
Citation: deAndrés-Galiana, E.J.;

Fernández-Martínez, J.L.;

Fernández-Brillet, L.; Cernea, A.;

Kloczkowski, A. Addressing Noise

and Estimating Uncertainty in

Biomedical Data through the

Exploration of Chemical Space. Int. J.

Mol. Sci. 2022, 23, 12975. https://

doi.org/10.3390/ijms232112975

Academic Editors: Ian A. Nicholls

and Vladimir N. Uversky

Received: 1 August 2022

Accepted: 18 October 2022

Published: 26 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Addressing Noise and Estimating Uncertainty in Biomedical
Data through the Exploration of Chemical Space
Enrique J. deAndrés-Galiana 1,2, Juan Luis Fernández-Martínez 1 , Lucas Fernández-Brillet 3, Ana Cernea 1

and Andrzej Kloczkowski 4,5,*

1 Group of Inverse Problems, Optimization and Machine Learning, Department of Mathematics, University of
Oviedo, C/Federico García Lorca, 18, 33007 Oviedo, Spain

2 Department of Informatics and Computer Science, University of Oviedo, C/Federico García Lorca, 18,
33007 Oviedo, Spain

3 DeepBioInsights, C/Federico García Lorca, 18, 33007 Oviedo, Spain
4 The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital,

Columbus, OH 43205, USA
5 Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
* Correspondence: Andrzej.Kloczkowski@nationwidechildrens.org

Abstract: Noise is a basic ingredient in data, since observed data are always contaminated by
unwanted deviations, i.e., noise, which, in the case of overdetermined systems (with more data than
model parameters), cause the corresponding linear system of equations to have an imperfect solution.
In addition, in the case of highly underdetermined parameterization, noise can be absorbed by the
model, generating spurious solutions. This is a very undesirable situation that might lead to incorrect
conclusions. We presented mathematical formalism based on the inverse problem theory combined
with artificial intelligence methodologies to perform an enhanced sampling of noisy biomedical data
to improve the finding of meaningful solutions. Random sampling methods fail for high-dimensional
biomedical problems. Sampling methods such as smart model parameterizations, forward surrogates,
and parallel computing are better suited for such problems. We applied these methods to several
important biomedical problems, such as phenotype prediction and a problem related to predicting
the effects of protein mutations, i.e., if a given single residue mutation is neutral or deleterious,
causing a disease. We also applied these methods to de novo drug discovery and drug repositioning
(repurposing) through the enhanced exploration of huge chemical space. The purpose of these
novel methods that address the problem of noise and uncertainty in biomedical data is to find new
therapeutic solutions, perform drug repurposing, and accelerate and optimize drug discovery, thus
reestablishing homeostasis. Finding the right target, the right compound, and the right patient are the
three bottlenecks to running successful clinical trials from the correct analysis of preclinical models.
Artificial intelligence can provide a solution to these problems, considering that the character of the
data restricts the quality of the prediction, as in any modeling procedure in data analysis. The use
of simple and plain methodologies is crucial to tackling these important and challenging problems,
particularly drug repositioning/repurposing in rare diseases.

Keywords: drug design; drug discovery; phenotype prediction; artificial intelligence;
noise and uncertainty

Highlights

• Uncertainty is intrinsic to any estimation problem and mainly comes from noise in
data and modeling hypotheses. Uncertainty is introduced by the question that we try
to elucidate.

• Noise in data always introduces errors in the predictions because it enters the cost
function in a nonlinear way. Uncertainty also means ambiguity in the identification.
The best way to address both issues is sampling.
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• Sampling in high-dimensional spaces is a very challenging task that requires the use
of dimension-reduction techniques. When the character of a problem is determined, it
becomes linearly separable.

• Sampling is hampered by high computational costs to perform forward predictions.
Random sampling methods are highly ineffective. Smart model parameterizations, for-
ward surrogates, and parallel computing are sampling techniques that can overcome
these bottlenecks.

1. Introduction
The Concept of Noise and Its Role on Uncertainty in Biomedical Data

In signal processing, noise is any undesirable modification affecting a signal in any of
the steps concerning its acquisition and/or post/preprocessing. Noise is inherent to any
process of measurement since it is practically impossible in real systems to acquire data
without noise. Noise in data can be of different types depending on its power spectrum,
which is calculated through Fourier analysis of the signal x(t), considered a temporal series.
For a finite-energy signal x(t), its energy can be calculated as follows:

E =
∫ +∞

−∞
|x(t)|2dt. (1)

The density of the spectra describes how the energy E is distributed in the frequency
domain. For that purpose, the Fourier transform of the signal is defined as:

F(x(t)) = X( f ) =
∫ +∞

−∞
e−2πi f tx(t)dt, (2)

where f is the frequency. Expression (2) measures the similarity between the complex
exponential e−2πi f t at the frequency f and the signal x(t). Moreover, one of the main
properties of Fourier analysis is Parseval’s theorem, which states the conservation of energy
when passing from the time domain to the frequency domain, that is:∫ +∞

−∞
|x(t)|2dt =

∫ +∞

−∞
|X( f )|2d f . (3)

Expression (3) states that there is no loss of energy in the frequency analysis; in other
words, the information in the signal x(t) is also contained in its spectrum |X( f )|. When
measurement noise δx(t) is added to the signal, the power spectrum of the perturbed
signal is obviously the sum of the original spectrum of the signal and that of the noise.
White noise has a power spectrum, which is flat; that is, the noise has equal power in all
frequencies. When the power spectrum of the noise does not follow this definition, the
noise is categorized by color, depending on how its power spectral density relies on 1/ f β,
with β = 0 for white noise, 1 for pink noise, 2 for red (Brownian) noise, and β > 2 for black
noise. The aim of this explanation is to provide some insights into how noise contaminates
the signal and makes its interpretation tough.

In fact, signal processing consists of designing special types of filters called linear
time-invariant (LTI) systems S(t), which act on the original signal through the convolution
operator, denoted by ∗:

y(t) = S(x(t)) = S(t) ∗ x(t) =
∫ +∞

−∞
S(τ)x(t− τ)dτ. (4)

This type of system is very useful because the convolution in the spectral domain
transforms to a multiplication, that is:

Y( f ) = S( f )·x( f ). (5)
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Therefore, calling Y( f ) the spectrum of the signal without noise, the LTI system that
performs this task can be calculated as the inverse Fourier transform of the spectrum S( f ):

S(t) = F−1
(

Y( f )
x( f )

)
. (6)

Briefly, these are the basics of the digital processing applied to noise attenuation in
signals. However, in computational biology and in drug design, the problem is a little bit
more complicated than in signal filtering and involves the theory of inverse problems, i.e.,
the part of mathematical modeling that relates causes and observed effects. This is also
called reverse engineering or system identification. Some cases that are discussed in this
paper are:

1. The phenotype prediction problem, which consists of identifying the altered genetic
pathways that are responsible for the development of a disease, given a set of samples
belonging to both disease and healthy control classes.

2. The protein folding problem, i.e., protein tertiary structure prediction from its se-
quence.

3. The single-nucleotide polymorphisms (SNPs) problem, which consists of predicting
if a given mutation (or a set of mutations) in the genome correlates with disease.
Mutations are deleterious if they decrease the fitness of an organism and might be
causing a disease. Mutational effects can be favorable, harmful, or neutral, depending
on their context or position. The deleterious mutation hypothesis assumes that sex
exists to purge a species of damaging genetic mutations. The majority of deleterious
mutations are marginally deleterious, and the introduction of each mutation has an
increasingly considerable effect on the fitness of the organism [1]. Most non-neutral
mutations are deleterious. A related problem consists of predicting how a given
mutation in the DNA affects the expression of the different genes in the transcriptome.

4. The de novo drug design problem, which consists of optimizing the structure of new
drugs with the mechanism of action designed to fight a disease, maximizing efficacy,
and minimizing harmful side effects.

2. Discussion

A very popular phrase of Benjamin Franklin is that “nothing is certain except death
and taxes“. Uncertainty is intrinsic to any estimation problem and mainly comes from
noise in data and modeling hypotheses. Noise in data always introduces errors in the
predictions because it enters the construction cost function, and the inverse problems
consist of identifying the possible causes from a discrete sampling of the effects. Uncertainty
means ambiguity in this identification process; that is, there might exist different plausible
scenarios providing the same effect.

It is important to understand that in a parameter identification problem, sometimes,
the biggest uncertainty is introduced by the question that we try to elucidate. Let us provide
an example. Imagine that in a preclinical trial we try to predict the effect of a given drug on
the expression of a given gene, relating this change in expression to its chemical structure.
In this case, this is the hardest hypothesis, because it might not be the case. Once the
identification problem is designed, how the answer is parametrized is crucial. Trying to
predict exactly the change in expression induced by this drug is not the same as deciding if
the effect is overexpression, underexpression, or neutral. Therefore, modeling should be
contemplated as an art. Inverse and parameter identification problems are very challenging
because they are ill-posed; that is, they usually lack a unique, stable solution.

The only way to address both issues (noise in data and uncertainty) is by sampling the
different scenarios and deciding accordingly. Nevertheless, sampling in high-dimensional
spaces is a very challenging task that requires the use of dimension-reduction techniques.
When the alphabet of a problem is found, it becomes linearly separable. Sampling is
hampered by high computational costs to perform forward predictions. Random sam-
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pling methodologies are obviously forbidden. Smart model parameterizations, forward
surrogates, and parallel computing are needed to overcome these bottlenecks.

In our opinion, the key findings in the research performed in this field so far come
from the side of the algorithms provided by the applied mathematics and computer science
community. The main weakness comes from the data side, since not enough good-quality
open databases are available to find the correct answers. We believe that the ultimate
goal is to put together different expert teams able to simultaneously understand machine
learning and artificial intelligence techniques, with a deep understanding of genomics
and drug design. This is not an easy challenge, because this kind of problem cannot be
solved with a black-box type model. Moreover, big data is always little from the side
of the samples. The pharma industry and hospitals should establish more collaborative
and win–win approaches to boost the use of this powerful technique in the design of new
cures, simultaneously impacting costs and time. This, for us, is clearly the future, and it is
happening now.

3. Methodology
3.1. Inverse Problem

An inverse problem in discrete form consists of a set of equations:

F(m) = dobs, (7)

where m ∈ Rn is an n-dimensional vector of model parameters that should be identified.
Here F, a vector field, is the forward mathematical model, and dobs is an s-dimensional
vector of observed data (or effects).

The forward problem (or prediction problem) consists of calculating F(m); that is,
knowing the cause m, we predict the effect dpre = F(m). The superscript pre in d means
that dpre is the result of a numerical prediction. It follows that it is necessary to measure
the distance between the prediction and the observation. For that purpose, the data
space containing the measurable data and the predictions should have a kind of metric
‖F(m) − dobs‖p to measure the distance between observations and predictions and to
estimate how good they are. The inverse problem is based on finding the origin, m, and
knowing the theoretical model F (or the forward model) to fit the observed data, dobs.

The main difference between the forward and the inverse problems concerns their
well-posedness, i.e., the well-posed character of the solution. In fact, while the direct
problem has a unique and stable solution (it is well-posed), the inverse problem either has
no solution, the solution is not unique, or it does not only depend on the data, and small
perturbations in the data due to the noise can cause drastic (and erroneous) modifications
of the identified model m.

Concerning the ill-posed character of the inverse problem, it is important to determine
the uncertainty space, which is composed of the set of models that fit the data within the
same error bounds Etol :

Mtol =

{
m : C(m) =

‖F(m)− dobs‖2

‖dobs‖2
< Etol

}
(8)

In this case, to define Mtol , we use the Euclidean norm, but other norms can be used.
Fernández-Martínez et al. [2] found that the topography of the cost function in linear

inverse problems (when F corresponds to a linear operator between m and dobs) corre-
sponds to the set of models inside a linear hyperquadric whose center is the least-squares
solution and whose axes are linked to the eigenvalues and eigenvectors of the quadric ma-
trix FTF. Geometrically, this corresponds to a flat elongated valley with null gradients. The
case of linear systems corresponds to finding the solution of the linear system Fm = dobs,
where F is a rectangular matrix, whose rows are observed data (dobs) and whose columns



Int. J. Mol. Sci. 2022, 23, 12975 5 of 17

depend on the size of m. In the case of purely overdetermined linear systems, the noise in
data perturbs the least-squares solution:

FTFm = FTdobs (9)

and might originate spurious solutions, depending on the ill-conditioning of F; thus, the
noise in data might dramatically change the center of this hyperquadric [3] if FTF is ill-
conditioned. In the case of purely underdetermined linear systems, the situation is even
worse, since due to its underdetermined character, the solution might completely absorb
the noise in data without originating any data misfit.

The simplest example is a two-dimensional least-squares problem that consists of
fitting the straight line y∗(x; m) = a0 + a1x to a set of points (xk, yk). The least-squares
problem consists of finding a set of parameters m = (a0, a1) so that the distance between

the observed data vector yobs =

y1
...

ys

 and the predicted values ypre(m) =

y∗1(m)
...

y∗s (m)

 is

minimized. The problem could be expressed in a matrix form as Fm = yobs, where the

matrix F = [1Rs x] depends in the abscissas of the data points x =

x1
...

xs

.

Understanding and quantifying uncertainty in protein mutation is of utmost impor-
tance. It is analysis can be carried out directly by sampling equivalent model parameters,
m = (a0, a1), whose predicted data fall within a specified error tolerance, Mtol .

Mtol =

{
m = (a0, a1) :

‖yobs − ypre(m)‖2

‖yobs‖2
< tol

}
(10)

Fernández-Martínez et al. demonstrated that the landscape of the cost function
corresponds to a straight flat valley in case of linear problems, while in the nonlinear case,
the cost functions have one or more curvilinear valleys of low misfits eventually connected
by saddle points [2,3].

Figure 1 represents an uncertainty ellipse for different relative misfits and different
sets of model parameters, m = (a0, a1). The main conclusion of the uncertainty analysis of
this kind is that any classification problem has a deterministic nature. More specifically, it
is possible to demonstrate that a simple robust method to sample the model parameters is
to divide the problem into different random data bags and find the least-square solution
of them.

In the case of nonlinear inverse problems, the region of uncertainty has a banana
(or croissant) shape and might be composed of different elongated low-misfit basins.
The noise also affects the region of equivalence in the case of nonlinear problems non-
homogenously [4]. Moreover, the solutions of nonlinear inverse problems greatly depend
on the prior information that is given to the optimization algorithm to find the minimum
of the cost function C(m). Local optimization techniques use different regularization
techniques to stabilize the inversion, in the process of finding a unique solution. Sampling
methods have a different philosophy that consists of finding different models in Mtol via
intelligent search and do not need any regularization. The result of the sampling is not one
unique model but a set of models that helps the modeler to make a robust decision. At
the end, the solution of nonlinear systems via linearization implies that the noise on data
impacts the solution of the linearized systems that have as an associated matrix the Jacobian
of F calculated in the model where the linearization has taken place (JF(m0)). In this case,
the ill-conditioning of the Jacobian matrix varies along with the optimization process.
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Figure 1. Example of a linear regression model. Ellipse of uncertainty for different relative
misfits ranging from 10% to 15% and different sets of model parameters found in the different
bagging experiments.

In this field, the probabilistic (or Bayesian) approach to the inverse problems is inter-
esting, since it consists of determining the posterior distribution of the model parameters.
This approach was formerly proposed by Albert Tarantola and Bernard Valette [5,6], In fact,
the Bayes rule applied to inverse problems is:

P
(

m

dobs

)
=

P(m)·P
(

dobs

m

)
P
(

dobs
) (11)

The term P(m) is the prior distribution of the model parameters; P
(

dobs

m

)
is the

likelihood and depends on the cost function C(m) = ‖F(m)−dobs‖2

‖dobs‖2
; and P

(
dobs

)
is the

evidence. The posterior distribution of the model parameters P
(

m
dobs

)
is given by this

probability factorization. A model is more probable if its likelihood is higher–lower C(m),
and it is compatible with the prior information. In practice, the evidence, P

(
dobs

)
is a

normalization constant that considers the probability of having observed dobs. In the case of
nonlinear inverse problems, the posterior probability distribution does not admit analytical
expression as in the case of linear problems, where the posterior distribution is Gaussian.
Sampling methods are needed to approximate this posterior distribution. Nevertheless, this
sampling procedure is hampered by the curse of dimensionality for parameter identification
problems [7]. This result generalizes the previous analysis performed for isotropic spaces,
where it is possible to prove that the probability of sampling inside a hypersphere is almost
impossible for more than 10 dimensions.

3.2. Modeling Errors

In modeling, it is crucial to differentiate between noise and modeling errors. Modeling
errors refer to an incomplete or inaccurate problem understanding; that is, the mathematical
model F is partially incorrect, and Ftrue = F + δF, where δF represents the modeling theory
errors.

In the case where the model is linear, it is very easy to show that the modeling errors
can be interpreted as modeling noise if we know an approximation m̃ of the model m:

Ftruem = (F + δF)m = dobs → Fm = dobs − δF.m̃ (12)
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In the case of a nonlinear problem, similar reasoning can be made by using the Jacobian
approximation of the nonlinear operator F(m), calculated in m0, JF(m0), as follows:

F(m) = F(m0) + JF(m0)(m−m0) + o(‖m−m0‖2). (13)

Therefore, in the presence of modeling errors, the solution of the inverse problem that
is found always differs from the true solution.

Noise and modeling errors, although different in genesis, impact the solution of the
inverse problem and highlight the importance of performing a correct uncertainty analysis.

3.3. The Curse of Dimensionality

The curse of dimensionality refers to the impossibility of sampling high-dimensional
spaces without any prior model for dimensions greater than 10. This phrase was first
coined by Bellman in the context of optimization over a large number of variables [7]. In
fact, the conditional probability of sampling a point inside a hypersphere knowing that the
point is inside the hypercube that inscribes it is practically nil for more than 10 dimensions.
In the case of inverse problems, the associated uncertainty spaces are anisotropic; that is,
the uncertainty is not the same in all directions [8], and the number of effective dimensions
to be sampled decreases to a maximum of five variables.

Therefore, model reduction methods are needed to handle the sampling problem in
very high-dimensional spaces. Practitioners in many disciplines do sacrifice the analysis
of uncertainty due to its complexity. Instead, very complex artificial neural networks are
trained on many examples to learn the attributes and build the perfect classifier. This is the
case with deep neural networks (DNNs) and convolutional neural networks (CNNs) [9,10].
In this case, the over parametrization of the model (number of model parameters) and the
data spaces (number of examples) allow for tuning of the neural networks’ parameters. In
fact, this kind of system can be written in short form:

CNN(m) = dobs, (14)

where CNN is a vector field from RN to Rs, where N is the number of parameters of the
neural network and s is the number of data examples. The fact that the neural system is
overdimensioned, both in the model parameters and in the examples, makes the Jacobian
matrix JCNN(m0) for a given configuration m0 rank deficient. Therefore, there exist many
CNN configurations that can learn and optimize the prediction problem. Nevertheless, the
question remains if these architectures can be simplified, and which examples do we need
to take compulsory into account to optimize the decisions.

4. Specific Problems
4.1. Phenotype Prediction in Drug Design

The first example that we want to examine is phenotype prediction in drug design.
Phenotype prediction consists of identifying the set(s) of genes that influence the disease
genesis and development, which are typically considered altered genetic pathways.

The main challenges for this analysis are the following:

X The lack of a conceptual model that relates the different genes/probes to the class
prediction.

X The incomplete knowledge of genetic functions and genetic pathways, which intro-
duces errors in the analysis.

X The noise in the genetic data and class assignment, which introduces errors in the
altered pathways. Particularly, it has been found that the preprocessing techniques
used in genomic data collection and treatment have a great impact [11,12].

X The highly underdetermined character of the phenotype inverse problem, since the
number of monitored genetic probes is much greater than the number of observed
samples. In fact, the genomic big data is never big because the patient dimension is
always relatively small. Therefore, it is preferable to talk about little big data.
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As a result of all these realities, the phenotype prediction problems exhibit a huge
associated uncertainty space, which may lead to the ambiguous characterization of biologi-
cal pathways (many tantamount genetic networks that predict the phenotype with similar
accuracies) and of the associated therapeutic targets.

A straightforward conclusion of this brief analysis is that it is impossible to discover
the genetic pathways involved by considering just the best high-discriminatory genetic
signatures (with the lowest prediction error), since these genes might not recurrence when
analyzing other independent datasets. The solution to this problem consists of performing
the sampling of the uncertainty space in phenotype prediction and enforcing the hypothesis
of biological invariance, as we explain later in this paper.

The lack of a conceptual model is solved by constructing a classifier between the
group of genetic signatures g and the group of classes C = {1, 2} in which the phenotype
is divided:

L∗(g) : g ∈ Rs → C = {1, 2}. (15)

The phenotype distribution C = {1, 2}might correspond to disease and control sam-
ples to understand the altered genetic pathways and also to perform treatment optimization
and understand the mechanisms of action of a drug and minimizing side effects, separating
responders from nonresponders [13]. The uncertainty space of L∗(g) is in this case:

Mtol =
{

g : ‖L∗(g)− cobs‖p < Etol

}
(16)

which is composed of the discriminatory genetic signatures that predict the observed class
cobs within the same error bound Etol . Here, ‖L∗(g)− cobs‖p represents the optimization
of the cost function O(g) = ‖L∗(g)− cobs‖1, which comprises the observed classes (cobs)
of a group of samples in the training dataset T, and the analogous set of predictions L∗(g),
by the genetic signature g and the classifier L∗(g). Expressed as an inverse problem, cobs

is the observed data, L∗(g) is the phenotype prediction, and ‖L∗(g) − cobs‖1 describes
the prediction error, which is the distance between the observed and predicted classes,
corresponding to the number of failed samples predicted by the classifier.

4.2. The Uncertainty Space in Phenotype Prediction

Phenotype prediction problems are deeply underdetermined, since the genetic in-
formation is always much larger than the number of observed samples. The uncertainty
space related to the classifier L∗, Mtol = {g : O(g) < Etol}, is made up of sets of highly
predictive networks with analogous predictive accuracy, i.e., sets of genes g that classify the
samples with a prediction error O(g) lower than Etol . These groups of genes reside in one
or several flat curvilinear valleys of the cost function topography, O(g) [2,14]. Therefore,
due to the highly underdetermined character of this kind of prediction problem, the related
uncertainty space has an immense dimension, and the characterization of the biological
pathways that could be involved is very ambiguous since there might exist many equivalent
genetic networks that predict the phenotype with similar accuracy. The biomedical robot is
defined as a set of approaches from applied mathematics and computer science, capable
of dynamically learning from high-dimensional data, performing predictions with uncer-
tainty assessment, and generating valid, working hypotheses [15]. Artificial intelligence
(AI) methodologies, undoubtedly, have an important role in this. Particularly, the legibility
and the comprehensibility of these algorithms are of paramount importance to understand-
ing why the drug design is successful. Therefore, if possible, the use of black-box models
should be avoided.

The concept resides in sampling the uncertainty space to discover the altered genetic
pathways and use them in the drug design and drug repositioning processes. Cernea et al.
and Fernández-Martínez et al. [16–18] presented different sampling techniques related to
phenotype prediction. This methodology was applied to the analysis of defective genetic
pathways in triple breast cancer, comparing the results that were obtained with Bayesian
networks, which are directed acyclic graphs used to encode the conditional probability
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distribution between variables. Bayesian networks help to sample the posterior distribution
of the genetic signatures related to the phenotype prediction, P

(
g/cobs). According to

Bayes’ rule for this problem:

P
(

g/cobs
)
∼ P(g) P

(
cobs/g

)
(17)

In this expression, P(g) is the prior distribution for sampling the genetic signatures,
and P

(
cobs/g

)
is the likelihood of the genetic signature g, which depends on its predictive

accuracy O(g). These algorithms have been recently applied to perform the robust sampling
of the altered pathways in different diseases: Parkinson’s, Alzheimer’s, multiple sclerosis,
multiple myeloma, and triple-negative cancer [19–23].

The main source of noise in phenotype prediction problems is due to the presence of
noise in data and also in the class assignment [11]. The noise in data comes for instance
when measuring gene expression in the transcriptome, either by RNA-seq or microarray
techniques. It follows that these data are typically contaminated by measurement noise
that introduces errors in the genetic measure. Moreover, it has been proven that the
preprocessing treatments of the raw data performed for the microarrays tend to introduce
errors in the altered pathways [12]. Furthermore, this study shows that the noise in the
class assignment has a more prominent impact than noise in the expression data.

Summarizing, the uncertainty in phenotype prediction has the following sources:

# Lack of a conceptual model explaining the disease: the lack of this model might
provoke the discovery of spurious relationships.

# Highly underdetermined character: the number of patients is very reduced compared
to the number of possible causes.

# Noise in data (genetic expressions and class vectors).
# The question/problem statement itself might be partially erroneous.

4.3. Drug Discovery and Drug Repositioning/Repurposing

Drug development is a capital-intensive process. The discovery of new drugs and
their development to reach the market in the pharmaceutical industry is an exceedingly
expensive, long, and stringent process, with an average time of 10 to 16 years. In addition,
the high attrition rates in clinical trials are mainly due to the lack of effectiveness and
possible toxicities. The analysis and comprehension of mechanisms of action (MoA) of
drugs and the prediction of toxicities are two major challenges of drug development [24].
Accordingly, the policy of one disease–one target–one drug should be reconsidered, and
drug repositioning seems to be one of the possible answers. Drug repositioning aims
at finding the drugs that are already approved by FDA that can equilibrate the altered
genetic pathways and achieve homeostasis. Once the altered genetic pathways are robustly
sampled, the next step should be performed: optimum compound selection. The main
goal of this procedure is to dramatically increase the approval rate in drug design and the
repositioning of existing drugs. This is of paramount importance in the case of rare diseases
for understanding the disease mechanisms in the search for orphan drugs.

To optimally delineate the targets and compounds, we should use genomic, proteomic,
and metabolomics information. The ongoing view in drug design is that the mechanisms
of action should be able to reestablish homeostasis. For such purposes, the drug and the
disease are treated likewise; that is, the drug should hit the targets that are perturbed by
the diseases, trying to reestablish the equilibrium.

A conceptual scheme of a predictor–corrector methodology for drug design has been
proposed in [25]. Figure 2 shows the scheme of this predictor–corrector methodology,
which is applied iteratively between the preclinical models and clinical trials to optimize
their FDA approval. Two critical points of this methodology are:

# Performing a correct selection of the potential compounds in the preclinical trials to
maximize efficacy and minimize toxicity.
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# Trying to predict the outcomes of clinical trials via preclinical data and AI methods.
This implies an adequate data acquisition pipeline.
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The uncertainty in drug discovery has the following sources:

# The sampling of the altered pathways, as seen in the phenotype prediction problem.
# Lack of a conceptual model relating the expression of the altered genes to the list

of selected potential compounds, otherwise considered the hypothesis of achieving
homeostasis via the effect of these compounds. Moreover, the CMAP data (methodol-
ogy) comes from in vitro experiments and the altered pathways should be rebalanced
for humans.

# Incomplete coverage of CMAP data: the perturbed genes, the compounds, the tissues,
and the doses.

# Lastly, the extrapolation from preclinical analysis (in vivo and in vitro) to clinical
trials (humans) with respect to the mechanisms of action (MOA) and the generation
of toxicities (side effects) is not obvious.

Connectivity Map (CMAP) is a library containing over 1.5 M gene expression profiles
from ~5000 small-molecule compounds to ~3000 genetic reagents, tested in multiple cell
types, developed at the Broad Institute (https://www.broadinstitute.org/connectivity-
map-cmap (accessed on 1 December 2021)).

4.4. De Novo Design: Sampling the Chemical Space

De novo drug design consists of finding/generating novel molecules with specific
pharmacological properties to reverse a disease. These methods have become highly
popular in the last two decades due to a better understanding of biological systems and the
advances in computing techniques, mainly deep learning approaches.

The main big challenge of de novo drug design is exploring the chemical space due to
its huge dimension. It is estimated that the number of possible drug-like compounds in
chemical space may be up to 1023–1060. Moreover, only 108 have been discovered in nature
or synthesized [26,27].

The created mathematical models are mathematical representations that link the struc-
ture of a molecule with its effects. Therefore, one important problem to be solved concerns
the molecules parameterization, to create models between the molecules’ representations
and their properties, that should be annotated in the training dataset.

https://www.broadinstitute.org/connectivity-map-cmap
https://www.broadinstitute.org/connectivity-map-cmap
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In the last few years, the concept of artificial intelligence (or creativity) has been
implemented using deep generative models that have allowed the creation of ever more
autonomous and efficient systems in contexts of art, music, and literature. Inspired by
these improvements, now, these advances and techniques have been applied to molecular
generation and optimization, reducing costs, time, and resources spent on synthesizing
incorrect leads in laboratories or research centers. Recently, several emerging generative
models based on deep learning have proved to be viable and efficient solutions, being able
to optimize multiple pharmaceutically important parameters simultaneously for de novo
drug design, resulting in better exploration of chemical space and helping in finding novel
chemical structures for drug development.

The use of deep learning (DL) approaches, that is, sets of algorithms that use artificial
neural networks (ANNs), with multiple layers of nonlinear processing units for model-
ing high-level abstractions contained in the input data is very appealing in drug design.
Considered learning methods, these are a kind of black-box models that relate abstract
representations of the molecules with their observed properties. One practical example is
the following: let us imagine that based on in vitro experiments, we have at our disposal a
set of drugs that are able, in a tissue at a given dose, to reduce the expression of a given
gene that is clearly overexpressed in a disease. In this case, the deep learning model will try
to relate the structure of the molecule and other measurable and important properties to its
effect in the expression of this gene, that is, to mimic or create a forward model to predict
this effect. It is important to remark that in this case, as in many others in the biomedical
field, these forward models are unknown. Moreover, one of the main difficulties in this DL
design is that the number of examples at disposal is typically very low. Nevertheless, if
this design was successful, we will be able to predict the effect of this gene on a compound
that is not in the training set and maybe to understand, which are the important parts of its
structure that play a crucial role in this effect.

Concerning the use of deep generative modeling of molecules, one of the preliminary
works was the autoencoder adopted by Gomez-Bombarelli et al. [28]. These authors
used the technique based on a gradient-based optimization of molecular properties in a
continuous and differentiable latent space using SMILES, a string-based representation
derived from molecular graphs. It is very important to correctly understand the AI language
that is involved in this terminology. The latent space is the reduced dimensional space that
is used to represent the molecular structure of the compounds and the autoencoders are
nonlinear dimensionality reduction algorithms to perform this task.

Since this seminal work, several advancements have been developed, such as recurrent
neural networks (RNNs), autoencoders (AEs), and generative adversarial networks (GANs),
among others. Recurrent neural networks are a kind of artificial neural network (ANN),
which, unlike feed-forward networks, include feedback components that permit signals
from one layer to go back to a previous layer, resulting in an output influence not just by
weights applied on inputs, but also by a hidden state vector representing the context based
on prior input/output. This interesting change from basic neural networks is applied by
connections between units to generate an internal state of the network that can display
dynamic temporal behavior. This is possible by the most commonly used units such as
long short-term memory (LSTM) [29] or a newer, more computationally efficient variant
called the gated recurrent unit (GRU) [30].

Autoencoders (AEs) are a class of unsupervised neural networks, mostly used for
feature extraction, denoising applications, and dimensionality reduction, in which the
output is set to be equal to the input employing a back-propagation algorithm for the
training [31]. Having this last method as a base, some other advancements have been
developed such as variational autoencoders (VAEs), which make use of the Bayes rule to
sample the latent space in a probabilistic way. These variational autoencoders have shown
better performance, since they are able to learn more robust representations [32]. The closest
idea to autoencoders is dimensionality reduction via principal component analysis (PCA),
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which uses a linear method for the expansion based on orthogonal matrices. Therefore,
passing from the original space to the reduced space is very fast.

Generative adversarial networks (GANs) were proposed by Goodfellow et al. in
2014 [33]. They belong to the set of generative models that are aimed at the generation of
new proposals. In a GAN setup, two differentiable units represented by neural networks
are involved: a generator and a discriminator. The generator network directly produces
samples and tries to maximize the probability of making mistakes by the discriminator in
characterizing inputs as real, and the discriminator, whose job is to distinguish whether
the molecule it is looking at is generated by the generative model or comes from the
training data.

It is important to understand that GAN is a method to create new compounds. In
fact, the problem can be stated as follows: given a set of models with given measurable
properties (positive and negative), the question is how to generate new models from this
training dataset maximizing a given property. Therefore, solving the GAN architecture
needs the solution of complex optimization problems. Coming back to the last example
of the overexpressed gene, in this case, the GANS will be used for instance to generate a
new compound that reduces the expression of this gene and minimizes for instance the
outcome of side effects. GANs should be viewed as smart perturbation methods.

In the last few years, more common deep learning techniques have been described,
and some other improvements have been studied, more specifically, in the de novo drug
design field. First, based on the autoencoder by Gomez-Bombarelli et al., an interesting
technique combines a variational autoencoder with a multilayer perceptron (MLP) to create
new molecules with desired properties. The network consisted of an encoder that converts
SMILES strings into continuous vectors in latent space and a decoder that can turn these
vectors back to a discrete SMILES string, and a multilayer perceptron that predicts the
properties of the molecules [29]. This algorithm has as the main limitation the generation
of many cases of invalid SMILES resulting in unfeasible chemical structures. A successful
way to overcome this limitation was a grammar VAE developed by Kusner et al. [34] and
Dai et al. [35] that explicitly adds syntactic and semantic constraints to SMILES strings
using context-free and attribute grammar.

Recently, there has been an increasing interest in using RNN for the de novo design
of molecules. Segler et al. introduced the notion of transfer and reinforcement learning
for generating focused molecule libraries using RNNs on SMILES [36]. The generative
LSTM-based model pretrained on a general corpus of molecules was either fine-tuned on a
small number of known actives or coupled to an external scoring function for creating novel
structures with desirable activity against a specific biological target. Another interesting
strategy using what the author named SMILES enumeration was proposed by Bjerrum [37],
defining this as a single-line text uniquely representing one molecule, using it as the
raw input to the LSTM cell-based neural network to build predictive models without
the requirement for creating molecular descriptors. The results showed that SMILES
enumeration produces statistically more robust QSAR models when predicting single
SMILES, but even more when taking the average prediction of using enumerated SMILES
for the same molecule.

Some other DL achievements have been reached in the fields of molecular property
and activity prediction, showing better performance compared with older machine learn-
ing techniques for different applications, such as the prediction of biological activity and
physicochemical parameters. One of the first developed examples in drug discovery dates
to 2012, when a multitask deep feed-forward algorithm showed an improvement in the
prediction of drug properties and activities of about 15% in relative accuracy over the phar-
maceutical proprietary system [38]. Later, other groups proved that massively multitask
DL architectures perform better than single-task and random forest models in property
prediction [39,40]. Another example is the application of the classification of several drugs
into therapeutic categories solely based on their transcriptional profiles in different cell lines
combined with pathway information [41], training DL algorithms on large transcriptional
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response data sets. A DL approach named undirected graph recursive neural networks
(UG-RNN) [42] was used to effectively predict the water solubility of compounds.

Although significant progress on DL methods and applications has been made in the
areas of de novo drug design and drug discovery, some outstanding challenges remain,
such as the dependency on using experimental data for training and validation. However,
in recent years, some advancements have been developed to overcome this and other
difficulties in the fields of transfer learning [43], one-shot learning [44] and reinforcement
learning [45], or deep generative models [46]. Furthermore, complementary research into
the generation of new descriptors, such as including fingerprint-based systems [47], as well
as the development of supplementary criteria for a correct representation of a chemical
system, will be essential. The availability of flexible and adaptable DL models can accelerate
future developments via learned features and theory-informed models.

The main causes of uncertainty in de novo drug design are:

# The huge dimension of the chemical space.
# The lack of a conceptual model relating the chemical structure of one compound to

its effect in transcriptomics. The idea is to train AI algorithms to learn the chemical
space.

# Highly underdetermined character of the problem since there are not enough exam-
ples to train these neural networks.

# The parameterization of the compound structure is also an additional source of
ambiguity.

# Noise in experimental data (mainly genetics).
# The question/problem statement itself might be partially erroneous: can the structure

of the compound be related to its effect?

DrugBank is a comprehensive, freely accessible, online database containing informa-
tion on drugs and drug targets, available at www.drugbank.com (accessed on 1 December
2021).

4.5. Uncertainty in the Prediction of Protein Mutations

Identifying amino-acid substitutions that have an impact on protein function and their
implications in disease is one the forefront challenges in proteomics, metabolomics, and
medical genomics [48].

One single individual could experience between 24,000 and 40,000 amino-acid sub-
stitutions. Among these variants, the most important ones are single-nucleotide variants
(SNVs) [49–51], which are directly related to different diseases. However, the increasing
amount of gathered data has not affected the understanding of these disease mechanisms
due to the problem’s complexity. The accuracy of these methods remains limited, since
high false-positive rates are observed [52]. On top of this, the majority of tools are focused
on achieving high accuracy without understanding the links between the classification
attributes and the final predicted result [53–55]. Finally, another major drawback of these
supervised machine learning methods is that decision rules are based on a set of over-
lapped training datasets, yielding higher performance estimates [56,57]. Consequently, it
is very important to train, test, and validate the performance of these tools on completely
independent datasets [58]. This problem is further enhanced by the lack of variability in
training datasets, yielding biased prediction [59].

Predicting the effect of single amino-acid polymorphism (SAP) is a problem of per-
forming a robust classification. Predicting the effect of mutations is a classification problem.
We can understand the prediction of protein mutations as a generalized regression problem
taking place between the protein discriminatory attributes that characterize the mutation
effect and the mutation classes, either neutral or deleterious. Consequently, a key step in
developing a machine learning framework to predict the effect of mutations is to forecast
the effect via consensus, defining and implementing an algorithm that optimally selects the
partial results to be combined in a consensus classifier that selects the final prediction.

The main causes of uncertainty in the prediction of protein mutations are:

www.drugbank.com
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# The lack of a conceptual model relating the mutation to its effect. The idea is to train
AI algorithms to learn the chemical space.

# Highly underdetermined character of this problem since there are not enough exam-
ples to train these neural networks.

# The unknown effect of simultaneous mutations.
# The extrapolation of the effect of one mutation in one protein to other proteins.
# Noise in experimental data (mainly proteomics).
# The question/problem statement itself might be partially erroneous: can the structure

of the compound be related to its effect?

ClinVar is a public archive on the relationships between human variations and pheno-
types available at https://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 1 December 2021).

4.6. Different Approaches to Decrease Uncertainty

A machine learning problem is said to be well-posed if a solution to it exists, if that
solution is unique, and if that solution depends on the data but it is not sensitive to
reasonably small changes in the data. These three causes of ill-posedness are important
with respect to the uncertainty problem.

First, in the case where the solution does not exist, it implies that the question is
somehow unfeasible, and the problem is recast in the least-squares sense. In this case, we
should consider that our learning model is partially incorrect. If the learning misfit is very
high (higher than 25%), the result of the modeling cannot be expected to be successful.

In the case where the solution is not unique, the methodology should be able to sample
all the plausible scenarios. Sampling methods in nonlinear problems are always hampered
by the curse of dimensionality. Therefore, feature selection and model reduction methods
are deeply needed.

Stability is not an issue when sampling methods are used, because they do not com-
pute the inverse operator of the forward problem. Nevertheless, the computation resources
needed to perform the forward predictions might hamper the use of sampling method-
ologies. In this case, fast proxy methods (surrogate methods) are needed to fasten these
computations.

With respect to data, there are two main issues: noise in data and incomplete coverage
of the data space. Both have very bad consequences. In the first case, we do not recommend
using any kind of filters to smooth the data, because their effect could be worse than the
problem they tried to avoid. Our methodologies should be robust to the effect of noise
in data. For instance, the data coverage in the phenotype prediction problem will always
be incomplete, since the number of samples (patients) will always be much lower than
the number of possible genes that might account for the disease development. Therefore,
robust feature selection methods are needed to reduce the dimension of the possible causes
and find the different alphabets. The word alphabets means that there will be multiple
scenarios/solutions that are equally consistent with the data. It follows that increasing the
number of data that is available helps, but in genetic studies, we will always have the case
of little big data on the side of patients, compared to the number of genetic variables.

Finally, the fact that the theory is unknown or incomplete is something that we must
deal with. For that purpose, the artificial intelligence methods that are built should try to
be transparent, that is, be able to generate hypotheses. The term biomedical robots [15]
accounts for a system that can dynamically learn from complex high-dimensional data,
generate a working hypothesis in a transparent way, and perform predictions with its
corresponding uncertainty that is able to sample equally plausible scenarios.

https://www.ncbi.nlm.nih.gov/clinvar/
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