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This publication will present best practices for incremental capacity analysis, a

technique whose popularity is growing year by year because of its ability to

identify battery degradation modes for diagnosis and prognosis. While not

complicated in principles, the analysis can often feel overwhelming for

newcomers because of contradictory information introduced by ill-analyzed

datasets. This work aims to summarize and centralize good practices to provide

a strong baseline to start a proper analysis. We will provide general comments

on the technique and how to avoid themain pitfalls. Wewill also discuss the best

starting points for themost common battery chemistries such as layered oxides,

iron phosphate, spinel or blends for positive electrodes and graphite, silicon

oxide, or lithium titanate for negative electrodes. Finally, a set of complete

synthetic degradation maps for the most common commercially available

chemistries will be provided and discussed to serve as guide for future studies.
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1 Introduction

Efficient non-invasive techniques to establish Li-ion battery diagnosis, prognosis, and

state of safety are keys to accelerate the deployment of large battery systems. Among the

available techniques, the electrochemical voltage spectroscopies that are derivatives of the

voltage response of a battery are especially relevant because they solely rely on sensors

commonly available in commercial battery systems (i.e., current and voltage sensing).

Moreover, because of the derivation, the resulting curves display large variations that can

be easily measured and compared. These variations are related to material chemistry and,

thus, provide thermodynamic information on the internal state of the battery. Among

those techniques, the popularity of incremental capacity (IC) analysis (A) (dQ/dV = f(V))

is growing steadily year by year. This is accompanied by an ever-increasing number of
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publications, and similar to what was reported by Xu (2022) for

electrolytes, the IC-related literature is now a minefield with

frequent inaccuracies and fundamental errors. This is mostly

induced by the fact that the analysis is chemistry dependent and

that a tool used on one chemistry might not be applicable to

others. This work aims to establish a set of best practices for

accurate IC analysis, while providing a strong theoretical

background and addressing the most common issues found

when applying this technique. In addition, a set of synthetic

degradation maps for the most common commercially available

chemistries, as well as exemplary degradation examples, will be

provided to illustrate the discussion and provide a training set for

newcomers. This work will focus on experimental data analysis

rather than modeling. For modeling, interested readers can refer

to Dubarry et al. (2012); Dubarry and Beck (2022); and an article

by Weng et al. (2022) in this issue for applications.

The IC and its inverse technique, differential voltage (DV)

analysis (dV/dQ = f(Q)) introduced by Bloom et al. (2005), are

both non-invasive techniques well suited to establish battery

diagnosis from laboratory testing or field data. They enable

quantification of the degradation modes (Birkl et al., 2017), an

intermediate between the simple capacity/resistance monitoring

and the full post-mortem investigation (Waldmann et al., 2016)

of degradation mechanisms, providing a good balance between

accuracy and required resources (Dubarry et al., 2020). Both

techniques yield the highest accuracy results when used on low-

rate constant current data. The accuracy of the analysis will be

reduced by higher current, low resolution, and noisiness.

Application outside of constant current is more complicated

without a strong model (Dubarry and Beck, 2022). Compared to

DVA, the main benefit of ICA is that IC is sensitive to resistance

changes so that they could be quantified without any additional

experiments such as electrochemical impedance spectroscopy.

Other significant benefits are that blends contribution are

additive (Smith et al., 2012; Schmidt et al., 2013) and that the

x-axis is constant throughout the life of the cells. This prevents

the need for rescaling and it allows working on partial charges or

discharges. The main drawback of IC compared to DV is that the

contribution of the positive (PE) and negative (NE) electrodes is

convoluted (vs. additive for DV), which can make their

individual impact difficult to assess at first glance. This can be

overcome by careful peak indexation (Dubarry et al., 2011a; Barai

et al., 2019; Dubarry and Baure, 2020). More comparisons

between the two techniques can be found in Barai et al. (2019).

Another important aspect to highlight is that there are two

levels for ICA or DVA analysis, namely, high and low (Barai

et al., 2019). These derivative techniques enhance the changes in

the voltage response through usage and, as such, at a high level,

they give a much better picture of the state of the cell than the

traditional voltage vs. capacity curves without any need for

analysis. This is extremely useful to validate accelerated aging

protocols—must have the same voltage response after same

capacity loss to equal same degradation—or validate models

claiming to replicate the electrochemical response of the

cells—must have the same peaks at the same potentials to

equal replication of all reactions. This publication will address

the lower level by providing a guide on how to make sense of the

voltage changes. ICA could not only be used to analyze aging

(cycle or calendar) but also electrochemical milling (Dubarry

et al., 2014), decomposition of additives (Khodr et al., 2020),

lithium plating (Anseán et al., 2017; Chen et al., 2022), the impact

of temperature (Dubarry et al., 2013; Fly et al., 2022; Gauthier

et al., 2022), inhomogeneities (Fath et al., 2019), fast charge

(Tanim et al., 2018), hysteresis (Dubarry et al., 2008),

overdischarge (Zhang et al., 2022), and many other aspects.

2 General comments

All the data presented in this work are stock data from the

‘alawa toolbox, which is available for free for academic users

(https://www.soest.hawaii.edu/HNEI/alawa/). No experiments

were specifically performed for this publication. The use of

synthetic data enables to focus only on the core aspects and

simplifies the discussion by limiting data description. When

available, the reference publication where the data were first

used will be added. Most of the data used in this work were made

publicly available (Dubarry and Anseán González, 2022).

Because normalized synthetic data are used, the unit of the IC

curves will be %Q/V instead of the usual Ah/V, and resistance

values will be in Ω.Ah instead of Ω. For obvious reasons, and to

the best of our knowledge, no publications with erroneous ICA

analysis will be cited in this work, but given the extent of the

literature on the subject, we would like to emphasize that they

only account for a fraction of the non-cited articles.

2.1 IC curve derivation

This section will address 1) the impact of sampling frequency

and 2) the impact of smoothing the voltage curve vs. smoothing

the IC curve. The accuracy of the diagnosis will be significantly

impacted by the quality of the data. It is best to gather data with

well-calibrated equipment, with as good resolution as possible,

1 mV or below is preferred. Moreover, to reduce environmental

and procedural errors further, it is important to ensure

environmental consistency throughout the testing

(temperatures and contacts). The sampling rate should also be

limited to avoid large data files. Recording 2000 points per regime

is sufficient to carry an ICA. IC curves are generally plotted at low

rates (C/10 or below with C/25 preferred) to investigate the

thermodynamical aspects. At higher rates, the IC signature will

be influenced by both thermodynamic and kinetic aspects and

might be harder to decipher. Best practices for testing are out of

the scope of this work and are available in Dubarry and Baure

(2020).
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To calculate the IC curves, our preferred solution is to

apply a filter that considers one data point every set number of

mV, typically 2 mV. As a rule of thumb, similar to that of

X-ray diffraction, the aim is to maintain at least five points

above each peak half-width to trust their position and

intensity. If necessary, a smoothing function could be

applied on the voltage data before derivation to reduce the

noise further. In both cases, it is essential to verify that the

shape and position of the peaks were not affected by filtering

and/or smoothing. Figure 1 presents an illustration of the

impact of filtering and smoothing on the IC response of a

graphite intercalation compound (GIC)/lithium iron

phosphate (LFP) cell during discharge. Figure 1A presents

the impact of the filtering, from no filtering to 8 mV steps. The

data with the 1 mV step are still noisy, while some peaks were

starting to be displaced for the 4 mV step data (circle on

Figure 1A). The data after the 8 mV filtering significantly

deformed the peaks. The 1 mV step data could still be used

with further smoothing, (Figure 1B). For this example, the

smoothing was performed using the MATLAB© smooth

function at different levels, using 1%–10% of the data. In

this example, the 5% smoothing starts to move the peaks, and

this is even more evident on the 10% data (circle on

Figure 1A). Figure 1B also showcases the difference

between smoothing before (full lines) or after (dashed

lines) the derivation. Smoothing after derivation is inducing

much more distortion of the data and should be avoided. This

is explained by the fact that the voltage curve is monotonically

decreasing during discharge whereas the IC curve is not.

Referring to the literature, Li et al. (2018) and Liu et al.

(2022) also looked at the impact of filtering. Last, it is

worth mentioning that some authors also managed to

extract high resolution curves using probability functions

(Feng et al., 2013) and a level evaluation analysis (Feng

et al., 2020). Both these methods could prove useful to

reduce noise further if necessary.

2.2 Making sense of IC curves: Theoretical
aspects

Understanding IC curves requires some knowledge of 1) the

electrochemical behavior of the electrodes, 2) the clepsydra

analogy, and 3) the concept of degradation modes.

Because of the structural changes induced by lithiation/

delithiation, the voltage of electrode materials will change

alongside lithium concentration. Reactions can mainly occur

as phase transformations or solid solutions (Huggins, 2016).

Both have compositionally the same starting and ending

point, but the path differs. Using an analogy and imagining a

bag of marbles starting with white and progressively becoming

black, a solid solution corresponds to all the marbles getting

grayer and grayer together until black. The phase transformation

corresponds to marbles going one-by-one from white to black

instantly. During solid solution, the structure changes with

composition, and this results in a varying voltage and

broadening of the IC peak. During the phase transformation,

the structure and composition of the new and old phases are

constant and only their ratio is changing. This results in a voltage

plateau and a sharp IC peak. Readers interested by the

thermodynamic explanation can refer to Huggins (2016).

Each electro-active material will go through its own unique

set of structural changes through intercalation/deintercalation

and therefore has a unique voltage signature. Figure 2 presents

exemplary incremental capacity curves, showcasing the unique

electrochemical behavior of all the electrodes used in this work.

FIGURE 1
(A) Impact of filtering and (B) smoothing on a C/25 GIC/LFP discharge cycle.
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The main reactions will be numbered in white from high to low

voltage for the PE and in black from low to high voltage for NE.

Numbering is reversed for the NE because it is going through the

opposite regime to that of the PE. By convention, the IC peaks in

discharge should be negative and the one in charge should be

positive. Starting with the top row, LiCoO2 (LCO),

LiNixMnyCozO2 (NMCxyz) with x,y,z = [1,1,1] and [5,3,2]

(NMC111 and NMC532) share a lot of similarities in their

electrochemical behavior. The response is mainly made of a

broad shoulder at high voltage (➀) and a well-defined peak at low

voltage (➁). For LCO, it has to be noted that, depending on the

synthesis method and coatings, two small peaks could be present

in the middle of shoulder ➀ (Reimers and Dahn, 1992). For the

NMCs, peak ➁ is broad in discharge and could have two

components in charge. For higher Ni concentration in NMC,

NMC811, the electrochemical response is more complex with five

clearly identifiable peaks (➀–➄), including a very sharp peak at

high voltage (➀). The intensity of this peak is composition-

dependent and might vary between samples from different

manufacturers. For more details on the effect of chemical

composition on the response of NMC, interested readers are

referred to MacNeil et al. (2002); Noh et al. (2013). Continuing

with the second row, nickel cobalt aluminum oxide (NCA) shares

some similarities with the low Ni-layered oxides, but four peaks

are observed (➀ to ➃). Lithium manganese oxide (LMO)

presents an interesting electrochemical response with some

capacity at high voltage with two peaks (➀ and ➁) and some

capacity at low voltage (➂) with no electrochemical activity in-

between. The low voltage capacity (peak ➂) is not accessible in

GIC/LMO cells because there is not enough lithium to start with

but it could be accessible in the case of blends (Dubarry et al.,

2015). LFP presents a single peak in charge and discharge (➀)

around 3.43 V. The third row showcases the NEs, first GIC

presents three well-marked peaks (➊,➋, and ➎) and two small

peaks that might be hard to see for some graphites (➌ and ➍).

Lithium titanium oxide (LTO) presents a signature similar to LFP

but at a voltage around 1.55 V. Finally, silicon (Si) showcases two

broad peaks (➊ and ➋). It has to be noted that materials from

different manufacturers, batches, or synthetized differently might

not have exactly the same response as the materials showcased in

Figure 2 but the described trends should be similar.

The next stage is to understand how the PE and NE interact

with each other at the full cell level. As explained in Dubarry et al.

(2011a); Barai et al. (2019); Dubarry and Baure (2020), this can be

seen as a communicating vessel problem. To ease the discussion,

and to kill two birds with one stone, Figure 3 presents an example

of the process for a blended (NMC0.75, LMO0.25) PE vs. graphite.

Figure 3A showcases the response of the blend vs. metallic Li to

exemplify that the response of the blends is the sum of the

pondered response of the individual components. This is because

the potential of an electrode will only change when all the lithium

available at the current voltage are exchanged, independently of

where they are coming from. Figure 3B presents the complex

response of the full cell when the blend is associated with graphite

at the NE. Comparing the peaks from Figure 3B to the ones of the

PE (Figure 3A) and the NE (GIC on Figure 2), the

correspondence is not evident because each peak on the IC

curve corresponds to the convolution of each electrode

FIGURE 2
Exemplary C/25 electrochemical behavior for all the material used in this work.
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response. The key is to realize that the lithium going back and

forth between the electrodes could be seen as a liquid going back

and forth between two bulbs in a clepsydra, or water clock. The

shape of the bulb is going to define how the height of the liquid in

each bulb will be changing when liquid is transferred. In this

analogy, the height of the liquid represents potential energy,

which is analogous to voltage. For the voltage of a bulb to match

the half-cell response of the electrode when it is emptied, it has to

be shaped as the IC curve (Dubarry and Baure, 2020) as,

assuming a constant flow, for each voltage V, the

corresponding volume of liquid to remove to change the

voltage by dV is dQ/dV. The clepsydra is represented

schematically in Figure 3C. At the beginning of the discharge,

nearly all the lithium is in the NE. The corresponding bulb is

nearly full and there is liquid up to the lowest voltage peak➊. The

PE is almost empty and this corresponds to only a little liquid in

the bottom area, ➀NMC. The corresponding feature on the IC

curve can thus be labeled ➊+➀NMC as it corresponds to the

voltage difference between these reactions in each electrode. If

some capacity is passed, the liquid height in the NE will go down,

whereas it will go up in the PE. Therefore, the difference between

the heights in the two bulbs, that is, the voltage of the cell, will go

down. Taking an example toward mid-discharge, the NE could

be filled up to peak ➋ and the PE to peak ➁NMC. The

corresponding peak will thus be ➋+➁NMC on the full cell IC

curve. At the end of the discharge, the NE is nearly empty on peak

➎, whereas the PE is finishing peak ➁NMC. A different way of

visualizing the same concept with more emphasis on capacity for

each electrode, or component of, is presented in Figure 3D

(Dubarry et al., 2011a). A new feature will be visible on the

IC curve every time there is a reaction change in any of the

electrodes.

It can be noticed on Figure 3D that some of the PE capacity is

not used at low voltage (dashed area on bottom), and reciprocally

some capacity of the NE is not used at high voltage (dashed area

on top). This is because typical GIC-based cells are oversized,

carrying an excess of NE to prevent lithium plating at the edges of

the graphite anode. For the PE, some capacity is not used because

the solid electrolyte interphase (SEI) formation and growth

during formation consumes Li-ion, which prevent the PE to

be fully lithiated back. Therefore, to properly describe the

matching of the electrodes, it is necessary to estimate the

excess on both sides. This could be performed by quantifying

the ratio of capacity between the NE and the PE, the loading ratio

(LR), and their offset (OFS), Figure 4A (Dubarry et al., 2012). The

initial LR and OFS are usually varying from manufacturer-to-

manufacturer, from cell to cell because of manufacturing

variability (Devie and Dubarry, 2016), and from differences in

FIGURE 3
(A) IC signature of a (NMC.75, LMO.25) blend with a 3/1 ratio vs. metallic Li, (B) signature vs. graphite. (C) Clepsydra analogy, and (D) capacity
equivalence for easier full indexing.
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architecture (e.g., high power vs. high energy (Dubarry et al.,

2014)). From experience, the offset is generally small for GIC/

layered oxide-based cells (2–5%) because some PE is lost

alongside the SEI layer formation in the first cycles (Devie

and Dubarry, 2016). This is also true for LTO-based cells

because there is little to no SEI formation (Baure et al., 2019).

This however is not the case for GIC/LFP-based cells where the

offset could be larger (7–12%) (Anseán et al., 2016) because the

PE is stable through initial intercalation/deintercalation.

Assuming that the electrochemical behavior of the electrodes does

not change with time, which is true for most commercial electrodes at

the moment, battery degradation only affects their matching.

Figure 4B presents the impact of varying LR and OFS on capacity

loss. This highlights how an infinite amount of degradation paths can

lead to the same capacity loss.When only looking at thermodynamics,

diagnosing cell degradation equates to finding the new LR and OFS

after aging. Kinetics will induce further changes such as variations in

ohmic and faradic resistances. While describing changes of

parameters is enough to provide a diagnosis, it lacks physical

meaning. Fortunately, their variations can be linked to the

degradation modes, a set of metrics representative of the changes

within a cell (Birkl et al., 2017; Dubarry et al., 2020; Dubarry and Beck,

2022). Degradation modes refer to the impact of degradation

mechanisms on the electrode voltage response rather than their

root cause. They comprise the loss of lithium inventory (LLI), the

loss of active material (LAM), and kinetic limitations (KL) because

every degradation process can always be decomposed to its impact on

the amount of material able to react, on the amount of lithium able to

go back and forth, and on the overall electrode kinetics (Dubarry and

Beck, 2022). KL should be decomposed further into ohmic and faradic

contributions. LAM and KL are electrode-specific and even material-

specific for blends (Baure et al., 2019). More details on the concept of

degradation modes can be found in Dubarry et al. (2012); Birkl et al.

(2017). In addition, readers interested in IC when the electrochemical

behavior of the electrodes changes with time can refer to Rodrigues

et al. (2022) and Dubarry and Beck (2022).

Going back to the clepsydra analogy, it also allows illustrating

the impact of the degradation modes on the electrode matching,

(Figure 4C) (Barai et al., 2019). In case of LAM, one bulb becomes

smaller compared to the other but the volume of lithium remains

the same. This will change the filling of the affected electrode and

thus the voltage response of the cells. This will also

predominantly affect the LR. LR will increase in case of

LAMPE and decrease in case of LAMNE. In case of LLI, the

electrodes are untouched but some lithium is missing, therefore

the NE cannot be filled to the same level at the end of charge. In

other words, there is a leak in the clepsydra. LLI is the main

contributor to the increase of the offset. In case of increase of

ohmic resistance, the two bulbs are getting closer together in

discharge (average voltage decreases) and farther away in charge

(average voltage increase). This might not be associated with any

capacity loss initially (Attia et al., 2022). In case of change of

faradic resistance, the shape of the peaks is altered with the peaks

getting broader with worsening kinetics, for example, increasing

rate (Schindler et al., 2019) or decreasing temperature (Dubarry

et al., 2013; Fly et al., 2022). An example is presented in

Figure 5A. Interested readers can find a full set of equations

in (Dubarry et al., 2012).

FIGURE 4
(A) Representation of the relationship between the PE, NE, and full cell. (B) Exemplary contour plot showcasing evolution of capacity loss as a
function of the variations of LR andOFS. (C)Clepsydra analogy for the impact of LAM, LLI, and R changes, both ohmic and faradic. Adapted from Barai
et al. (2019); Dubarry and Baure (2020).
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2.3 Initial steps for analysis

Because every chemistry presents a different electrochemical

behavior, Figure 2, and because every battery will have its own set

of LR and OFS, it is recommended to always start from a

degradation map. A degradation map is a compilation of

synthetically generated curves (Dubarry et al., 2012),

representing the voltage variations associated with single

degradation modes (e.g., only LLI, only LAMPE). These

synthetic curves help decipher which part of the curve is most

sensitive to a specific degradation mode. Degradation maps

usually consist of several panels showcasing the impact of a

specific degradation mode individually on the voltage response of

the cell. The last panel often showcases the evolution of the

capacity loss along the degradation modes. Degradation maps are

available in the literature for most chemistries and are collected

here for convenience with the associated publication if available.

Corresponding data can be found in Dubarry and Anseán

González (2022).

Before looking at the degradation map, it is important to

discuss how to describe IC curves. First and foremost, the voltage

of the peak maximum intensity is not its position as the peak

position is the front of the peak. This is because the reaction is

starting at a given potential (the redox potential), which is the

same in charge and discharge. In discharge, the reaction will only

occur below this potential. In charge, the reaction will only occur

above this potential. This is exemplified in Figure 5A with the IC

curves for an ideal phase transformation with two different

kinetics in charge (blue: fast and red: slow). In this example,

the position of the peak did not change with kinetics, it only

broadened. With the decrease of the front slope of the peak, the

position of the maximum intensity will move but the reaction

remained the same. For perfect phase transformations, and at low

rate, the peaks in charge and discharge should be perfectly

aligned like in Figure 5A. If not, a potential hysteresis can be

discussed.

It is also important to realize that features other than peaks

can be used for efficient ICA, Figure 5B. Depending on the case

figure, features of interest (FOI) can be defined from the onset,

position, intensity, width, front slope, back slope, area, or offset.

The choice of FOI will depend on the chemistry, voltage window,

and regime (Dubarry et al., 2017; Dubarry and Beck, 2021). FOIs

description for the main commercially available chemistries will

be provided in Section 3 of this work.

The goal of an ICA analysis is to quantify the degradation

modes. For a non-blended system, there are six unknowns: the

three thermodynamic modes LLI, LAMPE, and LAMNE, and three

kinetic ones, the ohmic resistance increase (ORI), and the faradic

rate degradation (FRD) on the PE and NE (Dubarry et al., 2012).

This is a logical but qualitative process of elimination approach

starting from the experimental data and the associated

degradation map.

ORI is the easiest to assess as, if the charge or discharge

always starts from the same state of charge, it can be easily

quantified from the evolution of the initial voltage drop (Dubarry

and Baure, 2020). If the IC intensity comes back to zero at the end

of discharge upon aging, it can also be determined that the

resistance increase does not induce any capacity loss (Attia et al.,

2022).

The second mode that is easily quantifiable is the one

responsible for the capacity loss. This corresponds to

identifying which electrodes are limiting at end of charge

(EOC) and end of discharge (EOD) and this is chemistry and

parameter dependent. Figure 6 presents a schematic

representation of the four possible cases figures for the

limiting electrodes with the associated equations linking

capacity loss and degradation modes. If the PE is limiting at

EOC and the NE at EOD, as in a traditional graphite-based

battery at beginning of life (BOL), the capacity loss is driven by

LLI because there is a “reservoir” of PE and NE on each side as

discussed earlier. Therefore, before the LAMs are high enough to

change the limiting electrodes, they are hidden degradation

FIGURE 5
(A) Ideal IC peak for two different kinetic values and (B) other possible FOIs. Adapted from Dubarry and Baure (2020).
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modes and are associated with little to no capacity loss. This

exemplifies why degradation and capacity loss must be

decorrelated. For quantification, it is important to realize that,

for Li-ion systems, the entirety of the lithium is provided by the

PE, therefore the relationship between LLI and capacity loss

needs to be pondered by the capacity ratio between the PE and

the full cell. If the NE is limiting on both ends, as in a typical

LTO-based cell at BOL (Baure et al., 2019; Baure and Dubarry,

FIGURE 6
Impact of limiting electrodes on the main contributor to capacity loss with associated equations for typical graphite and LTO-based cells.

FIGURE 7
Degradation map for a GIC/NMC cell for up to 30% of LLI and LAMs and up to 5x kinetic and resistance increases with 2% interval (thick full line:
initial cycle, dotted lines: intermediate cycles, and thin full line: final cycle).
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2020), the capacity loss is driven by LAMNE. If the full cell

capacity is smaller than the one of the NE, the ratio of LAM/

capacity loss will not be 1:1. In addition, in this case figure, LLI and

LAMPE are hiddenmodes because they have a “reservoir.” If the PE

is limiting on both ends, the capacity loss is unsurprisingly driven

by LAMPE while LLI and LAMNE are hidden. The fourth

configuration (NE limiting at EOC and PE at EOD) is more

complex with a capacity loss induced by both LAMs with LLI only

as a hidden mode. It has to be noted that the provided equations

are true for electrodes with a perfect plateau and at low rate. More

complex voltage responses might influence the values slightly. This

is what typically explains some counter intuitive effects such as

increases of capacity at beginning of cycling, the fact that capacity

could be lost at low rate but not at high rates (Dubarry and Liaw,

2009; Dubarry et al., 2014), or the fact that LLI could in some cases

not be fully correlated with capacity loss (Weng et al., 2021).

In summary, LLI is usually responsible for the initial capacity

loss for graphite-based cells except for smaller voltage windows

where LAMPE could not have time to be compensated. In cells for

which plating could occur in the potential window, LAMNE will

never be responsible for any significant capacity loss because it

will be supplemented by plating. Plating can be identified in the

LAMdeGIC panel with a drop in potential before coming up again

in charge (* in Figure 7). Plating by itself does not induce capacity

loss, only irreversible plating does by adding LLI (Attia et al.,

2022). For LTO-based cells, however, capacity loss is often

associated to LAMNE initially because plating is well outside

the potential window. The other cases of limiting electrodes

could occur upon aging.

The origin of capacity loss can be deciphered following

logical deductions by comparing the degradation map to the

experimental data. Figure 7 presents the degradation map for a

GIC/NMC to exemplify the process. Looking at capacity loss

panel in the bottom right panel, it is observed that LAMPE

without lithium (i.e., LAMdeNMC) is not initially associated

with any capacity loss. This is because the PE is not limiting

at EOD and therefore has a “reservoir” as exemplified in

Figure 3D. Looking at the associated voltage response in the

corresponding LAMdeNMC panel, the consumption of the

reservoir is associated with a move of the lowest voltage peak

➎+➁ toward lower voltages before a gradual disappearance

when the PE becomes limiting. Therefore, if this peak on the

experimental data did not move, or moved toward higher

voltages, the PE cannot be limiting at end of discharge and no

capacity could have been lost because of LAMPE. Therefore, for

low ORI changes, the capacity has to be attributed, and be

directly proportional, to LLI. If the peak started to disappear,

then the PE became limiting and LAMPE is responsible for the

capacity loss.

Depending on the limiting electrode, the remaining two

thermodynamic degradation modes within LLI, LAMPE, and

LAMNE might be more complicated to decipher. The key to

addressing this occurrence is to find sensitive FOIs. This is

where the degradation maps provide valuable information as

they provide a broad view of the possible spectrum of

degradation. To help even further, the lithiated LAMs are

sometimes plotted (LAMliPE and LAMliNE, as opposed to the

delithiated ones de-). LAMliX is equivalent to LAMdex + LLI

while LAMX and LAMdeX are the same. LAMliX are here for

illustration only as it is almost impossible to determine where the

lithium was lost using IC alone. To the best of our knowledge, it

was performed convincingly once in a very specific case figure

(Devie et al., 2016). However, plotting them allows to visualize how

the FOI moves with LAMs and LLI occurring concomitantly. This

is essential to monitor potential combined effects. For example,

looking at the low voltage peak ➎+➁ at 3.45 V in charge, LLI is

pushing the peak toward higher voltages, LAMPE toward lower

potentials, and LAMNE does not move it at all (arrows and equal

symbol on Figure 7). Therefore, by identifying that in case of

LAMPE + LLI in a 1:1 ratio the➎+➁ peak is not moving as much

because the LLI and LAMPE impact are canceling each other, and

that in case of LAMNE + LLI the➎+➁ peak is moving at the same

pace than of under LLI alone, it can be determined that ➎+➁

might be a good indicator of the LAMPE/LLI ratio. The maps are

here to help define chemistry-specific logical relationships between

degradation mode and voltage variations in order to eliminate any

guess work. A more chemistry-specific discussion will be provided

in Section 3, with associated look-up tables and degradation maps

is SI (Figures S1 to S10).

Differences in peak shapes and position that still cannot be

explained after ORI, LLI, and LAMs quantification might

indicate some additional kinetic limitations on either

electrode needs to be considered. This includes changes in

rate capability or inhomogeneities. The degradation map can

help showcasing how, and how much, the peaks could be

moving if kinetics degraded or improved with the rate

degradation factor (RDF) for kinetics and the ohmic

resistance increase (ORI) for polarization.

The overall process is summarized as a flow chart in

Figure 8, starting from the experimental data to first

quantify eventual resistance changes, then the

determination of the limiting electrodes to decipher which

thermodynamic mode is responsible for capacity loss using a

degradation map. The degradation map is also needed for the

next two steps corresponding to the quantification of the

remaining thermodynamic modes and of the kinetics using

different FOIs.

2.4 Other considerations

One common question about ICA is whether to use the

charge or discharge curves. Both are valid and should lead to the

same results. The decision should first be based on the

application. If the deployed data are more likely to be

analyzed in charge (e.g., electric vehicles) then charge should
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be used. Inversely, if the most likely regime for analysis is the

discharge, discharge should be used. The main difference

between the charge and discharge curves is usually introduced

by the kinetics of the PE for graphite-based cells (Dubarry and

Liaw, 2009). Indeed, Figure 2 shows that graphite showcases thin

peaks for graphite, whereas the peaks of the PE are usually

broader. Depending on the regime, graphite peak ➎ will

either be the last (discharge) or the first (in charge) to happen

and, as Figure 5A displays, with asymmetric peaks, the same

capacity at the end of the reaction will correspond to a bigger ΔV
than that at the beginning. This is why the low voltage graphite

peaks are usually much more visible in charge. Inversely, high

voltage features are usually more resolved in discharge.

The “peak area analysis” is often used to analyze batteries using

lithium iron phosphate (LFP) as the positive electrode (Dubarry et al.,

2014; Anseán et al., 2016, Anseán et al., 2017) but is not recommended

for other chemistries. This analysis is working for LFP, while the NE is

limiting at EOD, because the intensity of the IC peaks goes back close

to zero before the next peak start, Figure 2, therefore the capacity

under the peaks is well separated. This is not the case for other

chemistries, and such analysis should thus be subjected to caution. For

chemistries with a well-marked transition between graphite➊ and➋

for both the pristine and aged cell, and while the NE is limiting at

EOD, the technique could still be used to get an approximate value of

LAMNE (see example in Section 4 for NMC111).

Lithium plating is usually muchmore visible in charge because

its reversibility is usually pretty low. Before the discharge, the

lithium could mostly have been intercalated back in graphite

during a rest or became passivated by the electrolyte (Attia

et al., 2022). Plating will usually appear as an additional peak at

high voltage about 80 mV above the last graphitic peak (depending

on rate and PE) (Ratnakumar and Smart, 2010; Anseán et al., 2017;

Chen et al., 2022). The acceleration of the rate of LLI can be linked

to the amount of irreversible lithium plating (Anseán et al., 2017)

and the ratio of LAMNE/LLI can be used to predict the onset of

lithium plating (Anseán et al., 2017; Baure and Dubarry, 2019),

which can enable forecast of the knee in the capacity loss or

resistance increase (Anseán et al., 2017; Attia et al., 2022).

One aspect that is often neglected for blended electrodes is to

separate both components for LAMcalculations. It is highly likely that

both components of the blends are degrading at a different pace, or are

affected differently by the conditions (temperature, depth of discharge,

SOC...). An example of that is presented in Baure et al. (2019), with

different impacts of state of charge and temperature on NCA and

LCO, which was not surprising as they are not affected by the same

calendar aging (Dubarry et al., 2018b). In addition, as thematerials are

sharing Li-ions when blended, kinetics differences can lead to

overdischarge issues on some components of the blend (Dubarry

et al., 2015).

As showcased recently from the analysis of packs (Dubarry

et al., 2009; Tanim et al., 2021) or single cells (Lewerenz and

Sauer, 2018; Sieg et al., 2020) inhomogeneities (whether in the

pack as imbalance or in the single cells as local gradients) could

have a significant impact on the voltage response. This will be an

essential aspect to consider, and quantify, for future studies on

packs or single cells. Recent models (Dubarry et al., 2019;

Dubarry and Beck, 2022; von Kolzenberg et al., 2022) are

starting to provide information on this impact. Early work

showcases an impact resembling kinetic limitations on the NE

(RDFGIC on Figure 7). Figure 9 presents two examples of the

impact of ±5% inhomogeneities on 1) a GIC/NMC cell and 2) a

GIC/LFP cell. Early modeling using the method proposed in

Dubarry and Beck (2022) does not show any noticeable impact of

the LFP cell whereas some are visible for NMC (circles) near

graphitic transitions. Additional work is in progress in our

laboratory to investigate this issue further.

3 Chemistry-specific comments

3.1 GIC/layered oxide-based batteries
(LCO, NCA, and NMCs)

Figure 10A presents the evolution of the IC curves for a

GIC/NMC111 cell up to 15% LLI, 10% LAMPE, and 10% LAMNE

(full thin line), with 3% increments (dotted lines). For this cell,

FIGURE 8
Proposed flowchart for successful ICA.
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FIGURE 9
Comparison of the voltage response of a homogeneous cell vs. a cell with ±5% of LLI, LAMPE, and LAMNE for (A) a GIC/NMC cell and (B) a GIC/
LFP cell.

FIGURE 10
Peak evolution from the pristine cell (thick line) to 15% LLI, 10% LAMPE, and 10% LAMGIC (thin line) and intermediates (dotted lines) for (A) GIC/
NMC111, (C) GIC/NCA, and (D) (GIC,Si)/NMC811. (B) Effects of NE rate capacity degradation on a GIC/NMC111 cell (C/10 simulation with up to 10%
LAMNE with a 4x worsening of the kinetics and an 80% increase of resistance).
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six peaks can be labeled and seven FOIs can be defined. The

intensity of the shoulder at high voltage,➊+➀, could be used as

FOI1 (the area over a small potential range could also be used to

average the impact of noise). The intensity and position of the

minimum around 3.8 V between ➊+➀ and ➋+➀ could be

defined as FOI2 and FOI3, respectively. Finally, the intensity

and position of the maximum intensity for peaks ➋+➁ and

➎+➁ can be defined as FOI4 to FOI7, respectively. Peaks➌+➁

and ➍+➁ are small and cannot be used accurately to track the

degradation. Because the half-cell responses of LCO and

NMC532 are similar, the FOI definition will be the same for

those and will not be repeated. This is also true for NCA,

(Figure 10C).

Using the degradation map provided in Figure 7, the

evolution according to the different degradation modes can be

established, Table 1, and this can be used to identify, which FOIs

are the most sensitive to specific degradation modes. For these

chemistries, LAMPE is easy to determine from FOI1 as long as

LAMNE is limited (➊+➀, 4th column). Contrary to what is often

found in the literature, the intensity of the main peak ➋+➁ is

sensitive to LLI and not LAMPE (2nd column and FOI5). As

described earlier, FOI7 is sensitive to LLI and LAMPE (➎+➁, 1st

column). LAMNE will be the hardest to quantify from ICA. It

could be deciphered from FOI2 after LLI and LAMPE are

quantified (➋+➀, 3rd column). If graphitic peaks are well

marked, peak area analysis or DVA could be used instead. An

example quantification is provided in Section 4. For interested

readers, more details can be found in the literature for NMC111

(Carter et al., 2021), NCA (Dubarry et al., 2018a; Dubarry and

Beck, 2021), or LCO (Gao et al., 2019; Li et al., 2022).

Looking at the kinetic aspects, a degradation of the PE

kinetics (RDFPE) will sharpen the peaks at low voltages. For

degradation of the kinetics of the NE (RDFNE), FOI3 will move

toward lower voltages while its intensity (FOI2) is increasing.

This induces some counter intuitive peak movements,

(Figure 10B). The minimum around 3.8 V corresponds to a

staging reaction in graphite. Initially, it occurs during the

NMC solid solution. With LAMNE and rate capability

degradation, it could occur sooner and sooner and thus

against the phase transformation instead of the solid solution.

This will result in a new sharp peak, ➊+➁, growing on the IC

curves to the detriment of ➋+➀. This peak will move toward

lower voltage, while all the others will move toward higher

voltages.

The analysis and summary tables for GIC/NMC532, GIC/

LCO, and GIC/NCA are similar, with just slight differences in the

evolution of some of the peaks. Corresponding look-up tables are

presented in Supplementary Table S1–S3, respectively. The full

degradation maps are provided in Supplementary Figure S1 for

LCO, Supplementary Figure S2 for NMC532, and Supplementary

Figure S3 for NCA.

Figure 10D presents the evolution of the IC curves for a

(GIC0.9, Si0.1)/NMC811 cell up to 15% LLI, 10% LAMPE, and 10%

LAMNE, with the peak indexation. The IC response for this cell is

more complex because NMC811 not only has more features but

also because of the blending at the NE that add some peaks for Si

(➋Si+➃). More details on this cell can be found in Anseán et al.

(2020) and Dubarry and Beck (2021). Schmitt et al. also worked

extensively on this chemistry (Schmitt et al., 2021; Schmitt et al.,

2022). For this system, 12 FOIs can be defined. To be consistent

with the previous description, and because their sensibilities are

similar, FOIs1–7 were defined identically and their

correspondence will not be repeated. FOIs8–11 correspond to

the position and intensity of the maximum of the new peaks at

4.1 V (➊+➀) and 3.9 V (➊+➁), respectively. FOI12 corresponds

to the new broad peak at low voltage (➋Si+➃). Based on the

degradation map, Supplementary Figure S4, and the associated

peak displacement table, Supplementary Table S4, FOI1 can still

be used to estimate LAMPE. Moreover, the intensity of the high

voltage peak ➊+➀ seems really affected by LAMGIC and thus

FOI8 can be used for quantification once LAMPE and LLI are

quantified. Finally, FOI12 can be used to quantify LAMSi after the

other modes are quantified. The intensity and position of the

peak at 3.9 V (➊+➁, FOIs10,11) could be used the same way as

FOI2 and FOI3 if necessary for LLI or LAMNE quantification.

3.2 Spinel-based batteries (LMO)

LMO-based batteries are getting rarer; nonetheless, LMO is

still often used in blended electrodes with NMC (Dubarry et al.,

2011b; Smith et al., 2012; Wu and Lee, 2017; Lee et al., 2018;

Elliott et al., 2020). Figure 11A presents a summary of the voltage

response for a GIC/LMO cell upon aging with peak indexation.

Look-up Supplementary Table S5 presents the peak evolution

from the associated degradation map, Supplementary Figure S5.

For this system, eight FOIs can be defined with the position and

intensity of the maximum of the four main peaks. Peaks ➋+➀

and ➋+➁ (FOIs3,4 and FOI5,6) are not well separated but

evolved differently depending on the degradation. From the

degradation map, it can be seen that LLI is affecting ➊+➀ the

TABLE 1 GIC/NMC111 summary of peak evolution with degradation in
charge. Font size is representative of intensity of changes.

❺+② ❷+② ❷+① ❶+① QLOSS

LLI → a = = ab Yes

LAMdeNMC-111 ←a c cb ↓ Threshold

LAMliNMC-111 a ↓ = ↓ Yes

LAMdeGIC = = c_ = ab No

LAMliGIC → a = = Yes

RDFNCA ↑ _ ← = No

RDFGIC a = = = No

ORI → → → → Threshold
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most, both in terms of intensity and position. LAMPE is

broadening all the peaks significantly while LAMNE is

separating ➋+➀ and ➋+➁ by moving ➋+➀ toward higher

voltages (FOI3). Looking at the kinetics impact, it is not

significant for LMO, which was expected since it is a high-

power material. Similarly, to what was observed for the NMCs,

a degradation of the kinetics of the NE will broaden the high

voltage peaks near the graphite staging.

Figure 11B presents the example of a blended PE with 75% of

NMC111 and 25% of LMO. Peak indexation was already provided

in Figure 3. The peak evolution table is presented in look-up

Supplementary Table S6 with the associated degradation map in

Supplementary Figure S6. With five main peaks visible on the IC

curves, 10 FOIs can be defined. Overall, the observed trends are

similar to that of the individual components because the voltage

responses are separated (no LMO capacity on the NMC main

peak and constant IC intensity from NMC under the LMO

peaks). LLI is associated with a lowering of FOI2 and shifting

of FOI1 toward higher voltages. Unfortunately, both LAMPEs

have a similar signature and might be hard to separate.

3.3 Iron phosphate-based batteries (LFP
and LFP + LNO)

The GIC/LFP system was the first one to be really studied using

ICA (Dubarry and Liaw, 2009), and it is probably the one with most

literature (e.g., (Dubarry et al., 2012; Han et al., 2014; Ouyang et al.,

FIGURE 11
Peak evolution from the pristine cell (thick line) to 15% LLI, 10% LAMPE, and 10% LAMNE (thin line) and intermediates (dotted lines) for (A) GIC/
LMO and (B) GIC/(NMC.75,LMO.25) cells.

FIGURE 12
(A) Peak evolution from the pristine cell (thick line) to 15% LLI, 10% LAMPE, and 10% LAMNE (thin line) and intermediates (dotted lines) for a GIC/
LFP cell. (B) Evolution of FOI for different degradation paths.
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2015)) as it is one of the easiest ICA to carry. The electrochemical

response is quite simple, Figure 12A, Supplementary Table S7, and

Supplementary Figure S7, with mostly the peaks belonging to the

graphite visible but broadened. In terms of FOIs, FOI1 could be defined

as the area under the peak➊+➀ and it is sensitive to LLI and LAMNE.

FOI2 could be defined as the area under all the other peaks (➋+➀ to

➎+➀) and it is sensitive to LAMNE. The intensity and position of peak

➎+➀ aremildly sensitive to LAMPE, which could be used as FOI3 and

FOI4, respectively (Dubarry et al., 2017; Dubarry and Beck, 2021). The

area method is preferred in the case of LFP because the IC intensity

almost goes back to zero in-between peaks and because the peaks are

sharp, which makes their intensity easily affected by smoothing. The

impact of kinetic limitations on LFP was already discussed earlier. An

example of analysis for this cell is provided in Section 4.

While being the most reported, this system is also the one

with the most conflictual analyses. This mostly comes from the

fact that some authors are considering peak ➊+➀ and FOI1 as

sensitive to LLI only and directly proportional to capacity loss.

This is not the case as peak ➊+➀ increases with LAMNE while

the PE is limiting at EOC, Figure 12B. This counter intuitive

effect can be easily explained, inset of Figure 12B. Under normal

operation, because of the excess NE, reaction ➊, which accounts

for 50% of the graphite capacity, is never completed.

Hypothetically, a 10% NE excess in a cell with no offset

implies that the cell uses 90% of the graphite capacity and

thus only 40% out of the 50% for ➊. If that hypothetical cell

lost 5% LAMNE, the cell would not lose any capacity but the

excess would be reduced by half. This implies that 95% of the

graphite capacity would now be in the potential window and that

45% of➊ would be used. The area of the peak would therefore be

0.45*0.95, which equals 42.5%, more than the initial 40%. The

same effect can be observed when the PE is a blend between LFP

and a high-voltage material such as lithium nickel oxide (LNO).

3.4 Lithium titanate-based batteries

Literature using LTO as an NE with IC curves is scarce

(Baure et al., 2019; Liu et al., 2019; Baure and Dubarry, 2020;

Chahbaz et al., 2021; Ha et al., 2021; Bank et al., 2022), but it

presents some interesting cases first because LTO has a

completely different voltage response than graphite and

because, in most cases, the NE is limiting in charge and discharge.

One of the most common LTO-based batteries is using NMC

as the PE but some commercial cells are also using LMO. In

addition, our group also studied a cell with a blended PE,

containing LCO and NCA in a 1:1 ratio. All these cases are

presented in Figure 13, look-up Supplementary Tables S8–S10,

and Supplementary Figures S8–S10. For the LTO/NMC cell, four

FOIs can be defined with FOI1 being the offset potential at high

voltage, FOI2 the shoulder intensity, FOI3 the intensity of peak

➊+➁, and FOI4 its front slope. FOI2 is, just as for the graphite

counterpart, sensitive to LAMPE. FOI1 is affected by all modes but

a movement toward higher voltages indicates that LLI is

preponderant. FOI3 is also going down for LLI but this can be

compensated by LAMPE, while FOI4 is neither going up then

decreasing (PE limiting at EOD) nor FOI1 going out of the

potential window (PE limiting at EOC). Finally, the overall area is

directly proportional to LAMNE, Figure 6, unless there was a

change in limiting electrodes. Kinetic degradation mostly affects

NMC as described previously. LTO is a high-power material so it

is not affected much.

For the LTO/LMO and for LTO/blended electrode, Figure 13B,

FOI1 and FOI2 could be defined identically. For the LTO/LMO, the

evolution of the peaks is really similar to that of the LTO/NMC cell,

and the analysis of the impact of the FOIs is the same. For the blend,

because the PE contains two layered oxides, FOI2 is now

representative of the total LAMPE. Individual LAMPE could be

FIGURE 13
(A) Peak evolution from the pristine cell (thick line) to 15% LLI, 10% LAMPE, and 10% LAMNE (thin line) and intermediates (dotted lines) for (A) LTO/
NMC and (B) a LTO/(LCO0.5, NCA0.5) cells.
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calculated from FOIs3,4 (intensity/position of peak ➊+➁LCO) for

LCO and FOIs5,6 (intensity/position of peak ➊+➁NCA) for NCA.

4 Example of ICA on a GIC/NMC111
and a GIC/LFP cell

Based on the earlier discussion, this section will present a

step-by-step analysis of the voltage curves in Figure 10A for a

GIC/NMC111 cell and Figure 12A for a GIC/LFP cell.

Starting with Figure 10A and GIC/NMC111 and using

Figure 8, the first step is to identify any increase in resistance.

Since the plotted data are C/25, changes associated with

resistance increase will be really minute. Assuming the

discharges all started from the same state of charge, the

initial voltage drop can be used to estimate resistance

increase. In this example, it decreased by 3 mV, following

ohms law, corresponds to an increase of resistance of

75 mΩ.Ah (ΔV/C = 0.003/0.04). The second step is to

determine which electrodes are limiting to decipher and

which degradation mode is responsible for the capacity

loss (15.6%). Since peak ➎+➁ moved toward higher

voltages, and since no plating is visible at high voltage, it

can be determined that LLI is solely responsible for the

capacity loss. Using the equation in Figure 6 and

assuming a 5% offset, LLI can be quantified at around

14.8%. Following on, using Figure 7 and Table 1, the next

degradation mode to quantify should be LAMPE as it is

directly obtainable from FOI1. At 4 V, the initial IC

intensity is of 88.6 %Q/V and of 80.2 %Q/V for the final

aged curve, a 9.1% difference. This corresponds to LAMPE.

For a proper estimation of LAMNE using the IC curves, the

correct procedure would be to simulate the voltage response

associated with 14.8% LLI and 9.1% LAMPE with different

TABLE 2 Best practices for incremental capacity analysis.

Process Remark

Test preparation - Limit environmental and procedural errors

- Ensure environmental consistency throughout testing (temperatures and physical location)

Battery testing - Reference testing at constant current at low C-rates (C/25) and regular intervals (typically every 100 cycles, 1 month, or 2–4%
capacity loss)

- Data sampling at 1–2 mV or 2,000 points per step

Data processing - Filter data to reduce noise and to set a fixed voltage interval step (generally 2 mV)

- Smooth filtered voltage data if necessary. Check for possible distortions

- Proceed with the derivation of the voltage data (IC = ΔQ/ΔV)
- Verify correctness of the IC curve (no peak movement or intensity changes)

Electrochemistry - Incremental capacity is chemistry-dependent. Refer to literature for expected peaks

- Identify and number all peaks on the derived IC curves, according to the reactions in the PE and NE

Degradation modes - Fundamental understanding of the degradation modes, LLI, LAMs, ORI, and FRD is required for cell diagnosis. Refer to the
literature

- Fundamental understanding of the clepsydra analogy

Cell parameters - Resistance estimation of the tested cells. Current-step methods can be applied

- Determination of the limiting electrodes

- Estimation of the initial loading ratio (LR) and offset (OFS) via electrode matching, emulations, or using common values from the
literature

Degradation maps - Review of the degradation maps for the tested chemistry. Maps can be self-generated or extracted from the literature (see
supplementary material for most common commercial chemistries)

- Use of the look-up tables for IC peak evolution with degradation modes

- Extraction of most sensitive FOIs for the tested cell technology

Cell diagnosis - Evaluate ORI

- Evaluate the degradation mode that causes capacity loss (identifying limiting electrodes and compare to degradation maps and
tables)

- Evaluate remaining thermodynamic degradation modes via FOI analysis

- DVA could be best strategy to get LAMNE

- Evaluate kinetic limitations if peak shapes unexplainable

Other considerations - Blends must be separated for analysis

- IC during charge or discharge, use most relevant for application. Peaks always broader toward the end of regime

- Peak area analysis is useful only if IC peaks go back close to zero before next peak starts

- If reversible plating, new feature should be visible. If not, likely irreversible and increasing LLI
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amount of LAMNE until a satisfactory match is reached. If no

model is available, and since the graphitic transition from ➋

to ➊ (FOI2) is well visible for all curves, the peak area

method could provide an estimate for LAMNE. The area

from the start of the charge to the local minimum around

3.8 V decreased by linearly by 9.6%. Another option could be

to use the DV curves (not shown). Doing so will show that

the distance between the two main graphite peaks decreased

from 39.3% to 35.3%, thus by 10.2%. Overall, the obtained

values are close to the 15% LLI, 10% LAMPE, and 10%

LAMNE used for the simulations.

Taking a GIC//LFP cell as the second example, Figure 12A

and using the same logic, it can be determined that no significant

resistance increase was visible and that the capacity loss (17%)

was also induced by LLI. Assuming an offset of around 10%, LLI

can be estimated to be around 15.3% using the equation provided

in Figure 6. In order to estimate LAMNE, FOI2, and the evolution

of the area under peaks ➋+➀ to ➎+➀ can be used. FOI2 varied

by 10%, which corresponds to LAMNE. FOI1 varied by 20%

instead of the predicted 38% based solely on LLI because it was

increased by LAMNE as explained earlier, (Figure 12B). Small

LAMPE are almost impossible to quantify on GIC/LFP cells

without the use of a model to simulate and separate the small

peak variations induced by the LLI and LAMNE. Nonetheless,

since peak ➎+➁ is still visible, and since its area only varied by

11%, as expected from the LAMNE, it can be determined that

LAMPE is significantly lower than 20% (LLI + offset).

5 Conclusion

The incremental capacity analysis has proven to be an

effective and versatile technique for in situ diagnosis of Li-ion

batteries. This publication presented best practices with detailed

examples for the majority of the battery chemistry available to

date. Key takeaways to facilitate its application are summarized in

Table 2.

Looking further, and toward more accurate on-board

applications, methodological work is still needed to better

enable operando analysis at high rates and for duty cycles

outside of constant current. This would remove the need for

lengthy maintenance cycles. Moreover, quantification of the

impact of inhomogeneities is also needed to analyze the

changes in the electrochemical response for large single cells

and battery packs. More discussion of these topics can be found

in Dubarry and Beck (2022).
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