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Abstract
The time required for solving the ranking aggregation problem using the Kemeny method increases factorially with the 
number of alternatives to be ranked, which prevents its use when this number is large. Exact algorithms use domain infor-
mation to discard rankings as possible solution, thus saving runtime. The amount of rankings that can be discarded varies 
for each profile and cannot be known beforehand. For profiles of rankings with large number of alternatives, the amount of 
rankings discarded highly affects the feasibility of the computation of Kemeny ranking. How to identify the profiles that are 
more time-consuming when finding the Kemeny ranking is not trivial. In this work we propose the use of machine learning 
models to predict how difficult is to obtain the Kemeny ranking in terms of runtime. The results obtained are promising, 
with values of the area under the curve metric over 80%. Furthermore, it is possible to extract from the proposed models the 
characteristics of the profile of rankings that impact on the runtime.

Keywords  Supervised learning · Runtime · Ranking aggregation · Kemeny method

1  Introduction

The options to aggregate rankings over a set of alternatives 
in order to determine the consensus ranking that best sum-
marizes the information has been deeply studied in the field 
of social choice theory (Fishburn 1973).

Many consensus ranking methods are based on the so-
called Condorcet rules  (Condorcet 1785). A Condorcet 
winner of an election is the alternative that beats all other 
alternatives in a pairwise comparison by a majority of the 
votes. However, such alternative may not exist. Furthermore, 
this problem expands if the aim is to determine not only the 
winning alternative but also to establish a winning ranking. 
In this case, an alternative should be ranked at a better posi-
tion than another alternative in the final ranking whenever 

the former defeats the latter by more than half of the votes. 
These majority relations obtained from the pairwise compar-
ison of the alternatives are not necessarily transitive (Arrow 
and Raynaud 1986).

It is usual to find in practice profiles (ranking sets) with 
cycles, therefore making impossible the use of the Condorcet 
rule. Several attempts to fully understand and axiomatize 
Condorcet’s approach for solving the problem in the pres-
ence of cycles have been proposed (Schulze 2011; Kemeny 
1959; Pérez-Fernández et  al. 2016). They are usually 
referred as Condorcet methods, since the Condorcet win-
ner is returned as winner in case that it exists but they also 
provide a solution in presence of cycles. Among this family 
of methods, the one proposed by Kemeny not only ensures 
the winner to be the Condorcet winner if it exists, but also 
to retrieve the Condorcet ranking as the only solution in case 
that a Condorcet ranking exists and to provide a solution in 
the presence of cycles. It is the only ranking aggregation 
method that is neutral, consistent and Condorcet at the same 
time (Young and Levenglick 1978; Hemaspaandra et al. 
2005). Due to these properties the method is appropriate to 
be used in many situations. However it is an NP-hard (Bar-
tholdi et al. 1989) problem, which makes it not suitable for 
its use in most of the real situations, especially in presence 
of time constraints.
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The computation of ranking aggregation methods (Brandt 
et al. 2016) has gained attention in recent years, as they arise 
quite commonly in real-life problems (Oliveira et al. 2020). 
Recently, (Azzini and Munda 2020) introduced an exact 
algorithm that greatly improved the runtime in relation to 
others published before. However, the runtime of this algo-
rithm still varies widely for profiles defined for the same 
number of alternatives and voters. An implementation of this 
algorithm for profiles of rankings with 12 candidates and 
constant number of voters is shown in Rico et al. (2021b), 
with runtimes ranging from values under 5 s to values 
slightly higher than 4000 s. Notice that, although there is an 
obvious dependence between the runtime and the number 
of alternatives of the profile, the nature of branching algo-
rithms makes that even for problems with the same size the 
real execution of the algorithm is sometimes possible and 
sometimes not, as it depends on the solutions pruned from 
the search space, which cannot be determined prior to the 
execution itself. Some authors have previously pointed the 
attention to the fact that the number of alternatives does 
not completely determine the runtime required by different 
algorithms (Ali and Meila 2012; Betzler et al. 2009) to reach 
the consensus ranking. Therefore, it is important to study 
those features of the profile that influence the behavior of the 
algorithms. Otherwise, when new algorithms are proposed 
to solve this problem, comparisons could be unrealistic if 
their behavior cannot be determined a priori based on the 
profile characteristics.

This behavior might indicate that some aspects as, for 
example, the disagreement between the voters in the profile 
of rankings, may have an impact on the cost to find the solu-
tion to the problem, which would mean that some profiles 
are more difficult than others. How to determine this dif-
ficulty is not trivial and remains undefined. In this paper 
difficulty is defined as the amount of time required to find the 
solution of the Kemeny problem. To the best of our knowl-
edge, this is the first time that a machine learning-based 
approach has been used to predict the difficulty of finding the 
Kemeny ranking from a given profile of rankings.

Therefore, the aim of this work is two fold. One the one 
hand, to identify potential characteristics of a profile that 
make more difficult the obtaining of the Kemeny ranking. 
On the other hand, to explore a machine learning approach 
using these characteristics to predict whether a given a pro-
file would require a large runtime to determine the Kemeny 
ranking using a certain aggregation algorithm. This is 
important from a research point of view as, sometimes, the 
runtime required to find the Kemeny ranking is unaccepta-
ble. To sum, given a profile of rankings this work aims to 
answer the question how difficult is to find its solution.

In order to answer the stated question, different datasets 
and machine learning models will be provided in order 
to study different behaviors of runtime for this complex 

problem. The novelty of this work is based on (1) the use of 
a machine learning approach to study the problem, (2) the 
characterization of the profiles by some indices and (3) the 
construction of benchmarking data sets publicly available.

The remainder of this paper is organized as follows. Sec-
tion 2 puts in context the Kemeny method and the exact 
algorithm used as baseline of this work. The indices pro-
posed to characterize the profiles are reviewed in Sect. 3. 
The profile of ranking gathering is detailed in Sect. 4 and 
the machine learning approaches are further explained in 
Sect. 5. Final conclusions are outlined in Sect. 6.2.

2 � Algorithm to determine the Kemeny 
ranking

Let us refer to a profile of rankings �n
m

 that contains the 
preferences given by m voters in the form of rankings over 
a set of alternatives A = {ai,… , an} . The rankings in �n

m
 

are transitive complete orders that defines strict ai ≻ aj or 
weak ai ∼ aj relationships for every pair of alternatives in A . 
When the profiles are compared pair-wisely, a profile can be 
represented by means of an outranking matrix � of dimen-
sion n × n (Arrow and Raynaud 1986), where each element 
oij ∈ � in the i-th row and j-th column represents the number 
of times that the element ai ≻ aj or ai ∼ aj , by annotating 1 
point every time that the first situation happens and 1

2
 points 

for the second. In the case described, as the profile contain 
only complete rankings, this matrix fulfils the constant sum 
property oij + oji = m.

Kemeny (1959) defines the distance between any two 
rankings ri and rj on the set of alternatives A annotating for 
each pair of alternatives ak, a� ∈ A a certain number of 
points dri,rj (ak, a�) according to their order in both rankings. 
Concretely, he proposes to annotate 2 points when the alter-
natives are in different order and 1 point if they are tied only 
in one of the rankings. Using this, the distance from one 
ranking ri to the profile �n

m
 is the sum of dri,rj , ∀rj ∈ �n

m
 . The 

Kemeny method uses this distance in order to compare the 
rankings, by evaluating all the possible rankings of the set 
A in order to determine the one (or ones) that is the closest 
to the profile, which is the Kemeny ranking. Note that the 
distance given by Kemeny is equivalent in relative terms to 
obtain a distance (known as Kendall distance  (Kendall 
1938)) from a ranking r to a profile using its outranking 
matrix � such that �(r,�n

m
) =

∑n

i=1

∑n

j=1
oij ⋅ xij, with xij = 0 

if ai ≻r aj and 1 otherwise. In Azzini and Munda (2020) an 
exact algorithm to solve the Kemeny problem is proposed. 
It is based on reducing the number of tentative solutions to 
explore as possible Kemeny ranking, which initially would 
be all the possible permutations of A , by using a necessary 
condition that the winner of the Kemeny ranking must fulfill. 
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They proved that the alternative ai ∈ A at the top position 
of the winning ranking must satisfy 

∑n

j=1
oij ≥

∑n

j=1
oji . For 

the sake of simplicity, �i denotes the truth value obtained 
from this Boolean expression. Therefore, the alternative ai 
at the first position of the ranking must satisfy �i = True , 
which allows to considerably reduce the set of rankings to 
explore as possible solutions. Let us emphasize that this 
gives a necessary but not sufficient condition. Nevertheless, 
it allows to avoid the exploration of many of the rankings as 
potential solution, considerably reducing the runtime in rela-
tion to other algorithms. Furthermore, this can be recursively 
applied to any subset of A , also reducing the search space 
of possible solutions. The idea is to build rankings alterna-
tive by alternative, by adding to a prefix � only alternatives 
that have �i = True , and then to remove the alternative ai 
from the matrix and repeat the process in the recursive call. 
This recursive approach makes impossible to determine in 
advance the number of rankings that will be discarded as 
possible solutions, which have a great impact on the runtime. 
In Rico et al. (2021b) some considerations over this proposal 
are introduced, obtaining the ME algorithm, which is detailed 
in Algorithm 1. 

Algorithm 1 ME algorithm

1. Define an empty list of tentative solutions σ.
2. Take O and define the set η = {ai ∈ O/αi = True}.
3. Initialize a stack of prefixes to explore. Create one prefix for each alternative ai ∈ η.
4. Take (and remove) the first prefix ρ from the stack.
5. Consider the submatrix Oρ, which contains only the alternatives of the set A that are

not already fixed in the prefix ρ.
– If Oρ dimension 2× 2, then for the two remaining alternatives ai, aj :

– If oij > oji, add ρ � ai � aj to σ.
– If oji > oij , add ρ � aj � ai to σ.
– If oij = oji, add both ρ � ai � aj and ρ � aj � ai to σ.

– If the number of alternatives in Oρ is n ≥ 3, determine

η = {ai ∈ Oρ/αi = True}.

Add one prefix of the form ‘ρ � ai’ to the stack for each ai ∈ η.
6. Repeat Step 4 and Step 5 until η is empty.
7. Compute δ(si, πn

m) for all the rankings si ∈ σ.
8. Compute δmin = minsi∈σ(δ(si, πn

m)).
9. Delete from σ all rankings such that δ(si, πn

m) > δmin.

3 � Indices to measure the difficulty 
of the profile

The different number of rankings that can be discarded in the 
above introduced recursion process influences the runtime 
required by Algorithm 1 to find the Kemeny ranking, which 
makes the runtime to variate even for profiles with the same 
number of alternatives and voters. Intuitively, the distribu-
tion of the votes over the alternatives could have an impact 

on the uncertainty to determine the final winning ranking, as 
it is natural to think that the closer the opinion of the voters 
the easier to find the consensus given by the Kemeny rank-
ing. Unfortunately, how the uncertainty in the profile can be 
measured and how it affects to the difficulty of solving the 
problem is not defined. This definition is not a trivial matter. 
For example, the ranking of Condorcet defines an ideal pro-
file without cycles that could be considered a goal. However, 
this not necessarily represents the less difficult approach in 
computational terms, as the difficulty exclusively depends 
on the algorithm used to solve the problem. Despite some 
authors have mentioned this fact, there is not a univer-
sal measure to weight how difficult the problem to solve 
is (Ali and Meila 2012; Betzler et al. 2009). In a previous 
work (Rico et al. 2021a), we have reviewed and proposed 
new indices in order to characterize different aspects of the 
profile. From this, it has been concluded that, although some 
of the indices present different behavior in relation to the 
runtime, none of them shows a clear influence to determine 
on its own the time required by the algorithm to determine 
the winning ranking for a concrete profile. In the current 
paper the intervals within each of these indices ranges are 

also studied, with the aim of being able to make them com-
parable for profiles with different n and m. Both indices and 
boundaries are listed in Table 1 and briefly described in the 
following.

–	 Range of the indices. As shown in Table 1, the proposed 
indices vary in a range that depends either on n, m or 
the corresponding number of pairwise comparisons of 
the alternatives �n or rankings �m . This means that, if 
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the aim is to use these indices to compare profiles with 
different number of alternatives and voters, they must be 
normalized using the intervals defined in the fourth col-
umn of the table. Further insight about how these ranges 
are obtained is given below.

–	 Based on Kendall distance ( �1 ) (Betzler et al. 2008; Ken-
dall 1938) it is computed the averaged Kendall distance 
between every pair of rankings in the profile. This dis-
tance depends only on the number of alternatives. One 
ranking and its opposite have the furthest possible dis-
tance, �n , as every pair of alternatives add one point to the 
computation of the distance. Thus, the upper bound for 
Kendall distance cannot exceed the value �n . This worst 
scenario happens when there are two voters in the profile 
expressing their opinions by opposite rankings. On the 
other hand, if the m voters of a profile express the same 
preference, the distance between each pair of rankings is 
trivially 0 and that is the lowest value �1 can take.

–	 Based on the range the different positions an alternative 
takes in a profile is important to select it in a certain 
position in the Kemeny ranking obtained by Algorithm 1. 
For this reason we consider the minimum ( �2 ), maxi-
mum ( �3 ) and average ( �4 ) position ( ri(ak) ) that each 
alternative ak can take in a ranking ri . These indices vary 
between 0 (each alternative takes the same position in all 

the rankings) and n − 1 (at least an alternative is in the 
best position in one ranking and in the worst position in 
another one). A high value of the maximum range means 
that there is at least one alternative for which the voters 
do not have a clear opinion meanwhile a low value for the 
minimum range means that there is at least one alterna-
tive for which the voters have a clear opinion.

–	 Based on computing a bound to the optimal cost. The 
maximum distance of a ranking to a profile ( �5 ) can be 
computed using �n elements of the outranking matrix. 
Thus, the furthest ranking is obtained the profile contains 
just one ranking. The minimum distance of a ranking to 
the profile would happen if those �n elements considered 
have the minimum value, which is 0 for profiles with m 
even and 1 for profiles with m odd. When the bound to 
the optimal cost is small, all the rankings would have 
similar distances so it is likely that more rankings need 
to be explored in order to determine the Kemeny winner.

–	 Based on the number of dirty triplets (i.e. intransitive 
cycles of length three) that measure the agreement among 
the voters as the outranking matrices when there is a 
Condorcet ranking do not contain cycles. These could 
lead to a situation in which the Kemeny ranking for the 
profile requires more time to be found.

Table 1   Summary of the indices defined in this paper (separated in subsections) used for characterizing different aspects of the profile. This 
table shows the description of the index as well as the interval of values that they can take

Index Description Formula Interval

�1 Average Kendall distance 1

�m

∑n−1

i=1

∑n

j=i+1
oij ⋅ oji [0, k ⋅ 𝜏n], k =

{ m

2(m−1)
, m > 2

1, otherwise

�2 Maximum range of alternative positions max
ri ,rj∈�

n
m
,ak∈A

(|ri(ak) − rj(ak)|) [0, n − 1]

�3 Minimum range of alternative positions min
ri ,rj∈�

n
m
,ak∈A

(|ri(ak) − rj(ak)|) [0, n − 1]

�4 Average range of alternative positions 1

n

∑
ak∈A

(max
ri∈�

n
m

ri(ak) − min
rj∈�

n
m

rj(ak))
[0, n − 1]

�5 Bound to the optimal cost ∑n−1

i=1

∑n

j=i+1
max(oij, oji) −

∑n−1

i=1

∑n

j=i+1
min(oij, oji)

[x ⋅ �n,m ⋅ �n]x = m mod 2

�6 Number of dirty triplets 1

3

∑n

i=1

∑
j≠i

∑
k≠i≠j

yijk, yijk =

{
1, oij, ojk, oki > h

0, otherwise

[0,
n!

3!(n−3)!
]

�7 Mode margin argmaxM∈� #{(i, j) ∣ 1 ≤ i < j ≤ n , M = �ij} [min
�
,m]

�8 Number of different margins #(�) [1,min(�n,
m−min

�

2
+ 1)]

�9 Frequency of the minimum margin ∑n−1

i=1

∑n

j=i+1
�ij with 

�ij =

{
1, � = min

�

0, otherwise

[0, �n]

�10 Distance to Borda ranking �(b,�n
m
) [0, �n ⋅ m)

�11 Number of overall preferred alternatives
∑

ai∈A
�i

[1, n]

�12 Standard deviation of � sd(�) [0, �n ⋅ m)

�13 Standard deviation of � sd(�) [0, �n]

�14 Mean of � mean(�) [0, n − 1)

�15 Median of � median(�) [0, n − 1)

�16 Difference between mean and median of � |�14 − �15| [0, n − 1)
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–	 Based on the margin of the voters preferring one 
alternative ai over another one aj is |oij − oji| . It indi-
cates the global preference expressed in the profile for 
one of the two alternatives over the other one, thus it 
could guide us in the identification of profiles more 
or less demanding according to algorithm 1. The mar-
gin set � = {�ij = |oij − oji| ∣ 1 ≤ i < j ≤ n} provides 
useful information about the voters agreement. Each 
�ij ∈ [min

�
,m] as the largest margin is given when all 

the voters prefer one alternative over another. However, 
the lowest margin depends on whether the number of 
voters is even or odd ( min

�
 is 1 if m is odd and 0 other-

wise). The most frequent margin ( �7 ), margin diversity 
( �8 , that measures the different global preferences) or 
the frequency of the minimum margin ( �9 , that indi-
cates if the uncertainty among the voters of the profile 
is high) are considered. It is obvious by definition that 
�7 ∈ [mod(m, 2),m] . Index �8 depends on the number of 
voters and on the number of unique rankings in the pro-
file (at most �n ). The frequency of the minimum margin 
is at most �8.

–	 Based on Borda count ( �10 ), Borda (1781) that ranks 
the alternatives taking into account the number of times 
that they are ranked better than other alternatives. More 
specifically, the Borda score �i of each alternative ai is 
computed as s(ai) =

∑n

j=1
oij . After these are obtained, the 

alternatives are sorted by decreasing order of their scores 
to obtain the consensus ranking b. As two alternatives 
may have the same Borda score, some alternatives might 
be tied in the obtained consensus ranking. The distance 
from this ranking to a profile can be, as for any other rank-
ing, in the interval [0, �n] . The maximum distance between 
a ranking and a profile would be �n × m in case that the 
all the voters of the profile give the same ranking and 
the distance would be considered to the opposite ranking. 
Nevertheless notice that, as the Borda ranking is obtained 
from the profile, it will never reach the worst scenario as 
it is guaranteed not to give the opposite order of all the 
rankings in the profile. When the voters greatly agree in 
the preferences of the alternatives, the Borda ranking is 
closer to the Kemeny ranking and therefore the distance 
from the Borda ranking to the profile should be lower 
than in cases when there are more disagreement. For this 
reason, this index is considered helpful in this framework.

–	 Based on the row sum of � . Two indices are consid-
ered, the number of a priori preferred alternatives ( �11 ), 
defined in terms of �i and the standard deviation of the 
row sums of � ( �12 ) defined in terms of � = (�1,… , �n) , 
with �i =

∑n

j=1
oij. As the sum of all the elements of � is 

constant, if all the voters agree in the same ranking, then 
there is at least one row with m votes and another with 
0. On the contrary, if all the alternatives are tied in their 
pairwise comparison this would yield to all the elements 

of � to have the same value. Therefore indices based on 
this vector may give an orientation of how the opinion of 
the voters varies. The maximum number of alternatives 
with �i = True cannot exceed the number of alternatives 
itself. As �i = True for at least one alternative ai (Azzini 
and Munda , 2020), the minimum of value of this index 
is 1. The standard deviation of the rowsums is at most 
�n ⋅ m by construction.

–	 Based on the distribution of preferred alternatives, that 
are studied in terms of the vector � = (�1,… , �n) , with 
�i =

∑n

j=1
bij and bij = 1 if oij > oji and 0 otherwise. It is 

straightforward that the indices based on the � ( �13 to 
�16 ) ranges between 0 and n − 1 . As this vector contains 
all the integer numbers in [0, n − 1] only once when the 
profile has a Condorcet ranking, different variations in 
relation to this might be related to the increasing of the 
runtime.

4 � Gathering the profiles of rankings

The runtime required by Algorithm 1 to find the Kemeny 
ranking is not the same for all the profiles, even if the 
number of alternatives is the same. The aim of this work 
is to predict using machine learning and the character-
istics of the profile if the algorithm can find the Kemeny 
ranking in an assumable time. The first task is then to 
obtain a representative dataset to study this problem. 
In this case profiles with n ∈ {8, 9, 10} alternatives and 
m ∈ {10, 50, 100, 250, 500, 1000, 2000} voters have 
been considered in order to build a dataset. Also the same 
numbers of voters plus 1 have been considered, as initial 
experiments suggest that whether the number of voters is 
even or odd influences on the runtime (Rico et al. 2021a). 
For each combination of (n, m), 200 different profiles have 
been created. The values of n have been selected due to 
their acceptable computational time, as they are neither too 
small to present randomness in the runtime nor too large in 
relation to time constraints. Each profile has been created 
according to the following steps: 

1.	 Randomly select the number d ≤ m of different rankings 
in the profile.

2.	 Obtain d random different permutations of the n alterna-
tives.

3.	 A random vector of d elements whose sum is equal to m 
is generated where each element represents the number 
of voters associated to each ranking generated in the 
second step.

4.	 If the profile do not have a Condorcet winner add this to 
the dataset.
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The last step is included to avoid profiles whose runtime can 
be reduced using additional information of the domain, as in 
presence of a Condorcet winner it is not necessary to explore 
the remaining alternatives (Rico et al. 2021b).

The runtime associated to each profile is computed in 
order to build the variable to predict and study it in relation 
to the characteristics of the profile measured by the indices. 
Runtimes have been obtained using a Python 3.8 implemen-
tation of Algorithm 1. In order to minimize the impact of 
other processes that might be being executed by the proces-
sor on the measurement of the runtimes, the algorithm has 
been used three times with each profile and the median value 
has been considered.

Note that runtimes do not depend only on the number 
of alternatives (Fig. 1). In addition, it is impossible to pre-
dict exact runtimes for profiles of rankings with numbers 
of alternatives not used in the training set. Thus, instead of 
modeling the problem as a regression one, we focus our-
selves on two problems. The first one is based on identifying 
those profiles that require an abnormally high runtime to find 
Kemeny’s ranking. With this identification, it is possible to 
avoid them. The second one is based on identifying those 
profiles that require the shortest possible runtime to find 
Kemeny’s ranking.

5 � Identification of affordable profiles 
of rankings

Supervised machine learning methods learn a mapping from 
an input to an output based on available observations (Kubat 
2017). Each observation is therefore a pair with an input 
vector and its corresponding output. The model produced 
predicts this output from the input data and can be later used 
for mapping new examples into an unknown output. Binary 
classification methods are proposed to identify the previous 
stated profiles. In the following, we explain how the models 
are obtained.

5.1 � Training the models

Classification models presented in this work are trained by 
means of CART decision trees and random forests (Kubat 
2017). These methods are suitable for this problem as they 
are explainable and one of the goals of the work is to char-
acterize the profiles. Using explainable machine learning 
methods make easier to explain the impact of the input vari-
ables on the outcome. Moreover, other algorithms have been 
studied in a preliminary phase for solving this problem and 
both the decision trees and random forests show competitive 
results against them. First of all, different parameter sets 
for each algorithm are defined to look for the best param-
eter configuration of each method, this is, the values of the 
parameters of the algorithm that lead to the best models of 
the data set. These parameters depend on the algorithm and 
are the number of trees for random forest and the depth of 
the tree and minimum number of objects in the leaves for the 
CART trees. Then, for each classification algorithm and the 
different parameter settings of the classification algorithm, 
all the models are trained using a training-test validation 
procedure, the input dataset is divided into training and test 
set according to a 80–20% split. The training set is used to 
build the model using repeated 10-cross-validation (5 times). 
Due to the imbalanced nature of the problem (explained 
in Sects. 5.4, 5.5), the models have been trained using a 
down-sampling technique (as it has been proved to yield 
better results than other techniques such as up-sampling and 
ROSE (Lunardon et al. 2014) with this data). 

8
9

10

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 1   Distribution of the runtimes in seconds required by the profiles 
of the data set build, grouped by their number of alternatives (8 top, 9 
middle, 10 bottom)

Algorithm 2 Training process
– Define sets of model parameter values to evaluate.
– For each parameter set.

– For each resampling iteration.
• Hold-out specific samples.
• Fit the model on the remainder.
• Predict the hold-out resamples.

– Determine the optimal parameter set
– Fit the final model to all the training data using the optimal parameter set
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Table 2   Results on the test set for different subsets of the data

n = 8 n = 9 n = 10 all

AUC​ 0.8313 0.8797 0.8204 0.8636
Sensitivity 0.7500 0.7955 0.8293 0.8429

5.2 � Model evaluation

Classification models are evaluated by means of measures 
based on the confusion matrix (Kubat 2017) associated to 
a binary classification problem where the positive class is 
the minority class. The Area Under the ROC Curve (AUC) 
(Kubat 2017) is also used for evaluating the models. This 
measure represents the true positive rates against the false 
positive rates for different thresholds of classification. How-
ever, the riskier situation occurs if a profile is wrongly iden-
tified as affordable in terms of runtime, which would mean 
an unexpected increase of the runtime when trying to find 
the Kemeny ranking. For this reason it is also interesting to 
track the sensitivity (also known as recall) that measures the 
amount of true positives correctly classified in relation to 
the total amount of positives in the dataset. High values of 
this measure leads to models that correctly classify instances 
from both the majority and the minority classes. Models will 
be trained focusing on the maximization of AUC.

The next two subsections show the performance of the 
models when different datasets are considered.

5.3 � Identifying profiles with abnormally high 
runtime

In this subsection, we focus on detecting those profiles to 
avoid, i.e, profiles whose runtime to obtain Kemeny ranking 
is very high. In addition, it is important to characterize them 
in terms of the indices described in Sect. 3.

The data set to perform this task is built using the pro-
files introduced in Sect. 4. Note that when the number of 
alternatives is fixed, most of the profiles behave similarly in 
terms of runtime when using Algorithm 1. However, as it 
was highlighted in previous section, there are some profiles 
whose runtime is abnormally high in relation to those with 
the same number of alternatives (see Fig. 1). A profile with 
a runtime very high is here called outlier. It is considered 
that a runtime is very high if it is greater than Q3 + 1.5 ⋅ IQ 
(being IQ the interquartile range shown by the boxes in 
Fig. 1, and Q3 the third quartile). Using this information, 
a dataset is generated where each profile is characterized 
by the indices introduced in Sect. 3. The variable to pre-
dict is binary (whether the profile is an outlier or not). For-
mally defined, each observation of the dataset has the form 
x = {�1,… ,�16} and an y takes two possible values (yes if 

it is an outlier and no otherwise). Note that the percentages 
of outliers (y=yes) obtained for the subsets with 8, 9 and 
10 alternatives are 6.43, 7.89 and 7.39% respectively. This 
means that this dataset is highly imbalanced.

In order to make the problem independent of the number 
of alternatives of the profiles used for training the models, 
this dataset is normalized using the ranges defined in the last 
column of Table 1.

We have firstly trained the models introduced in Sect. 5.1 
considering 4 different datasets, the one containing the pro-
files with size n = 8, 9 or 10, and each subset of this one 
fixing n. Independently of the dataset, the best performance 
was obtained by random forest methods. Table 2 shows the 
results of the AUC and sensitivity measures of the models 
trained using the random forest algorithm. The values of 
AUC are always greater than 0.8. Furthermore, the sensi-
tivity of the model has a soft increase when the number 
of alternatives is bigger, and also when all the dataset is 
used for training the model and therefore more information 
is available. Thus, the results in terms of performance are 
acceptable.

As previously mentioned, the purpose of this work is not 
only to classify the profiles but also to identify the indi-
ces that impact on the increment of the runtime required by 
Algorithm 1 in order to find the Kemeny ranking. As the 
method that obtains the best performance is random for-
est, it is possible to obtain variable importance in terms of 
the impurity of the dataset after splitting using a variable 
(Greenwell and Boehmke 2020). For all the trained models, 
the top 5 most important variables are (1) �11 , (2) �12 , (3) 
�1 , (4) �13 and (5) �10.

We have found that index �11 is the most important one. 
Thus, it is clear that this number has a large impact in the 
number of rankings evaluated, as greater amounts of them 
can be discarded from the exploration when this index is 
low. Note that although the theoretical complexity of the 
algorithm does not change (as the problem of finding the 
Kemeny ranking is NP-hard), the reduction of the search 
space of possible solutions implies the feasibility of the 
execution of the algorithm when the number of candidates 
increases. As shown in Algorithm 1, only the rankings with 
a candidate ci that has an associated �i = True in the first 
position must be considered as possible solution. This means 
that the search space with size n! is reduced ensuring that it 
is in the worst case n! − (�11 ⋅

n!

n
) , which ensures a shorter 

execution time. Also, �12 and �13 provide useful informa-
tion to predict the outcome. These indices are related to the 
distribution of the votes so we consider very relevant this 
finding as it is highlighted that profiles of rankings with the 
same numbers of voters can behave very different as we 
supposed. The average Kendall distance �1 appears also in 
a high position. The distance of the Borda ranking to the 
profile has also impact as when there is more agreement 
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Borda and Kemeny rankings are closer. When we test the 
method for more complex profiles we obtain that the more 
important indices are the same initially obtained, reinforcing 
the initial hypothesis.

5.4 � Generalization for more complex profiles

The experiments confirm that there are some characteristics 
of the profile that can be measured by indices with impact 
on the runtime required to obtain Kemeny ranking. As these 
indices are normalized to make them independent on n and 
m, a model trained with the above-defined procedure can be 
also used to predict if the runtime is assumable for a profile 
with a different number of alternatives n than the ones used 
to train the model. Thus, let us consider now a fifth training 
set only composed by profiles with n = 8 or n = 9 alterna-
tives and a test set with profiles with n = 10 alternatives. 
Random forest also performs better than decision trees in 
this case, obtaining an AUC of 0.8173 and a sensitivity of 
0.8164 in the test set. The top five features are a permuta-
tion of the obtained in the previous experiment: (1) �11 , (2) 
�13 , (3) �12 , (4) �1 and (5) �10 , reinforcing their importance.

This experiment confirms that this system is very useful 
in practice as it can be used as a tool to guide the solution 
of the Kemeny aggregation problem because it allows to 
estimate runtimes for larger profiles of rankings and con-
sequently to decide in advance whether the problem is 
addressable or not. It also provides a parametrization of the 

runtime for new algorithms based on the characteristics of 
the profile.

5.5 � Identification of the fastest profiles of rankings

It might be also interesting to look only for the fastest pro-
files, especially when n increases an consequently runtime 
increases. To do that, using the profiles defined in Sect. 4, 
the output variable is categorized either as fast or slow 
depending on its runtime in relation to the profiles with the 
same number of alternatives. In this case, the profiles in Q1 
(first quartile) are labeled as fast and the remaining pro-
files as slow. The model trained using this dataset with the 
random forest algorithm obtains an AUC of 0.8173 and a 
sensitivity of 0.8164.

The 5 most important indices to predict the output using 
this model are (1) �11 , (2) �14 , (3) �8 , (4) �10 and (5) �12 . The 
mean of � appears now in the top variables ( �14 ) as behaves 
different depending on the number of voters. The number of 
different margins appears ( �8 ) also as one of the important 
variables, which intuitively has an impact on the number of 
rankings to be explored, as when the number of repeated 
indices is high the alternatives add the same amount to the 
distance to the profile.

Note that �11 is the most important variable for both 
identifying the most difficult and the simplest profiles (in 
terms of the the runtime to get Kemeny ranking using Algo-
rithm 1). Let us study more in depth the behavior of this 

Fig. 2   Distribution of the number of overall preferred alternatives ( �11 ) by class to predict. The figure above shows the distribution of �11 with 
respect to the problem studied in 5.4. The figure below shows the distribution of �11 with respect to the problem studied in Sect. 5.3
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important index. Fig. 2 shows the distribution of �11 by class 
for each problem. For both datasets, the fastest profiles, 
which are those labeled as fast in the first data set and as no 
in the second data set (note that there are not the same set) 
present a distribution of values to the left for any number of 
alternatives. In the same line, Fig. 3 shows that the behavior 
�12 across classes is also different. This trend is repeated for 
all the other important indices.

6 � Discussion and conclusions

6.1 � Discussion

The starting point of this work was to develop a method 
to identify the relevant characteristics of a profile that can 
be helpful to predict its runtime when Kemeny ranking is 
computed. These characteristics are expressed in terms of 
indices, some of them introduced in this work. This pro-
posal is based on exploring a machine learning approach 
using these characteristics. To test the performance of our 
proposal, the baseline exact algorithm (Azzini and Munda 
2020) is considered.

The results obtained after applying machine learning with 
the proposed datasets show how some of the indices pro-
posed in this work have an impact on the execution time of 
the algorithm to find the Kemeny ranking. This means that, 
the indices collaborate in measuring the difficulty of a profile 
in terms of execution time.

In fact, according to the experiments shown in Sects. 5.3 
to 5.5, it is highlighted that among the top indices relevant 
for this problem, index �11 is the most important one. It is 
reasonable as the algorithm is based on the recursive explo-
ration of the alternatives. As it was detailed in Sect. 5.3, 
when this index is low, greater amounts of potential rank-
ings can be discarded from the exploration. The standard 
deviation of � , measured in the �12 index, has also great 
impact on the execution time. This index is one of the new 
indices proposed by the authors, and captures how far the 
index is from what ideally would be the Condorcet ranking 
if there was not cycles in the preferences of the voters. The 
fact that the profiles that have larger execution times are fur-
ther from the standard Condorcet ranking, reflects intuitively 
more uncertainty among the opinion of the voters, making 
more difficult to take a decision about the consensus ranking.

Let us remark that the identification of indices is 
extremely important. Usually the performance of the algo-
rithms that solve the Kemeny problem is tested depending 
only on the number of alternatives as it is the straightforward 
factor that influences the factorial growth of the runtime. 
However, as shown in this work, not all the profiles of rank-
ings with the same number of alternatives and voters are 
equally difficult to solve attending to their runtime, what is 
an important finding from our point of view.

What is more important, this work provides a novel meth-
odology to narrow the runtime required to find Kemeny 
ranking. This approach is based on the some indices that 
describe the profile and on machine learning. The solution 

Fig. 3   Distribution of the standard deviation of � ( �12 ) for the two classification problems divided by class
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presented in this paper is not universal for any kind of algo-
rithm in the sense that the indices identified as relevant for 
predicting runtime are dependent on the algorithm used to 
obtain Kemeny ranking.

In any case, the approach proposed introduces the char-
acterization of the profiles based on indices as well as the 
application of machine learning to predict the behavior of 
the ranking aggregation method and the experiments devel-
oped confirm that this methodology is useful to produce reli-
able predictions for the behavior of the execution times for 
this complex problem. If the same methodology is applied 
to predict runtime using a different algorithm (to obtain 
Kemeny ranking), the proposed procedure provides a differ-
ent characterization of the profiles. That means that the set 
of more relevant indices could be different to the obtained in 
this work as the baseline algorithm is also different. These 
generalization ability is possible thanks to the large set of 
indices that are also presented in the paper to represent each 
profile (many of them introduced by us).

In this work it is also provided a benchmarking algorithm 
that is publicly available. Note that the main contributions 
of this paper, namely, the machine learning methodology, 
the indices used to represent the profiles as well as the con-
struction of bechmarking datasets are independent of the 
algorithm.

6.2 � Conclusion

In this work we study the runtime required for solving the 
Kemeny problem depending on the characteristics of the 
profile of rankings by using indices to measure different 
aspects. Using this characterization based on indices, a data-
set is built by obtaining the proposed indices for different 
profiles of rankings. This dataset is used as input of explain-
able machine learning models that help in predicting runtime 
behavior prior to the execution of the algorithm in order to 
ensure its feasibility. Moreover, the models obtained show 
that some of the indices proposed by us, such as the overall 
number of preferred alternatives, can be used as predictors 
of the runtime required to obtain the Kemeny ranking given 
a profile of rankings.
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