps for PhPs in α’-NaV2O5 at ω0 = 973 cm−1

(Figure 4.15B). These long lifetimes (similar to PhPs in MoO3, as shown in Chap-
ter 3, and doubling the values reported for isotopically pure h-BN) reveal the low-loss
nature of PhPs in α-V2O5, which can be attributed to the fact that both V and O
natural abundances are close to be isotopic pure (≈ 99.7%) [71]. More importantly,
they demonstrate that apart from allowing large spectral shifts, intercalation allows
preserving the crystal quality and the excitation of ultra-low-loss PhPs.
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Figure 4.15: Anisotropy and Lifetimes of PhPs in α-V2O5 and Intercalated
α’-NaV2O5 Flakes A Near-field amplitude images s3 of α-V2O5 (upper panel) and
α’-NaV2O5 (bottom panel) flakes with thicknesses d = 130nm and d = 107nm
at illuminating frequencies ω0 = 1010 cm−1 (RB1) and ω0 = 973 cm−1 (RB’1). A
gold disk (half of it shown in the image for convenience) is used as a nanoantenna
for efficient launching of PhPs along all in-plane directions. B s-SNOM line traces
indicated by white dashed lines in A. Damped sine-wave functions (black solid lines)
were fitted to the data. Lifetimes of τ = 6 ± 1 ps and τ = 4 ± 1 ps are obtained for
PhPs in α-V2O5 and α’-NaV2O5, respectively.

Finally, the PhP quality factor Q = Re(kp)/Im(kp) (also known simply as Fig-
ure of Merit, FOM) is an adequate quantity to evaluate the polaritonic propagation
properties as it indicates their number of oscillations relative to their propagation
length. Specifically, they represent how many wavelengths PhPs propagate before
their amplitude decays 1/e. Consequently, high quality factors are needed for ap-
plications where polaritonic signals need to travel far away from the polaritonic
launcher. Note that due to the extremely small group velocity of PhPs in the RB1

of α-V2O5 and RB’1 of α’-NaV2O5 the expected Q values are low. To calculate
them, we Fourier transform the experimentally extracted polaritonic profiles (shown
in Figure 4.15B) into the spatial-frequency domain and fit the resulting curves
with a Lorentzian function [103]. The Lorentzian maximum frequency accounts for
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Figure 4.16: Dispersion and Group Velocity of PhPs in α-V2O5 and α’-
NaV2O5 A PhPs dispersion curves for α-V2O5 (black symbols) and α’-NaV2O5 (red
symbols) extracted from near-field line profiles along the [001] direction. Gray lines
are fits using a potential function. B Group velocities, vg, of PhPs along the [001]
direction of α-V2O5 (black line) and α’-NaV2O5 (red line). The thicknesses of the
flakes are 130nm and 107nm for α-V2O5 and α’-NaV2O5, respectively.

the real part of the polaritonic wavevector, Re(kp), while the half-width at half-
maximum represents the imaginary part of the polaritonic wavevector, Im(kp). We
obtain Q values of 3.5 and 2.5 for PhPs in α-V2O5 and α’-NaV2O5, respectively
(Figure 4.17). We note that these values are much smaller than those reported
for PhPs in h-BN (Q ≈ 20) [71], which is attributed to the extremely slow group
velocities of PhPs in α-V2O5 and α’-NaV2O5.

4.6 | Conclusions
In this chapter, we introduced α-V2O5 as a van der Waals material supporting highly-
confined PhPs. Specifically, PhPs can be excited in this material within three differ-
ent Reststrahlen bands (RB1−3) in the MIR spectral range, one along each crystallo-
graphic direction. By performing s-SNOM nanoimaging we revealed the anisotropic
propagation of these PhPs, with in-plane elliptic propagation in RB1 (along the [010]
crystal direction) and in-plane hyperbolic propagation in RB2 (along the [100] crys-
tal direction). Moreover, with the help of DFT and transfer matrix calculations, we
have extracted an accurate permittivity of α-V2O5 that reproduces our experimental
observations.

More importantly, we demonstrate that the α-V2O5 crystal structure can be in-
tercalated with alkaline atoms, opening the door to tailor the physical properties
of the material. In fact, by intercalating Na atoms in α-V2O5 crystals we observe
by nanoFTIR measurements a remarkable shift of RB1 (from center to center) of
about 30 cm−1. This result establishes intercalation as an effective way to tune the
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Figure 4.17: Analysis of the Propagation Damping of PhPs The sym-
bols show the FFT of the line profiles showed in Figure 4.15 for α-V2O5 (upper
panel) and α’-NaV2O5 (bottom panel). Black lines represent fittings to a Lorentzian
curve. The figure of merit Q = Re(kp)/Im(kp) is calculated from the HWHM of the
Lorentzian fit.

frequency range within which PhPs can be excited in a van der Walls material. In-
terestingly, intercalation can be achieved employing atoms of different nature, as we
have shown theoretically for the case of Ca atoms in α-V2O5.

Finally, to fully validate intercalation as a suitable technological strategy in
nanooptics, we extracted the lifetimes of PhPs in α-V2O5 and compared them
with those in the intercalated compound α’-NaV2O5. Lifetimes of τ = 6 ± 1 ps
and τ = 4 ± 1 ps were obtained for α-V2O5 and the intercalated α’-NaV2O5 crys-
tal, respectively. These long lifetimes (of the same order of magnitude than the
best values reported to date) corroborate that our intercalation method preserves
the optical quality of the crystal and thus is an optimal strategy to spectrally ma-
nipulate PhPs in a layered crystal [42, 179]. Regarding the PhPs quality factors
(Q = Re(kp)/Im(kp)), relevant for describing the propagation properties of polari-
tons, we obtained values of Q = 3.5 and Q = 2.5 for PhPs in α-V2O5 and α’-NaV2O5,
respectively. Although these values are smaller than others reported for PhPs, they
only reflect the ultra-low polaritonic group velocity in α-V2O5 and α’-NaV2O5.
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5

Damping mechanisms and
Fundamental Limits of

Hyperbolic PhPs in α-MoO3

In this chapter, the ultimate limits of the main polaritonic properties of PhPs in α-
MoO3 are analyzed. For this purpose, the damping mechanisms of PhPs as a function
of temperature are studied both from a theoretical point of view (by ab initio calcu-
lations) and experimentally (by FTIR and s-SNOM measurements at cryogenic tem-
peratures). As a result, polaritonic dispersions, group velocities, propagation lengths,
lifetimes are calculated both experimentally and theoretically at low temperatures. In-
terestingly, record-high lifetimes are found.

5.1 | Introduction

During this thesis, it has been shown that hyperbolic PhPs in biaxial media, such
as α-MoO3 or α-V2O5, are very promising to squeeze and control infrared light into
nanoscale volumes with ultra-low losses. However, to envision potential applica-
tions, a study on the ultimate limits of the main PhPs properties, such as their
propagation length and lifetime, is of crucial importance. Typically, such properties
depend on fundamental mechanisms related to dissipation, such as e.g. scattering
processes, which are typically enhanced at room temperature [64, 180]. Therefore,
to elucidate the role of such mechanisms, it is very useful to measure the PhPs
propagation lengths and lifetimes as a function of temperature. Moreover, DFT cal-
culations are an extremely powerful tool to predict the temperature dependence of
the physical properties of a material and, in particular, to predict its vibrational res-
onances intimately related to the polaritonic properties. In fact, DFT calculations
have recently been applied to h-BN [181], α-MoO3 [131], α-V2O5 [42, 149] and
α’-NaV2O5 [42, 182] to predict their phonon spectra. In this chapter, we present a
fundamental study on the damping mechanisms of PhPs in α-MoO3. For this pur-
pose, we combine first principles calculations with experimental FTIR and s-SNOM
measurements as a function of temperature (from room temperature to cryogenic
temperatures) [183, 184, 185].
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5.2 | Far-Field Characterization of α-MoO3 at
Low Temperatures

Since PhPs arise from the coupling between photons and phonons (see chapter 1),
we start our fundamental study by exploring how the phonons spectra in α-MoO3

varies with temperature. To do so, we carry out far-field reflectance measurements
of a thick α-MoO3 flake (thickness> 1µm) using an FTIR system equipped with a
cryostat (a closed-cycle He cryostat capable of being cooled to 5K). Figure 5.1A
shows the resulting FTIR reflection spectra when polarizing the incident illumination
along both in-plane directions ([100] and [001], top and bottom panels, respectively)
at 5K (blue lines) and 300K (red curves) (all measurements are normalized to
gold). The spectra show a high reflectivity band for both in-plane polarizations
and temperatures, which can be assigned to the RBs along the [100] direction (from
approximately 820 cm−1 to 970 cm−1) and the [001] direction (from approximately
545 cm−1 to 851 cm−1), in agreement with the FTIR measurements at RT in Figure
3.2. In addition, a narrow band (basically a peak) is found around 1007 cm−1,
indicating the presence of a third RB along the [010] direction (from approximately
960 cm−1 to 1010 cm−1). This RB can be observed due to the oblique incidence of
light on the sample. Importantly, we observe that the RBs are slightly broader at
5K, meaning that the TO and LO phonons are shifting spectrally with temperature.
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Figure 5.1: Experimental and Theoretical (ab initio) FTIR Reflectivity
of α-MoO3 A FTIR reflectance spectra of an α-MoO3 flake along the [100] (top
panel) and [001] (bottom panel) in-plane directions. B Reflectance spectra of α-
MoO3 calculated by first principles along the [100] (top panel) and [001] (bottom
panel) in-plane directions.

To better understand these experimental FTIR spectra, we performed ab initio
DFT calculations (in collaboration with Ion Errea at DIPC) considering semi-local
exchange-correlation functionals [169]. The calculations include 6 valence electrons
for O and 14 valence electrons for Mo. The experimental lattice parameters are em-
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ployed with internal relaxation of the atomic positions, and the phonon frequencies,
polarization vectors, effective charges and high-frequency limit of the dielectric func-
tion are calculated making use of density functional perturbation theory (DFPT).
From these calculations, the dielectric function of α-MoO3 is extracted as a function
of temperature employing perturbation theory that considers three-phonon anhar-
monic interactions for the phonon lifetime (determined by the possible decay of a
phonon mode into two other phonons) [186]. Once extracted the permittivity, the
ab initio reflectivity is computed through:

Ri(ω0) =

∣∣∣∣∣
√
εi(ω0)− 1√
εi(ω0) + 1

∣∣∣∣∣
2

; i = [100], [010], [001] (5.1)

where εi(ω0) is the permittivity along the i direction. The spectra obtained
(Figure 5.1B) are in good agreement with the experimental FTIR measurements,
correctly predicting the presence of different RBs that slightly shift with the tem-
perature. A slight spectral displacement of the calculated RBs with respect to the
experiment is also observed. However, this shift is within the assumed range of
agreement for the phonon frequencies when using semilocal approximations of the
exchange and correlation in oxides [131]. It should be noted that, for these first
principles calculations, only those terms have been considered which have a contri-
bution to the phonon lifetime (or equivalently, to the phonon resonance linewidth)
at the lowest order in perturbation theory. As such, thermal expansion of the unit
cell and effects related to the interaction of four or more phonons are discarded. In
other words, only three-phonon interactions (two-phonon collision to form another
phonon or the annihilation of a phonon to form two phonons) are considered. Other
effects such as electron-phonon interactions are also ignored as its contribution is not
dominant in high bandgap semiconductor such as α-MoO3 (≈ 3 eV ) [127]. The effect
of these discarded contributions is only related to corrections to the phonon shifts,
which can explain the displacement of RBs observed between theory and experiment.
Another consequence of these approximations taken in our calculations is that the
only temperature-dependent parameter considered is the thermal occupation of the
phonon modes (see below).

To quantify the spectral shift of the α-MoO3 TO phonon with temperature ob-
served in the reflectance spectra in Figure 5.1A, we model the α-MoO3 permittivity
tensor, ε̂ = diag(εx, εy, εz), using a three parameter Drude-Lorentz oscillator func-
tion:

εi(ω) =
N∑
k=1

ω2
p,k,i

ω2
TO,k,i − ω2 − iγk,iω

(5.2)

where εi(ω) indicates the frequency-dependent i-th component of the permit-
tivity, ε∞ the high-frequency permittivity, ωp,k,i and ωTO,k,i the ’plasma’ and TO
phonon frequencies along the direction i, respectively, γk,i the scattering rate along
the direction i, and k the number of oscillators used for each crystal direction (in this
case, 1). From this first permittivity function (setting seed parameters), we extract
the reflectance spectrum (see Section 2.2) and compare it with the experimental one.
Following this procedure iteratively until the two reflectance spectra match, we can
extract an accurate permittivity function. Figure 5.2 shows the resulting phonon
parameters following the procedure explained above (red symbols). The experimen-
tal values obtained using light polarized along the [100] direction are also plotted
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(black symbols). Although spectral shifts between experiment and theory are not
directly comparable (because of the contributions not considered in our DFT cal-
culations, as commented above), the increase/decrease ratio (i.e. the slope) of the
different phonon parameters with temperature can be compared. In particular, ωTO

shows the same trend/slope: an increase of temperature from 5K to 300K yields
about 3 cm−1 hardening in ωTO in both cases (Figure 5.2A). This result supports
the validity of our theoretical calculations.

The extracted temperature dependence of the phonon scattering rate, γ, and the
phonon lifetime, τ , are also shown in Figure 5.2B and Figure 5.2C, respectively.
Although the experimental points present some fluctuations, especially at low tem-
peratures due to the technical difficulties to precisely control the temperature in the
cryostat, the trend observed for γ and τ is again the same in both experimental and
theory, with a difference between the values at 300K of only 1.5 cm−1 and 1.3 ps
for γ and τ , respectively. These differences can be explained by the fact that only
anharmonic phonon processes are considered (impurities are discarded as a possible
scattering channel) in the DFT calculations, which leads to a decrease of the theo-
retical losses, i.e. to an increase of the theoretical lifetimes. On the other hand, the
relatively good agreement between experimental and theoretical calculations reveals
that the observed increase in phonon lifetime at lower temperatures can be explained
by considering only anharmonic processes.
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Figure 5.2: Comparison Between Experimental and Theoretical Phonon
Parameters in α-MoO3 A Experimental and theoretical ωTO values. Both experi-
mental and theoretical values follow the same trend. B Comparison between the ex-
perimentally extracted and theoretically calculated α-MoO3 phonon linewidth, γ, for
the phonon resonance along the [100] direction. C Comparison between the experi-
mentally extracted and theoretically calculated α-MoO3 phonon lifetime, τ = 1/(2γ),
for the phonon along the [100] direction.
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It is worth mentioning, that as previously noted, the only temperature depen-
dence in the ab initio calculations stems from the thermal occupation of the phonon
modes, which affects the possible decay of the TO phonon into lower energy modes.
Hence, the reduction of the scattering rate of the TO mode can be attributed to
a lower occupation of low energy modes, in line with the phenomenological results
reported in reference [187].

5.3 | Near-Field Characterization of PhPs in α-
MoO3 at Low Temperatures

To further study the damping mechanisms of PhPs in α-MoO3, we measure the
propagation of PhPs in α-MoO3 as a function of temperature using a cryo s-SNOM
system (Neaspec GmbH). The principle of operation of this system is analogous to
the one presented in Section 2.3, although the architecture of the setup is completely
different. In particular, the main difference is that the tip and the sample are isolated
in a vacuum chamber where the temperature can be cooled down to approximately
8K. The resulting s-SNOM images taken on a 104nm-thick α-MoO3 flake exfoliated
on SiO2 at an illuminating frequency of 880 cm−1, i.e. within the hyperbolic RB
(L-RB), and for temperatures ranging from 225K to 10K are shown in Figure
5.3A. We observe typical oscillating fringes that are parallel to only one of the
flake edges, revealing the propagation of PhPs along the [100] crystal direction. By
extracting a line profile along the [100] crystal direction in these images (Figure
5.3B corresponding to the profile indicated by white dashed lines in Figure 5.3A),
we clearly observe the existence of two polaritonic contributions (giving rise to signal
doublets) showing different periodicities. As mentioned in Section 3.2, tip-excited
and edge-launched PhPs can coexist in α-MoO3 giving rise to fringe oscillations with
λp/2 and λp periodicities. Such polaritonic profile can be well modeled using the
following equation:

y(x) = y0 +A1e
−x/Lp sin

(
2π(x− x1)

λ

)
1

x
+A2e

−2x/Lp sin

(
4π(x− x2)

λ

)
1√
x

(5.3)

where y is the near-field overall intensity, y0 a vertical offset, A1 is the ampli-
tude of the edge-launched wave, A2 is the amplitude of the tip-launched wave, Lp

is the polariton propagation length, λp is the polariton wavelength, and x1 and x2
are phase offsets, respectively. The geometrical terms 1/x and 1/

√
x account for the

plane-wave nature of edge-launched polaritons and the circular-wave nature of the
tip-excited polaritons, respectively.

Figure 5.4 shows the experimentally extracted PhPs wavelength, λp, and group
velocity, v⃗g = ∇

k⃗
ω0(k⃗p), as a function of incident frequency and temperature (225K,

(red curve), 150K (orange curve), 90K (green curve) and 10K (blue curve)) for both
RBs (U-RB and L-RB). λp was directly obtained by fitting the near-field profiles (as
those shown in Figure 5.3B) with Eq. 5.3. On the other hand, vg was calculated
by fitting the PhPs dispersion to a potential function and performing its numerical
derivative.

With respect to λp, we observe an increase/decrease as a function of frequency
for the elliptic/hyperbolic RB, indicating a negative/positive phase velocity, as pre-
viously shown in Section 3.2 In terms of temperature dependence, we observe a
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Figure 5.3: Experimental s-SNOM Measurements of PhPs in α-MoO3

at Cryogenic Temperatures A s-SNOM images taken in a 102nm-thick α-MoO3

flake at an illuminating frequency of 880 cm−1) and temperatures 225K, 150K, 90K
and 10K. The α-MoO3 crystal directions are shown at the bottom left. The scale
bar is 2µm in all images. B Near-field amplitude profiles extracted along the colored
dashed lines in A. Fittings using Eq. 5.3 are shown as black curves.

different behavior in the two RBs, while a modest increase (around 15% in average)
is observed in the hyperbolic regime when decreasing the temperature from 225K
to 10K (Figure 5.4A), no discernible changes are appreciated in the elliptic regime
(Figure 5.4B). With respect to vg, we observe extremely small values at all temper-
atures in both RBs (Figure 5.4C for the L-RB and Figure 5.4D for the U-RB),
in consistency with the results shown in Section 3.3.2. For example, in the L-RB we
calculate a group velocity of vg = 1.9 · 106m/s, corresponding to 6.5 · 10−3 c with c
the speed of light, at ω0 = 895 cm−1 and T = 10K. In the U-RB, we obtain values of
2.5 · 105m/s = 8.6 · 10−4 c at ω0 = 988 cm−1 and 10K. Due to the differences in the
polariton wavelengths in the hyperbolic band (L-RB) as a function of temperature
(Figure 5.4A), the group velocities in this RB are also different, with higher values
for lower temperatures (Figure 5.4C). The group velocities in the elliptic regime
are almost the same as a function of temperature (Figure 5.4D).

Theoretically, PhPs wavelengths and group velocities can be calculated using the
theoretical dispersion relation for electromagnetic modes in biaxial slabs embedded
between two isotropic media [142]:

kp =
ρ

d

[
arctan

(
ε1ρ

εz

)
+ arctan

(
ε3ρ

εz

)
+ πl

]
; l =∈ R (5.4)

where kp is the in-plane PhPs wavenumber, d is the α-MoO3 flake thickness, ε1
and ε3 are the permittivities of the superstrate (air) and substrate (SiO2), respec-

tively, ρ = i
√

εz/(εx cos2 β + εy sin
2 β) with εx, εy and εz the material permittivity

and β the angle between the [100] axis and the in-plane component of the wavevec-
tor. In particular, the PhPs wavelength is calculated as λp = 2π/Re(kp) while the
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Figure 5.4: Experimental Temperature Dependence of the Wavelength
and Group Velocity of PhPs in α-MoO3 A, B PhPs wavelength in α-MoO3 as
a function of the incident frequency for temperatures from 10 to 225K within the
hyperbolic (A) and elliptic (B) RBs. C, D PhPs group velocity in α-MoO3 as a
function of the illuminating frequency for the hyperbolic (C) and elliptic (D) RBs
for temperatures from 10 to 225K.

group velocity is extracted by performing the numerical derivative of ω0(kp). The
as-calculated λp and vg are shown in Figure 5.5 for temperatures ranging from
300K (red curve) to 10K (blue curve). They show a good qualitative agreement
with the experimental results shown in Figure 5.4. We note that in analogy to the
results shown in Section 5.2, the theoretical values of λp and vg (as a difference to
their trends/slopes) are not directly comparable to the experimental results due to
the intrinsic frequency shifts obtained in DFT calculations.

We will focus now on the PhPs propagation length as a function of temperature as
the information about the damping mechanisms is encoded into it. The experimental
propagation lengths are extracted by fitting s-SNOM near-field profiles (see Figure
5.3B) with Equation 5.3. The theoretical values are obtained by taking the inverse
of the imaginary part of the PhPs wavenumber (1/Im(kp)) given by Equation 5.4.
Figure 5.6 plots both the experimental (Figure 5.6A for the L-RB and Figure
5.6B for the U-RB) and theoretical (Figure 5.6C for the L-RB and Figure 5.6D
for the U-RB) results obtained. In all cases we observe the longest propagation
length for the lowest temperature. However, in terms of frequency dependence, the
longest propagation lengths are obtained in the proximities of ωTO for the hyperbolic
regime and in the proximities of ωLO for the elliptic regime (due to its negative phase
velocity). Both, experimentally and theoretically, we find an average enhancement
in the PhPs propagation length when decreasing the temperature. In the experiment
this enhancement is of about 30% in the L-RB and of about 50% in the U-RB when
decreasing the temperature from 225K to 10K. Table 5.1 shows a detailed compar-
ison of the enhancement of the propagation length when decreasing the temperature
from 225K to 10K (∆Lp(%) = 100 · [Lp(10K) − Lp(225K)]/Lp(225K)) for two
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Figure 5.5: Theoretical Temperature Dependence of the Wavelength and
Group Velocity of PhPs in α-MoO3 A, B PhPs wavelength in α-MoO3 as a
function of the incident frequency for temperatures ranging from 10 to 300K for the
hyperbolic (A) and elliptic (B) RBs. C, D PhPs group velocity in α-MoO3 as a
function of the the incident frequency for temperatures ranging from 10 to 300K for
the hyperbolic (C) and elliptic (D) RBs. Ultra-slow group velocities are found in
both regimes.

selected frequencies in each RB. The same general trend is theoretically obtained,
finding enhancement values of the PhPs propagation length that even coincide with
the experimental ones at ω0 = 900 cm−1 and ω0 = 995 cm−1 (at ω0 = 995 cm−1 there
is a more significant difference). Taken together, these results are clear indications
of an effective decrease of the PhPs damping channels by lowering the temperature
of the material.

ω0 (cm
−1) ∆Lp,Exp(%) ∆Lp,Theo(%)

880 41 30
900 36 37
986 96 60
995 44 44

Table 5.1: Increase of the Propagation Lengths of PhPs in α-MoO3 at Low
Temperatures Increase of the propagation length as a function of temperature,
defined as: ∆Lp(%) = 100 · [Lp(10K) − Lp(225K)]/Lp(225K), for some selected
frequencies in each RB.

5.4 | Study of the Lifetimes of PhPs in α-MoO3

at Low Temperatures
In this section, we carry out an analysis of the temperature-dependent PhPs lifetime
using the relation τ = Lp/vg. Note that, as a difference to other polaritonic, such as
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Figure 5.6: Temperature Dependence of the Propagation Length of PhPs
in α-MoO3 PhPs propagation length in α-MoO3 as a function of incident frequency
for temperatures ranging from 10K to 300K for the L-RB (A, C) and U-RB (B,
D). A and B present the experimental values while C and D show the theoretically
calculated results. The experimental values are obtained by fitting s-SNOM profiles
(see Figure 5.3B) with Eq. 5.3 while theoretical values are calculated by taking
the inverse of the imaginary part of the polariton wavenumber given by Eq. 5.4. In
all cases, the propagation length increases for lower temperatures.

the wavelength, that cannot be directly compared between experiment and theory
at a fixed frequency due to the presence of frequency shifts of the DFT calculations,
lifetime is a figure of merit that is almost frequency-independent (its value is almost
constant within the RB excepting at its extremities, i.e., at ωTO and ωLO). As
an example, Figure 5.7 shows the theoretically calculated lifetime (employing the
permittivity of α-MoO3 extracted by ab initio calculations) for the fundamental PhPs
mode in a 104nm-thick α-MoO3 flake at a temperature of 300K. We can observe
that the lifetime slightly increases in the spectral range from 850 cm−1 to 920 cm−1.
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Figure 5.7: Frequency Dependence of the PhPs Lifetimes in α-MoO3 PhPs
lifetime in the hyperbolic L-RB calculated using the permittivity of α-MoO3 ex-
tracted from ab initio calculations.

PhPs Lifetimes in α-MoO3

The resulting experimental and theoretical PhPs lifetimes are shown in Figure 5.8
for both RBs (Figure 5.8B and Figure 5.8B for the hyperbolic and elliptic RB,
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respectively). A good agreement between experiment (star symbols) and theory (cir-
cles) is observed. As an example, the theoretical lifetimes at the lowest temperature
(10K) reach values of 1.86 ps, 2.59 ps, 10.8 ps and 9.7 ps for ω0 = 860, 895, 988 and
994 cm−1, respectively, while the experimentally extracted values are 1.3 ± 0.3 ps,
2.5±0.5 ps, 15±8 ps and 10±3 ps, respectively (note that due to the inverted trend
in frequency of the group velocities in the U- and L-RB, the longest lifetimes are
found in the vicinity of ωTO for the elliptic regime and in the vicinity of ωLO for the
hyperbolic regime).
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Figure 5.8: Temperature Dependence of the PhPs Lifetimes in α-MoO3

Theoretical (star symbols) and experimental (circles) PhPs lifetimes for a 104nm-
thick α-MoO3 flake as a function of temperature for (A) the hyperbolic RB (ω0 =
860 cm−1 and ω0 = 895 cm−1) and (B) the elliptic RB (ω0 = 988 cm−1 and ω0 =
994 cm−1). Grey lines are guides to the eye.

Regarding the good agreement between theory and experiment, note that as
mentioned in Section 5.2, the ab initio calculations were performed considering only
three-phonon anharmonic interactions for the phonon lifetime (two-phonon collision
to form another phonon or a phonon annihilation to form two phonons), without
any empirical parameter or any other type of phonon scattering mechanism (such
as electron-phonon scattering or the presence of impurities), accurately reproducing
the experimental changes of ωTO with temperature. Thus, the only temperature-
dependent parameter in our calculations is the thermal occupancy of the phonon
modes, with the lower occupancy of the modes at low temperatures reducing the
phonon scattering rate. This carries over to the properties of the PhPs, in particular
to the PhPs lifetimes, which agree well with the experimental results, thus revealing
that the damping mechanisms in the material are indeed entirely dominated by
third-order anharmonic effects∗.

5.5 | Conclusions
The existence of PhPs in van der Waals polar materials are intimately related to
phonon resonances whose properties in terms of linewidth and spectral position
strongly depend on the temperature. In this chapter, we have studied the effect

∗A detailed study of these results is currently under investigation at the time of writing this
thesis.
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of thermally induced phonon scattering processes on the propagation properties of
PhPs in α-MoO3 crystals.

In particular, by FTIR measurements and DFT calculations we reveal a good
agreement on the spectral shift of ωTO along the [100] and [001] crystal directions
(leading to an overall broadening of the FTIR reflectance spectra) with temperature.
More importantly, our DFT calculations reproduce the phonon scattering rate γ and
phonon lifetime τ , showing that anharmonicity (the decay of a phonon mode into
low-energy phonon modes) can well explain the increase of the phonon lifetime at
low temperatures.

In addition, we extracted the PhPs propagation length, group velocity and wave-
length as a function of temperature by s-SNOM nanoimaging. The obtained re-
sults show good qualitative agreement with first principles calculations, particularly
for the α-MoO3 PhPs lifetime, which reach record-high values of τ = 11 ± 3 ps at
ω0 = 994 cm−1 and T = 10K. Taken together, these results reveal that anhar-
monic phonon scattering processes alone explain the damping mechanisms of PhPs
in α-MoO3.
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