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A B S T R A C T

Anomaly detection is a crucial task in the engineering systems field. However, there is usually
little or no information about all possible abnormal modes in systems. Hence, a common
approach is to build a model of healthy behaviour, based on normal operation data, so that
anomaly detection would depend on how well new data fit this model. According to this
idea, we propose a residual-error based approach consisting of: a variational autoencoder,
used to model the probability density function of the system’s healthy behaviour; and a two-
step classification algorithm, which classifies the incoming samples based on their residuals,
and reports not only their normal/anomalous nature but also that of their components. We
have tested this proposal in three different engineering contexts and we have compared its
performance with that of state-of-the-art approaches, demonstrating its capability to successfully
detect and characterize anomalies.

. Introduction

Anomaly detection consists in finding those patterns in data that do not conform to expected normal behaviour. Such patterns,
ommonly known as anomalies or outliers, represent deviations from normal behaviour, so their detection is not only of great value,
ut is often critical in a wide variety of real-world applications, like intrusion detection [1], fraud detection [2] or medical anomaly
etection [3]. In the context of industrial processes, anomaly detection is also a topic of great importance since both detection and
iagnosis of faults are crucial to optimize and guarantee safety in the operation of machines, leading to higher productivity and
rocess efficiency, with benefits such as reduced operating costs, longer operating life or improved operating uptime [4].

Given the relevance of anomaly detection, there has been extensive research on this topic: we can find several approaches
n the state of the art, depending on the application domain and even the dataset [5]. In the typical scenario, we deal with
atasets containing mostly normal behaviour data and few, if any, examples of anomalous behaviour, which sometimes are not
ven representative of all possible abnormal modes. This makes traditional multi-class classification schemes unsuitable for anomaly
etection [6].

Instead, a common approach in the literature is to construct a model of normal behaviour (based on available normal data), so
hat anomaly detection would depend on how well new data fit this model [6]. In other words, the aim of this approach is to build
n analytical model of the process under study (key concept in the digital twin approach [7]), in such a way that its comparison
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with the actual process would bring anomalous behaviours to light. It is therefore a residual-based approach in which instances
with large residual errors are considered more likely to be anomalies.

The modelling of normal behaviour has traditionally been addressed by means of model-based methods [8–10], which require
xpertise and prior knowledge of the system to be modelled. In contrast, there is a growing interest in data-driven methods, especially
ith the proliferation in recent years of deep learning techniques [11]. In the context of engineering processes, we can find several
pproaches in the literature that propose the use of deep autoencoders for anomaly detection [12–14], where samples with large
esidual errors are considered to be anomalous.

Despite the strong interest in deep learning approaches, new techniques have emerged whose potential has yet to be explored.
his is the case of the variational autoencoder (VAE), which has proven to be a successful unsupervised learning algorithm [15]
howing promising results as generative model, with applications in several fields, such as audio, text, or image generation [16–19].
n contrast to traditional autoencoders, VAEs impose restrictions on the distribution of latent variables and, in doing so, learn the
robability density function of training data. Hence, being trained on samples representative of healthy behaviour, VAEs are able
o learn the healthy distribution of process data, thus becoming a powerful anomaly detection tool [20–22]. In particular, VAE
esiduals capture any deviation from process normal behaviour, providing valuable information on the health condition of any
ncoming sample. In consequence, VAE residuals have started to be used in anomaly detection approaches [23–25], with recent
pplications as anomaly detection scores in the industrial field [26,27].

These residual-based approaches have proven to be successful in detecting anomalous samples, which, as mentioned above, is a
rucial task in many domains. However, it would be of great value to also be able to identify the normal/anomalous nature of each
omponent in the samples; especially in the engineering systems field, where such information, together with the classification of
amples, would provide a rich insight into the state of health of the monitored processes. Under such circumstances, we explore in
his paper the use of VAE residuals for anomaly detection in the engineering systems field and we propose a novel analysis of the
esiduals. As discussed in the literature, the closer the model approximates the distribution of training data, the more meaningful its
esiduals will be [28], so we expect VAE based residual generation to be competitive and of great help in detecting and diagnosing
nomalies, thanks to its ability to model the probability distribution of normal conditions as well as to deal with high dimensional
nd large sample sizes. In line with state-of-the-art approaches [12,14,23,27], we use the residuals of the autoencoder as anomaly
ndicator, but we propose a two-step classification, which allows us to determine not only the normal/anomalous nature of the
amples (as previously done in the literature) but also that of their components. In this way, we aim to provide some valuable
dditional information about the samples, beyond whether they are anomalous or not.

Our architecture consists of a variational autoencoder, which has been trained to reconstruct samples of healthy behaviour, and
classification algorithm, which classifies the incoming samples based on their reconstruction error. This algorithm classifies each

ample in two steps: 1) component-wise classification (classification of each element – component – in the sample); and 2) overall
lassification (classification of the sample). We have tested this proposal in three different engineering contexts (a rotating machine,
hydraulic system and a body motion system) and we have compared its performance with that of state-of-the-art approaches, both

n terms of modelling (variational autoencoder vs. deep autoencoder) and classification (two-step classifier vs. traditional classifiers).
he results of the research demonstrate the capability of our proposal to successfully detect anomalies in all three contexts, being
he highest accuracy results those obtained with the two-step classifier applied on VAE residuals. Additionally, we present a visual
nalysis of the results that reveals the potential of the component-wise classification step, providing insight into the anomaly decision
nd therefore illustrating the explanatory nature (which plays a key role in the interpretable machine learning approach [29]) of
ur proposal.

In summary, the contributions of this research are as follows: 1) we explore the potential of the VAE for anomaly detection
n engineering systems; 2) we propose a system able not only to successfully detect anomalous samples, but also to point out the
lements in the samples that do not conform to healthy behaviour, thereby contributing to a better understanding of the process
ature.

The rest of this document is organized as follows. In Section 2, we introduce the theoretical foundation of the variational
utoencoder. Section 3 describes the architecture of the proposed system. The datasets and the results of the proposal are presented
n Section 4. Finally, the conclusions are set out in Section 5.

. Related literature

Variational autoencoders [15] have become in recent years one of the most popular approaches to unsupervised learning. They
merged as a probability-based extension of deep autoencoders, so we will start this section by introducing the deep autoencoder
nd then present its variational version.

.1. Deep autoencoders

A deep autoencoder is a feed-forward multi-layer neural network in which the desired output is the input itself. As we see in
ig. 1, the architecture consists of an encoder 𝑓enc, which outputs a latent representation 𝐳 of the input data 𝐱, and a decoder 𝑓dec

that reconstructs the input data (𝐱̂) from its latent representation 𝐳. In between, there is a bottleneck (typically one or more low-
dimensional layers), so the identity map is not a possible solution and the model is forced to learn the underlying low-dimensional
structure in data. During the learning process, the architecture is trained using the gradient descent method [30] by means of
2
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Fig. 1. Deep autoencoder.

Fig. 2. Variational autoencoder.

backpropagation [31] in order to minimize the difference between 𝐱 and 𝐱̂. So in short, the autoencoder can be defined as a solution
to the optimization problem (1), where we try to minimize a loss function , being ‖.‖ usually the 𝑙2-norm.

min
𝑓enc ,𝑓dec

(𝐱, 𝐱̂) = min
𝑓enc ,𝑓dec

‖𝐱 − 𝑓dec(𝑓enc(𝐱))‖ (1)

Although the first versions of autoencoders appeared decades ago [32,33], they have been evolving over the years, especially
with the advent of deep learning. Deep learning models have drastically improved the state of the art in several fields, most notably
speech recognition, natural language processing and computer vision [34]. They are built by stacking multiple processing layers,
which conform compositional hierarchies in which the higher level features are the composition of the lower level ones. This gives
them the ability to find the best representations of data, known as representation learning [35], thus becoming powerful feature
extractors. Consequently, deep autoencoders have the ability to reduce the dimension of the input data in a hierarchical way,
leading to high quality reconstructions of data, as shown in the literature [36–38].

However, the quality of the results worsens if we reconstruct samples that do not conform to training data. Considering training
data to be representative of normal behaviour, the reconstruction error is used in the state of the art as an anomaly score, so
samples with high reconstruction errors are classified as anomalies. Although the details of the anomaly decision depend on
each proposal, two common approaches for the classification of the residuals are: a) threshold-based approach, which proposes to
classify the residuals by comparison with a predefined anomaly threshold (reconstruction error above which a sample is considered
anomalous) [14,39–41]; and b) one-class classifier approach, which proposes to train additional architectures for the classification
of the residuals [42–44]. An example of a) is presented in [39], where the maximum reconstruction error of training data is chosen
as the anomaly threshold; another proposal can be seen in [41], where the authors choose a percentile of the reconstruction error as
the anomaly threshold. In [43] we can see an example of b), where a one-class Support Vector Machine (SVM) is trained to classify
the samples based on their residuals.

2.2. Variational autoencoders

Variational autoencoders inherit the architecture of deep autoencoders, but imposing additional constraints on the bottleneck
that transform traditional deterministic autoencoders into powerful probabilistic models: while deep autoencoders learn an arbitrary
function to encode and decode input data, variational autoencoders learn the parameters of a probability distribution that models
the data.

As we can see in Fig. 2, the VAE consists of an encoder 𝑞𝜙(𝐳|𝐱), being an approximate posterior, and a decoder 𝑝𝜃(𝐱|𝐳), being the
likelihood of the data x given the latent variable z. According to this scheme, the encoder becomes a variational inference network,
3
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Fig. 3. Proposed method.

apping input data to (approximate) posterior distributions over the latent space, and the decoder operates as a generative network,
apping arbitrary latent coordinates back to distributions over the original data space. To achieve this, it is assumed that input data

an be sampled from a unit Gaussian distribution of latent parameters, so that during the learning process the model is trained by
imultaneously optimizing two loss functions: a reconstruction loss  and the Kullback–Leibler divergence 𝐷KL between the learned
atent distribution and a prior unit Gaussian. So we can understand the VAE as a deep autoencoder with an additional regularization
rovided by the 𝐷KL term.

The resulting objective function of the VAE is presented in (2) and it is the variational lowerbound of the marginal likelihood of
data, since the marginal likelihood is intractable. The marginal likelihood is the sum over the marginal likelihood of individual data
points log 𝑝𝜃(𝐱) =

∑𝑛
𝑖=1 log 𝑝𝜃(𝐱

(𝑖)) and it can be rewritten for individual data points 𝐱(𝑖) as follows:

log 𝑝𝜃(𝐱(𝑖)) = 𝐷KL(𝑞𝜙(𝐳|𝐱(𝑖))||𝑝𝜃(𝐳|𝐱(𝑖))) + (𝜃, 𝜙; 𝐱(𝑖)) (2)

Considering the 𝐷KL term is always bigger than 0, and applying the Bayes rule, the variational lowerbound log 𝑝𝜃(𝐱(𝑖)) results to
be:

−𝐷KL(𝑞𝜙(𝐳|𝐱(𝑖))||𝑝𝜃(𝐳)) + 𝐸𝑞𝜙(𝐳|𝐱(𝑖))[log 𝑝𝜃(𝐱
(𝑖)
|𝐳)] (3)

During the learning process, the VAE is trained in order to maximize (3), using the gradient descent by means of backpropagation.
But this entails some difficulties, since the reconstruction error term in (3) requires the Monte Carlo estimate of the expectation,
which is not easily differentiable [15]. To overcome this, the VAE includes a reparameterization trick, which consists in using a
random variable from a standard normal distribution instead of a random variable from the original distribution (𝑧 = 𝜇 + 𝜎𝜖, with
𝜖 ∼  (0, 1)). This trick allows us to propagate the gradient back through the network and apply the backpropagation algorithm to
train the VAE.

In this way, we obtain an autoencoder that works as a generative model. VAEs are therefore a powerful extension of deep
autoencoders and they have already shown promise in several fields such as image generation, natural language processing or
chemical design [45–47]. In the context of anomaly detection, recent approaches have used the residuals of the VAE as an anomaly
score [24,25]. Such works, in line with deep autoencoder approaches, propose to classify the residuals by comparison with an
anomaly threshold (as we can see in [23]) or by using a one-class classifier (such as in [48]). The applicability of these ideas in
the industrial field has already started to be explored [26,27] and, not surprisingly, VAEs are expected to play a significant role in
the future of health monitoring algorithms [49]. Given the potential of VAE approaches, we explore in this paper the use of VAE
residuals for anomaly detection in the engineering systems field, and propose a novel threshold-based analysis for the classification
of the residuals.

3. Proposed method

In this paper we propose a residual-error based approach to anomaly detection that consists of two elements: 1) a model based
on process data, trained to reconstruct healthy samples so that residuals of incoming samples become a measure of their deviation
from healthy behaviour; and 2) a classification algorithm, in charge of classifying the incoming samples based on their residuals.
Therefore, in this section we present our model of healthy behaviour and the classification algorithm.

An overview of the proposal is shown in Fig. 3. In this figure the model receives a sample 𝐱 and returns its reconstruction 𝐱̂; then
the classifier analyzes the sample residuals |𝐱 − 𝐱̂| (where |𝐱 − 𝐱̂| denotes the component-wise absolute value of 𝐱 − 𝐱̂) and returns
the classification of the sample.

3.1. Model of healthy behaviour

As we can see in Fig. 3, our approach to anomaly detection requires a reconstruction technique, which is in charge of
4

reconstructing the incoming samples, and therefore of providing the residuals with which we feed the classification algorithm.
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Table 1
Variational autoencoder architecture for each dataset.

Number of epochs Batch size Number of layers Number of neurons in the layers

Encoder Bottleneck Decoder

Rotating machine 800 400 9 (300,60,30) (2,2,2) (30,60,300)
Hydraulic system 600 400 11 (17,20,40,20) (2,2,2) (20,40,20,17)
Body motion 800 800 11 (23,40,40,40) (2,2,2) (40,40,40,23)

Table 2
Deep autoencoder architecture for each dataset.

Number of epochs Batch size Number of layers Number of neurons in the layers

Encoder Bottleneck Decoder

Rotating machine 800 100 7 (300,60,30) (2) (30,60,300)
Hydraulic system 200 300 9 (17,20,20,20) (2) (20,20,20,17)
Body motion 400 600 9 (23,40,40,40) (2) (40,40,40,23)

For this purpose, we use a variational autoencoder, which we train to reconstruct samples of normal behaviour, so that residuals of
incoming samples become a measure of their deviation from normal behaviour.

We have trained three variational autoencoders, one per dataset, using the minibatch gradient descent [30] and the rmsprop
ptimizer [50]. The number of epochs and the batch size are indicated in Table 1, along with the architecture of each model (number
f layers and number of neurons per layer). Regarding the activation function, the rectified linear unit (ReLU) [51] is a popular
hoice in the literature. It allows networks to easily obtain sparse representations of the data, helps to alleviate the vanishing gradient
roblem and accelerates the convergence of learning [52], offering better performance and generalization than other activation
unctions [53]. Hence, we have used the ReLU function in all model layers (except in the output and bottleneck layers, where we
ave used sigmoidal and identity functions, respectively). It is worth mentioning that although ReLUs help to alleviate the vanishing
radient problem, they still suffer from it, leading to inactive neurons during the training of the models [54]. To overcome these
ssues, new variants of ReLU have been proposed in the state of the art (such as Leaky ReLU, Randomized Leaky ReLU or Parametric
eLU [55]). However, the standard ReLU remains to be the preferred option in the literature [56] and is the one we have used in
ur experiments.

In order to study the potential of the VAE, we have compared its performance with that of the deep autoencoder. To this end,
e have trained three deep autoencoders, one per dataset, using the minibatch gradient descent [30] and the Adam optimizer [57].
he number of epochs, the batch size, and the architectures of these models are shown in Table 2, and we have used the ReLU
unction [51] as activation function in all their layers (except in the output and bottleneck layers, where we have used the identity
unction).

Regarding the training process, 70% of normal samples have been randomly chosen to compose the training sets. The remaining
0% of normal samples together with the samples representing anomalous behaviour constitute the test sets used to assess the
erformance of the proposed method (Table 12).

It should also be noted that the tuning of all the parameters mentioned in this section (Tables 1, 2) is based on the testing of
ifferent configurations. The chosen configurations are the ones that yielded the best classification results.

.2. Classification algorithm

Anomaly detection is a critical task in many contexts. Therefore, extensive research has been done on this topic and a wide
ange of anomaly detection techniques can be found in the literature (such as classification-based, clustering-based or statistical-
ased techniques [5]). A common approach is to address anomaly detection as a one-class classification problem, in which we aim to
ifferentiate anomalous samples (positive class, represented as 1) from normal samples (negative class, represented as 0). To perform
his classification, we propose a threshold-based classification algorithm, which receives as input the residuals of the sample to be
lassified and returns as output the classification of the sample. More in detail (Fig. 4), the output of the classifier for an incoming
ample 𝐱 ∈ R𝑛 would consist of: a vector 𝐲̂ ∈ R𝑛, containing the component-wise classification of the sample; and a scalar 𝑦̂overall,
epresenting the overall classification of the sample. The two steps required to achieve this classification are described below.

1. Component-wise classification
In this first step we classify each element {𝑥𝑗 , 𝑗 = 1, 2,… , 𝑛} in the sample 𝐱: if the residual of the component 𝑥𝑗 exceeds its
corresponding anomaly threshold 𝑡ℎ𝑗 , it is considered anomalous; otherwise, the component is classified as normal.

𝑦̂𝑗 =

{

1 if |𝑥𝑗 − 𝑥̂𝑗 | > 𝑡ℎ𝑗
0 otherwise

(4)

The selection of the anomaly threshold 𝑡ℎ𝑗 is based on the residuals of the training dataset {𝐗train =
(

𝑥train𝑖𝑗
)

∈ R𝑚×𝑛}, which
contains samples of normal behaviour. Since residuals of anomalous samples are expected to be greater than those of normal
5
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Fig. 4. Results of the classification of two samples (normal and anomalous) of the rotating machine dataset.

samples, we define each component threshold 𝑡ℎ𝑗 as the 95th percentile of the residual error in training data for component
𝑗:

𝑡ℎ𝑗 = 95th(|𝑥train∗𝑗 − 𝑥̂train∗𝑗 |) (5)

In this way, the anomaly decision depends only on the normal behaviour, of which there are often large amounts of data
available; and we choose the 95th percentile as the anomaly threshold, since it is a popular approach [58,59] and provides
a representative measure of training data, while being less sensitive to data noise than other choices in the literature
(e.g., maximum residual error [39]). It should be noted that this 95th percentile could be replaced by a different percentile
depending on the desired trade-off between false positives and false negatives (a lower threshold will increase the number
of false positives, while a higher threshold will increase the number of false negatives). In Section 4.2 we will analyse the
influence of the chosen percentile on the performance of our proposal.

2. Overall classification
In the second step, we assume that the nature of a sample depends on the number of normal/anomalous components present
in it. Hence, we classify the sample 𝐱 in terms of its component-wise classification: if the number of anomalous components
in the sample exceeds the anomaly threshold 𝑡ℎoverall, the sample is considered anomalous; otherwise, the sample is classified
as normal.

𝑦̂overall =

{

1 if ∑𝑛
𝑗=1 𝑦̂𝑗 > 𝑡ℎoverall

0 otherwise
(6)

The overall threshold 𝑡ℎoverall represents the 95th percentile of the number of anomalous components per sample in training
data:

𝑡ℎoverall = 95th

( 𝑛
∑

𝑗=1
𝑦̂train∗𝑗

)

(7)

The datasets used in this research provide us with the overall classification of the samples, but their component-wise
classification is not available. That is why in (7) we operate on the basis of the estimated classification (𝑦̂train), obtained
according to (4).

These two steps result in a classification algorithm that allows us to detect anomalous samples, but also informs us of the presence
f anomalous components in the samples, thus providing an explainable diagnostic containing valuable information about the nature
f the process under study. An overview of this algorithm is presented in Fig. 5.

Finally, in order to study the potential of the proposed classifier, we have compared its performance with that of two different
tate-of-the-art approaches: threshold-based classifier [27,41] and one-class classifier [43,48]. In line with the first approach, we
ave used a threshold-based classifier, which classifies incoming samples as anomalous if the 𝑙2-norm of their residuals exceeds an
nomaly threshold (for reasons of comparison with the two-step classifier, we have chosen the 95th percentile of the 𝑙2-norm of
raining data residuals to be the anomaly threshold). In line with the second approach, we have used a one-class SVM with non-
inear kernel (RBF), trained with training data residuals and different configurations depending on the dataset (rotating machine:
= 0.01, 𝛾 = 0.1; hydraulic system: 𝜈 = 0.01, 𝛾 = 0.1; body motion system: 𝜈 = 0.03, 𝛾 = 0.1). It should be noted that the chosen

onfigurations are the ones that yielded the best classification results (having considered possible values of 𝜈 and 𝛾 in the range
.001–10).

In the next section we will present the overall classification results of these classifiers, and thus determine whether the novelty
f our proposal, which lies in the component-wise classification step, leads to an improvement of performance in the overall
lassification of the samples. We will also analyse the contributions of the classification to the understanding of process nature,
6

hich is a unique feature of our proposal.
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Fig. 5. Classification of the residuals of two samples (normal and anomalous) of the rotating machine dataset.

Fig. 6. Testing machine.

4. Results

We have proposed a residual-error based approach to anomaly detection consisting of a variational autoencoder and a two-step
classification algorithm, and we have tested its performance in three different engineering contexts, which are described below. We
also present in this section the results of the overall classification and the contribution of the component-wise classification to the
understanding of process nature.

4.1. Datasets

The proposed method has been tested on three different datasets, which have been chosen to illustrate the contribution of our
proposal in a wide range of engineering contexts – covering health monitoring in machines (rotating machine dataset) and industrial
systems (hydraulic system dataset), as well as in the biomedical field (body motion dataset) – where anomaly detection is not only
of great value, but a crucial task. In this section we describe the corresponding datasets and their preprocessing.

The states that we have selected as representative of normal/anomalous behaviour in each engineering context are also indicated
below. This selection of states is a problem-dependent decision that we have made in a convenient way to better illustrate the
performance of our method, choosing as normal/anomalous states those that we have considered more appropriate depending on
the nature of each dataset: whether it actually contains data for states that are usually considered as faulty or anomalous for that
particular kind of system or not, whether the amount of available data for normal states is larger than for faulty or anomalous states
(as often occurs in practice) or not, etc. See Tables 4, 7 and 10 for the actual descriptions of the states present in each dataset and
Tables 5, 8 and 11 for the normal/anomalous labelling chosen in our experiments.

4.1.1. Rotating machine
Our testing machine is shown in Fig. 6. It is a 4 kW induction motor that rotates at 1500 rpm with a supply frequency of

50 Hz. We have subjected this machine to seven different tests (Table 4), for each of which three operating variables have been
measured (Table 3), thus obtaining a dataset containing vibration and current data of the rotating machine [60]. In order for the
three variables to have the same range, we normalize this dataset by means of min–max scaling [61] with range [0,1]; and then
we apply the windowing technique, using windows of 100 samples and a 50% overlap. Finally, we concatenate the three resulting
windows (one per variable), thus obtaining samples of 300 elements containing temporal information of the three variables under
study. It should also be noted that tests of mechanical nature (T1, T2) have been considered anomalous and the rest (the normal
test – T3 – as well as the tests of electrical nature – T4, T5, T6, T7 –) have been considered representative of normal behaviour
(Table 5).
7
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Table 3
Variables in the rotating machine dataset.

Variable Description

𝑎𝑥 Horizontal vibration acceleration
𝑎𝑦 Vertical vibration acceleration
𝑖𝑟 Phase R current

Table 4
Tests in the rotating machine dataset.

Test Machine condition

T1 Mechanical fault (eccentric mass on pulley)
T2 Combined electrical and mechanical fault
T3 Normal operation
T4 Electrical fault (5 Ω resistor in phase R)
T5 Electrical fault (10 Ω resistor in phase R)
T6 Electrical fault (15 Ω resistor in phase R)
T7 Electrical fault (20 Ω resistor in phase R)

Table 5
Rotating machine dataset expressed in terms of normal and anomalous behaviour (data size
indicates the number of samples and the number of elements in the samples).

Normal behaviour Anomalous behaviour
(T3,T4,T5,T6,T7) (T1,T2)

Size: 1990 × 300 796 × 300

Table 6
Variables in the hydraulic system dataset.

Variable Description

𝑃𝑆1 , 𝑃𝑆2 , 𝑃𝑆3 , 𝑃𝑆4 , 𝑃𝑆5 , 𝑃𝑆6 Pressure
𝐸𝑃𝑆1 Motor power
𝐹𝑆1 , 𝐹𝑆2 Volume flow
𝑇𝑆1 , 𝑇 𝑆2 , 𝑇 𝑆3 , 𝑇 𝑆4 Temperature
𝑉 𝑆1 Vibration
𝐶𝐸 Cooling efficiency
𝐶𝑃 Cooling power
𝑆𝐸 Efficiency factor

Table 7
Tests in the hydraulic system dataset.

Test Cooler condition

T1 Full efficiency
T2 Reduced efficiency
T3 Close to total failure

Table 8
Hydraulic system dataset expressed in terms of normal and anomalous behaviour (data size
indicates the number of samples and the number of elements in the samples).

Normal behaviour Anomalous behaviour
(T1,T2) (T3)

Size: 88 380 × 17 43 920 × 17

4.1.2. Hydraulic system dataset
It is a dataset containing operating data of a hydraulic test rig [62], which consists of a primary working and a secondary cooling-

iltration circuit. The system cyclically repeats constant load cycles and measures 17 process values (Table 6) while the condition of
he cooler is quantitatively varied (Table 7). We have normalized the dataset by means of min–max scaling [61] with range [0,1]
nd we have considered the total failure of the cooling circuit (T3) to be representative of anomalous behaviour (Table 8).

.1.3. Body motion dataset
The MHEALTH dataset [63] provides 23 process values corresponding to body motion and vital signs recordings (Table 9)

or 10 volunteers of diverse profile while performing 12 different physical activities. Discarding the unlabelled samples from the
riginal data, we have built our body motion dataset, consisting of 12 tests (Table 10), where each test (T1, T2, . . . ,Tn) contains
8
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Table 9
Variables in the body motion dataset.

Variable Description

𝑎𝑐𝑥 , 𝑎𝑐𝑦 , 𝑎𝑐𝑧 Chest acceleration (axis: x,y,z)
𝑒𝑐𝑔1 , 𝑒𝑐𝑔2 Electrocardiogram signal (lead: 1,2)
𝑎𝑎𝑥 , 𝑎𝑎𝑦 , 𝑎𝑎𝑧 Ankle acceleration (axis: x,y,z)
𝑔𝑎𝑥 , 𝑔𝑎𝑦 , 𝑔𝑎𝑧 Ankle angular speed (axis: x,y,z)
𝑚𝑎𝑥 , 𝑚𝑎𝑦 , 𝑚𝑎𝑧 Ankle magnetic field (axis: x,y,z)
𝑎𝑙𝑎𝑥 , 𝑎𝑙𝑎𝑦 , 𝑎𝑙𝑎𝑧 Lower arm acceleration (axis: x,y,z)
𝑔𝑙𝑎𝑥 , 𝑔𝑙𝑎𝑦 , 𝑔𝑙𝑎𝑧 Lower arm angular speed (axis: x,y,z)
𝑚𝑙𝑎𝑥 , 𝑚𝑙𝑎𝑦 , 𝑚𝑙𝑎𝑧 Lower arm magnetic field (axis: x,y,z)

Table 10
Tests in the body motion dataset.

Test Activity

T1 Standing still
T2 Sitting and relaxing
T3 Lying down
T4 Walking
T5 Climbing stairs
T6 Waist bends forward
T7 Frontal elevation of arms
T8 Knees bending (crouching)
T9 Cycling
T10 Jogging
T11 Running
T12 Jump front and back

Table 11
Body motion dataset expressed in terms of normal and anomalous behaviour (data size indicates
the number of samples and the number of elements in the samples).

Normal behaviour Anomalous behaviour
(T1,T2,T3,T4) (T5,T6,T7,T8,T9,T10,T11,T12)

Size: 122 880 × 23 220 315 × 23

Table 12
Overall classification results in terms of f1-score (%) for the three test sets, using random cross validation executed 5 times (we report the mean and standard
deviation of all executions).

Model of healthy behaviour Classification algorithm Dataset

Rotating machine Body motion Hydraulic system

Variational autoencoder
Two-step classifier 97.75 (𝜎 = 0.23) 95.85 (𝜎 = 0.34) 97.92 (𝜎 = 0.44)

State-of-the-art classifiers Threshold-based 93.83 (𝜎 = 2.02) 95.59 (𝜎 = 0.37) 98.42 (𝜎 = 0.08)
One-class SVM 94.33 (𝜎 = 2.33) 94.38 (𝜎 = 0.25) 99.68 (𝜎 = 0.02)

Deep autoencoder
Two-step classifier 93.26 (𝜎 = 2.70) 93.74 (𝜎 = 1.10) 96.45 (𝜎 = 1.56)

State-of-the-art classifiers Threshold-based 92.28 (𝜎 = 2.89) 92.91 (𝜎 = 1.00) 95.57 (𝜎 = 2.78)
One-class SVM 92.46 (𝜎 = 2.65) 90.69 (𝜎 = 0.49) 91.61 (𝜎 = 5.44)

all the samples of the 10 volunteers while performing the activity n. We have normalized this dataset by means of min–max
scaling [61] with range [0,1] and we have considered low-intensity activities (T1, T2, T3, T4) to be representative of normal
behaviour (Table 11).

4.2. Overall classification results

In order to assess the performance of our proposal, we have classified the test set of each engineering system (rotating machine,
ydraulic system, body motion system) using different reconstruction techniques (variational autoencoder, deep autoencoder) and
lassifiers (two-step classifier, traditional classifiers). The results of the classification are shown in Table 12.

According to Table 12, the VAE residuals lead to better classification results than the deep autoencoder residuals, and this can
e seen in the results of the three datasets. With regard to the classification algorithm, the two-step classifier performs better than
tate-of-the-art classifiers in all cases except in the hydraulic system dataset, where applied on VAE residuals both approaches achieve
igh accuracy results and traditional classifiers win by a small gap.

In addition, we have visualized the influence of the anomaly threshold on the results of the proposed method. As mentioned
9

efore, we have chosen the 95th percentile of training data residuals as the anomaly threshold, which means that our proposal
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Fig. 7. Overall classification results of the proposal (VAE and two-step classifier) in terms of f1-score (%) for the three test sets, using random cross validation
xecuted 5 times (we report the mean of all executions).

Fig. 8. Dimensionality reduction of the body motion dataset (a) and its component-wise classification (b), both obtained using a t-SNE with perplexity 30.

epends only on normal behaviour and does not need any anomaly information to perform the classification. As we can see in Fig. 7,
his threshold is not optimal for any of the three datasets, and yet the two-step classifier stands out from traditional classifiers.

In summary, these results demonstrate the potential of the variational autoencoder and also the contribution to the overall
lassification of the samples of the component-wise classification step.

.3. Contributions to the understanding of process nature

The proposed method reports not only the overall classification of the samples, but also their component-wise classification, thus
roviding valuable additional information about the samples, beyond whether they are anomalous or not. Hence, we propose to
xplore the contribution of this classification to the understanding of process nature.

To this end, we have analyzed the component-wise classification results of each engineering system (rotating machine, hydraulic
ystem, body motion system) using the proposed method (two-step classifier applied on VAE residuals) to perform the classification.

.3.1. Body motion dataset: Classes underlying normal/anomalous behaviour
In this section, we explore the contribution of our proposal through data visualization: we have used a dimensionality reduction

echnique (t-stochastic neighbour embedding, t-SNE [64]) to generate a two-dimensional (2D) representation of both the dataset
(Fig. 8a) and its component-wise classification (Fig. 8b), so that we can easily notice the contribution of the classification to the
understanding of the body motion system. In order to simplify the visualization of the results and favour interpretability, the 343 195
samples of the dataset and their resulting component-wise classifications were averaged by subject and activity before projection,
resulting in 120 points that represent the average results for the 12 activities and the 10 subjects.

As we can see in Fig. 8b, since our proposal eliminates the variability associated with normal behaviour (T1, T2, T3, T4) and thus
enhances the abnormal modes present in the samples, the component-wise classification brings to light the activities performed by
the volunteers, apparently clustered according to their level of intensity. Meanwhile, it is difficult to extract any information from
the representation of the original dataset (Fig. 8a).

Therefore, the proposed method not only informs us about the normal/anomalous behaviour of the samples but also gives us
10

qualitative information about the classes (in this context, physical activities) underlying such behaviours.
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Fig. 9. Component-wise classification of contaminated data coming from the rotating machine.

Fig. 10. Average component-wise classification results for all the anomalous samples in the hydraulic system dataset.

4.3.2. Rotating machine dataset: Anomalous components in the samples
Sometimes not only the nature of a sample is relevant, but also that of its elements. In such cases, the information provided by

the component-wise classification step becomes of great value, as illustrated in Fig. 9.
In this figure we can see a 100 ms slice of normal behaviour data (Fig. 9a) that has been contaminated (Fig. 9b) with corrupted

data in variables 𝑖𝑟 and 𝑎𝑦: we have added white noise to 𝑖𝑟 and simulated missing data, sensor fault, etc. in 𝑎𝑦. The component-wise
classification of the contaminated data is shown in Fig. 9c.

The results of the classification shown in Fig. 9c reveal the presence of anomalous elements in the samples, matching the
corrupted data. Therefore, this figure illustrates the value of the information provided by the component-wise classification step,
which in this case allows us to successfully detect in which variables and instants of time the machine has deviated from its normal
behaviour.

In view of these results, it can be said that the proposed method contributes to a better understanding of the process under
study, since it reveals the normal/anomalous nature of each element in the samples, thus providing an explanatory picture of the
normal/anomalous behaviour of the rotating machine.

4.3.3. Hydraulic system dataset: Underlying causes of anomalous behaviour
The component-wise classification step may also help us to identify the underlying causes of anomalous behaviour. For this

purpose we have analyzed the results of the classification, not for one sample, but for all the anomalous samples in the hydraulic
system dataset.

Fig. 10 shows the average component-wise classification of the anomalous samples, where we can see the contribution of each
component to the anomalous behaviour of the system, being the most relevant: 𝐹𝑆2, 𝑇𝑆1 − 𝑇𝑆4, 𝑉 𝑆1, 𝐶𝐸 and 𝐶𝑃 (volume flow,
temperatures, vibration, cooling efficiency and cooling power, respectively).

Those components are either related to the temperature of the hydraulic system or present in the cooling circuit (Fig. 11). As
mentioned in Section 4.1.2, the anomalous behaviour of the system comes from the total failure of the cooling circuit, so the insight
provided by the component-wise classification is consistent with the nature of the process.

Therefore, the component-wise classification of the samples has proven again to be helpful for a better understanding of the
processes, revealing in this case the components involved in the anomalous behaviour of the hydraulic system.

5. Conclusion

In this paper, we have proposed a residual-error based approach to anomaly detection consisting of: 1) a variational autoencoder,
which is trained to reconstruct samples of healthy behaviour based on learning their underlying probability density function (pdf),
11
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Fig. 11. Hydraulic system scheme [62] (consisting of a primary working – Fig. 11a – and a secondary cooling-filtration circuit – Fig. 11b –) including the
contribution of each component to the anomalous behaviour of the system (total failure of the cooling circuit).

so that residuals of incoming samples become a measure of their deviation from healthy behaviour; and 2) a two-step classification
algorithm, which classifies the incoming samples based on their residuals, reporting the normal/anomalous nature of the samples
(overall classification step) and also that of their elements (component-wise classification step).

We have tested this proposal in three different engineering contexts (rotating machine, hydraulic system, body motion system),
considering different reconstruction techniques (variational autoencoder, deep autoencoder) and classifiers (two-step classifier,
traditional classifiers). The results of the research have proven the ability of our proposal to successfully detect anomalies in all
three contexts, being the highest accuracy results those obtained with the two-step classifier applied on VAE residuals. This suggests
that the ability of the VAE to learn the pdf of healthy states gives it a superior performance over the deep autoencoder. Indeed, while
the deep autoencoder models the geometry of the data in the input space, it does not model its density, which makes it accurate in
reconstructing healthy states, but also some non-healthy states; the VAE, in turn, constrains the reconstruction to the support of the
pdf of healthy states; this seems to make deep autoencoders less discriminative for an anomaly detection approach, and thereby, less
efficient. In addition, we have presented a visual analysis of the component-wise classification results that illustrates the contribution
of the proposed classifier to the explainability of the anomaly decision and to the better understanding of the processes under study.

In summary, the proposed method has proven to be useful for the detection of anomalies in engineering systems and also to
provide valuable and explanatory additional information about the samples, beyond whether they are anomalous or not.
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