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González1[0000−0002−0937−1882], Beatriz Garćıa2[0000−0003−1364−2603], Vı́ctor
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Abstract. Photosensitivity is a neurological disorder in which the pa-
tients’ brain produces different types of abnormal electrical responses,
known as Photoparoxysmal Responses (PPR), to specific visual stimuli,
potentially triggering an epileptic seizure in extreme cases. The diagno-
sis of this condition is based on the manual analysis and detection of
these discharges in their electroencephalogram. This research focuses on
comparing different Machine Learning techniques for the automatic de-
tection of Type-4 PPR (the most extreme PPR) in a real EEG dataset,
after the transformation using Principal Component Analysis. Different
two-class and one-class classifiers are tested, and the best performing
methods for Type-4 PPR detection are 2C-KNN and DL-NN. Obtained
results are compared with those achieved from a previous research, re-
sulting in a performance increase of 15%. This system is currently in
study with subjects at Burgos University Hospital, Spain.

Keywords: EEG · PPR Detection · Photoparoxysmal Responses · Pho-
tosensitivity · Epilepsy

1 Introduction

Electroencephalography (EEG) is a technique used for measuring the brain elec-
trical activity by a set of electrodes placed on the scalp that measures the elec-
trical discharges produced by the neurons. Because of this non-invasive quality,
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EEG is widely used for clinical diagnosing and monitoring of different neurolog-
ical disorders, e.g. Alzheimer’s disease [17, 10] or epilepsy [3].

Photosensitivity is an abnormal sensitivity of the brain that provokes electri-
cal epileptic discharges called Photoparoxysmal Responses (PPR) as a response
to certain visual stimuli, like flashing lights or light reflections, response. The lit-
erature [18] has set 4 different types of PPR depending on the spreading and the
waveform of the provoked discharge (see Fig. 1).The 4 types of PPR are named
i) Type-1 PPR –with spikes in the occipital region–, ii) Type-2 PPR –showing
spikes followed by a biphasic slow wave in occipital and parietal regions–, iii)
Type-3 PPR –denoted by spikes followed by a biphasic slow wave in occipi-
tal and parietal regions and spread to frontal regions–, and iv) Type-4 PPR –
characterized by generalized poly-spikes and waves–. Among them, Type-4 PPR
is the most dangerous one, as it can lead to a real epileptic seizure. Besides, in
real scenarios, the PPR characteristics varies from one individual to other and
with several clinical variables –such as medical treatment, sleep quality, time of
day, etc–, making the identification even harder.

Fig. 1. The four types of PPR: top-left corresponds to Type-1 (spikes within the occip-
ital rhythm); top-right corresponds to Type-2 (parieto-occipital spikes with biphasic
slow wave); bottom-left corresponds to Type-3 (parieto-occipital spikes with bipha-
sic slow wave and spread to the frontal region); bottom-right corresponds to Type-4
(generalized spikes and waves).
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This study is a continuation of a previous study in [9], comparing different
Machine Learning (ML) techniques for the automatic detection of Type-4 PPR
in EEG recordings from patients who have been clinically diagnosed with pho-
tosensitivity disorder with different intensity. The final goal is to find the best
method to detect the different types of PPR in order to design an automatic
PPR detection system than can be used in clinical procedures.

The structure of this study is as follows. The next section focuses on some
preliminaries knowledge and the related work the automated PPR detection.
Section 3 describes the modelling alternatives considered in this research, detail-
ing the different methods. Section 4 gives details of the experimentation set-up
that has been carried out, while Section 5 includes all the obtained results and
the discussion on them. The final section draws the conclusion of this research.

2 Preliminaries and related work

Photosensitivity evaluation is diagnosed using the Intermittent Photic Stimu-
lation (IPS) [8, 12], where the patient -monitored with EEG- is stimuled with
flashing lights at different frequencies, increasing first and decreasing later, so to
detect the frequency thresholds where the individual is sensitive. The detection
and analysis of PPR is carried out manually by the clinical neurophysiologists
and nurses, who perform a visual inspection of the patient’s whole EEG recording
searching these phenomena while taking into account their clinical context.

To our best knowledge, no automated method for the detection of PPR using
the standard stimulation system has been developed so far. [14] designed a PPR
detection method by analysing the brain response provoked by a flashing stimu-
lation, but following a different stimulation pattern from the standard IPS used
in clinical diagnosis. There are other recent studies that analyse the photosen-
sitivity and epilepsy based directly on generalized seizures: in [11], a detection
method based on the fluctuation from a high-frequency and a low-frequency com-
ponents in each EEG channel is proposed; [16] applied the Extreme Gradient
Boost technique for the classification of seizures, while a channel-independent
Long Short-Term Memory Network is used in [2]; the combined information ex-
tracted from both EEG and electrocardiogram (ECG) signals is used in [20] in a
multi-modal Neural Network; in [3], K-Nearest Neighbours and Artificial Neural
Networks are used for the detection of ictal discharges and inter-ictal states;
[19] proposed an EEG single-channel analysis applying three types of visibility
graphs to represent different EEG patterns. Other studies make use of additional
and different biometric measures for the same purpose, such as ECG [5, 6, 15],
electromyograms (EMG) [1, 21] or magnetoencefalograms (MEG) [13].

In our previous study [9], which was published in the Neural Computing
and Applications journal, a proof of concept about Type-4 PPR detection was
proposed. The PPR detection task was performed by two classifiers: an unsuper-
vised 1C-KNN and a supervised 2C-KNN. 1C-KNN classified the EEG windows
as normal or abnormal and 2C-KNN classified only the abnormal windows as
PPR or not. For that purpose, the EEG recordings were divided into two sets:
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the first one included all the EEG windows before the first PPR of the current
subject labelled as normal an was used for the 1C-KNN training; the second one
was formed by normal and PPR windows from the other subjects and was used
for the 2C-KNN training. This process is shown in Fig.2.

Fig. 2. When a EEG window comes from frequencies smaller than the stimulation
frequency value at which the first PPR appears (fc, the cut frequency), the window
is preserved for the training of the one-class models; otherwise, the window is labeled
as normal or as anomaly. In this latter case, the two-class classifier labels then the
anomaly window as PPR or not.

This ML procedure was used in the analysis of the effects of Virtual Real-
ity in photosensitivity. The exposure of photosensitive and epilepsy patients to
digital activities and environments has become a major concern with the huge
proliferation of this technology in the last years [4].

3 Type-4 PPR detection using ML

The process we propose are designed following the steps shown in Fig.3. For this
study, we focused in channel Fz because is one of the EEG channels where PPRs
express themselves best.

Firstly, sliding windows of 1-second length and 90% overlapping were ex-
tracted from the raw Fz channel and preprocessed (mean subtraction and Band-
Pass Butterworth Filter in the range 1-45 Hz). Due to the high imbalance of
the original data (only 3% of EEG windows are PPR), undersampling is com-
puted to reduce it, reaching a PPR ratio of 10%. Then, a dimensional reduction
step is performed, where a set of transformations and features are extracted
from the EEG windows and Principal Component Analysis (PCA) algorithm is
used to reduce the dimensions even more. The resulting components are grouped
into clusters and finally analysed and classified by ML algorithms as normal or
Type-4 PPR window.

This procedure is detailed in the next sections: the dimensional reduction
process is detailed in subsection 3.1 and the following clustering of the reduced
data and the selection and configuration of the ML models are explained in
subsection 3.2.
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Fig. 3. The workflow of the designed experiment. The original EEG data are prepro-
cessed and windowed and the imbalance of the data is reduced by using undersampling.
The features are extracted from each EEG window. PCA and K-means are computed
for dimensional reduction and clustering respectively. Depending on the proportion of
PPR windows within each cluster, a different classification model is chosen.

3.1 Dimensional Reduction

Depending on the sampling rate used in the EEG recordings, the windows could
include a large number of samples, which could make the tasks of the classifiers
more difficult. Moreover, finding variables that present significant differences be-
tween the normal brain activity and the PPR windows could make the detection
easier. Because of that, this step is focused in dimensional reduction of the pro-
cessed EEG signal. A total of 32 features from temporal, statistical and spectral
domains are extracted from each window.

– Temporal Domain: Sum of Absolute Values, Maximum Difference, Sum of
Absolute Differences, Total Energy, Absolute Energy, Area Under the Curve,
Entropy and Autocorrelation.

– Statistical Domain: Kurtosis, Skewness, Standard Deviation, Variance,
Maximum, Minimum, Mean of Absolute Deviation, Root Mean Square.

– Spectral Domain: Fundamental Frequency, Maximum Frequency, Median
Frequency, Maximum Power Spectrum, Centroid, Decrease, Spread, Dis-
tance, Skewness, Entropy, Kurtosis, Positive Turning, Roll-Off, Roll-On,
Variation, Bandwith, Human Range Energy.

A cross-correlation vector between each feature and the real labels allows to
find the most relevant and representative of Type-4 PPR features, which turned
out to be Spectral Distance, Maximum Difference or Standard Deviation, among
others. Then, a cross-correlation matrix between all features allows to analyze
their independence: the correlation value is extremely high between the best
features, which means that the represent the Type-4 PPR equally well.

Then, PCA algorithm is computed to reduce these 32 features into a even
smaller set. PCA is the most widely used dimension-reducing technique [7]. This
method extracts uncorrelated linear combinations from the initial dataset called
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Principal Components, which have the maximum variance possible of the original
data.

3.2 Clustering and Classification

Clustering is a ML technique that divides samples into different groups based
on their similarity. After the feature extraction and the dimensional reduction
performed by PCA, the new transformed set presents higher distinctions be-
tween normal and PPR windows, so grouping the data into clusters allows to
distinguish better between the different classes. This step is performed by K-
means algorithm after dividing the data into training set and test set. Given the
training data, K-means algorithm is used to create the appropriate number of
clusters (following the ”elbow rule”), and testing data are then associated to the
most suitable cluster.

Once the data are divided into the clusters, the proportion of PPR samples
within the training data of each cluster is calculated. Depending on this value,
the training and testing data of each cluster are used in a different Machine
Learning technique following these rules:

– If the proportion of PPR samples within the cluster is lower than 15%, i.e.,
the normal class clearly predominates the cluster, a one-class (1C) classifier
will be used and the normal class will be considered as the known class,
training the model only with the normal samples.

– On the contrary, if the proportion of PPR samples within the cluster is
higher than 75%, it will mean that the PPR class clearly predominates the
cluster and a 1C classifier where the PPR class will be considered as the
known class will be used, training the model only with the PPR samples.

– If the proportion of PPR samples within the cluster is in the range 15%-75%,
a two-class (2C) classifier will be used and the model will be trained with
all the cluster’s training data.

The Machine Learning algorithms selected for this study were one-class K-
Nearest Neighbours (1C-KNN) and one-class Support Vector Machine (1C-SVM)
as the one-class classifiers; and two-class K-Nearest Neighbours (2C-KNN), two-
class Support Vector Machine (2C-SVM), Random Forest (RF) and Neural Net-
work with Dense Layer as the hidden layer (DL-NN) as the two-class classifiers.

4 Materials and Methods

This section introduces the data set used in this research and describes the design
of the experiments. The whole process was implemented in Python.

4.1 Data Set Description

The dataset used in this research has been gathered from Burgos University
Hospital. It includes ten anonymized EEG recorded sessions from different pho-
tosensitive patients recorded with the hospital’s own equipment. Among these
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patients, four did not present Type-4 PPR but many PPR from the other cate-
gories, so they were excluded from this study.

Each session consisted of a continuous recording while the first half of the
conventional IPS procedure was performed: the frequency of the stimulation was
only increased in the range 1-50 Hz, but the half corresponding to the descending
frequencies half was not included. The duration of each session varies in the range
3-5 minutes. The EEG signals were recorded at a sampling rate of 500 Hz from
19 electrodes placed following the 10-20 standardized system, as shown in Fig.4.

Fig. 4. Position of the 19 scalp electrodes used to record EEG signals according to
the international 10–20 system of electrode placement, where Nasion is located at the
center of the frontonasal area and the Inion in located at the posterioinferior part of
the skull.

The selected EEG recordings were manually labelled by visual analysis, mark-
ing every PPR that can be categorized as Type-4. The proportion of both class
instances within the dataset is showed in Table 1.

Nº Windows Nº Normal Windows Nº PPR Windows

20130 19510 96’92% 620 3’08%

Table 1. Distribution of instances for each class within the original dataset.
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4.2 Experimentation Design

For this experiment, a leave-one-out 10-fold Cross-Validation scheme is used
(90% train + 10% test) with two different sets of 9 and 12 components created
by PCA algorithm after reducing the set of 32 extracted features (corresponding
to the 90% and 95% of the variance respectively). Both sets are used for the
following process independently.

Once the data of each fold are divided into the respective fold’s clusters, the
proportion of PPR samples within the training data of each cluster is calculated,
the corresponding classification algorithms are executed using the cluster’s data
and each classifier is trained and evaluated with the train data and the test data
associated to its cluster, following the rules previously explained.

For each classifier, different parameter values are also tested:

– For KNN algorithm, the K number of nearest neighbours tested are 3, 5, 7,
9 and 11.

– For SVM algorithm, the parameters to be tested are the regularization pa-
rameter C and the kernel coefficient γ. The values tested are C = [0.1, 1,
10, 100, 1000] and γ = [1, 0.1, 0.01, 0.001, 0.0001]

– For DL-NN, the N number of neurons of the hidden layer tested are 10, 20,
30, 40 and 50. The number of neurons of input and output layers have been
fixed to the number of input variables and 1, respectively.

– For RF, the T number of trees tested are 100, 200, 300, 400 and 500; and
as for the depth of the trees, the number of L levels tested are 5, 6, 7 and 8.

To measure the performance of the different classification techniques, the
Accuracy (Acc), the Sensitivity (Sens), and the Specificity (Spec) measurements
will be calculated.

5 Results and Discussion

The results gathered in this research consist of the Acc, Sens and Spec values
of all classifiers applied in each cluster into which each fold is divided and with
each of the proposed parameter values. Since there are multiple combinations
of algorithms with their results, Table 2 shows the best Acc, Sens and Spec
values obtained in each fold by each classifier: the upper table corresponds to
the one-class classifiers applied in the class-dominant clusters and the lower table
corresponds to the two-class classifiers applied in the balanced clusters.

The shown results are just one example of the best-performing case. Ana-
lyzing the overall results of all classifiers, on the one hand, the results from the
one-class classifiers reveal that both of these methods are not the most suit-
able ones for this procedure: 1C-KNN method presents high Sens but low Spec
values, which means that it tends to label the new data as outliers from the
known normal class; on the contrary, 1C-SVM method presents high Spec and
low Sens values, which means that it cannot distinguish the PPR class from the
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1C-KNN 1C-SVM

Pi Acc Sens Spec Acc Sens Spec

P1 0.5175 0.8462 0.4255 0.7339 0.3077 0.8750
P2 0.3634 0.5353 0.4276 0.7716 0.1087 0.8750
P3 0.5846 0.8542 0.5306 0.6648 0.1667 1.0000
P4 0.3208 0.6389 0.5206 0.6038 0.1042 1.0000
P5 0.4910 0.7667 0.6280 0.8840 0.1667 1.0000
P6 0.4590 0.7321 0.4245 0.7680 0.2500 1.0000
P7 0.4605 0.6571 0.4367 0.7503 0.2387 1.0000
P8 0.4732 0.6727 0.6796 0.7943 0.3824 0.5833
P9 0.4621 0.8125 0.3377 0.8048 0.3125 0.9176
P10 0.4192 0.6489 0.5523 0.7399 0.2426 1.0000

2C-KNN 2C-SVM RF DL-NN

Pi Acc Sens Spec Acc Sens Spec Acc Sens Spec Acc Sens Spec

P1 0.7089 0.6279 0.8056 0.7342 0.6279 0.8611 0.7342 0.6279 0.8611 0.7722 0.6977 0.8611
P2 0.7500 0.6786 0.7917 0.7500 0.6071 0.8333 0.7763 0.6071 0.8750 0.7763 0.6786 0.8333
P3 0.7703 0.7576 0.7805 0.7973 0.6970 0.8780 0.8243 0.6970 0.9268 0.8243 0.6970 0.9268
P4 0.8028 0.8636 0.7755 0.8028 0.7273 0.8367 0.8028 0.7727 0.8163 0.7465 0.7727 0.7347
P5 0.8250 0.7561 0.8974 0.7875 0.6829 0.8974 0.8375 0.7073 0.9744 0.8000 0.7561 0.8462
P6 0.8219 0.8276 0.8182 0.7671 0.7931 0.7500 0.8356 0.8276 0.8409 0.7808 0.8276 0.7500
P7 0.7711 0.7692 0.7727 0.7831 0.6923 0.8636 0.7590 0.7179 0.7955 0.7711 0.7692 0.7727
P8 0.6944 0.6061 0.7692 0.6944 0.6970 0.6923 0.7361 0.6364 0.8205 0.7361 0.6667 0.7949
P9 0.8462 0.8649 0.8333 0.8571 0.8378 0.8704 0.8352 0.8378 0.8333 0.8352 0.8649 0.8148
P10 0.7831 0.6857 0.8542 0.7831 0.6571 0.8750 0.7711 0.6286 0.8750 0.7711 0.7143 0.8125

Table 2. Best Type-4 PPR detection results of each ML algorithm proposed in each
fold. The upper table corresponds to the one-class classifiers (1C-KNN and 1C-SVM),
while the lower table corresponds to the two-class classifiers (2C-KNN, 2C-SVM, RF,
DL).

known normal class. The higher Acc values from 1C-SVM are due to the data
imbalance.

On the other hand, the two-class algorithms present Acc and Sens values in
the range 60%–80% and Spec values in the range 70%–90% for various parameter
values. These results are higher than the one-class ones, which means that they
are able to distinguish both classes better. Moreover, the parameter values that
produce the best detection performance for each classifier are the following ones:
K = 3-5 for 1C-KNN, γ = 0.0001 for 1C-SVM, K = 9 for 2C-KNN, C = 1 and
γ = 0.01 for 2C-SVM, T = 100-200 and L = 5-6 for RF, and N = 20-30 for
DL-NN.

If the class imbalance of the data is taken into account, which makes Spec
measure easier to raise than Sens, the best performing methods for Type-4 PPR
detection are 2C-KNN and DL-NN.
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6 Conclusions and Future Work

In this research, we compared different ML algorithms for Type-4 PPR detec-
tion. For this purpose, a set of 32 features from time, spectral and statistical
domains was extracted from EEG windows and PCA technique was applied for
dimensional reduction. Then, the instances were divided into clusters and a cer-
tain set of classifiers was used in each cluster according to the proportion of
PPR samples within the cluster: 1C-KNN and 1C-SVM were applied in those
clusters in which one class was predominant; otherwise, 2C-KNN, 2C-SVM, RF
and DL-NN were used.

The ML results show that two-class classifiers can detect Type-4 PPR better
than one-class classifiers, and among them, the best detection algorithms are 2C-
KNN and DL-NN. Furthermore, comparing this procedure with the one tested
in our previous research [9], the Type-4 PPR detection performance has been
increased by around 15%, but it is not as high as expected and there is still room
for improvement.

Due to the lack of a large and appropriate EEG dataset, the results are not
good enough by employing classic ML algorithms. Improving the results of this
research would be possible by artificially increasing the available dataset through
data augmentation techniques, which allow creating more EEG recordings with
Type-4 PPRs from those currently available. Re-evaluating the procedure pro-
posed in this study with the new data may allow determining whether a plausible
solution can be found using classical ML.

In addition, Deep Learning techniques can also be tested along with the data
augmentation technique, such as the classification of time series using LSTM-
RNN (Recurrent Neural Networks) or an autoencoder. All of these proposals
represent future research work.
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B., Gómez-Menéndez, A.I., Villar, J.R.: Virtual reality and machine learn-
ing in the automatic photoparoxysmal response detection. Neural Comput-
ing and Applications (Jan 2022). https://doi.org/10.1007/s00521-022-06940-z,
https://doi.org/10.1007/s00521-022-06940-z

10. Morrison, C., Rabipour, S., Taler, V., Sheppard, C., Knoefel, F.: Vi-
sual event-related potentials in mild cognitive impairment and alzheimer’s
disease: A literature review. Current Alzheimer Research 16(1), 67–
89 (Dec 2018). https://doi.org/10.2174/1567205015666181022101036,
http://www.eurekaselect.com/166483/article

11. Omidvarnia, A., Warren, A.E., Dalic, L.J., Pedersen, M., Jackson, G.: Auto-
matic detection of generalized paroxysmal fast activity in interictal eeg us-
ing time-frequency analysis. Computers in Biology and Medicine 133 (2021).
https://doi.org/10.1016/j.compbiomed.2021.104287

12. Rubboli, G., Parra, J., Seri, S., Takahashi, T., Thomas, P.: Eeg diagnos-
tic procedures and special investigations in the assessment of photosensitivity.
Epilepsia 45(5), 35–39 (2004). https://doi.org/10.1111/j.0013-9580.2004.451002.x,
https://doi.org/10.1111/j.0013-9580.2004.451002.x

13. Soriano, M.C., Niso, G., Clements, J., Ort́ın, S., Carrasco, S., Gud́ın, M.,
Mirasso, C.R., Pereda, E.: Automated detection of epileptic biomarkers in
resting-state interictal meg data. Frontiers in Neuroinformatics 11 (2017).
https://doi.org/10.3389/fninf.2017.00043

14. Strigaro, G., Gori, B., Varrasi, C., Fleetwood, T., Cantello, G., Cantello, R.: Flash-
evoked high-frequency eeg oscillations in photosensitive epilepsies. Epilepsy Re-
search 172 (2021). https://doi.org/10.1016/j.eplepsyres.2021.106597

15. Ufongene, C., Atrache, R.E., Loddenkemper, T., Meisel, C.: Electrocardiographic
changes associated with epilepsy beyond heart rate and their utilization in future
seizure detection and forecasting methods. Clinical Neurophysiology 131 (2020).
https://doi.org/10.1016/j.clinph.2020.01.007

16. Vanabelle, P., Handschutter, P.D., Tahry, R.E., Benjelloun, M., Boukhebouze, M.:
Epileptic seizure detection using eeg signals and extreme gradient boosting. Journal
of Biomedical Research 34 (2020). https://doi.org/10.7555/JBR.33.20190016
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