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Abstract: Adult hippocampal neurogenesis is altered during aging and under different neuropsychi-
atric and neurodegenerative diseases. Melatonin shows neurogenic and neuroprotective properties
during aging and neuropathological conditions. In this study, we evaluated the effects of chronic
treatment with melatonin on different markers of neurodegeneration and hippocampal neurogenesis
using immunohistochemistry in the aged and neurodegenerative brains of SAMP8 mice, which
is an animal model of accelerated senescence that mimics aging-related Alzheimer’s pathology.
Neurodegenerative processes observed in the brains of aged SAMP8 mice at 10 months of age in-
clude the presence of damaged neurons, disorganization in the layers of the brain cortex, alterations
in neural processes and the length of neuronal prolongations and β-amyloid accumulation in the
cortex and hippocampus. This neurodegeneration may be associated with neurogenic responses
in the hippocampal dentate gyrus of these mice, since we observed a neurogenic niche of neural
stem and progenitor/precursors cells in the hippocampus of SAMP8 mice. However, hippocampal
neurogenesis seems to be compromised due to alterations in the cell survival, migration and/or
neuronal maturation of neural precursor cells due to the neurodegeneration levels in these mice.
Chronic treatment with melatonin for 9 months decreased these neurodegenerative processes and the
neurodegeneration-induced neurogenic response. Noticeably, melatonin also induced recovery in the
functionality of adult hippocampal neurogenesis in aged SAMP8 mice.

Keywords: aging; adult hippocampal neurogenesis; neurodegeneration; melatonin

1. Introduction

Adult neurogenesis was not widely accepted until the late 1990s [1]. Since then,
numerous studies have provided substantial evidence supporting the presence of neural
stem/progenitor cells in the mammalian adult brain, including rodent, primate, and
human brains [1–6]. The current dogma “that new neurons can and do form in the adult
mammalian brain” [2] has increased interest in research on adult neurogenesis. Adult
neurogenesis is a process that starts with cell proliferation and ends with new functional
neurons that integrate into existing neural circuits. There are two “canonical” regions of the
mammalian adult brain that generate new neurons: (a) the border of the lateral ventricles
of the brain (subventricular zone) and (b) the subgranular zone of the hippocampal dentate
gyrus [1,3,4,7]. Several non-canonical regions also contain neural progenitor cells, including
the neocortex, striatum, and hypothalamus [1].

In the adult hippocampal neurogenesis, the differentiation of neural stem cells into
mature functional neurons occurs via a clearly defined set of cellular stages from Type-1
cells (radial glia-like cells), to Type-2a and 2b cells (neural progenitor cells), to Type-3 cells
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(neuroblasts), which undergo migration and final maturation to functional neurons [1,3,7].
This set of cellular states can be differentiated by the sequential activation/inactivation
of the expression of different molecular markers, including Glial Fibrillar Acidic Protein
(GFAP), Nestin, T-Box transcriptional Factor 2 (TBR-2), Doublecortin (DCX), Neurogenic
Differentiation factor 1 (NeuroD1), β-Tubulin III, Neuronal Nuclei (NeuN), Calbindin,
and Calretinin, among several others [1,3,7]. The new neurons developing from neural
stem cells in the subgranular zone will integrate into pre-existing neural networks of the
granular neurons layer of the dentate gyrus in order to participate in learning and memory
processes [1,4,6].

Although hippocampal neurogenesis persists in aged adults and Alzheimer’s dis-
ease (AD) patients [5], several impairments in the hippocampal neurogenic response have
also been described during normal aging and under different neuropathological condi-
tions [3,4,6,8,9]. Adult hippocampal neurogenesis is also impaired in the brains of patients
with epilepsy, depression, ischemia, addictions, and cancer [6]. Neurogenesis alteration
may be a consequence of a decrease in the pool of neural stem cells, alterations of the
molecular micro-environment that do not favor cell proliferation and/or cell differentiation,
or due to neural stem/progenitor cells that cannot respond to neurogenic signals in the
aged or neurodegenerative brain [3]. Notably, AD is the most common form of dementia
in elderly individuals, and the age-dependent decline in adult hippocampal neurogenesis
may be further accelerated under this neurodegenerative disease, which contributes to
hippocampus-dependent cognitive and emotional dysfunctions [5,6]. Therefore, interven-
tions that promote an increase in the adult hippocampal neurogenesis in animal models,
such as physical exercise or by stimulating learning processes, are key to improve hip-
pocampal cognitive functions, even in the late phases of aging and especially under a
situation of neurodegeneration [3,4,6]. In this regard, treatments with melatonin seem to be
one of the most appropriate strategies, due to melatonin having relevant beneficial effects
on neurogenesis impairments in several in vitro and in vivo studies in models of aging and
different neurological disorders [8,10–16]. The role of melatonin in adult neurogenesis was
confirmed in pinealectomized rats, which showed a decline in both melatonin levels as
well as adult hippocampal neurogenesis. However, treatment with exogenous melatonin
in these animals reversed the neurogenesis impairment [17]. In addition, melatonin has a
broad neuroprotective effect against central nervous system disorders, particularly during
aging and under different neurodegenerative conditions [8], due to its well-known an-
tioxidant, anti-inflammatory, and anti-apoptotic properties [18–21]. Given these premises,
we evaluated the effects of chronic treatment with melatonin on different markers of neu-
rodegeneration and adult hippocampal neurogenesis in the aged and neurodegenerative
brains of SAMP8 mice, which is an animal model of accelerated senescence that mimics
aging-related late-onset AD pathology [22–25].

2. Results
2.1. Markers of Neurodegeneration in SAMP8 Mice
2.1.1. β-Tubulin III Immunostaining in the Brain Cortex of SAMP8 Mice

β-Tubulin III is a microtubule-associated protein of the tubulin family found almost
exclusively in the neuronal cytoskeletal [26]. β-Tubulin staining in SAMP8 mice treated
with vehicle (control mice) showed an important disorganization of the layers in the brain
cortex as a consequence of their accelerated senescence. In this way, only the layers of brain
cortex I, III, and VI were certainly identified (Figure 1a). However, these brain alterations
were reversed in mice treated chronically with melatonin for 9 months, and all of the layers
of the brain cortex (I-VI) were easily observed (Figure 1b). At higher magnifications, we
observed neurons under neurodegeneration (“dark neurons”) in the brain cortex of control
mice. Dark neurons showed β-Tubulin III staining in both the nucleus and cytosol as a
consequence of relevant damage to their neuronal cytoarchitecture (Figure 1c, asterisks).
Neurons in the brain cortex of melatonin-treated mice showed β-Tubulin III staining pri-
marily in the cytosol and appropriate staining of their neuronal prolongations (Figure 1d,
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arrows). At 1000× magnifications, the neurodegenerative damage in control mice was
evident by the presence of dark neurons (asterisks) and poorly developed neuronal pro-
cesses (arrows) compared to melatonin-treated mice (Figure 1e,f). However, significant
statistical differences were not detected in the levels of β-Tubulin III between control mice
and melatonin-treated mice (Figure 1g). Notably, the frequency of cortical cells positive for
β-Tubulin III with evident neural processes were 4.1-fold higher in melatonin-treated mice
compared to control mice (Figure 1h, p < 0.001). Likewise, we observed a higher length
of neural prolongations in cortical cells positive for β-Tubulin III in melatonin-treated
mice (251.86 (mean) ± 75.94 (SD)) compared to control mice (65.52 (mean) ± 14.67 (SD))
(Figure 1i, p < 0.001).

Figure 1. β-Tubulin III immunostaining in the brain cortex of SAMP8 control mice (a,c,e) and
SAMP8 mice treated with melatonin (b,d,f). Asterisks show neurons under neurodegeneration (dark
neurons). Arrows note neuronal prolongations in cells positive for β-Tubulin III. I, the molecular
layer; II, the outer granular layer; III, the outer pyramidal layer; IV; the inner granular layer; V, the
inner pyramidal layer; VI, the polymorph layer. (g) Bar chart shows quantification of the DAB
signal with respect to the total number of nuclei at 400×magnifications (in percentages with respect
to control). (h) Frequency of cortical cells positive for β-Tubulin III with evident neural processes.
(i) Length of neural prolongations in cortical cells positive for β-Tubulin III. Data are expressed as
means ± SEM. *** p < 0.001 vs. control. Statistical analysis was always performed in 10 images
obtained from each SAMP8 control mice (n = 4) and SAMP8 mice treated with melatonin (n = 4).
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2.1.2. β-Amyloid (1-42) Immunostaining in the Brain Cortex of SAMP8 Mice

SAMP8 mice are considered an animal model of AD [25]. We observed an important
accumulation of β-Amyloid (1-42) peptides in cortical neurons in the brain of control mice
(Figure 2a,c). However, β-Amyloid (1-42) accumulation decreased in melatonin-treated
mice (Figure 2b,d). Notably, β-Amyloid (1-42) peptides accumulated intraneuronally
(Figure 2c) and were always at higher levels in the cortex of control mice compared to
melatonin-treated mice (Figure 2e, p < 0.01).

Figure 2. β-Amyloid (1-42) immunostaining in the cortex of SAMP8 control mice (a,c) and SAMP8
mice treated with melatonin (b,d). Bar chart (e) shows quantification of the DAB signal with respect
to the total number of nuclei at 400×magnifications (in percentages with respect to the control). Data
are expressed as means ± SEM. ** p < 0.01 vs. control. Statistical analysis was always performed in
10 images obtained from each control mice (n = 4) and mice treated with melatonin (n = 4).

2.1.3. β-Amyloid (1-42) Immunostaining in the Hippocampal Dentate Gyrus of
SAMP8 Mice

The intraneuronal accumulation of β-Amyloid (1-42) peptides was also observed in
the hippocampal dentate gyrus of control mice, specifically in the granule neurons layer
and hilar neurons (Figure 3a,c). However, the levels of β-Amyloid (1-42) decreased in both
types of neurons in the melatonin-treated mice (Figure 3b,d). We observed statistically
significant differences in the levels of β-Amyloid (1-42) peptides between control mice and
melatonin-treated mice (Figure 3e, p < 0.01).
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Figure 3. β-Amyloid (1-42) immunostaining in the hippocampal dentate gyrus of SAMP8 control
mice (a,c) and SAMP8 mice treated with melatonin (b,d). Bar chart (e) shows quantification of the
DAB signal with respect to the total number of nuclei at 400×magnifications (in percentages with
respect to the control). Data are expressed as means ± SEM. ** p < 0.01 vs. control. ML, the molecular
layer; GNL, the granule neurons layer; SGZ, the subgranular zone. Statistical analysis was always
performed in 10 images obtained from each control mice (n = 4) and mice treated with melatonin
(n = 4).

2.2. Markers of Adult Hippocampal Neurogenesis in SAMP8 Mice
2.2.1. Nestin Immunostaining in the Hippocampal Dentate Gyrus of SAMP8 Mice

Nestin is a cytoskeletal protein that conforms to type VI intermediate filaments and
is considered a marker of neural stem/progenitor cells [7]. Nestin staining was primarily
observed in the granule neurons layer in the hippocampal dentate gyrus of control mice
(Figure 4a). However, the highest intensity of Nestin was observed in the subgranular
zone of the dentate gyrus (Figure 4a). Nestin was also detected in hilar neurons in the
hippocampus of control mice (Figure 4a, arrows). Nestin staining decreased in the hip-
pocampal dentate gyrus of melatonin-treated mice (Figure 4b). We observed statistically
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significant differences in the levels of Nestin between control mice and melatonin-treated
mice (Figure 4c, p < 0.001).

Figure 4. Markers of adult hippocampal neurogenesis in the dentate gyrus of SAMP8 control mice
(a,d,g) and SAMP8 mice treated with melatonin (b,e,h). Bar charts (c,f,i) show quantification of the
DAB signal with respect to the total number of nuclei at 400×magnifications (in percentages with
respect to the control). Data are always expressed as means± SEM. ** p < 0.01; *** p < 0.001 vs. control.
ML, the molecular layer; GNL, the granule neurons layer; SGZ, the subgranular zone. Statistical
analysis was always performed in 10 images obtained from each SAMP8 control mice (n = 4) and
SAMP8 mice treated with melatonin (n = 4).

2.2.2. TBR-2 Immunostaining in the Hippocampal Dentate Gyrus of SAMP8 Mice

TBR-2 is a transcription factor that plays a crucial role in the proliferation and differen-
tiation of neural progenitor cells [7]. TBR-2 staining was observed in the granule neurons
layer in the hippocampal dentate gyrus of control mice (Figure 4d). TBR-2 staining was
more intense in the subgranular zone (Figure 4d) and was also detected in hilar neurons
in the hippocampal dentate gyrus of control mice (Figure 4d, arrows). TBR-2 staining
decreased in melatonin-treated mice (Figure 4e). We observed statistically significant differ-
ences in the levels of TBR-2 between control mice and melatonin-treated mice (Figure 4f,
p < 0.01).

2.2.3. NeuroD1 Immunostaining in the Hippocampal Dentate Gyrus of SAMP8 Mice

The neurogenic transcription factor NeuroD1 is a marker of neural precursor cells
or neuroblasts with the capacity of migration [1,7]. NeuroD1 staining was intensively
observed in the granule neurons layer in the hippocampal dentate gyrus of control mice
(Figure 4g). Melatonin-treated mice showed much lower levels of NeuroD1 staining in
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their granule neurons (Figure 4h). We observed statistically significant differences in the
levels of NeuroD1 between control mice and melatonin-treated mice (Figure 4i, p < 0.001).

2.2.4. β-Tubulin III Immunostaining in the Hippocampal Dentate Gyrus of SAMP8 Mice

β-Tubulin III staining was observed at high intensity in hilar neurons in the hip-
pocampal dentate gyrus of control mice (Figure 5a) and melatonin-treated mice (Figure 5b).
However, β-Tubulin III staining in the neuronal prolongations was more evident in hilar
neurons of melatonin-treated mice compared to control mice (Figure 5a,b, detail in small
boxes). In this way, the frequency of hilar cells positive for β-Tubulin III with evident
neural processes were 8.3-fold higher in melatonin-treated mice compared to control mice
(Figure 5c, p < 0.001). Likewise, we observed a higher length of neural prolongations in
hilar cells positive for β-Tubulin III in melatonin-treated mice (220.32 (mean) ± 57.61 (SD))
compared to control mice (75.40 (mean) ± 19.57 (SD)) (Figure 5d, p < 0.001).

Figure 5. β-Tubulin III immunostaining in the hippocampal dentate gyrus of SAMP8 mice at
400×magnifications. The small box shows details of hilar neurons in control mice (a) and melatonin-
treated mice (b) at 1000×magnifications. GNL, the granule neurons layer; SGZ, the subgranular zone.
(c) Frequency of hilar cells positive for β-Tubulin III with evident neural processes were calculated
at 400× magnifications (d) Length of neural prolongations in hilar cells positive for β-Tubulin III
were measured at 400× magnifications. Data are expressed as means ± SEM. *** p < 0.001 vs. control.
Statistical analysis was always performed in 10 images obtained from each SAMP8 control mice
(n = 4) and SAMP8 mice treated with melatonin (n = 4).

Neuronal β-Tubulin III is a cytoskeletal protein expressed in postmitotic immature
and mature neurons and, due to this, it is considered an early marker of newly created
neurons [7]. At higher magnifications, we observed cells positive for β-Tubulin III staining
in the subgranular zone of the hippocampal dentate gyrus in control mice (Figure 6a,
arrows) and melatonin-treated mice (Figure 6b, arrows). We also observed some β-Tubulin
III-positive cells in the deepest layers of the granule neurons layer in the hippocampus of
control mice (Figure 6c, arrow). However, there were a higher number of cells positive for
β-Tubulin III in the subgranular zone of melatonin-treated mice compared to control mice
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(Figure 6b,d arrows; Figure 6e, p < 0.001). The total number of nuclei (nuclei volume) in the
granule neurons layer (including the subgranular zone) was also significantly higher in
melatonin-treated mice compared to control mice (Figure 6f, p < 0.05).

Figure 6. β-Tubulin III immunostaining in the granule neurons layer of the hippocampus of SAMP8
control mice (a,c) and SAMP8 mice treated with melatonin (b,d) at 1000× magnifications. The
arrows note possible newly created post-mitotic neurons. GNL, the granule neurons layer; SGZ,
the subgranular zone. (e) Bar chart shows quantification of cells positive for β-Tubulin III in the
GNL and SGZ of the hippocampus (in percentages with respect to the control). (f) Bar chart shows
quantification of the total number of nuclei (nuclei volume) in the GNL and SGZ of the hippocampus.
Data are always expressed as means ± SEM. * p < 0.05; *** p < 0.001 versus control. Statistical analysis
was always performed in 10 images obtained from each SAMP8 control mice (n = 4) and SAMP8 mice
treated with melatonin (n = 4).

2.3. Principal Component Analysis

We applied the Principal Component Analysis (PCA) statistical dimension reduction
tool to evaluate the associations between our study variables to correlate neurodegenerative
and neurogenesis hippocampal markers (hippocampal β-Amyloid (1-42) peptides, Nestin,
TBR-2, NeuroD1, and hippocampal β-Tubulin III levels). The PCA resulted in two main
eigenvalues greater than 1 (Figure 7). These two components explained 75.42% of the total
variance data (52.96% component 1 and 22.45% component 2).
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Figure 7. Dimensional representation of the PCA analysis showing the two main components found.

As shown in Table 1, three variables (β-Amyloid (1-42), NeuroD1, and β-Tubulin III)
loaded highest on the first component (component 1). The other two variables (TBR-2 and
Nestin) loaded highest on the second component (component 2). The Kaiser–Meyer–Olkin
(KMO) measure of sampling adequacy was 0.619, which showed a good and appropriate
use of the factorial analysis with our sample data. Likewise, we observed a significance
level of Bartlett’s test of sphericity (p < 0.001), which showed a significant and relevant
correlation between the variables and our factor model (Table 1). Notably, our factor model
showed a strong and significant correlation (0.707) between β-Amyloid (1-42) and NeuroD1
values (Table 2, p < 0.001). The β-Amyloid (1-42) levels also significantly correlated with
Nestin and β-Tubulin III values (Table 2, p < 0.05). Nestin levels significantly correlated
with TBR-2, NeuroD1 (Table 2, p < 0.01) and β-Tubulin III values (Table 2, p < 0.05). Finally,
levels of NeuroD1 and β-Tubulin III were also significantly correlated (Table 2, p < 0.05).
We also considered an additional PCA model by excluding values of β-Tubulin III in the
dentate gyrus because the percentage of variance of this variable explained by our first
PCA model was the lowest (45.1%). This second PCA model also separated our variables
into the same two components, and increased the total variance explained by our factor
model by 86.44% (data not shown), with good sampling adequacy (KMO, 0.550) and a
significant and relevant correlation between the variables and the factor model (Bartlett’s
test of sphericity, p < 0.001).

Table 1. Descriptive analysis of the rotated component loadings observed after applying a PCA *.

Component 1 Component 2

β-Amyloid (1-42) 0.870 0.023
Nestin 0.504 0.770
TBR-2 −0.011 0.949

NeuroD1 0.871 0.239
β-Tubulin III 0.657 0.136

* The Kaiser–Meyer–Olkin measure of sampling adequacy was 0.619; Bartlett’s test of Sphericity showed a
significant p-value = 0.000.
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Table 2. Correlations matrix among all the variables included in the PCA.

β-Amyloid (1-42) Nestin TBR-2 NeuroD1 β-Tubulin III

Correlation *

β-Amyloid (1-42) 1 0.396 0.098 0.707 0.374
Nestin 0.396 1 0.607 0.635 0.379
TBR-2 0.098 0.607 1 0.188 0.140

NeuroD1 0.707 0.635 0.188 1 0.424
β-Tubulin III 0.374 0.379 0.140 0.424 1

p-values *

β-Amyloid (1-42) - 0.034 0.333 0.000 0.043
Nestin 0.043 - 0.001 0.001 0.041
TBR-2 0.333 0.001 - 0.201 0.268

NeuroD1 0.000 0.001 0.201 - 0.025
β-Tubulin III 0.043 0.041 0.268 0.025 -

* Significant Pearson’s correlations are shown in bold; significant p-values are shown in italics.

3. Discussion

SAMP8 mice are a good animal model for studying aging and age-related neurode-
generative processes [25]. Notably, SAMP8 mice exhibit many features that occur early in
the pathogenesis of aging-related AD, such as oxidative stress, β-amyloid and α-synuclein
accumulation, tau hyperphosphorylation, neurofibrillary tangles, gliosis, and cell death,
and impairments in learning and memory [18,19,22–25]. In the present study, we planned
to evaluate the response of adult hippocampal neurogenesis in this relevant animal model
of neurodegeneration and effects of chronic melatonin treatment in adult hippocampal neu-
rogenesis under neurodegeneration. In this way, we first corroborated neurodegenerative
processes in the brains of SAMP8 mice. We studied neurodegeneration in the hippocampus
(which is key for learning and memory) and in the brain cortex, because different zones of
the cortex are implicated in several relevant brain functions such as movements, response
to stimuli, and language and, thus, its neurodegeneration contributes to cognitive impair-
ments in these animals. Our study found evident neurodegeneration in the brains of SAMP8
mice aged 10 months (control mice) based on the significant accumulation of β-amyloid
(1-42) peptides in the cortex and hippocampal dentate gyrus. The biological hallmark of AD
is the accumulation of β-amyloid peptides in specific brain zones, including the cortex and
hippocampus [9]. In accord with our present data, Díaz-Moreno and collaborators (2013)
demonstrated that β-amyloid peptides accumulated in the brains of SAMP8 mice, starting
from 2–5 months of age [27]. Likewise, β-Tubulin III staining allowed us to observe other
relevant neurodegenerative processes such as disorganization in the layers of the brain
cortex, the presence of cortical dark neurons, and alterations in cortical and hippocampal
neural processes and length of neuronal prolongations, as a consequence of impairments in
the neuronal cytoskeleton. The cytoskeleton is the main intracellular structure that deter-
mines the morphology of neurons and maintains their integrity and, thus, disruption of its
structure and function may underlie several neurodegenerative processes [28]. Therefore,
we confirmed an age-related state of neurodegeneration in our animal model of ageing, as
had already observed in previous studies [11–13,18–20,27,29–37].

Adult hippocampal neurogenesis decreases during normal aging as well as due to
different neuropsychiatric and neurodegenerative conditions including AD, epilepsy, de-
pression, ischemia, addictions, and even under stressful situations and sleep depriva-
tion [3,4,6,8,9,38]. However, we have observed evident expression of several markers of the
neurogenic response (Nestin, TBR-2, NeuroD1) in the granular neurons layer, especially
in the subgranular zone, of the hippocampal dentate gyrus in control mice in our animal
model of aging and neurodegeneration. Nestin is a well-known marker of neural stem
and progenitor cells [7], while TBR-2 and NeuroD1 are transcription factors involved in
neuronal lineage progression from multipotent stem cells [39]. Therefore, there appeared
to be a varied niche of neural progenitor and precursor cells in the hippocampus of control
mice, despite their accelerated senescence and neurodegeneration. Tobin and collabora-
tors demonstrated that adult hippocampal neurogenesis persists in aged adults and AD
patients [5]. Likewise, adult hippocampal neurogenesis can be stimulated by different phys-
ical and cognitive stimuli, even in the later phases of aging [3,4,40]. Notably, we observed a
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strong and significant positive correlation between β-amyloid (1-42) peptides and the levels
of NeuroD1. Cells positive for NeuroD1 are considered neuroblasts that undergo marked
morphological, electrophysiological, and gene expression changes that are associated with
functional granule cells of the hippocampal dentate gyrus [1]. β-amyloid (1-42) peptides
also correlated with Nestin and β-Tubulin III levels. Given these findings, our data suggest
a neurogenic response in the hippocampus induced by the neurodegeneration observed
in the aged brains of SAMP8 mice at 10 months of old. In accord with our data, the early
accumulation of β-amyloid peptides in SAMP8 mice at 2 months of age can stimulate the
proliferation of neural stem cells [27].

Our hypothesis that neurodegeneration activated neurogenic responses in the hip-
pocampus of aged SAMP8 mice was firmly supported by the effect observed in chronically
melatonin-treated SAMP8 mice, because these mice showed a decreased neurodegenerative
level and, consequently, a lower neurogenic response compared to control mice. Our
previous studies and several other authors had already demonstrated the neuroprotective
benefits of long-time treatments with melatonin without side effects [11–13,18–20,29–38],
and increases of both the half-life of SAMP8 mice (from 16 to 22 months) and their longevity
(from 23 to 27 months) [38]. The present study showed that melatonin-treated aged mice
had recovery in the layers of their brain cortex and decreased β-amyloid (1-42) accumulation
in the cortex and hippocampal dentate gyrus. Likewise, β-Tubulin III showed improvement
in neural processes and the length of neuronal prolongations in cortical and hilar neurons,
which may improve the neural connectivity in the brain of melatonin-treated mice. In
previous studies, melatonin also increased dendritogenesis in hilar neurons in hippocampal
organotypic cultures [12,14]. These neuroprotective beneficial effects of our chronic treat-
ment with melatonin in SAMP8 mice led to a decrease in the neurodegeneration-induced
neurogenic response. This way, melatonin-treated mice showed a significant reduction in
the expression of most of the neurogenic markers evaluated in the hippocampal dentate
gyrus (Nestin, TBR-2 and NeuroD1).

However, melatonin improves neurogenesis in models of aging and neurodegenera-
tive pathology during in vivo and in vitro experiments [8,38]. Notably, melatonin promoted
cell viability, proliferation, and neuronal differentiation of neural stem cells in different
studies in vitro [8,41]. Unlike our experimental conditions, all of these results were ob-
tained under acute treatments of melatonin (from hours to 7 days) or using cultures of
neural stem cells obtained from young animals (6–8 weeks). Therefore, acute treatments
with melatonin in animal models of aging or neurodegenerative disease also promote
a positive response in adult hippocampal neurogenesis [8,10,11,42]. Moreover, several
studies by Ramirez-Rodriguez and collaborators also demonstrated a neurogenic effect of
chronic treatments with melatonin (6–9 months) in adult BALB/c mice, which increased
cell proliferation, survival, and maturation of newborn immature neurons. Melatonin also
modulated the structural plasticity of the mossy fiber projection to establish functional
synapses in the hippocampus of these mice [15,43,44]. Notably, in our present study the
number of cells positive for β-Tubulin III in the subgranular zone was significantly in-
creased by melatonin in the hippocampus of SAMP8 mice. β-Tubulin III is expressed in
post-mitotic neurons even from an immature state [7]. Therefore, despite a reduced neuro-
genic response in the hippocampus of melatonin-treated mice, the process of hippocampal
neurogenesis seems to be functional to produce neural progenitors (TBR-2-positive cells)
and precursors (NeuroD1-positive cells) that survived to successfully mature toward imma-
ture neurons (β-Tubulin III-positive cells). Therefore, our chronic treatment with melatonin
improved the functionality of adult hippocampal neurogenesis, as several other studies
have shown [8,10–12,14,16,38,44].

The neurogenic effect of melatonin in the aged and neurodegenerative brains of
SAMP8 mice may be supported by the promotion of cell survival and neuronal maturation
of neural precursor cells. Our control mice, besides having relevant expression of Nestin,
TBR-2, and NeuroD1 neurogenic markers, showed lower nuclei volume in the granular
neurons layer (including the subgranular zone) and also a lower number of cells positive
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for β-Tubulin III in the subgranular zone compared to melatonin-treated mice. These
results suggests that despite having a high number of neural stem cells and neural pro-
genitor/precursor cells, the hippocampus of control SAMP8 mice has an alteration in cell
survival and/or neuronal maturation process of neural precursor cells (NeuroD1-positive
cells), which takes 2 to 8 weeks in mice [1]. Previous studies confirmed an alteration in
hippocampal neurogenesis in SAMP8 mice with a preferential differentiation of neural
stem cells into mature astrocytes, which contributed to their typical astrogliosis [45,46]. A
block in the maturation of neuroblasts and reduced formation of immature neurons has
also been described early in patients with AD that worsens with the progression of the
disease [6]. Therefore, the survival and neuronal maturation processes of neural precursor
cells may be compromised in the aged and neurodegenerative brains of SAMP8 control
mice. Consistent with our present results, limited hippocampal neurogenesis in SAMP8
mice was previously observed starting from 5 months of age [45] and affected several
processes of the neurogenic response, including survival of progenitor/precursor cells [47]
and neuronal maturation of newly created immature neurons in the hippocampus [48].
Neurodegenerative processes driven by the accumulation of β-amyloid (1-42) peptides
and phosphorylated Tau proteins in the brains of SAMP8 may also contribute to these
alterations in adult hippocampal neurogenesis during aging [27,49].

Recent studies affirmed that mature neurons dedifferentiate (i.e., dematuration) to a
pseudo-immature status and re-express the molecular markers of neural progenitor cells
and immature neurons [50]. Interestingly, this process may occur in healthy individuals
during aging and in the brains of patients with AD [50]. Our present data showed some
Nestin-positive and TBR-2-positive cells in the hilus of the hippocampus of control SAMP8
mice, which may be a consequence of the dematuration of these mature neurons under
neurodegeneration. Aberrations in the migration of new immature neurons into the hilus
under neuropsychiatric conditions have also been described [51]. The lack of cells positive
for β-Tubulin III in the subgranular zone of the dentate gyrus in the hippocampus of
control SAMP8 mice may also be related to the aberrant migration of new created immature
neurons to the hilus, instead of being properly integrated into the granular layer. The
migration of immature neurons deeper into the granule neurons layer and their aberrant
positioning in the hippocampus of SAMP8 mice was shown previously [46], as we also
observed in the present study. These data support impairments in adult hippocampal
neurogenesis in SAMP8 control mice at 10 months of age. Our chronic treatment with
melatonin in these mice had a beneficial effect, decreased neurodegeneration, improved
cell survival, and restored functional adult hippocampal neurogenesis by supporting the
appropriate migration and neuronal maturation of neural precursor cells.

4. Materials and Methods
4.1. Animals

SAMP8 mice were obtained from the Council for SAM Research, Kyoto, Japan, through
Harlan (Barcelona, Spain). The mice were housed in the Barcelona University facility under
a 12/12-hr dark/light cycle, temperature-controlled (22 ± 1 ◦C), and were bred via brother–
sister mating. Animals received tap water and a standard pellet diet ad libitum. Studies
were performed by the Institutional Guidelines for the Care and Use of Laboratory Animals
established by the European Communities Council Directive 2010/63/EU, Guidelines
for the Care and Use of Mammals in Neuroscience and Behavioural Research, National
Research Council 2003 and were also approved by the Animal Experimentation Ethics
Committee (CEEA: 266/13) at the University of Barcelona and the Government of Catalunya
(DAAM: 7149).

4.2. Treatment

Once newborn SAMP8 mice (n = 4 per treatment) were separated from their mothers
(at 1 month of age), melatonin or vehicle treatments were initiated. Melatonin (Sigma,
St Louis, MO, USA) was dissolved in a minimum volume of absolute ethanol in bottles
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protected from light and diluted in the drinking water to yield a dose of 10 mg/mL/kg
during treatment from 1 to 10 months of age. SAMP8 mice drink about 5 mL/day and they
weigh about 0.025 kg. Taking into account these data, the melatonin doses received was
approximately 2 mg/day. The concentration of ethanol in the final solution was 0.066%
(v/v). SAMP8 mice were decapitated at 10 months of age and the brains were immediately
removed. The brains were fixed in 4% (v/v) paraformaldehyde in phosphate buffer (PBS)
pH 7.4 for at least 24 h and washed in PBS buffer. The samples were embedded in paraffin
using standard methods.

4.3. Immunohistochemistry Analysis

After paraffin removal, histological sections (8–10 µm) were hydrated and incubated
for 10 min in TBS buffer (5 mM Tris, 136 mM NaCl, pH 7.4) with 0.01% Triton X-100.
Endogenous peroxidase activity was inactivated by treating samples with 3% H2O2 in
methanol for 20 min. After washing the samples in TBS (3 × 5 min), non-specific binding
sites were blocked for 40 min with 50 µg of BSA and pure rabbit serum diluted 1:40 in
TBS buffer. Sections were incubated with specific primary antibodies (Table 3) diluted
1:100 in TBS overnight at 4 ◦C in a humid chamber and dark. After washing in TBS
(3 × 5 min), sections were incubated with specific peroxidase-conjugated anti-IgG (Sigma)
diluted 1:1000 in TBS, for 90 min at room temperature, also in a humid chamber and
dark. The samples were washed in TBS (3 × 5 min) before incubation with peroxidase-
anti-peroxidase complexes (Sigma) diluted 1:200 in TBS for 1 h at room temperature in a
humid chamber and dark. The sections were washed (3 × 5 min) in TBS and incubated for
10 min with 3,3′-diaminobenzidine tablets (SIGMAFASTTM, Sigma). Finally, the samples
were counterstained with hematoxylin (5 min), dehydrated, and mounted in aqueous
mounting medium.

Table 3. Primary antibodies used for immunohistochemistry analyses.

Name Code Company

Anti-β-Tubulin III (TUBB3) T2200 Sigma-Aldrich
β-Amyloid (1-42) (D9A3A) #14974 Cell Signaling

Anti-Nestin N5413 Sigma-Aldrich
Anti-TBR-2 #ABN1687 Millipore

Anti-NeuroD1 #ABE991 Millipore

4.4. Image Analysis

Histological results were observed using a binocular bright field optical microscope
(Nikon Eclipse E400, Madrid, Spain). The microscope had a DS-Fi1 camera, and images
were obtained using Toup View 3.7 software. The images obtained were analyzed using FIJI
software Image J for semi-quantitative determination of the DAB and hematoxylin signals
independently in each image, accordingly with the protocol of Crowe and Yue (2019) [52].
A total of 10 images (n = 10) were analyzed for each experimental condition (vehicle or
melatonin) and histological staining (β-Tubulin III, β-Amyloid (1-42), Nestin, TBR-2, and
NeuroD1) at 400×magnifications. The results are expressed in percentages (with respect
to control mice) as the intensity of the DAB signal per total number of nuclei in the cortex
and hippocampal dentate gyrus (including the ML, GNL, SGZ, and the hilus). The nuclear
volume was done specifically in the GNL and SGZ by counting the number of nuclei in each
hematoxylin image at 1000×magnifications. Cells positive for β-Tubulin III were directly
counted specifically in the GNL and SGZ of the hippocampus at 1000×magnifications.
Frequency of cortical and hilar cells positive for β-Tubulin III with evident neural processes
were calculated at 400× magnifications. Length of neural prolongations in cortical and
hilar cells positive for β-Tubulin III were measured at 400×magnifications
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4.5. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 6. Data are presented as the
mean values ± S.E.M. calculated from at least three separate experiments. The normality of
the data was analyzed using the Kolmogorov–Smirnov test. Mean comparisons were ana-
lyzed using Student’s t-test to compare means between control mice and melatonin-treated
mice. The level of significance was p < 0.05. Statistical analysis was always performed in
10 images obtained from each SAMP8 control mice (n = 4) and SAMP8 mice treated with
melatonin (n = 4).

The statistical software package SPSS 15.0 for Windows (SPSS Inc., Chicago, IL, USA)
was used for the PCA. The number of components retained was based on eigenvalues
(i.e., the amount of the total variance that is explained by each component) of 1 or greater. A
varimax rotation was used to obtain a set of independent and best interpretable components
and minimize the number of variables that had high saturations in each component. The
components were interpreted based on the loadings that related the parameter to the
components. Loadings greater than 0.5 were used to identify the variables comprising
a component because this cutoff point provides good separation of the components, as
previously shown [53]. The Kaiser–Meyer–Olkin measure and Bartlett’s test of sphericity
were calculated to evaluate the significance and adequacy of our factor model. Pearson’s
correlations among the study variables and their statistical significance (p-values) were
also calculated.

5. Conclusions

The neurodegenerative process that occurs in the hippocampus of SAMP8 mice during
accelerated senescence may be a key stimulus to promote a neurogenic response in the
hippocampus in order to recover the dead/damaged neurons and avoid major cognitive im-
pairment. However, compromised survival or aberrant migration of neural precursor cells
and impairments in neuronal maturation processes seem to promote limited hippocampal
neurogenesis in the aged and neurodegenerative brains of 10 months-old SAMP8 mice.
This hypothesis was firmly supported by the results obtained in melatonin-treated SAMP8
mice. Chronic treatment with melatonin for 9 months induced a significant decrease in the
neurogenerative processes and hippocampal neurogenic response in these mice. However,
melatonin seemed to promote cell survival and restoration of the alterations of migra-
tion and/or maturation of neural precursor cells observed in the hippocampus of aged
control mice, thus promoting a functional adult hippocampal neurogenesis in melatonin-
treated mice. Therefore, we corroborate the neuroprotective benefits of chronic treatments
with melatonin against the alterations in adult hippocampal neurogenesis induced by
neurodegeneration that occur in the brain during aging (see Graphical abstract).
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