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a b s t r a c t 

The correction of the phase variations induced by the atmospheric turbulence is one of the most complex prob- 

lems that an Adaptive Optics (AO) System must deal with, as it must calculate the properties of all the atmosphere 

traversed by the light from several measures taken by ground-based telescopes. Traditional reconstructors sys- 

tems used in AO are based on computational algorithms where its reconstruction quality improves with the 

number of measures made by the telescopes’ sensors. That means that sensors are getting greater and greater 

with their corresponding higher financial expense. Artificial Intelligence (IA) has become in recent years a real 

alternative to traditional computational methods as reconstructors for AO systems. Fully-convolutional neural 

networks (FCNs) specifically have shown great performances working in Solar AO, demonstrating their ability 

to obtain a lot of valuable information from the recorded images for the wavefront phase evaluation. Along this 

research, the influence of the properties of the telescope’s sensors and of the observations in the reconstruc- 

tions made by the FCNs’ is measured, to obtain the configuration that best suits the performance of artificial 

neural networks (ANN). The presented results determine the way forward for the future sensors for telescopes 

with reconstruction systems based on ANNs, to obtain higher quality reconstructions employing fewer economic 

resources. 
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. Introduction 

Telescopes have evolved from a simple combination of mirrors,

enses and crystals to a complex set of technology-improved systems

orking together, that pursuits a better understanding of the universe,

y improving the quality of images from celestial bodies. amongst the

ost recent technologies, the improvements that some of these develop-

ents brought made those systems as Adaptive Optics (AO), engineer-

ng components, systems of sensors, etc. became necessary by its own

erits. 

AO is the field of optics whose aim is to correct in real time the distor-

ions caused by the atmosphere in the received images on ground-based

elescopes. In the last 30 years [1] , with the improvement of computa-
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ional systems, AO has experienced a tremendous development. Several

O systems were implemented in large ground-based telescopes and are

till operating. On these telescopes, and on those planned for near-future

mplementation, rest the responsibility of the new discoveries that will

e made during the next decades. 

In the case of the technology for diurnal observation, its development

or complex systems is still being researched since the majority of the

elescopes that will perform solar observations in the upcoming years

re still under construction, as the EST (European Solar Telescope) [2] ,

 new four-metre class telescope. The development of these new large

olar telescopes results on a new challenge for AO systems, they present

ew configurations as the Multi-Conjugate Adaptive Optics (MCAO) that

mplies that the amount of information to process in real time greatly
e Asturias), Spain. 
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scalates in comparison with night-time AO systems. Some older solar

elescopes with simpler configurations are currently using Solar AO sys-

ems, that are already well tested and implemented, as the one-metre

lass SST (Swedish Solar Telescope) [ 3 , 4 ] or the DST (Dunn Solar Tele-

cope). 

The field of Solar physics is less developed due to the extra difficul-

ies involved in making daytime observations. The principal attractive

s the Sun’s atmosphere where many processes that affect live on Earth

ake place. amongst them, the most relevant are the Sun’s luminosity

ariations, changing Earth’s climate and how the magnetic fields are

enerated and dissipated in the Sun’s atmosphere. It is necessary to ob-

ain high quality images of the Sun’s atmosphere and the Sun’s surface

o understand its activity. 

The corrections made by Solar AO systems allow the telescopes to

orrect the aberrations suffered by the light on its way from the source

o the telescope, obtaining a higher quality image; most aberrations are

roduced when the light passes throughout the Earth’s atmosphere. The

tmospheric turbulence is a random phenomenon that is continuously

hanging and producing aberrations on the wavefronts of the light. In

 current AO system, there are some different parts that work together

o obtain the corrected image. One of them is the Reconstructor System

RS) that is briefly introduced here since it is the focus of this research.

hen the light arrives at the telescope, measurements are made by sev-

ral sensors that are sent to the RS to calculate an estimation of how the

tmosphere was when the light passed through it. If it were completely

nown, the received image could be perfectly corrected with an ideal

O system. 

In recent years, Artificial Intelligence (AI) methods have been ap-

lied in several scientific fields as mathematical tool that allows to sim-

lify complex physical systems by numerical approximations, improv-

ng their performance. Artificial Neural Networks (ANNs) are one of the

ost developed fields in AI. Their good performance is well known in

mage recognition, language processing, image classification, etc. [ 5 , 6 ].

everal science branches have taken advantage of these improvements

nd ANNs are currently applied in diverse areas, such as prediction sys-

ems, car industry to make self-sufficient cars, simulation platforms of

iverse nature, etc. AO is one of the fields where ANNs have been ap-

lied showing a great performance in night observations, as the CAR-

EN reconstructor [7–9] . 

In this research a new reconstructor system (RS) is presented for

xtended images, particularized to solar observations, based on Fully-

onvolutional Neural Networks (FCNs), a type of ANN characterized by

ts good performance working with images. The main objective of the

esearch is to establish a comparison of how the reconstruction changes

epending on the variations of some parameters of the AO system; the

umber of subapertures of the Shack-Hartmann wavefront sensor, the

umber of pixels of each subaperture and the field of view of the obser-

ation are the ones compared. The properties of FCNs allow to obtain re-

onstructions working with simpler AO sensors than the ones currently

sed, requiring Shack-Hartmann wavefront sensors with less subaper-

ures and pixels per subaperture, that will imply lower economic con-

ributions and a simpler control. 

This manuscript is composed by 4 more sections; the material and

ethods section consist in a description of the main concepts of adap-

ive optics, Shack-Hartmann wavefront sensor, the simulation platform

sed to generate the data and artificial intelligence, explaining how the

roblem can be solved with their use. Next, the architecture and some

arameters of the FCN used are detailed in the Section 3 , showing the

esults of the RS and their discussion in Section 4 . Finally, some conclu-

ions and future developments are presented in the last section. 

. Material and methods 

In this section an introduction to the main concepts of Solar adaptive

ptics and artificial neural networks is presented. 
2 
.1. Solar adaptive optics (Solar AO) 

The term Adaptive Optics comprehends a set of techniques whose

im is the real-time correction of the images received by ground-based

elescopes. Aberrations are present in the images formed of celestial bod-

es causing that the quality of the images decreases considerably. The

rincipal source of aberrations is the atmospheric turbulence existing in

he part of the way where the light travels through the Earth’s atmo-

phere. 

The Earth’s atmosphere consists of multiple air masses of several

izes and shapes that are in constant relative in movement. Each one

as its own properties: size, wind’s direction and velocity, temperature,

eight, etc. The relative movements between the air masses, like flu-

ds movements, cause the atmospheric turbulence to be a random phe-

omenon in constant change, which makes the work of AO systems diffi-

ult to reach real time corrections, without knowing how the turbulence

ill be in the next moment. The turbulence of larger scales is passed to

urbulences at lower scales [10] . The air masses are commonly repre-

ented as turbulence layers at different heights, so the path that light

akes through the atmosphere consists of passing through several tur-

ulence layers, each one with its own refraction index value. The way

hat the light goes through the atmosphere to the telescope can be mod-

lled as it has traversed a path with multiple lenses of various refraction

ndexes, one after the other [1] . 

Corrections performed by an AO system are made after the light is

eceived by the telescope, before it is observed. The system must do

everal processes that includes to sense the image, to reconstruct the

stimated atmospheric turbulence that the light has traversed and finally

ith the previous information to calculate the corrections to apply, to

liminate as much aberration effects as possible. 

As it was commented before, the air masses of the turbulence are

rouped by layers. According to the Kolmogorov’s model [10] when de-

cribing a turbulence layer there are two main parameters, its height,

nd its intensity that is given by the Fried’s coherence length (commonly

esignated as 𝑟 0 ) [11] . The physical interpretation given to 𝑟 0 corre-

ponds to the diameter of a telescope that, in absence of turbulence, of-

ers the same resolution as a large telescope in presence of that specific

tmosphere. So, the lower 𝑟 0 value, the higher turbulence intensity; 𝑟 0 
s commonly given in centimetres, where 12 cm represents a worse day

or observation where the turbulence has high intensity and values be-

ween 15–18 cm represents a normal day for observation. An extremely

ad turbulence condition is represented when 𝑟 0 is lower than 10 cm,

nder these circumstances an observation would usually be suspended.

Another important parameter when performing an observation is the

ield of View (FOV). This value represents the maximum angular size

f the object as seen from the entrance pupil. Commonly the FOV is

etermined by the field over which the optical system exhibits good

erformance. 

There are several AO Systems according to its configuration. How-

ver, they usually have the same components; at least one Wavefront

ensor (WFS) where the aberrations presented in the received wave-

ront are measured, a Reconstructor System (RS) which estimates how

he atmosphere is at each moment and calculates a correction for the

berrations and at least one Deformable Mirror (DM) that consists in a

irror which surface can be modified where the received wavefront is

eflected and is applicated to it the corrections calculated by the RS. In

his work an SCAO system was chosen (Simple Conjugate Adaptive Op-

ics). It is the simplest system in AO since it has one WFS and one DM

n-axis with the celestial body working on close loop (see Fig. 1 ). 

The reconstructors that are usually used nowadays in AO Systems

re based on matrix vector multiplication applying least squares meth-

ds or minimum variance techniques [12–14] . In the last years some

econstructors based on ANNs have been successful in night AO sys-

ems, as the CARMEN reconstructor or the CARMEN Convolutional re-

onstructor [15] . The work presented is an evolution of these last kind

f reconstructors but in this case applied for Solar observations. 
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Fig. 1. Schematic representation of a Solar SCAO configuration. 
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There are several difficulties when making a Solar observation com-

ared with a night one, for the AO system. These are the most important:

• First, the Sun is an extended object when it is observed from Earth

since it is much nearer than any other star. Therefore, the tele-

scope’s pupil and all the subaperture pixels of the SH are completely

saturated by the Sun’s surface (see Fig. 2 ) instead having only a

spot of light in the centre. The SH must commonly make some pre-

processing on the data received before passing it to the RS. 

• In diurnal observations, due to the solar energy emitted, the atmo-

spheric turbulence has more intensity, implying higher turbulences

than at night hours. It is expected then that the 𝑟 0 is lower at day. 

• Solar AO must work in the visible spectral range while night systems

tend to work in the infrared where both sensing and correction are

easier. 

• Some alternative wavefront reconstruction algorithms have been de-

veloped for night time astronomy. 

.1.1. Shack-Hartmann wavefront sensor 

The Shack-Hartmann (SH) is the most used WFS in Adaptive Optics

oth in night and solar observations, and the one chosen in this work.

t is composed of a matrix of lenses with the same focal length, being

ocalised each one in a different subaperture. The subapertures are lo-

ated after the lenses, composed by another matrix of separated CCDs

charge-coupled device) or other photon sensors. Each lens focalises the

eceived light on its corresponding subaperture. In an ideal situation, the

ight of the celestial body would be received as a plane wavefront that,

fter passing through the lens, will be focalized in the centre of each

ubaperture, being equal for all of them. Due to the presence of the at-

ospheric turbulence, the wavefront presents aberrations that can be

alculated by the comparison of the images received by the subaper-

ures. 

The SH divides the wavefront in discrete sub-pupils and process

he data before passing them to the RS. It calculates cross-correlations

16] between the images received by each subaperture, the number can

e limited to reduce the time needed. Then, the maximum of the cross-
3 
orrelations is located for each subaperture. The SH is able to obtain

rom that value the gradient or tilt of each subaperture [17] . The gradi-

nt is usually used by commonly RS as the Least-Square method. 

The principal difference between the reconstructors based on convo-

utional neural networks and the others resides on the property of CNNs

f using images as inputs. The images received by each subaperture are

irectly used as input of the RS and the pre-processing data procedure

ade by the SH is not necessary, avoiding the loss of information and

he time needed. 

The most common reconstructor systems used nowadays in real tele-

copes are based in the Least-Squares reconstruction method (LS). When

sing this reconstructor, the result will be better the more subapertures

he sensor has. Nevertheless, the maximum number of subapertures is

imited by the diameter of the pupil and the cost of the sensor depends on

hem, being higher when the number of subapertures increases. For this

eason, it is interesting to obtain new reconstructors that can achieve

ood reconstructions even with a low number of subapertures. The other

arameter that has influence on the information received is the number

f pixels per subaperture, that represents the number photon sensors

hat the SH has in each subaperture. 

.2. Fully-convolutional neural networks 

Artificial Neural Networks are an interconnected group of processing

nits, that tries to mimic the behaviour of biological neural networks

18] . These structures are characterized for being able to learn from the

ata and give an answer to a determinate problem. They are formed by

ndividual computational units, called neurons. The neurons are sorted

n different layers, forming a neural structure. The output of one layer

s the input of the neurons of the next layer since neurons are linked

o those from the previous and following layer. These connections are

egulated by weights whose values can be modified during the training

rocess. 

The training process is the method that allows an ANN to learn from

he data and takes place before the ANN is used. Each neuron applies

n activation function over the input given by the previous ones. The

rocess consists of the application of the network to a train dataset that

ts correct outputs are known. Then, using algorithms that measure the

rror, the ANN is adjusted to minimize the error of the outputs of train

ataset varying some parameters, as the connections weights until the

rror is decreased to a minimum value. The most used algorithm is the

ackpropagation algorithm [19] and it is the one used in this work. 

The kind of neural networks selected is the Fully-Convolutional Neu-

al Networks (FCNs) [ 20 , 21 ] that are based on Convolutional Neural

etworks. An FCN consists in several layers of neurons joined in two

locks, a convolutional block and a deconvolutional block (see Figs. 3

nd 4 ). That allows having both input and output data as a multidimen-

ional array. The convolutional block can be formed by several convolu-

ional layers and pooling layers. The convolutional layers work as filters

xtracting the main features of the input given. The pooling layers re-

uce the size of the input by selecting the most significant value over

 group of pixels, which is chosen by a set criterion, being the maxi-

um value usually selected. In this work no pooling layers were used;

he size of the input was reduced by using convolutional layers with

trides size higher than one pixel. At the end of the convolutional block,

he features are fussed in the deconvolutional section until obtain the

nal image as output. This deconvolutional block usually is formed by

econvolutional and transpose pooling layers. 

For the case of this research, the input data given to the FCNs are

he images of wavefronts received by the SH (as the right image of the

ig. 2 ) obtaining as output the profile of the turbulence phase for each

oment (as it is represented in the schemes of Figs. 3 and 4 ). 

During a common training process, a train dataset is passed through

he FCN with input images and their desired outputs are known. The

rror is backpropagated through the different layers to be minimized.

he filters of the layers and the weights of the connections are modified
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Fig. 2. Example of the information received by 

an SH of 15 × 15 subapertures. On the left, 

there is an image of the information received 

without any pre-processing. On the right, the 

same information after the cross-correlations 

have been made by the SH. 

Fig. 3. Description of the main parameters compared in an example of input 

image. The squares in blue represent the subapertures in the SH image and the 

ones in yellow the pixels over each subaperture. 
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ith the backpropagation, each time that the error is backpropagated

hey are updated. The network is applied to the dataset several times to

rain it, being the number of times that it is passed selected by the user.

n the experimental setup section, the main characteristics of the neural

etworks topologies and the datasets used are detailed. 

.3. DASP: durham adaptive optics simulation platform 

All the dataset used for the training, validation and test processes

ere simulated using THE Durham Adaptive optics Simulation Platform

DASP) [22] . DASP tries to mimic the data obtained in real telescopes,

llowing to make simulations in diurnal or nocturnal observations. In
ig. 4. Schematic representation of an FCNs selected. Due to the number of layers, it

he kernels size and the strides of the layers. 

4 
he case of diurnal ones, it only can replicate an SCAO AO system or a

CAO one. SCAO was the chosen one for this research. 

The atmospheric turbulence is generated according to the Von-

arman statics implemented with Monte-Carlo Simulations [10] . The

ncident wavefront phase is aberrated with several thin perturbed lay-

rs, DASP simulates it agreeing to the previously chosen setup and gen-

rates the image of the SH as a convolution of Sun’s surface image with

he generated turbulence layers. 

The platform allows the user to select multiple parameters of the sim-

lation. For each case, a parameter file is needed that specify relevant

nes, dimension the system and determines the output to be produced

22] . In the case of this research, these parameters include amongst oth-

rs the Fried’s coherence length ( 𝑟 0 ), the outer scale ( 𝐿 0 ), the height of

ach layer, the wind velocity and the direction of each layer and the con-

ribution of each layer to the total turbulence. Further, much informa-

ion can be extracted from the simulation, as the information received

y the SH, the correlations, the phase of the turbulence, the DM posi-

ion, etc. In the datasets simulated for the research only the SH images

nd the image of the turbulence’s phase has been saved, whose consti-

ute the input and the output of the FCNs. The base of the simulated SH

mages is a synthetic solar granulation image of the Sun’s surface with

 resolution of 0.0139 ″ /pixel All the datasets used both for training,

esting and validation were simulated with this platform. 

.4. Experimental setup 

The experiments were performed with an Ubuntu LTS 14.04.3 server,

hich has 128Gb of DDR4 memory, Nvidia GeForce GTX TitanX, an In-

el Xeon CPU E5–1650 v3 @ 3.50 GHz and SSD hard drive. As computer

anguage, Python was chosen for its performance with packages of Artifi-
 corresponds with the Model 1, 2 and 3 since the differences between them are 
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Table 1 

Shack-Hartmann configurations used to compare the influence of the number of subapertures. Values correspond with 

the number of pixels per side, assuming that images of the subapertures and of the phase of the turbulence have a square 

shape. The table is divided to indicate the cases where the two neural network models were used. 

15 × 15 subapertures 10 × 10 subapertures 7 × 7 subapertures 3 × 3 subapertures 

Pixels per subaperture 24 × 24 36 × 36 48 × 48 112 × 112 
Total pixels of the Shack-Hartmann 360 × 360 360 × 360 336 × 336 336 × 336 
Total number of pixels of the phase 90 × 90 90 × 90 84 × 84 84 × 84 
FCN model Model 1 Model 2 
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ial Intelligence as Tensorflow 2 [23] and Keras [24] . Also, the adaptive

ptics simulator DASP [22] is written with Python 2. 

Different simulations were generated for the training, validation and

est process of the FCNs. The influence of three different parameters

n the reconstruction was studied, these parameters are: the number

f subapertures, the number of pixels per subaperture and the FOV of

he observation. For each, one train dataset, one dataset for validation

nd three test datasets were simulated. The simulations presented are

ased on the SCAO configuration of the Gregor Solar Telescope [25] ,

ith 1.5 m optical aperture . Furthermore, each dataset has the same

umber of images to allow a realistic comparison: train sets had 80,000

hile each test dataset had 6000 images. One sun region was set for all

he obtained images. Results are shown in the next section, calculated

s the mean value over the 6000 simulations. 

Considering the parameters of each set, they are as follows: the train

ataset consisted of 80,000 simulated images. Each simulation had two

ifferent turbulence layers, the first one is always situated at 0 m of

eight and had a weight of the 10% over all the atmospheric turbu-

ence. The other layer was set at different heights, varying from 0 to

0,000 m in steps of 200 m of height and having the remaining 90%

f the weight. That structure of the dataset giving the 90% of weight to

he second layer allows to train the network for several heights’ turbu-

ence layers. The r0 value ranged from 8 cm, where the turbulence is

tronger, to 16 cm per each altitude simulated in steps of 1 cm. For each

ase, 100 different situations were created. So, 100 steps of height by 8

teps of 𝑟 0 value by 100 samples for each situation gives in the total the

0,000 simulated images. The validation dataset consisted of 6000 sim-

lated images where the turbulence layer varied from 0 m to 15,000 m

f height in steps of 1000 m, having the same weight as in the previous

ase. The 𝑟 0 value ranged from 8 to 16 cm per altitude in steps of 1 cm.

or this dataset 50 simulations were made for each configuration. 

The three test datasets were simulated with an atmospheric turbu-

ence with the same layers structure as the explained before, excepting

he heights’ step, it was modified being the test one of 500 m of altitude.

he r 0 value was set the same value for all the simulations of the set. 

Once the shared parameters of the simulations for all the studies have

een described, the own features of the FCNs and the datasets of sim-

lations used for each one are detailed in the next subsections. Several

CNs with different topologies were tested before the ones selected for

ach case. The input parameters of the FCNs, presented differences for

ach case studied, that could be quantified as 5 times bigger of the inputs

ize, from the smallest to the biggest case considered, which prevented

he use of a single topology of the FCN. 

.4.1. Influence of the number of subapertures 

For the analysis of the influence of the number of subapertures, four

H configurations were employed, with 15 × 15 , 10 × 10 , 7 × 7 and 3 × 3
ubapertures, respectively. To compare the influence of the subaper-

ures, we keep constant the total number of pixels of the input image.

he configurations of the SH compared are shown in the Table 1 . 

Two different topologies of FCNs were used for the four cases as is

howed in Table 1 , since there were two possible inputs shapes 360 × 360
nd 336 × 336 pixels. The total number of pixels, the number of subaper-

ures, the number of pixels per subaperture and the total number of pix-

ls of the phase image must satisfy some relations according to the DASP
5 
imulation platform to carry out the simulation [22] . Only few combi-

ations are allowed so they were selected to obtain the final input shape

s similar as possible to perform the most reliable comparison, giving

ise in the two input shapes mentioned above. 

The first two cases used the same network as the input shape was

60 × 360 pixels in both, and another one was used for the last two with

n input shape of 336 × 336 pixels: 

• The Model 1 is formed by a convolutional block with 6 layers with

kernels of size 11 × 11 , 7 × 7 , 5 × 5 , 5 × 5 , 3 × 3 and 3 × 3 , respectively

without pooling layers, and a deconvolutional block that is formed

by another 6 layers with kernels 3 × 3 and the rest 5 layers, 5 × 5 ,
respectively. Padding is added in all the layers and the hyperbolic

tangent is used as activation function. The input image is reduced

from 360 × 360 to 5 × 5 pixels in the convolutional block by using

strides of shape 2 × 2 or 3 × 3 . Then the image is increased to its

final shape of 90 × 90 pixels by the deconvolutional block by using

strides of shape 2 × 2 and 3 × 3 . 
• The Model 2 is similar to the first one in all the parameters, except

on the strides of the layers. In this case, the input image is reduced

from 336 × 336 to 7 × 7 by using strides of shape 2 × 2 and 3 × 3 and

then the image is increased to 84 × 84 pixels with strides of shape

3 × 3 and 2 × 2 . 

.4.2. Influence of the number of pixels 

New datasets were simulated to analyze the influence of the number

f pixels per subaperture. They all consist in three subapertures and the

ame FOV but varying the total number of pixels. All the configurations

elected are shown in Table 2 . 

To check the performance on the simplest configuration of the pre-

ious subsections, 3 subapertures were chosen. The first case selected

s 3 × 3 subapertures with 112 × 112 pixels per subaperture, where the

atasets from the previous point were used and it allow us to reuse the

CN that had shown a good performance. This selection outnumbers the

sual configuration used in a real SH, so it was considered the biggest

ase as the other ones had less pixels; 48 × 48 and 28 × 28 , respectively. 

Unlike the previous subsection, for this case a unique model of FCN

ith its own topology was made for each configuration; the simulated

mages were so different in size terms so the same network could not be

sed, as it could only be optimized for one of the situations. The selected

odels are explained behind: 

• Model 2 is the same as the used in the previous experiment with the

same name as the datasets are the same too. To sum up, it consists

in an FCN with 6 convolutional layers and 6 deconvolutional layers

without pooling layers. 

• Model 3 is similar to the first one, but the kernels and strides of the

layers were modified according to the new input and output sizes of

the images. It is composed by the same number of layers, with ker-

nels of size 9 × 9 , 7 × 7 , 5 × 5 and all the last ones with size 3 × 3 , re-

spectively for the convolutional block. The deconvolutional block is

formed by 6 deconvolutional layers with kernels of size 3 × 3 for the

first layer and 5 × 5 for the rest. Images are reduced from 144 × 144
pixels to 3 × 3 pixels using strides of size 2 × 2 and 3 × 3 and then an

increase is made to obtain outputs of 36 × 36 pixels of phase by using

strides in the deconvolutional block of the same shape. Hyperbolic
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Table 2 

Shack-Hartmann configurations used to compare the influence of the number of pixels 

per subaperture. 

PIxels per subaperture 112 × 112 pixels 48 × 48 pixels 28 × 28 pixels 

Total Pixels of the SH 336 × 336 144 × 114 84 × 84 
Total number of pixels of the phase 84 × 84 36 × 36 21 × 21 
fcn model Model 2 Model 3 Model 4 

Table 3 

Shack-Hartmann configurations used to compare the influence of the FOV. All the simulations that have been made for previous compar- 

isons were remade with 10 arcseconds of FOV. The FCN’s models correspond with the ones used in previous studies. 

15 × 15 subapertures 10 × 10 subapertures 7 × 7 subapertures 3 × 3 subapertures 

Pixels per subaperture 20 × 20 28 × 28 42 × 42 24 × 24 48 × 48 96 × 96 
Total number of pixels of the SH 300 × 300 280 × 280 294 × 294 72 × 72 144 × 144 288 × 288 
Total number of pixels of the phase 75 × 75 70 × 70 77 × 77 18 × 18 36 × 36 69 × 69 

Model 1 Model 2 Model 3 Model 4 
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tangent function is used as activation function as in the previous

models. 

• The Model 4 is the smallest, since the input image had size of 84 ×
84 pixels. Model 4 is composed by 5 convolutional layers, so only

one less layer than the others, and kernels of size 9 × 9 , 7 × 7 , 5 × 5 ,
3 × 3 and 3 × 3 , respectively, followed by 4 deconvolutional layers

with kernels 3 × 3 the first one and 5 × 5 all the rest. In this case

the input image is reduced to 7 × 7 pixels by applying strides of size

2 × 2 and 3 × 3 . Then, it is increased by the deconvolutional block

by using strides of 3 × 3 pixels in the second layer. The activation

function selected for this case is the hyperbolic tangent function. 

.4.3. Influence of the FOV 

New simulations were generated to determine the influence of the

OV of the observation. All the previous studies were made with sim-

lations of 6 arcseconds of FOV. So, to take advantage of the previous

esults, all the simulations were remade with 10 arcseconds as it allowed

s to compare case by case the influence of the FOV with the previous

elected configurations. 

The FCNs used to evaluate the influence of the FOV were the same

s in previous subsections for each case. Due to the limitations of the

ASP simulator, the shape of the FCN’s inputs was different to previous

ases as they had to obey some relations between the FOV, the number of

ixels and the number of subapertures. Anyway, we decided to maintain

he characteristics of the FCNs to make a realistic comparison since the

imulations were similar enough in terms of the inputs shape to allow

s to use the same topology. The configurations of the simulations are

hown in Table 3 with the chosen model of FCN from each one. 

The test datasets used in the comparison had the same characteristics

s in the previous situations, they were formed by 3 datasets for each

imulation, having fixed 𝑟 values of 8, 10 and 12 cm each one. 
0 

Table 4 

Comparison of the influence of the variation on the numbe

case is shadowed in light grey, whose intensity increases a

Subapertures r0(cm) Residual WFE (nm) Similari

15 8 304.79 72 

10 235.56 80 

12 206.91 85 

10 8 249.88 91 

10 206.11 94 

12 180.65 96 

7 8 204.52 93 

10 155.18 96 

12 101.07 97 

3 8 202.93 91 

10 146.43 96 

12 93.90 94 

6 
.5. Residual WFE 

The residual RMSE WFE is the chosen magnitude to evaluate the

uality of the reconstructions. The residual WFE allows to measure how

imilar are two pictures by calculating the RMSE of the difference pixel

y pixel of both images. In this case, as the images correspond to the

urbulence’s phase, it is expressed in wavelengths units. The surface ob-

ained by the difference pixel by pixel of two identical images has a zero

esidual WFE value, as it increases, the difference between images also

ncreases. The error can be calculated as follows: 

esidual WFE = 

√ ∑𝑁 

𝑖 =1 ( 𝑥 𝑖 − 𝑦 𝑖 ) 2 

𝑁 

Being 𝑥 𝑖 the pixels of the original image, 𝑦 𝑖 the reconstructed ones

nd 𝑁 the total number of pixels of both images. 

The residual WFE is often presented in radians, in those cases it is

alculated as: 

esidual WFE ( rad ) = 

2π
λ
∗ 

√ ∑𝑁 

𝑖 =1 ( 𝑥 𝑖 − 𝑦 𝑖 ) 2 

𝑁 

Where 𝜆 represents the wavelength of the incoming light. 

. Results and discussion 

The results are divided in three subsections, to show the three objec-

ives of the research: the influence of the number of subapertures, the

umber of pixels per subaperture and the FOV of the observation. 

Results from all the cases are given considering the mean of value of

he residual WFE and with the percentage of the similarity between the

hase reconstructed by the FCN and the original phase, the one simu-
r of subapertures. The most turbulent layer for each 

s the intensity of the turbulence decreases. 

ty (%) WFE original (nm) WFE Network (nm) 

621.52 445.65 

516.47 411.43 

443.26 376.41 

526.82 477.48 

437.63 410.63 

375.62 359.7 

662.9 615.95 

550.69 526.82 

472.7 458.38 

684.39 623.91 

568.2 542.73 

499.76 471.11 
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Fig. 5. Schematic representation of the topology of the FCN selected as Model 4. The difference between the other models apart from the sizes of their kernels and 

strides is that Model 4 has one less convolutional layer and only four deconvolutional layers. 

l  

a

3

 

f  

i  

u  

e  

m  

t

 

s  

a  

f  

7  

n  

i  

o

 

t  

c  

t  

4  

7  

v  

w

 

s  

fi

 

a  

t  

a  

t  

a  

t  

c  

b  

F  

s  

 

a  

t  

w  

t  

i  

a

 

s  

r  

t  

i  

a  

v  

a

3

 

d  

o

 

t  

f  

c  

a  

i

ated by DASP. Some figures of the reconstructed and the original phase

re also shown for a visual comparison. 

.1. Influence of the number of subapertures 

In Table 4 the quality of the reconstructions performed by the FCN

or each SH’s configuration for different intensity of turbulence layers

s compared. Note that all the r0 values are very low, so the best sit-

ation with 12 cm of r0 is still a significantly turbulent situation. It is

xpected, then, that errors obtained were high even the reconstructor

ade a well performance. An example of the reconstruction made by

he FCN is shown in Fig. 5 . 

The results show that the networks improve the quality of the recon-

tructions when the number of subapertures decreases. There also exists

 clear trend in the similarity of the reconstructions, which increases

rom 72% to 93% when the subapertures are reduced from 15 × 15 to
 × 7 , less than a half, at high atmosphere turbulence conditions. Also,

ote that 15 × 15 subapertures is a number that could be found perfectly

n a reconstructor system of a solar telescope of 1.5 m of pupil, as the

ne selected in the simulations. 

Another important parameter that has not been mentioned yet is

he time taken by the network to perform the reconstruction. For the

ases showed above, practically there are not differences being always

he mean computational time needed per sample over each test under

.6 ms. The test that showed the lowest value was the one that considers

 subapertures one with 𝑟 0 value of 10 cm, where the recall time mean

alue over that test was 4.43 ms. The slowest one was 10 subapertures

ith 8 cm of 𝑟 0 that needs 4.54 ms per sample. 

Therefore, models 1 and 2 show similar execution times, being the

econd one slightly faster since its inputs are smaller than those of the

rst model. 

When using FCNs, all the information of the image given as input is

nalyzed, instead of using the standard SH method, where only 2 values,

he slope information, can be recovered from each subaperture. This is

n advantage because no information of the input is lost. That fact allows
Table 5 

Results of the comparison of the influence of the variation

turbulence layer for each case is coloured in light grey, and

the turbulence decreases. 

Pixel per subap. r0(cm) Residual WFE (nm) Simila

112 8 208.50 91 

10 151.20 95 

12 130.51 94 

48 8 179.85 89 

10 126.53 97 

12 105.05 98 

24 8 213.27 84 

10 124.94 97 

12 101.07 99 

7 
he FCNs to achieve good performance in the reconstructions without

 high number of subapertures. Furthermore, the input of the FCN is

he complete image with all the subapertures, where there are abrupt

hanges in the boundaries of the subapertures since each one is saturated

y the Sun’s image (see Fig. 2 ). These limits are misunderstood by the

CN causing that the system achieves better reconstructions with less

ubapertures, contrary to the working of other reconstruction methods.

The trend mentioned before is not saw when the results for 7 × 7
nd 3 × 3 subapertures are considered. Despite with 7 × 7 subapertures

here are more subaperture’s limits, the information received by an SH

ith only 3 × 3 subapertures in total is not enough to reconstruct the

urbulence’s phase in its all regions, as the FCN does not have enough

nformation of the aberrations received due to not have sufficient sub-

pertures to compare them. 

Moreover, the less is the intensity of the turbulence, the higher is the

imilarity of the reconstruction with the original image. All the cases cor-

espond with extreme conditions, especially 𝑟 0 = 8 𝑐𝑚 . So, it is expected

hat under lighter circumstances it would work better. That fact is very

nteresting for close loop adaptive optic systems, as the images received

re firstly corrected with the information of the aberrations of the pre-

ious moment before being received by the WFS, so the intensity of the

berrations measured by the SH are much slower. 

.2. Influence of the number of pixels 

The quality of the reconstructions was measured using three test

atasets with the same characteristics as in the first study, with 𝑟 0 values

f 8, 10 and 12 cm each one. Results are shown in Table 5 . 

The importance of the number of subapertures lies in the informa-

ion received from the SH. The higher number of pixels, the more in-

ormation extracted by the FCN. Consequently, the phase may be re-

onstructed with more precision. In the cases of high values of 𝑟 0 , the

tmosphere is more uniform, so reconstructions can be made even hav-

ng low number of pixels. 
 on the number of pixels per subaperture. The most 

 the colour becomes more intense as the intensity of 

rity (%) WFE original (nm) WFE Network (nm) 

684.39 619.93 

568.20 541.94 

499.76 471.11 

634.25 567.40 

526.02 510.90 

452.01 444.85 

615.15 518.06 

510.11 494.19 

438.48 432.91 
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Table 6 

Results obtained for reconstructions made with simulations with 10 arcseconds of FOV. All the simulations of previous subsections 

were remade with 10 arcseconds to compare case by case the influence of the FOV with the previous selected configurations. 

Subapertures Pixel per subaperture r0(cm) Residual WFE (nm) Similarity (%) WFE original (nm) WFE Network (nm) 

15 20 8 217.25 88 591.28 518.06 

10 167.12 96 491.01 472.70 

12 147.22 97 421.77 432.12 

10 28 8 257.04 88 666.88 587.30 

10 190.20 94 553.88 522.04 

12 165.53 96 475.89 457.58 

7 42 8 222.82 93 635.84 592.07 

10 175.08 95 528.41 503.74 

12 150.41 97 453.60 439.28 

3 96 8 154.38 94 582.52 547.51 

10 112.21 97 483.85 468.73 

12 94.70 98 415.41 405.86 

48 8 164.73 93 637.43 590.48 

10 118.57 97 529.21 512.49 

12 98.68 98 454.40 444.06 

24 8 139.26 91 650.17 592.87 

10 77.99 97 539.55 530.80 

12 59.68 98 463.15 458.38 
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Analysing the results; they show that the quality of reconstructions

ade by ANNs is influenced positively by the total number of pixels of

he SH, as expected. In Table 5 can be seen how the original phase and

he one retrieved by the FCN are more similar when using higher num-

er of pixels, especially in the cases of worst turbulence conditions. For

 0 values of 12 cm, there is practically no difference when varying the

umber of pixels between 122 per subaperture and 24, but it is expected

hat if the number of subapertures is reduced even more, the similarity

ill decrease, as the amount of information received by the FCN may

ot be enough. However, when the 𝑟 0 value represents high turbulence

onditions, as 𝑟 0 = 8 cm, it is seen how the quality of the reconstruc-

ion decreases around 7% between the case with more subapertures in

omparison to the one with less subapertures. 

As in the previous subsection the computational time needed was

lso analyzed for the 3 ANN models. Every value given is calculated as

he mean time needed per sample over all the tests. The ANN Model 3

as applied for the case with 48 × 48 pixels per subaperture, obtaining

 mean computational time of 4.41 ms, 4.39 ms, and 4.43 ms for 8 cm,

0 cm and 12 cm of 𝑟 0 , respectively. The ANN Model 4 was applied for

he last case with 24 × 24 pixels per subaperture, the mean times needed

er sample were 4.18, 4.22 and 4.23 ms for 8, 10 and 12 cm of 𝑟 0 . 

Comparing these results with the previous subsection the only case

hat showed an improvement in terms of computational time is the 24 ×
4 pixels per subaperture one, being approximately 4% faster than the

ig one of 112 × 112 pixels per subaperture. It may be due to the smaller

ize of the input images or to the topology of the ANN model, as Model 4

s composed by one less convolutional and deconvolutional layer. From

his study can be concluded that the number of layers of the ANN model

ffects the computational time, since the intermediate case of 48 × 48
ixels per subaperture obtains similar computational times to the bigger

ne, despite being half the size. 

.3. Influence of the FOV of the observation 

The influence of the FOV in the reconstructions made by FCNs is

nalyzed comparing the results obtained with 10 arcseconds of FOV with

he results obtained in previous subsections, all of them obtained over

imulations with 6 arcseconds of FOV. The quality of the reconstructions

ade with the new datasets can be seen in Table 6 as the results obtained

ith 6 arcseconds of FOV are shown in Tables 4 and 5 . 

To analyze the results, the cases with 8 cm of 𝑟 0 are principally com-

ented since they are where most differences are obtained. Beginning

ith the case with most subapertures, for an SH of 15 × 15 subapertures

he similarity of the reconstruction is improved from 72% with 6 arc-
8 
econds of FOV to 88% with 10 arcseconds when using the same FCN

odel. It should be noted that in the new simulations, the number of

ixels per subaperture has been reduced from 28 to 20 due to DASP

imulator relations. A better reconstruction is obtained even initially

aving a worse situation. To sum up, in this case increasing the FOV of

he simulation from 6 arcseconds to 10, the quality of the reconstruction

as improved a 16% even reducing the number of pixels per subaper-

ure, which implies worse reconstructions as it has been discussed in the

revious subsection. 

In the case of 20 subapertures, the result has decreased from 91% to

9% but as before, the number total of pixels of the SH with 10 arcsec-

nds of FOV was 280 versus the 360 pixels with 6 arcseconds of FOV,

n this case the worse result is attributed to the reduction of the number

f pixels. So, if the quality of reconstructions is almost the same despite

hat great difference in pixels, it is possible to reaffirm that the FCN

econstruct better with higher values of FOV. 

As results of 7 subapertures shows there are practically no differences

etween the two situations. It is expected that the reconstruction will

mprove for the FCN in this case since it is made with less pixels per

ubapertures again, 42 versus 48, that suppose in total 294 vs 336. 

In the cases made with SH of 3 subapertures the same tendency is

bserved, as for all the cases a better reconstruction is retrieved, even in

he biggest one, where despite having 16 pixels less per subaperture (a

4% less), the similarity is improved from 91% to 93% for an 𝑟 0 value

f 8 cm. 

Finally, from situations with 𝑟 0 values higher than 8 cm, the quality

f the reconstructions is approximately the same with 6 or 10 arcsec-

nds. In some cases, as in the last one with 3 subapertures, the similarity

s even higher for the situations with 10 arcseconds. So, in conditions of

ormal intensity turbulence, the new reconstructor can achieve phases

f the turbulence closer to the original ones in simulations with 10 arc-

econds of FOV despite having less pixels per subaperture. 

. Conclusions 

A new reconstructor system for Solar AO based on FCNs has been

ested throughout this paper. The influence on its reconstructions of

ome observation’s parameters as the number of subapertures of the SH,

he number of pixels per subaperture and the FOV of the observation has

een studied to know the benefits of the new reconstructor and how the

ost suitable configurations are ( Fig. 6 ). 

The first conclusion that can be extracted from the study is that a

etter reconstruction is not due to have more subapertures as happens

ith commonly used reconstructor systems in Solar AO. The FCN only
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Fig. 6. Example of the reconstruction made by the FCN for a 7 × 7 subapertures 

SH. Fig. 5. a represents the original image (simulated with the DASP simulator) 

and Fig. 5. b the final reconstructed phase obtained by the FCN. It corresponds 

to a situation of r0 = 8 cm. It is important to note how the reconstructed phase 

has approximately the same shape, having the turbulence in the same region of 

the image, as the original one. 

Table 7 

Configuration with best results obtained from the cases studied. A 

higher optimized configuration can be modelled using the results 

extracted from each of the cases studied. 

Parameters with best results from the cases evaluated in the study 

Number of subapertures Pixels per subaperture FOV 

7 × 7 42 × 42 10 
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eed enough subapertures to interpret the turbulence in the different re-

ions of the pupil but, from that number on, stems to the characteristics

f Solar observations, the FCN misunderstands the information received

nd the quality of the reconstructions decreases. In our study the most

dequate number was 7 × 7 subapertures. 

In previous works made by our group , we had obtained that LS work-

ng with an SH with these characteristics obtains a mean similarity in

he reconstructions of 85% over a dataset of 6.000 images for r 0 values

f 8 cm. Consequently, it is important to highlight that our new recon-

tructor improves the reconstructions an 8% in terms of similarity using

Hs with less than a half subapertures than the most used one. 

From the second study made, it can be concluded that the number

f pixels per subaperture of the SH favourably affects to the quality of

he reconstruction made. As all the information received is used by the

CNs, the higher number of pixels have the subapertures, the better

econstructions will make the ANN. Having more pixels implies that

he FCN receives more information of the atmosphere turbulence con-

itions at each moment. That fact becomes more important in worse

tmospheric turbulence situations, where the biggest differences in the

imilarity of the reconstructions can be seen from the study. Anyway, in

conomic terms, it is more interesting to increase the number of pixels

er subaperture than the subapertures of the Shack-Hartmann. 

On the other hand, increasing the number of pixels implies more

omputational time for the reconstructions if that means growth the

umber of layers of the topology of the ANN. However, variations in

omputational time are not relevant as the maximum difference appreci-

ted was a 4% and for all the cases ANNs have showed very competitive

imes of execution, being always lower than 4.6 ms. 

Finally, the last research provides that the FCNs achieves better re-

ults in observations when the FOV is higher. The higher FOV in the

bservation, the more similar reconstructions made. In the situations

tudied through that subsection, the FCN got similar results between 6

nd 10 arcseconds of FOV or even better with 10 arcseconds despite

sing in the last case simulations with less pixels per subaperture. In

able 7 is presented the configuration that has shown the best results

rom the cases studied. 
9 
The final subsection allows us to confirm the conclusions obtained in

he previous research, as all the simulations of them were remade with

0 arcseconds of FOV for it. The trends observed of the influence of the

umber of subapertures and of the number of pixels per subaperture

ere also fulfilled in this subsection. 

The 𝑟 0 values used for testing the FCNs is something that should be

oted, since all of them represents bad turbulence conditions, especially

he cases with 8 cm as it is associated with extremely bad conditions.

eeing the trend of all the cases studied, the similarity increases with

he 𝑟 0 value, so it can be expected that the quality of the reconstructions

mproves under normal viewing conditions. 

Future developments of this research will consist of apply the ANNs

n an optical bench or a telescope, to verify that the conclusions drawn

re still valid working with real data. Furthermore, the reconstructor

ould be developed for more complex AO systems, as the MCAO one

ince they are the most used currently in solar telescopes. 
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