
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing
https://doi.org/10.1007/s12652-022-03881-2

ORIGINAL RESEARCH

Runtime bounds prediction for the Kemeny problem

Noelia Rico1 · Camino R. Vela1 · Irene Díaz1 

Received: 5 August 2021 / Accepted: 27 April 2022
© The Author(s) 2022

Abstract
The time required for solving the ranking aggregation problem using the Kemeny method increases factorially with the
number of alternatives to be ranked, which prevents its use when this number is large. Exact algorithms use domain infor-
mation to discard rankings as possible solution, thus saving runtime. The amount of rankings that can be discarded varies
for each profile and cannot be known beforehand. For profiles of rankings with large number of alternatives, the amount of
rankings discarded highly affects the feasibility of the computation of Kemeny ranking. How to identify the profiles that are
more time-consuming when finding the Kemeny ranking is not trivial. In this work we propose the use of machine learning
models to predict how difficult is to obtain the Kemeny ranking in terms of runtime. The results obtained are promising,
with values of the area under the curve metric over 80%. Furthermore, it is possible to extract from the proposed models the
characteristics of the profile of rankings that impact on the runtime.

Keywords  Supervised learning · Runtime · Ranking aggregation · Kemeny method

1  Introduction

The options to aggregate rankings over a set of alternatives
in order to determine the consensus ranking that best sum-
marizes the information has been deeply studied in the field
of social choice theory (Fishburn 1973).

Many consensus ranking methods are based on the so-
called Condorcet rules (Condorcet 1785). A Condorcet
winner of an election is the alternative that beats all other
alternatives in a pairwise comparison by a majority of the
votes. However, such alternative may not exist. Furthermore,
this problem expands if the aim is to determine not only the
winning alternative but also to establish a winning ranking.
In this case, an alternative should be ranked at a better posi-
tion than another alternative in the final ranking whenever

the former defeats the latter by more than half of the votes.
These majority relations obtained from the pairwise compar-
ison of the alternatives are not necessarily transitive (Arrow
and Raynaud 1986).

It is usual to find in practice profiles (ranking sets) with
cycles, therefore making impossible the use of the Condorcet
rule. Several attempts to fully understand and axiomatize
Condorcet’s approach for solving the problem in the pres-
ence of cycles have been proposed (Schulze 2011; Kemeny
1959; Pérez-Fernández et al. 2016). They are usually
referred as Condorcet methods, since the Condorcet win-
ner is returned as winner in case that it exists but they also
provide a solution in presence of cycles. Among this family
of methods, the one proposed by Kemeny not only ensures
the winner to be the Condorcet winner if it exists, but also
to retrieve the Condorcet ranking as the only solution in case
that a Condorcet ranking exists and to provide a solution in
the presence of cycles. It is the only ranking aggregation
method that is neutral, consistent and Condorcet at the same
time (Young and Levenglick 1978; Hemaspaandra et al.
2005). Due to these properties the method is appropriate to
be used in many situations. However it is an NP-hard (Bar-
tholdi et al. 1989) problem, which makes it not suitable for
its use in most of the real situations, especially in presence
of time constraints.

This research has been supported by Grant TIN2017-87600-P from
the Spanish Government and PID2019-106263RB-I00.

 *	 Irene Díaz
	 sirene@uniovi.es

	 Noelia Rico
	 noeliarico@uniovi.es

	 Camino R. Vela
	 crvela@uniovi.es

1	 Computer Science Department, University of Oviedo,
Oviedo, Spain

http://orcid.org/0000-0002-3024-6605
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-022-03881-2&domain=pdf

	 N. Rico et al.

1 3

The computation of ranking aggregation methods (Brandt
et al. 2016) has gained attention in recent years, as they arise
quite commonly in real-life problems (Oliveira et al. 2020).
Recently, (Azzini and Munda 2020) introduced an exact
algorithm that greatly improved the runtime in relation to
others published before. However, the runtime of this algo-
rithm still varies widely for profiles defined for the same
number of alternatives and voters. An implementation of this
algorithm for profiles of rankings with 12 candidates and
constant number of voters is shown in Rico et al. (2021b),
with runtimes ranging from values under 5 s to values
slightly higher than 4000 s. Notice that, although there is an
obvious dependence between the runtime and the number
of alternatives of the profile, the nature of branching algo-
rithms makes that even for problems with the same size the
real execution of the algorithm is sometimes possible and
sometimes not, as it depends on the solutions pruned from
the search space, which cannot be determined prior to the
execution itself. Some authors have previously pointed the
attention to the fact that the number of alternatives does
not completely determine the runtime required by different
algorithms (Ali and Meila 2012; Betzler et al. 2009) to reach
the consensus ranking. Therefore, it is important to study
those features of the profile that influence the behavior of the
algorithms. Otherwise, when new algorithms are proposed
to solve this problem, comparisons could be unrealistic if
their behavior cannot be determined a priori based on the
profile characteristics.

This behavior might indicate that some aspects as, for
example, the disagreement between the voters in the profile
of rankings, may have an impact on the cost to find the solu-
tion to the problem, which would mean that some profiles
are more difficult than others. How to determine this dif-
ficulty is not trivial and remains undefined. In this paper
difficulty is defined as the amount of time required to find the
solution of the Kemeny problem. To the best of our knowl-
edge, this is the first time that a machine learning-based
approach has been used to predict the difficulty of finding the
Kemeny ranking from a given profile of rankings.

Therefore, the aim of this work is two fold. One the one
hand, to identify potential characteristics of a profile that
make more difficult the obtaining of the Kemeny ranking.
On the other hand, to explore a machine learning approach
using these characteristics to predict whether a given a pro-
file would require a large runtime to determine the Kemeny
ranking using a certain aggregation algorithm. This is
important from a research point of view as, sometimes, the
runtime required to find the Kemeny ranking is unaccepta-
ble. To sum, given a profile of rankings this work aims to
answer the question how difficult is to find its solution.

In order to answer the stated question, different datasets
and machine learning models will be provided in order
to study different behaviors of runtime for this complex

problem. The novelty of this work is based on (1) the use of
a machine learning approach to study the problem, (2) the
characterization of the profiles by some indices and (3) the
construction of benchmarking data sets publicly available.

The remainder of this paper is organized as follows. Sec-
tion 2 puts in context the Kemeny method and the exact
algorithm used as baseline of this work. The indices pro-
posed to characterize the profiles are reviewed in Sect. 3.
The profile of ranking gathering is detailed in Sect. 4 and
the machine learning approaches are further explained in
Sect. 5. Final conclusions are outlined in Sect. 6.2.

2 � Algorithm to determine the Kemeny
ranking

Let us refer to a profile of rankings �n
m

 that contains the
preferences given by m voters in the form of rankings over
a set of alternatives A = {ai,… , an} . The rankings in �n

m

are transitive complete orders that defines strict ai ≻ aj or
weak ai ∼ aj relationships for every pair of alternatives in A .
When the profiles are compared pair-wisely, a profile can be
represented by means of an outranking matrix � of dimen-
sion n × n (Arrow and Raynaud 1986), where each element
oij ∈ � in the i-th row and j-th column represents the number
of times that the element ai ≻ aj or ai ∼ aj , by annotating 1
point every time that the first situation happens and 1

2
 points

for the second. In the case described, as the profile contain
only complete rankings, this matrix fulfils the constant sum
property oij + oji = m.

Kemeny (1959) defines the distance between any two
rankings ri and rj on the set of alternatives A annotating for
each pair of alternatives ak, a� ∈ A a certain number of
points dri,rj (ak, a�) according to their order in both rankings.
Concretely, he proposes to annotate 2 points when the alter-
natives are in different order and 1 point if they are tied only
in one of the rankings. Using this, the distance from one
ranking ri to the profile �n

m
 is the sum of dri,rj , ∀rj ∈ �n

m
 . The

Kemeny method uses this distance in order to compare the
rankings, by evaluating all the possible rankings of the set
A in order to determine the one (or ones) that is the closest
to the profile, which is the Kemeny ranking. Note that the
distance given by Kemeny is equivalent in relative terms to
obtain a distance (known as Kendall distance (Kendall
1938)) from a ranking r to a profile using its outranking
matrix � such that �(r,�n

m
) =

∑n

i=1

∑n

j=1
oij ⋅ xij, with xij = 0

if ai ≻r aj and 1 otherwise. In Azzini and Munda (2020) an
exact algorithm to solve the Kemeny problem is proposed.
It is based on reducing the number of tentative solutions to
explore as possible Kemeny ranking, which initially would
be all the possible permutations of A , by using a necessary
condition that the winner of the Kemeny ranking must fulfill.

Runtime bounds prediction for the Kemeny problem﻿	

1 3

They proved that the alternative ai ∈ A at the top position
of the winning ranking must satisfy

∑n

j=1
oij ≥

∑n

j=1
oji . For

the sake of simplicity, �i denotes the truth value obtained
from this Boolean expression. Therefore, the alternative ai
at the first position of the ranking must satisfy �i = True ,
which allows to considerably reduce the set of rankings to
explore as possible solutions. Let us emphasize that this
gives a necessary but not sufficient condition. Nevertheless,
it allows to avoid the exploration of many of the rankings as
potential solution, considerably reducing the runtime in rela-
tion to other algorithms. Furthermore, this can be recursively
applied to any subset of A , also reducing the search space
of possible solutions. The idea is to build rankings alterna-
tive by alternative, by adding to a prefix � only alternatives
that have �i = True , and then to remove the alternative ai
from the matrix and repeat the process in the recursive call.
This recursive approach makes impossible to determine in
advance the number of rankings that will be discarded as
possible solutions, which have a great impact on the runtime.
In Rico et al. (2021b) some considerations over this proposal
are introduced, obtaining the ME algorithm, which is detailed
in Algorithm 1.

Algorithm 1 ME algorithm

1. Define an empty list of tentative solutions σ.
2. Take O and define the set η = {ai ∈ O/αi = True}.
3. Initialize a stack of prefixes to explore. Create one prefix for each alternative ai ∈ η.
4. Take (and remove) the first prefix ρ from the stack.
5. Consider the submatrix Oρ, which contains only the alternatives of the set A that are

not already fixed in the prefix ρ.
– If Oρ dimension 2× 2, then for the two remaining alternatives ai, aj :

– If oij > oji, add ρ � ai � aj to σ.
– If oji > oij , add ρ � aj � ai to σ.
– If oij = oji, add both ρ � ai � aj and ρ � aj � ai to σ.

– If the number of alternatives in Oρ is n ≥ 3, determine

η = {ai ∈ Oρ/αi = True}.

Add one prefix of the form ‘ρ � ai’ to the stack for each ai ∈ η.
6. Repeat Step 4 and Step 5 until η is empty.
7. Compute δ(si, πn

m) for all the rankings si ∈ σ.
8. Compute δmin = minsi∈σ(δ(si, πn

m)).
9. Delete from σ all rankings such that δ(si, πn

m) > δmin.

3 � Indices to measure the difficulty
of the profile

The different number of rankings that can be discarded in the
above introduced recursion process influences the runtime
required by Algorithm 1 to find the Kemeny ranking, which
makes the runtime to variate even for profiles with the same
number of alternatives and voters. Intuitively, the distribu-
tion of the votes over the alternatives could have an impact

on the uncertainty to determine the final winning ranking, as
it is natural to think that the closer the opinion of the voters
the easier to find the consensus given by the Kemeny rank-
ing. Unfortunately, how the uncertainty in the profile can be
measured and how it affects to the difficulty of solving the
problem is not defined. This definition is not a trivial matter.
For example, the ranking of Condorcet defines an ideal pro-
file without cycles that could be considered a goal. However,
this not necessarily represents the less difficult approach in
computational terms, as the difficulty exclusively depends
on the algorithm used to solve the problem. Despite some
authors have mentioned this fact, there is not a univer-
sal measure to weight how difficult the problem to solve
is (Ali and Meila 2012; Betzler et al. 2009). In a previous
work (Rico et al. 2021a), we have reviewed and proposed
new indices in order to characterize different aspects of the
profile. From this, it has been concluded that, although some
of the indices present different behavior in relation to the
runtime, none of them shows a clear influence to determine
on its own the time required by the algorithm to determine
the winning ranking for a concrete profile. In the current
paper the intervals within each of these indices ranges are

also studied, with the aim of being able to make them com-
parable for profiles with different n and m. Both indices and
boundaries are listed in Table 1 and briefly described in the
following.

–	 Range of the indices. As shown in Table 1, the proposed
indices vary in a range that depends either on n, m or
the corresponding number of pairwise comparisons of
the alternatives �n or rankings �m . This means that, if

	 N. Rico et al.

1 3

the aim is to use these indices to compare profiles with
different number of alternatives and voters, they must be
normalized using the intervals defined in the fourth col-
umn of the table. Further insight about how these ranges
are obtained is given below.

–	 Based on Kendall distance ( �1 ) (Betzler et al. 2008; Ken-
dall 1938) it is computed the averaged Kendall distance
between every pair of rankings in the profile. This dis-
tance depends only on the number of alternatives. One
ranking and its opposite have the furthest possible dis-
tance, �n , as every pair of alternatives add one point to the
computation of the distance. Thus, the upper bound for
Kendall distance cannot exceed the value �n . This worst
scenario happens when there are two voters in the profile
expressing their opinions by opposite rankings. On the
other hand, if the m voters of a profile express the same
preference, the distance between each pair of rankings is
trivially 0 and that is the lowest value �1 can take.

–	 Based on the range the different positions an alternative
takes in a profile is important to select it in a certain
position in the Kemeny ranking obtained by Algorithm 1.
For this reason we consider the minimum ( �2 ), maxi-
mum ( �3 ) and average ( �4 ) position ( ri(ak) ) that each
alternative ak can take in a ranking ri . These indices vary
between 0 (each alternative takes the same position in all

the rankings) and n − 1 (at least an alternative is in the
best position in one ranking and in the worst position in
another one). A high value of the maximum range means
that there is at least one alternative for which the voters
do not have a clear opinion meanwhile a low value for the
minimum range means that there is at least one alterna-
tive for which the voters have a clear opinion.

–	 Based on computing a bound to the optimal cost. The
maximum distance of a ranking to a profile ( �5 ) can be
computed using �n elements of the outranking matrix.
Thus, the furthest ranking is obtained the profile contains
just one ranking. The minimum distance of a ranking to
the profile would happen if those �n elements considered
have the minimum value, which is 0 for profiles with m
even and 1 for profiles with m odd. When the bound to
the optimal cost is small, all the rankings would have
similar distances so it is likely that more rankings need
to be explored in order to determine the Kemeny winner.

–	 Based on the number of dirty triplets (i.e. intransitive
cycles of length three) that measure the agreement among
the voters as the outranking matrices when there is a
Condorcet ranking do not contain cycles. These could
lead to a situation in which the Kemeny ranking for the
profile requires more time to be found.

Table 1   Summary of the indices defined in this paper (separated in subsections) used for characterizing different aspects of the profile. This
table shows the description of the index as well as the interval of values that they can take

Index Description Formula Interval

�1 Average Kendall distance 1

�m

∑n−1

i=1

∑n

j=i+1
oij ⋅ oji [0, k ⋅ 𝜏n], k =

{ m

2(m−1)
, m > 2

1, otherwise

�2 Maximum range of alternative positions max
ri ,rj∈�

n
m
,ak∈A

(|ri(ak) − rj(ak)|) [0, n − 1]

�3 Minimum range of alternative positions min
ri ,rj∈�

n
m
,ak∈A

(|ri(ak) − rj(ak)|) [0, n − 1]

�4 Average range of alternative positions 1

n

∑
ak∈A

(max
ri∈�

n
m

ri(ak) − min
rj∈�

n
m

rj(ak))
[0, n − 1]

�5 Bound to the optimal cost ∑n−1

i=1

∑n

j=i+1
max(oij, oji) −

∑n−1

i=1

∑n

j=i+1
min(oij, oji)

[x ⋅ �n,m ⋅ �n]x = m mod 2

�6 Number of dirty triplets 1

3

∑n

i=1

∑
j≠i

∑
k≠i≠j

yijk, yijk =

{
1, oij, ojk, oki > h

0, otherwise

[0,
n!

3!(n−3)!
]

�7 Mode margin argmaxM∈� #{(i, j) ∣ 1 ≤ i < j ≤ n , M = �ij} [min
�
,m]

�8 Number of different margins #(�) [1,min(�n,
m−min

�

2
+ 1)]

�9 Frequency of the minimum margin ∑n−1

i=1

∑n

j=i+1
�ij with

�ij =

{
1, � = min

�

0, otherwise

[0, �n]

�10 Distance to Borda ranking �(b,�n
m
) [0, �n ⋅ m)

�11 Number of overall preferred alternatives
∑

ai∈A
�i

[1, n]

�12 Standard deviation of � sd(�) [0, �n ⋅ m)

�13 Standard deviation of � sd(�) [0, �n]

�14 Mean of � mean(�) [0, n − 1)

�15 Median of � median(�) [0, n − 1)

�16 Difference between mean and median of � |�14 − �15| [0, n − 1)

Runtime bounds prediction for the Kemeny problem﻿	

1 3

–	 Based on the margin of the voters preferring one
alternative ai over another one aj is |oij − oji| . It indi-
cates the global preference expressed in the profile for
one of the two alternatives over the other one, thus it
could guide us in the identification of profiles more
or less demanding according to algorithm 1. The mar-
gin set � = {�ij = |oij − oji| ∣ 1 ≤ i < j ≤ n} provides
useful information about the voters agreement. Each
�ij ∈ [min

�
,m] as the largest margin is given when all

the voters prefer one alternative over another. However,
the lowest margin depends on whether the number of
voters is even or odd ( min

�
 is 1 if m is odd and 0 other-

wise). The most frequent margin ( �7 ), margin diversity
( �8 , that measures the different global preferences) or
the frequency of the minimum margin ( �9 , that indi-
cates if the uncertainty among the voters of the profile
is high) are considered. It is obvious by definition that
�7 ∈ [mod(m, 2),m] . Index �8 depends on the number of
voters and on the number of unique rankings in the pro-
file (at most �n ). The frequency of the minimum margin
is at most �8.

–	 Based on Borda count ( �10 ), Borda (1781) that ranks
the alternatives taking into account the number of times
that they are ranked better than other alternatives. More
specifically, the Borda score �i of each alternative ai is
computed as s(ai) =

∑n

j=1
oij . After these are obtained, the

alternatives are sorted by decreasing order of their scores
to obtain the consensus ranking b. As two alternatives
may have the same Borda score, some alternatives might
be tied in the obtained consensus ranking. The distance
from this ranking to a profile can be, as for any other rank-
ing, in the interval [0, �n] . The maximum distance between
a ranking and a profile would be �n × m in case that the
all the voters of the profile give the same ranking and
the distance would be considered to the opposite ranking.
Nevertheless notice that, as the Borda ranking is obtained
from the profile, it will never reach the worst scenario as
it is guaranteed not to give the opposite order of all the
rankings in the profile. When the voters greatly agree in
the preferences of the alternatives, the Borda ranking is
closer to the Kemeny ranking and therefore the distance
from the Borda ranking to the profile should be lower
than in cases when there are more disagreement. For this
reason, this index is considered helpful in this framework.

–	 Based on the row sum of � . Two indices are consid-
ered, the number of a priori preferred alternatives ( �11 ),
defined in terms of �i and the standard deviation of the
row sums of � ( �12 ) defined in terms of � = (�1,… , �n) ,
with �i =

∑n

j=1
oij. As the sum of all the elements of � is

constant, if all the voters agree in the same ranking, then
there is at least one row with m votes and another with
0. On the contrary, if all the alternatives are tied in their
pairwise comparison this would yield to all the elements

of � to have the same value. Therefore indices based on
this vector may give an orientation of how the opinion of
the voters varies. The maximum number of alternatives
with �i = True cannot exceed the number of alternatives
itself. As �i = True for at least one alternative ai (Azzini
and Munda , 2020), the minimum of value of this index
is 1. The standard deviation of the rowsums is at most
�n ⋅ m by construction.

–	 Based on the distribution of preferred alternatives, that
are studied in terms of the vector � = (�1,… , �n) , with
�i =

∑n

j=1
bij and bij = 1 if oij > oji and 0 otherwise. It is

straightforward that the indices based on the � ( �13 to
�16 ) ranges between 0 and n − 1 . As this vector contains
all the integer numbers in [0, n − 1] only once when the
profile has a Condorcet ranking, different variations in
relation to this might be related to the increasing of the
runtime.

4 � Gathering the profiles of rankings

The runtime required by Algorithm 1 to find the Kemeny
ranking is not the same for all the profiles, even if the
number of alternatives is the same. The aim of this work
is to predict using machine learning and the character-
istics of the profile if the algorithm can find the Kemeny
ranking in an assumable time. The first task is then to
obtain a representative dataset to study this problem.
In this case profiles with n ∈ {8, 9, 10} alternatives and
m ∈ {10, 50, 100, 250, 500, 1000, 2000} voters have
been considered in order to build a dataset. Also the same
numbers of voters plus 1 have been considered, as initial
experiments suggest that whether the number of voters is
even or odd influences on the runtime (Rico et al. 2021a).
For each combination of (n, m), 200 different profiles have
been created. The values of n have been selected due to
their acceptable computational time, as they are neither too
small to present randomness in the runtime nor too large in
relation to time constraints. Each profile has been created
according to the following steps:

1.	 Randomly select the number d ≤ m of different rankings
in the profile.

2.	 Obtain d random different permutations of the n alterna-
tives.

3.	 A random vector of d elements whose sum is equal to m
is generated where each element represents the number
of voters associated to each ranking generated in the
second step.

4.	 If the profile do not have a Condorcet winner add this to
the dataset.

	 N. Rico et al.

1 3

The last step is included to avoid profiles whose runtime can
be reduced using additional information of the domain, as in
presence of a Condorcet winner it is not necessary to explore
the remaining alternatives (Rico et al. 2021b).

The runtime associated to each profile is computed in
order to build the variable to predict and study it in relation
to the characteristics of the profile measured by the indices.
Runtimes have been obtained using a Python 3.8 implemen-
tation of Algorithm 1. In order to minimize the impact of
other processes that might be being executed by the proces-
sor on the measurement of the runtimes, the algorithm has
been used three times with each profile and the median value
has been considered.

Note that runtimes do not depend only on the number
of alternatives (Fig. 1). In addition, it is impossible to pre-
dict exact runtimes for profiles of rankings with numbers
of alternatives not used in the training set. Thus, instead of
modeling the problem as a regression one, we focus our-
selves on two problems. The first one is based on identifying
those profiles that require an abnormally high runtime to find
Kemeny’s ranking. With this identification, it is possible to
avoid them. The second one is based on identifying those
profiles that require the shortest possible runtime to find
Kemeny’s ranking.

5 � Identification of affordable profiles
of rankings

Supervised machine learning methods learn a mapping from
an input to an output based on available observations (Kubat
2017). Each observation is therefore a pair with an input
vector and its corresponding output. The model produced
predicts this output from the input data and can be later used
for mapping new examples into an unknown output. Binary
classification methods are proposed to identify the previous
stated profiles. In the following, we explain how the models
are obtained.

5.1 � Training the models

Classification models presented in this work are trained by
means of CART decision trees and random forests (Kubat
2017). These methods are suitable for this problem as they
are explainable and one of the goals of the work is to char-
acterize the profiles. Using explainable machine learning
methods make easier to explain the impact of the input vari-
ables on the outcome. Moreover, other algorithms have been
studied in a preliminary phase for solving this problem and
both the decision trees and random forests show competitive
results against them. First of all, different parameter sets
for each algorithm are defined to look for the best param-
eter configuration of each method, this is, the values of the
parameters of the algorithm that lead to the best models of
the data set. These parameters depend on the algorithm and
are the number of trees for random forest and the depth of
the tree and minimum number of objects in the leaves for the
CART trees. Then, for each classification algorithm and the
different parameter settings of the classification algorithm,
all the models are trained using a training-test validation
procedure, the input dataset is divided into training and test
set according to a 80–20% split. The training set is used to
build the model using repeated 10-cross-validation (5 times).
Due to the imbalanced nature of the problem (explained
in Sects. 5.4, 5.5), the models have been trained using a
down-sampling technique (as it has been proved to yield
better results than other techniques such as up-sampling and
ROSE (Lunardon et al. 2014) with this data).

8
9

10

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 1   Distribution of the runtimes in seconds required by the profiles
of the data set build, grouped by their number of alternatives (8 top, 9
middle, 10 bottom)

Algorithm 2 Training process
– Define sets of model parameter values to evaluate.
– For each parameter set.

– For each resampling iteration.
• Hold-out specific samples.
• Fit the model on the remainder.
• Predict the hold-out resamples.

– Determine the optimal parameter set
– Fit the final model to all the training data using the optimal parameter set

Runtime bounds prediction for the Kemeny problem﻿	

1 3

Table 2   Results on the test set for different subsets of the data

n = 8 n = 9 n = 10 all

AUC​ 0.8313 0.8797 0.8204 0.8636
Sensitivity 0.7500 0.7955 0.8293 0.8429

5.2 � Model evaluation

Classification models are evaluated by means of measures
based on the confusion matrix (Kubat 2017) associated to
a binary classification problem where the positive class is
the minority class. The Area Under the ROC Curve (AUC)
(Kubat 2017) is also used for evaluating the models. This
measure represents the true positive rates against the false
positive rates for different thresholds of classification. How-
ever, the riskier situation occurs if a profile is wrongly iden-
tified as affordable in terms of runtime, which would mean
an unexpected increase of the runtime when trying to find
the Kemeny ranking. For this reason it is also interesting to
track the sensitivity (also known as recall) that measures the
amount of true positives correctly classified in relation to
the total amount of positives in the dataset. High values of
this measure leads to models that correctly classify instances
from both the majority and the minority classes. Models will
be trained focusing on the maximization of AUC.

The next two subsections show the performance of the
models when different datasets are considered.

5.3 � Identifying profiles with abnormally high
runtime

In this subsection, we focus on detecting those profiles to
avoid, i.e, profiles whose runtime to obtain Kemeny ranking
is very high. In addition, it is important to characterize them
in terms of the indices described in Sect. 3.

The data set to perform this task is built using the pro-
files introduced in Sect. 4. Note that when the number of
alternatives is fixed, most of the profiles behave similarly in
terms of runtime when using Algorithm 1. However, as it
was highlighted in previous section, there are some profiles
whose runtime is abnormally high in relation to those with
the same number of alternatives (see Fig. 1). A profile with
a runtime very high is here called outlier. It is considered
that a runtime is very high if it is greater than Q3 + 1.5 ⋅ IQ
(being IQ the interquartile range shown by the boxes in
Fig. 1, and Q3 the third quartile). Using this information,
a dataset is generated where each profile is characterized
by the indices introduced in Sect. 3. The variable to pre-
dict is binary (whether the profile is an outlier or not). For-
mally defined, each observation of the dataset has the form
x = {�1,… ,�16} and an y takes two possible values (yes if

it is an outlier and no otherwise). Note that the percentages
of outliers (y=yes) obtained for the subsets with 8, 9 and
10 alternatives are 6.43, 7.89 and 7.39% respectively. This
means that this dataset is highly imbalanced.

In order to make the problem independent of the number
of alternatives of the profiles used for training the models,
this dataset is normalized using the ranges defined in the last
column of Table 1.

We have firstly trained the models introduced in Sect. 5.1
considering 4 different datasets, the one containing the pro-
files with size n = 8, 9 or 10, and each subset of this one
fixing n. Independently of the dataset, the best performance
was obtained by random forest methods. Table 2 shows the
results of the AUC and sensitivity measures of the models
trained using the random forest algorithm. The values of
AUC are always greater than 0.8. Furthermore, the sensi-
tivity of the model has a soft increase when the number
of alternatives is bigger, and also when all the dataset is
used for training the model and therefore more information
is available. Thus, the results in terms of performance are
acceptable.

As previously mentioned, the purpose of this work is not
only to classify the profiles but also to identify the indi-
ces that impact on the increment of the runtime required by
Algorithm 1 in order to find the Kemeny ranking. As the
method that obtains the best performance is random for-
est, it is possible to obtain variable importance in terms of
the impurity of the dataset after splitting using a variable
(Greenwell and Boehmke 2020). For all the trained models,
the top 5 most important variables are (1) �11 , (2) �12 , (3)
�1 , (4) �13 and (5) �10.

We have found that index �11 is the most important one.
Thus, it is clear that this number has a large impact in the
number of rankings evaluated, as greater amounts of them
can be discarded from the exploration when this index is
low. Note that although the theoretical complexity of the
algorithm does not change (as the problem of finding the
Kemeny ranking is NP-hard), the reduction of the search
space of possible solutions implies the feasibility of the
execution of the algorithm when the number of candidates
increases. As shown in Algorithm 1, only the rankings with
a candidate ci that has an associated �i = True in the first
position must be considered as possible solution. This means
that the search space with size n! is reduced ensuring that it
is in the worst case n! − (�11 ⋅

n!

n
) , which ensures a shorter

execution time. Also, �12 and �13 provide useful informa-
tion to predict the outcome. These indices are related to the
distribution of the votes so we consider very relevant this
finding as it is highlighted that profiles of rankings with the
same numbers of voters can behave very different as we
supposed. The average Kendall distance �1 appears also in
a high position. The distance of the Borda ranking to the
profile has also impact as when there is more agreement

	 N. Rico et al.

1 3

Borda and Kemeny rankings are closer. When we test the
method for more complex profiles we obtain that the more
important indices are the same initially obtained, reinforcing
the initial hypothesis.

5.4 � Generalization for more complex profiles

The experiments confirm that there are some characteristics
of the profile that can be measured by indices with impact
on the runtime required to obtain Kemeny ranking. As these
indices are normalized to make them independent on n and
m, a model trained with the above-defined procedure can be
also used to predict if the runtime is assumable for a profile
with a different number of alternatives n than the ones used
to train the model. Thus, let us consider now a fifth training
set only composed by profiles with n = 8 or n = 9 alterna-
tives and a test set with profiles with n = 10 alternatives.
Random forest also performs better than decision trees in
this case, obtaining an AUC of 0.8173 and a sensitivity of
0.8164 in the test set. The top five features are a permuta-
tion of the obtained in the previous experiment: (1) �11 , (2)
�13 , (3) �12 , (4) �1 and (5) �10 , reinforcing their importance.

This experiment confirms that this system is very useful
in practice as it can be used as a tool to guide the solution
of the Kemeny aggregation problem because it allows to
estimate runtimes for larger profiles of rankings and con-
sequently to decide in advance whether the problem is
addressable or not. It also provides a parametrization of the

runtime for new algorithms based on the characteristics of
the profile.

5.5 � Identification of the fastest profiles of rankings

It might be also interesting to look only for the fastest pro-
files, especially when n increases an consequently runtime
increases. To do that, using the profiles defined in Sect. 4,
the output variable is categorized either as fast or slow
depending on its runtime in relation to the profiles with the
same number of alternatives. In this case, the profiles in Q1
(first quartile) are labeled as fast and the remaining pro-
files as slow. The model trained using this dataset with the
random forest algorithm obtains an AUC of 0.8173 and a
sensitivity of 0.8164.

The 5 most important indices to predict the output using
this model are (1) �11 , (2) �14 , (3) �8 , (4) �10 and (5) �12 . The
mean of � appears now in the top variables ( �14 ) as behaves
different depending on the number of voters. The number of
different margins appears ( �8 ) also as one of the important
variables, which intuitively has an impact on the number of
rankings to be explored, as when the number of repeated
indices is high the alternatives add the same amount to the
distance to the profile.

Note that �11 is the most important variable for both
identifying the most difficult and the simplest profiles (in
terms of the the runtime to get Kemeny ranking using Algo-
rithm 1). Let us study more in depth the behavior of this

Fig. 2   Distribution of the number of overall preferred alternatives ( �11 ) by class to predict. The figure above shows the distribution of �11 with
respect to the problem studied in 5.4. The figure below shows the distribution of �11 with respect to the problem studied in Sect. 5.3

Runtime bounds prediction for the Kemeny problem﻿	

1 3

important index. Fig. 2 shows the distribution of �11 by class
for each problem. For both datasets, the fastest profiles,
which are those labeled as fast in the first data set and as no
in the second data set (note that there are not the same set)
present a distribution of values to the left for any number of
alternatives. In the same line, Fig. 3 shows that the behavior
�12 across classes is also different. This trend is repeated for
all the other important indices.

6 � Discussion and conclusions

6.1 � Discussion

The starting point of this work was to develop a method
to identify the relevant characteristics of a profile that can
be helpful to predict its runtime when Kemeny ranking is
computed. These characteristics are expressed in terms of
indices, some of them introduced in this work. This pro-
posal is based on exploring a machine learning approach
using these characteristics. To test the performance of our
proposal, the baseline exact algorithm (Azzini and Munda
2020) is considered.

The results obtained after applying machine learning with
the proposed datasets show how some of the indices pro-
posed in this work have an impact on the execution time of
the algorithm to find the Kemeny ranking. This means that,
the indices collaborate in measuring the difficulty of a profile
in terms of execution time.

In fact, according to the experiments shown in Sects. 5.3
to 5.5, it is highlighted that among the top indices relevant
for this problem, index �11 is the most important one. It is
reasonable as the algorithm is based on the recursive explo-
ration of the alternatives. As it was detailed in Sect. 5.3,
when this index is low, greater amounts of potential rank-
ings can be discarded from the exploration. The standard
deviation of � , measured in the �12 index, has also great
impact on the execution time. This index is one of the new
indices proposed by the authors, and captures how far the
index is from what ideally would be the Condorcet ranking
if there was not cycles in the preferences of the voters. The
fact that the profiles that have larger execution times are fur-
ther from the standard Condorcet ranking, reflects intuitively
more uncertainty among the opinion of the voters, making
more difficult to take a decision about the consensus ranking.

Let us remark that the identification of indices is
extremely important. Usually the performance of the algo-
rithms that solve the Kemeny problem is tested depending
only on the number of alternatives as it is the straightforward
factor that influences the factorial growth of the runtime.
However, as shown in this work, not all the profiles of rank-
ings with the same number of alternatives and voters are
equally difficult to solve attending to their runtime, what is
an important finding from our point of view.

What is more important, this work provides a novel meth-
odology to narrow the runtime required to find Kemeny
ranking. This approach is based on the some indices that
describe the profile and on machine learning. The solution

Fig. 3   Distribution of the standard deviation of � ( �12 ) for the two classification problems divided by class

	 N. Rico et al.

1 3

presented in this paper is not universal for any kind of algo-
rithm in the sense that the indices identified as relevant for
predicting runtime are dependent on the algorithm used to
obtain Kemeny ranking.

In any case, the approach proposed introduces the char-
acterization of the profiles based on indices as well as the
application of machine learning to predict the behavior of
the ranking aggregation method and the experiments devel-
oped confirm that this methodology is useful to produce reli-
able predictions for the behavior of the execution times for
this complex problem. If the same methodology is applied
to predict runtime using a different algorithm (to obtain
Kemeny ranking), the proposed procedure provides a differ-
ent characterization of the profiles. That means that the set
of more relevant indices could be different to the obtained in
this work as the baseline algorithm is also different. These
generalization ability is possible thanks to the large set of
indices that are also presented in the paper to represent each
profile (many of them introduced by us).

In this work it is also provided a benchmarking algorithm
that is publicly available. Note that the main contributions
of this paper, namely, the machine learning methodology,
the indices used to represent the profiles as well as the con-
struction of bechmarking datasets are independent of the
algorithm.

6.2 � Conclusion

In this work we study the runtime required for solving the
Kemeny problem depending on the characteristics of the
profile of rankings by using indices to measure different
aspects. Using this characterization based on indices, a data-
set is built by obtaining the proposed indices for different
profiles of rankings. This dataset is used as input of explain-
able machine learning models that help in predicting runtime
behavior prior to the execution of the algorithm in order to
ensure its feasibility. Moreover, the models obtained show
that some of the indices proposed by us, such as the overall
number of preferred alternatives, can be used as predictors
of the runtime required to obtain the Kemeny ranking given
a profile of rankings.

Funding  Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Availability of data and material  All data generated or analysed dur-
ing this study are available at http://​github.​com/​noeli​arico/​conse​nsus_​
bench​mark.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Ali A, Meila M (2012) Experiments with Kemeny ranking: what works
when? Math Soc Sci 64(1):28–40

Arrow K, Raynaud H (1986) Social choice and multicriterion decision-
making, vol 1, 1st edn. The MIT Press, Cambridge

Azzini I, Munda G (2020) A new approach for identifying the Kemeny
median ranking. Eur J Oper Res 281:388–401

Bartholdi J, Tovey CA, Trick MA (1989) Voting schemes for which
it can be difficult to tell who won the election. Soc Choice Welf
6(2):157–165

Betzler N, Fellows MR, Guo J, Niedermeier R, Rosamond FA (2008)
Fixed-parameter algorithms for Kemeny scores, volume 5034 of
lecture notes in computer science. Springer, Berlin, pp 60–71

Betzler N, Fellows MR, Guo J, Niedermeier R, Rosamond FA (2009)
Fixed-parameter algorithms for Kemeny rankings. Theor Comput
Sci 410(45):4554–4570

Borda JC (1781) Mémoire sur les Élections au Scrutin. Histoire de
l’Académie Royale des Sciences, Paris

Brandt F, Conitzer V, Endriss U, Lang J, Procaccia AD (eds) (2016)
Handbook of computational social choice. Cambridge University
Press, Cambridge

Condorcet M (1785) Essai sur l’Application de l’Analyse à la Probabil-
ité des Décisions Rendues à la Pluralité des Voix. De l’Imprimerie
Royale, Paris

Fishburn PC (1973) The theory of social choice. Princeton University
Press, Princeton

Greenwell BM, Boehmke BC (2020) Variable importance plots-an
introduction to the VIP package. R J 12(1):343–366

Hemaspaandra E, Spakowski H, Vogel J (2005) The complexity of
Kemeny elections. Theor Comput Sci 349(3):382–391

Kemeny JG (1959) Mathematics without numbers. Daedalus
88(4):577–591

Kendall M (1938) A new measure of rank correlation. Biometrika
30(1/2):81–93

Kubat M (2017) An introduction to machine learning, 2nd edn.
Springer, Berlin

Lunardon N, Menardi G, Torelli N (2014) ROSE: a package for binary
imbalanced learning. R J 6(1):82–92

Oliveira SE, Diniz V, Lacerda A, Merschmanm L, Pappa GL (2020) Is
rank aggregation effective in recommender systems? An experi-
mental analysis. ACM Trans Intell Syst Technol 11(2):1–26

Pérez-Fernández R, Rademaker M, Alonso P, Díaz I, Montes S, De
Baets B (2016) Representations of votes facilitating monotonicity-
based ranking rules: from votrix to votex. Int J Approx Reason
73:87–107

Rico N, Vela CR, Díaz I (2021a) An analysis of the indexes measuring
the agreement of a profile of rankings. Accepted in XIX CAEPIA

Rico N, Vela CR, Pérez-Fernández R, Díaz I (2021b) Reducing the
computational time for the Kemeny method by exploiting Con-
dorcet properties. Mathematics 9(12):1380

http://github.com/noeliarico/consensus_benchmark
http://github.com/noeliarico/consensus_benchmark
http://creativecommons.org/licenses/by/4.0/

Runtime bounds prediction for the Kemeny problem﻿	

1 3

Schulze M (2011) A new monotonic, clone-independent, reversal sym-
metric, and Condorcet-consistent single-winner election method.
Soc Choice Welf 36(2):267–303

Young HP, Levenglick A (1978) A consistent extension of Condorcet’s
election principle. SIAM J Appl Math 35(2):285–300

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Runtime bounds prediction for the Kemeny problem
	Abstract
	1 Introduction
	2 Algorithm to determine the Kemeny ranking
	3 Indices to measure the difficulty of the profile
	4 Gathering the profiles of rankings
	5 Identification of affordable profiles of rankings
	5.1 Training the models
	5.2 Model evaluation
	5.3 Identifying profiles with abnormally high runtime
	5.4 Generalization for more complex profiles
	5.5 Identification of the fastest profiles of rankings

	6 Discussion and conclusions
	6.1 Discussion
	6.2 Conclusion

	References

