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Abstract: We study the homogeneous Dirichlet problem for the parabolic equations

u z u u F z u u z x t Tdiv , , , , , Ω 0, ,t ( ( ∣ ∣) ) ( ) ( ) ( )− ∇ ∇ = ∇ = ∈ ×�

with the double phase flux z u u u a z u u, p z q z2 2( ∣ ∣) (∣ ∣ ( )∣ ∣ )( ) ( )
∇ ∇ = ∇ + ∇ ∇

− −� and the nonlinear source F . The
initial function belongs to a Musielak-Orlicz space defined by the flux. The functions a, p, and q are Lipschitz-
continuous, a z( ) is nonnegative, and may vanish on a set of nonzero measure. The exponents p, and q satisfy
the balance conditions p p z q z p zN

N
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with r r p N,( )=

∗ ∗ − , p p zminQT ( )=

− . It is shown
that under suitable conditions on the growth of F z u u, ,( )∇ with respect to the second and third arguments, the
problem has a solution u with the following properties:
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Uniqueness is proven under stronger assumptions on the source F . The same results are established for the
equations with the regularized flux z ε u u, 2 2 1 2( ( ∣ ∣ ) )+ ∇ ∇

/� , ε 0> .
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1 Introduction

Let Ω N�⊂ be a smooth bounded domain, N 2≥ , and T0 < < ∞. We consider the following parabolic
problem with the homogeneous Dirichlet boundary conditions:

u u u a z u u F z u u Q
u
u x u x

div , , in ,
0 on Γ ,

, 0 in Ω,

t
p z q z

T

T

2 2

0

⎧

⎨
⎩

(∣ ∣ ( )∣ ∣ ) ( )

( ) ( )

( ) ( )
− ∇ ∇ + ∇ ∇ = ∇

=

=

− −

(1.1)

where z x t,( )= denotes the point in the cylinder Q TΩ 0,T ( ]= × and TΓ Ω 0,T ( )= ∂ × is the lateral
boundary of the cylinder. The nonlinear source has the following form

F z v v f z z v z v, , Ψ , Φ , .0( ) ( ) ( ) ( )∇ = + + ∇ (1.2)

Here, a 0≥ , p, q, f0, Ψ, and Φ are given functions of their arguments.
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Equations given in (1.1) are often termed “the double-phase equations.” This name, introduced in
[17,18], reflects the fact that the flux function u a z u up z q z2 2(∣ ∣ ( )∣ ∣ )( ) ( )

∇ + ∇ ∇

− − includes two terms with dif-
ferent properties. If p z q z( ) ( )≤ a.e. in the problem domain and a z( ) is allowed to vanish on a set of nonzero
measure in QT , then the growth of the flux is determined by p z( ) on the set, where a z 0( ) = and by q z( )

wherever a z 0( ) > .

1.1 Previous work

The study of the double-phase problems started in the late 80th by the works of Zhikov [47,48], where the
models of strongly anisotropic materials were considered in the context of homogenization. Later on, the
double-phase functionals

u u a x u xdp q

Ω

(∣ ∣ ( )∣ ∣ )
∫

→ ∇ + ∇

attracted attention of many researchers. On the one hand, the study of these functionals is a challenging
mathematical problem. On the other hand, the double-phase functionals appear in a variety of physical
models. We refer here to [8,46] for applications in the elasticity theory, [6] for transonic flows, [9] for
quantum physics, and [13] for reaction-diffusion systems.

Equations (1.1) with p q≠ are also referred to as the equations with the p q,( )-growth because of the
gap between the coercivity and growth conditions: If p q≤ and a x L0 ( )≤ ≤ , then for every ξ N�∈ ,

ξ ξ a x ξ ξ C ξ C1 , const 0.p p q q2 2 2∣ ∣ (∣ ∣ ( )∣ ∣ )∣ ∣ ( ∣ ∣ )≤ + ≤ + = >

− −

These equations fall into the class of equations with nonstandard growth conditions, which have been
actively studied during the last decades in the cases of constant or variable exponents p and q. We refer to
the works [2,14,17,18,24,26–28,31,34,35,39,40,45] and references therein for the results on the existence and
regularity of solutions, including optimal regularity results [24].

Results on the existence of solutions to the evolution double-phase equations can be found in papers
[10,43,44]. These works deal with the Dirichlet problem for systems of parabolic equations of the form

u a x t udiv , , 0,t ( )− ∇ = (1.3)

where the flux a x t u, ,( )∇ is assumed to satisfy the p q,( )-growth conditions and certain regularity assump-
tions. As a partial case, the class of equations (1.3) includes equation (1.1) with constant exponents p q≤

and a nonnegative bounded coefficient a x t,( ). It is shown in [10, Th.1.6] that if

p q p
N

2 4
2

,≤ ≤ < +

+

then problem (1.1) with F 0≡ has a very weak solution:

u L T W L T W u L T W0, ; Ω 0, ; Ω with 0, ; Ω ,p p q q
t0
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loc loc
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q

p
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( )

∈ ∩ ∈

−
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0 0

1, ( )∈ , r p q
p

1
1

( )
=

−

−

. Moreover, u∣ ∣∇ is bounded on every strictly interior cylinder Q QT T′

⋐

separated away from the parabolic boundary of QT . In [43], these results were extended to the case

N
N

p p q p
N

2
2

2, 4
2

.
+

< < ≤ < +

+

The paper [44] deals with weak solutions of systems of equations of the type (1.3) with p q,( ) growth
conditions. When applied to problem (1.1) with constant p and q, F f z0( )≡ , and a t C, Ωα( ) ( )⋅ ∈ with
some α 0, 1( )∈ for a.e. t T0,( )∈ , the result of [44] guarantees the existence of a weak solution:

u L T W L T W L T L0, ; Ω 0, ; Ω 0, ; Ω ,p p q q
0
1,

loc loc
1, 2( ( )) ( ( )) ( ( ))∈ ∩ ∩

∞

Double-phase parabolic equations with variable growth and nonlinear sources  305



provided that the exponents p and q obey the inequalities:

N
N

p q p α p
N

2
2

min 2,
2

.{ }

+

< < < +

+

The proofs of the existence theorems in [10,43,44] rely on the property of local higher integrability of the
gradient, u L Qp δ

T
1∣ ∣ ( )∇ ∈

′

+ for every sub-cylinderQ QT T′

⋐ . The maximal possible value of δ 0> indicates the
admissible gap between the exponents p and q and vary in dependence on the type of the solution.

Equation (1.1) with constant exponents p and q furnishes a prototype of the equations recently studied
in papers [11,21,29,36] in the context of weak or variational solutions. The proofs of existence also use the
local higher integrability of the gradient, but for the existence of variational solutions, a weaker assumption
on the gap q p− is required. For the solutions of the evolution p x t,( )-Laplace equation, global higher
integrability of the gradient up to the lateral boundary of the cylinder was proven in [1] for very weak
solutions and under mild restrictions on the regularity of the data. In [5], this property was established in
the whole of the cylinder QT but under stronger assumptions on the data.

Nonhomogeneous parabolic equations of the form (1.3)with the flux a x t u, ,( )∇ controlled by a general-
ized N -function were studied in [16] in the framework of Musielak-Orlicz spaces. The class of equations
studied in [16] includes, as a partial case, equation (1.1) with F f z0( )= and variable exponents p, q. It is shown
that problem (1.1)with bounded datau0 and f0 admits a unique solutionu L T L L T W0, ; Ω 0, ; Ω2 1

0
1,1( ( )) ( ( ))∈ ∩

∞

with u L Q ;M T
N�( )∇ ∈ , where LM denotes the Musielak-Orlicz space defined by the flux a x t ξ, ,( ). We refer here

to [16,25], the survey article [14], and references therein for the issues of solvability of elliptic and parabolic
equations in the Musielak-Orlicz spaces. A comprehensive review of the current state of the theory of double-
phase problems is given in [38].

In the last years, the double-phase stationary problems with nonlinear convection terms were in the
focus of attention of many researchers, see, e.g., papers [7,27,37], monograph [41], and references therein.
However, to the best of our knowledge, there are no results on the counterpart evolution problems with
nonlinear sources of the variable growth.

1.2 Description of results

In the present work, we prove the existence of strong solutions to problem (1.1). By the strong solution, we
mean a solution whose time derivative is not a distribution but an element of a Lebesgue space, and the flux
has better integrability properties than the properties prompted by the energy equality (the rigorous for-
mulation is given in Definition 3.1).
• We consider first the case of the given source independent of the solution: F f z0( )= . It is shown that if the
exponents p, q and the data a, u0, and f0 are sufficiently smooth, and if the gap between the exponents
satisfies the condition

N
N

p z q z p z p
N p N

Q2
2

2
2 2

in ,T( ) ( ) ( )
( )+

< ≤ < +

+ +

−

−

(1.4)

where p p zinfQT ( )=

− , then problem (1.1) has a strong solution u with

u L Q u t t

u t t u a z u x

, ess sup , , ,

, , d .

t T
T

p z q z

2

0,

Ω

( ) ( ( ) )

( ( ) ) (∣ ∣ ( )∣ ∣ )

( )

( ) ( )
∫

∈ ⋅ < ∞

⋅ ≡ ∇ + ∇

�

�
(1.5)

Moreover, the solution possesses the property of global higher integrability of the gradient:

u z C r p
N p N

d for every 0 4
2 2

,
Q

p z r

T

∣ ∣
( )

( )
∫

∇ ≤ < <

+ +

+

−

− (1.6)

with a finite constant C depending only on u , 00( )� , N , r, and the properties of p( )⋅ and q( )⋅ . The same
existence result is valid for problem (1.1) with the regularized nondegenerate flux:
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ε u a z ε u u ε, 0.2 2 2 2p z q z2
2

2
2( ∣ ∣ ) ( )( ∣ ∣ )

( ) ( )

( )

+ ∇ + + ∇ ∇ >

− −

• If the source F depends on u and u∇ , the existence of strong solutions of problem (1.1)with the property of
global higher integrability (1.6) is proven for the nonlinear source function F of the form (1.2) subject to
specific growth restrictions, which lead to an additional assumption on p−. We assume that

C Q z z r C r
z v C v v v v

Ψ , Ψ , 0 0, Ψ , ,
Ψ , 1 ln ,

T
σ z

σ z σ z

0 1

1 2
�( ) ( ) ∣ ( )∣ ∣ ∣

∣ ( )∣ (∣ ∣ ( ∣ ∣ ∣∣) ∣ ∣ ∣ ∣)
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∈ × = ≤

∇ ≤ + + ∇

−

− −

with a constant C and a function σ C QT
0( )∈ such that

σ z σ z p p N
N

2 inf sup min , 1 2
2

.
Q QT T

( ) ( )
{ }

≤ ≤ < +

+

− −

The growth of F with respect to u∇ is subject to the following restrictions:

C Q z s
L s s

M s s
Φ , Φ ,

if 1,

if 1
T

N
p z

0
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⎨
⎩

∣ ∣ ∣ ∣
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( )

( )
∈ × ≤

<

≥

−

with positive constants L, and M . The functions Ψ and Φ are not assumed to be sign-definite. An example
of admissible Ψ and Φ is furnished by

z s c z s
s

z v b z v vΦ ,
1

, Ψ , ,
p z

σ z
1

1
2

p z
2

( )
( )∣ ∣

∣ ∣
( ) ( )∣ ∣

( )
( )

( )
=

+

=

−

−

−

with

b z c z C Q b σ, , const, const.T Q Q
0

, ,T T( ) ( ) ( )∈ ‖∇ ‖ ≤ ‖∇ ‖ ≤

∞ ∞

If Ψ 0≡ , the restriction on p z( ) transforms into p 2≥

− . For the uniqueness of strong solutions, we
assume that Φ 0≡ and either z vΨ ,( ) is monotone decreasing with respect to v for a.e. z QT∈

or z v b z vΨ ,( ) ( )= .

In both cases, property (1.6) of global higher integrability of the gradient turns out to be crucial for the
proof of the existence of a strong solution. A traditional approach to the double-phase equations involves
regularization of the equation and derivation of a local estimate (1.6) with the use of Caccioppoli-type
inequalities, which is sufficient for the proof of the existence of weak solutions. As distinguished from this
method, we find a solution as the limit of a sequence of finite-dimensional Galerkin’s approximations.
These approximations do not solve the equation, but they are smooth up to the parabolic boundary of the
cylinder QT . The higher regularity of the approximations allows us to prove global in QT uniform higher
integrability of their gradients by means of the Gagliardo-Nirenberg inequality.

All results remain true for the multiphase equations:

u u u a z u u F z u udiv , , ,t
p z

i

K

i
q z2

1

2i
⎜ ⎟
⎛

⎝

∣ ∣ ( )∣ ∣
⎞

⎠

( )( ) ( )
∑

− ∇ ∇ + ∇ ∇ = ∇

−

=

−

provided the exponents p z( ) and q zi( ) satisfy the balance condition (1.4) and the source F is subject to the
above-described growth conditions.

2 The function spaces

We begin with a brief description of the Lebesgue and Sobolev spaces with variable exponents. A detailed
insight into the theory of these spaces and a review of the bibliography can be found in [20,22,32,41]. Let
Ω N�⊂ be a bounded domain with the Lipschitz continuous boundary Ω∂ . Define the set

Ω measurable functions on Ω with values in 1, .( ) { ( )}≔ ∞�
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2.1 Variable Lebesgue spaces

Throughout the rest of the paper, we assume that Ω N�⊂ , N 2≥ , is a bounded domain with the boundary
CΩ 2

∂ ∈ . Given r Ω( )∈ � , we introduce the modular

A f f x xd ,r
r x

Ω

( ) ∣ ( )∣( )
( )

∫

=

⋅ (2.1)

and the set

L f A fΩ : Ω measurable on Ω, .r
r�( ) { ∣ ( ) }( )
( )= → < ∞

⋅

⋅

The set L Ωr ( )( )⋅ equipped with the Luxemburg norm

f λ A f
λ

inf 0 : 1r r,Ω ⎧
⎨⎩

⎛

⎝

⎞

⎠

⎫
⎬⎭

( ) ( )‖ ‖ = > ≤

⋅ ⋅

becomes a Banach space. By convention, from now on, we use the notation

r r x r r xess min , ess max .
x xΩ Ω

( ) ( )≔ ≔

−

∈

+

∈

If r Ω( )∈ � and r r x r1 ( )< ≤ ≤ < ∞

− + in Ω, then the following properties hold.
(1) L Ωr ( )( )⋅ is a reflexive and separable Banach space.

(2) For every f L Ωr ( )( )
∈

⋅ ,

f f A f f fmin , max , .
r

r
r
r

r
r

r
r
r

,Ω
,Ω

,Ω
,Ω∣ ∣ ( ) ∣ ∣

( )
( ) ( )

( )
( ){ } { }

‖ ‖ ≤ ≤ ‖ ‖

⋅

⋅

⋅

⋅

⋅

−

+

−

+

(2.2)

(3) For every f L Ωr ( )( )
∈

⋅ and g L Ωr ( )( )
∈

′ ⋅ , the generalized Hölder inequality holds:

fg
r r

f g f g1 1 2 ,r r r r

Ω

,Ω ,Ω ,Ω ,Ω⎜ ⎟∣ ∣ ⎛

⎝ ( )
⎞

⎠
( ) ( ) ( ) ( )∫

≤ +

′

‖ ‖ ‖ ‖ ≤ ‖ ‖ ‖ ‖

− −

⋅ ′ ⋅ ⋅ ′ ⋅ (2.3)

where r r
r 1′ =

−

is the conjugate exponent of r.
(4) If p p, Ω1 2 ( )∈ � and satisfy the inequality p x p x1 2( ) ( )≤ a.e. in Ω, then L Ωp1 ( )( )⋅ is continuously

embedded in L Ωp2 ( )( )⋅ and for all u L Ωp2 ( )( )
∈

⋅

u C u C C p p, Ω , , .p p,Ω ,Ω 1 21 2 (∣ ∣ )( ) ( )‖ ‖ ≤ ‖ ‖ =

⋅ ⋅

± ± (2.4)

(5) For every sequence f L Ωk
r{ } ( )( )

⊂

⋅ and f L Ωr ( )( )
∈

⋅ ,

f f A f f k0 iff 0 as .k r r k,Ω ( )( ) ( )‖ − ‖ → − → → ∞

⋅ ⋅

(2.5)

2.2 Variable Sobolev spaces

The variable Sobolev space W Ωr
0
1, ( )( )⋅ is the set of functions:

W u u L W u LΩ : Ω Ω Ω , Ωr r r
0
1,

0
1,1�( ) { ∣ ( ) ( ) ∣ ∣ ( )}( ) ( ) ( )

= → ∈ ∩ ∇ ∈

⋅

⋅ ⋅

equipped with the norm

u u u .W r rΩ ,Ω ,Ωr
0
1, ( ) ( ) ( )( )

‖ ‖ = ‖ ‖ + ‖∇ ‖

⋅ ⋅

⋅
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If r C Ω0( )∈ , the Poincaré inequality holds: for every u W Ωr
0
1, ( )( )

∈

⋅ ,

u C u .r r,Ω ,Ω( ) ( )‖ ‖ ≤ ‖∇ ‖

⋅ ⋅

(2.6)

Inequality (2.6) means that the equivalent norm of W Ωr
0
1, ( )( )⋅ is given by

u u .W rΩ ,Ωr
0
1, ( ) ( )( )

‖ ‖ = ‖∇ ‖

⋅

⋅ (2.7)

Let us denote byC Ωlog( ) the subset of Ω( )� composed of the functions continuous on Ω with the logarithmic
modulus of continuity:

p C p x p y ω x y x y x yΩ , Ω, 1
2

,log( ) ∣ ( ) ( )∣ (∣ ∣) ∣ ∣∈ ⇔ − ≤ − ∀ ∈ − <

where ω is a nonnegative function such that

ω s
s

C Climsup ln 1 , const.
s 0

( ) = =

→

+

If r C Ωlog( )∈ , then the set C Ωc ( )∞ of smooth functions with finite support is dense in W Ωr
0
1, ( )( )⋅ (see

Proposition 2.2). This property allows one to use the equivalent definition of the space W Ωr
0
1, ( )( )⋅ :

W CΩ the closure of Ω with respect to the norm .r
c W0

1,
Ωr1,( ) { ( ) }( )

( )( )
= ‖⋅‖

⋅ ∞

⋅

2.3 Spaces of functions depending on x and t

For the study of parabolic problem (1.1), we need the spaces of functions depending on z x t Q, T( )= ∈ .
Given a function q C QTlog( )∈ , we introduce the spaces:

u u L W u L t T
Q u T u L Q u L Q
Ω : Ω Ω Ω , Ω , 0, ,

: 0, Ω , .
q t

q x t

q T q t T
q z

T

,
2

0
1,1 , 1

,
2 1

�( ) { ∣ ( ) ( ) ∣ ∣ ( )} ( )

( ) { ( ) ( )∣ ( ) ∣ ∣ ( )}

( )
( )

( ) ( )
( )

= → ∈ ∩ ∇ ∈ ∈

= → ∈ ∇ ∈

⋅

⋅ ⋅

�

� �

The norm of Qq T( )( )⋅� is defined by

u u u .Q Q q Q2, ,q T T T( ) ( )( )
‖ ‖ = ‖ ‖ + ‖∇ ‖

⋅

⋅

�

Since q C QTlog( )∈ , the space Qq T( )( )⋅� is the closure of C Qc T( )∞ with respect to this norm.

2.4 Musielak-Sobolev spaces

Let a : Ω 0,0 [ )↦ ∞ be a given function, a C Ω0
0,1( )∈ . Assume that the exponents p q C, Ω0,1( )∈ take values

in the intervals p p,( )− + , q q,( )− + , and p x q x( ) ( )≤ in Ω. Set

r x p x s x q xmax 2, , max 2,( ) { ( )} ( ) { ( )}= =

and consider the function

x t t a x t t x, , 0, Ω.r x s x
0( ) ( )( ) ( )

= + ≥ ∈�

The set

L u u ρ u x u xΩ : Ω is measurable , , d
Ω

�( )
⎧

⎨
⎩

∣ ( ) ( ∣ ∣)
⎫

⎬
⎭

∫

= ↦ = < ∞��

�

equipped with the Luxemburg norm
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u λ ρ u
λ

inf 0 : 1⎧

⎨
⎩

⎛
⎝

⎞
⎠

⎫

⎬
⎭

‖ ‖ = > ≤� �

becomes a Banach space. The space L Ω( )� is separable and reflexive [25]. By W Ω1, ( )� , we denote the
Musielak-Sobolev space

W u L u LΩ Ω : Ω1, ( ) { ( ) ∣ ∣ ( )}= ∈ ∇ ∈

� � �

with the norm

u u u .1,‖ ‖ = ‖ ‖ + ‖∇ ‖� � �

2.5 Dense sets in ( )(⋅)W Ωp
0
1, and ( )�W Ω1,

Let ϕi{ } and λi{ } be the eigenfunctions and the corresponding eigenvalues of the Dirichlet problem for the
Laplacian:

ϕ ψ λ ϕ ψ ψ H, , Ω .i i i2,Ω 0
1( ) ( ) ( )∇ ∇ = ∀ ∈

(2.8)

The functions ϕi form an orthonormal basis of L Ω2( ) and are mutually orthogonal in H Ω0
1( ). If CΩ k

∂ ∈ , k 1≥ ,
then ϕ C HΩ Ωi

k( ) ( )∈ ∩

∞ . Let us denote by H Ωk ( )� the subspace of the Hilbert space H Ωk( ) composed of the
functions f for which

f f f H L0, Δ 0, , Δ 0 on Ω, Ω Ω .0 2k 1
2 ( ) ( )[ ]

= = … = ∂ =

−

�

The relations

f g
f g k

f g k
,

Δ , Δ if is even ,

Δ , Δ if is odd
k

H

2,Ω

Ω

k k

k k

2 2

1
2

1
2 1

[ ]
⎧

⎨
⎩

( )

( ) ( )

=

− −

define an equivalent inner product on H Ωk ( )� : f g λ f g, k i i
k

i i1[ ] = ∑

=

∞ , where fi, and gi are the Fourier coeffi-
cients of f , and g in the basis ϕi{ } of L Ω2( ). The corresponding equivalent norm of H Ωk ( )� is defined by
f f f,

H kΩ
2

k [ ]
( )

‖ ‖ =

�

. Let f f ϕm
i
m

i i1
( )

= ∑

=

be the partial sums of the Fourier series of f L Ω2( )∈ . The following
assertion is well known.

Proposition 2.1. Let CΩ k
∂ ∈ , k 1≥ . A function f can be represented by the Fourier series in the system ϕi{ },

convergent in the norm of H Ωk( ), if and only if f H Ωk ( )∈ � . If f H Ωk ( )∈ � , then the series λ fi i
k

i1
2

∑

=

∞ is convergent,

its sum is bounded by C f H Ωk( )‖ ‖ with an independent of f constant C, and f f 0m
H Ωk( )

( )‖ − ‖ → as m → ∞. If

k 1N
2[ ]≥ + , then the Fourier series in the system ϕi{ } of every function f H Ωk ( )∈ � converges to f inC Ωk 1N

2 ( )⎡⎣ ⎤⎦
− − .

Proposition 2.2. ([23], Th. 4.7, Proposition 4.10). Let LipΩ∂ ∈ and p C Ωlog( )∈ . Then the set C Ωc ( )∞ is dense

in W Ωp
0
1, ( )( )⋅ .

Given a function u W Ωp
0
1, ( )( )

∈

⋅ with p C Ωlog( )∈ , the smooth approximations of u in W Ωp
0
1, ( )( )⋅ are

obtained by means of mollification. The proof relies on the boundedness of the maximal Hardy-
Littlewood operator in L Ωp ( )( )⋅ with p C Ωlog( )∈ .

Let us denote ϕ ϕspan , ,m m1{ }= …� , where ϕi are the solutions of problem (2.9).

Lemma 2.1. If CΩ k
∂ ∈ , q C Ωlog( )∈ and

k N
N q

q q x1
2

1 1 , max ,
Ω

⎜ ⎟
⎛

⎝

⎞

⎠
( )≥ + − =

+

+ (2.9)

then m m1⋃

=

∞

� is dense in W Ωq
0
1, ( )( )⋅ .
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Proof. Given v W Ωq
0
1, ( )( )

∈

⋅ we have to show that for every ε 0> , there is m �∈ and vm m∈ � such

that v v εm W Ωq
0
1, ( )( )

‖ − ‖ <

⋅ . Fix some ε 0> . By Proposition 2.2, there is v C HΩ Ωε c
k( ) ( )∈ ⊂

∞

� such that

v v ε 2ε W Ωq
0
1, ( )( )

‖ − ‖ < /

⋅ . By Proposition 2.1 v x vϕ x H Ωε
m

i
m

i i
k

1( ) ( ) ( )( )
= ∑ ∈

=

and v vε
m

ε
( )

→ in H Ωk( ), therefore for

every δ 0> , there is m �∈ such that v v δε ε
m

H Ωk( )
( )‖ − ‖ < . Since k N, , and q satisfy condition (2.10), the

embeddings H W WΩ Ω Ωk q q
0
1,

0
1,( ) ( ) ( )( )

⊂ ⊆

⋅

+

� are continuous:

w C w C w w H ΩW W H
k

Ω Ω Ωq q k
0
1,

0
1, ( )( ) ( ) ( )( )

‖ ‖ ≤ ‖ ‖ ≤ ′‖ ‖ ∀ ∈

⋅

+

�

with independent of w constants C, C′. Set C δ ε 2′ = / . Then

v v C v v C δ ε
2

.ε ε
m

W ε ε
m

HΩ Ωq k
0
1,( )

( )
( )

( )( )
‖ − ‖ ≤ ′‖ − ‖ < ′ =

⋅

It follows that

v v v v v v ε C δ ε
2

. □ε
m

W ε W ε ε
m

WΩ Ω Ωq q q
0
1,

0
1,

0
1,( )

( ) ( )
( )

( )( ) ( ) ( )
‖ − ‖ ≤ ‖ − ‖ + ‖ − ‖ < + ′ =

⋅ ⋅ ⋅

Corollary 2.1. If p C QTlog( )∈ and condition (2.9) is fulfilled, then

v x t v v t ϕ x v t C T is dense in Q, : , 0, .
i

i i i p T
1

0,1⎧

⎨
⎩

( ) ( ) ( ) ( ) [ ]
⎫

⎬
⎭

( )( )∑

= ∈

=

∞

⋅

�

Since CΩ k
∂ ∈ with k 1≥ and r x s x, 2( ) ( ) ≥ , thenW WΩ Ω1, 1,2( ) ( )⊂

� and the elements ofW Ω1, ( )� have
traces on Ω∂ . Let us denote by

W u W uΩ Ω : 0 on Ω in the sense of traces0
1, 1,( ) { ( ) }≔ ∈ = ∂

� �

the closed subspace of W Ω1, ( )� .

Proposition 2.3. Let CΩ 1
∂ ∈ and a p q C, , Ω0

0,1( )∈ . If p x q x( ) ( )≤ in Ω and

s
r N

s q x r p x1 1 , max max 2, , min max 2, ,
Ω Ω

{ { ( )}} { { ( )}}≤ + = =

+

−

+ −

then W DΩ Ω0
1, 1,( ) ( )=

� � , where D Ω1, ( )� is the closure of C WΩ Ωc
1,( ) ( )∩

∞ � with respect to the norm

of W Ω1, ( )� .

The assertion of Proposition 2.3 can be derived from [15, Th. 3.1] or [30, Ch. 6]. For a straightforward
construction of the approximating sequence, one may adapt the proof of Proposition 2.2. The properties of
the maximal operator and mollifiers in the space L Ω( )� needed for the proof are established in [30,
Th. 4.3.4, Th. 4.3.7]. It is proven in [19, Theorem 2.23] that the function � satisfies all conditions of these
theorems.

Lemma 2.2. If a p q C, , Ω0
0,1( )∈ and CΩ k

∂ ∈ with

k N
N s

1
2

1 1 ,⎛
⎝

⎞
⎠

≥ + −

+

(2.10)

then m m1⋃

=

∞

� is dense in W Ω0
1, ( )� .

We omit the details of the proof which imitates the proof of Lemma 2.1: by Proposition 2.3 C Ωc ( )∞ is

dense in W Ω0
1, ( )� , and since C HΩ Ωc

k( ) ( )( )
⊂

∞

�
, every v H Ωε

k ( )∈ � can be approximated by vε
m

m
( )

∈ � .
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3 Assumptions and main results

Let p q Q, : T �↦ be measurable functions satisfying the conditions

N
N

p p z p Q

N
N

q q z q Q p q

2
2

in ,

2
2

in , , const.

T

T

( )

( )

+

< ≤ ≤

+

< ≤ ≤ =

− +

− +

± ±

(3.1)

Assume that p q W Q, T
1, ( )∈

∞ as functions of variables z x t,( )= : there exist positive constants C∗, C∗∗, C
∗

,
C
∗∗

such that

p C p C

q C q C

ess sup , ess sup ,

ess sup , ess sup .
Q Q

t

Q Q
t

T T

T T

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

∇ ≤ < ∞ ≤

∇ ≤ < ∞ ≤

∗

∗

∗∗

∗∗

(3.2)

The modulating coefficient a( )⋅ is assumed to satisfy the following conditions:

a z Q a C T C a C0 in , 0, ; Ω , ess sup ,T
Q

t a
0,1

T

( ) ([ ] ( )) ∣ ∣≥ ∈ ≤ (3.3)

C consta = . We do not impose any condition on the null set of the function a in QT . If F f z0( )= , we do not
distinguish between the cases of degenerate and singular equations. It is possible that p z 2( ) < and q z 2( ) >

at the same point z QT∈ . To study the equation with the nonlinear source, we assume p 2≥

− .

Definition 3.1. A function u Q: T �↦ is called strong solution of problem (1.1) if
(1) u Qq T( )( )∈

⋅

� , u L Qt T
2( )∈ , u L T L0, ; Ωs∣ ∣ ( ( ))( )

∇ ∈

∞ ⋅ with s z p zmax 2,( ) { ( )}= ,

(2) for every ψ Qq T( )( )∈

⋅

� ,

u ψ z u a z u u ψ z F z u u ψ zd d , , d ,
Q

t

Q

p z q z

Q

2 2

T T T

(∣ ∣ ( )∣ ∣ ) ( )( ) ( )
∫ ∫ ∫

+ ∇ + ∇ ∇ ⋅∇ = ∇

− −

(3.4)

(3) for every ϕ C Ω0
1( )∈

u x t u x ϕ x t, d 0 as 0.
Ω

0( ( ) ( ))
∫

− → →

The main results are given in the following theorems.

Theorem 3.1. LetΩ N�⊂ , N 2≥ , be a bounded domain with the boundary CΩ k
∂ ∈ , k 2 N

2⎡⎣ ⎤⎦
≥ + . Assume that

p( )⋅ , and q( )⋅ satisfy conditions (3.1), and (3.2), and there exists a constant,

r r r p
p N N

0, , 4
2 2

,( )
( )

∈ =

+ +

∗ ∗

−

−

such that

p z q z p z r in Q
2

.T( ) ( ) ( )≤ ≤ + (3.5)

If a( )⋅ satisfies conditions (3.3) and F f z0( )≡ , then for every f L T W0, ; Ω0
2

0
1,2( ( ))∈ and u W Ω0 0

1, ( )∈

� with

u u a x u x K, 0 d ,p x q x

Ω

0
2

0
,0

0
,0(∣ ∣ ∣ ∣ ( )∣ ∣ )( ) ( )

∫

∇ + ∇ + ∇ = < ∞ (3.6)

problem (1.1) has a unique strong solution u. This solution satisfies the estimate
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u u a z u x u z Cess sup d dt Q
T

s z q z

Q

p z r
2,
2

0,
Ω

T

T

(∣ ∣ ( )∣ ∣ ) ∣ ∣
( )

( ) ( ) ( )
∫ ∫

‖ ‖ + ∇ + ∇ + ∇ ≤

+

(3.7)

with the exponent s z p zmax 2,( ) { ( )}= and a constant C, which depends on N , Ω∂ ,T p q, ,± ±, r, the constants in
conditions (3.2), (3.3), f L T W0 0, ; Ω2

0
1,2( ( ))‖ ‖ , and K .

Assume that the source F may depend on the solution and its gradient. Let F be defined by (1.2) with Ψ
and Φ satisfying the following conditions:

C Q z z r C r
z v C v v v v

σ Q
σ σ σ σ z σ σ z

Ψ , Ψ , 0 0, Ψ , ,
Ψ , 1 ln

with a constant C and a continuous function in such that
2 , inf , sup ,

T
σ z

σ z σ z

T

Q Q

0 1

1 2

T T

�( ) ( ) ∣ ( )∣ ∣ ∣

∣ ( )∣ (∣ ∣ ( ∣ ∣ ∣∣) ∣ ∣ ∣ ∣)

( ) ( )

( )

( ) ( )

∈ × = ≤

∇ ≤ + + ∇

≤ ≤ < ∞ = =

−

− −

− + − +

(3.8)

and

C Q
z Q

z s
L s s

M s s

Φ ,
there exist constants L, M such that for all

Φ ,
if 1,

if 1.

T
N

T
p z

0

1

p z
2

�( )

∣ ( )∣
⎧

⎨
⎩

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

( )

( )

∈ ×

∈

≤

<

≥

−

(3.9)

Theorem 3.2. Let in the conditions of Theorem 3.1, Ψ 0≢ and/or Φ 0≢ .
(1) Assume that Ψ satisfies conditions (3.8) and Φ satisfies conditions (3.9). If

p σ p p N
N

2 , min , 1 2
2

,
{ }

< < +

+

− + − − (3.10)

then for every f L T W0, ; Ω0
2

0
1,2( ( ))∈ and u W Ω0 0

1, ( )∈

� , problem (1.1) has at least one strong solution u. The
solution u satisfies estimate (3.7) with the constant depending on the same quantities as in the case
F f z0( )= , the constants in conditions (3.8), (3.9), and σ±. If Ψ 0≡ , the assertion is true if (3.10) is
substituted by the inequality p 2≥

− .
(2) The strong solution is unique if p q,( ) ( )⋅ ⋅ satisfy the conditions of Theorem 3.1, Φ 0≡ , and either

z u b z uΨ ,( ) ( )= with a bounded coefficient b z( ) or z sΨ ,( ) is monotone decreasing with respect to s for
a.e. z QT∈ .

An outline of the work. In Section 4, we collect several auxiliary assertions. We present estimates on the
gradient trace on Ω∂ for the functions from variable Sobolev spaces and formulate the interpolation
inequality, which enables us to prove global higher integrability of the gradient. This property turns out
to be the key element in the proof of the existence theorems for problem (1.1) and the counterpart regular-
ized problems (problem (5.1)).

A solution of problem (1.1) is obtained as the limit of the family of solutions of the nondegenerate
problems (5.1) with the regularized fluxes:

ε u a z ε u u ε, 0.2 2 2 2p z q z2
2

2
2( ∣ ∣ ) ( )( ∣ ∣ )

( ) ( )

( )

+ ∇ + + ∇ ∇ >

− −

For every ε 0, 1( )∈ , problem (5.1) is solved with the method of Galerkin. In Section 5, we formulate the
problems for the approximations. Section 6 is devoted to derive a priori estimates on the approximate
solutions and their derivatives. For the convenience of presentation, we separate the cases F f z0( )= when
the source is independent of the solution and its gradient, and the general case (1.2). In the latter case, the
derivation of the a priori estimates requires additional restrictions on the range of the exponent p and the
rate of growth of F z u u, ,( )∇ with respect to the second and third arguments. The a priori estimates of
Section 6 involve higher-order derivatives of the approximate solutions. This is where we make use of the
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interpolation inequalities of Section 4 to obtain the global higher integrability of the gradient which, in
turn, yields uniform boundedness of the L Qq

T( )( )⋅ -norms of the gradients of the approximate solutions.
Despite the fact that the initial datum belongs to a Musielak-Orlicz space, it turns out that the approximate
solutions form a uniformly bounded sequence in a variable Sobolev space. This property is crucial in the
study of convergence of the sequence of approximations and the regularity of its limit.

Theorems 3.1 and 3.2 are proven in Section 7. We show first that for every ε 0> , the constructed
sequence of Galerkin’s approximations contains a subsequence, which converges to a strong solution uε
of the regularized problem (5.1). The proof relies on the compactness and monotonicity of the fluxes. To
pass to the limit in the nonlinear source term, we need the pointwise convergence of the gradients, which
turns out to be a byproduct of the uniform higher integrability. Existence of a solution to problem (1.1) is
established in a similar way.

Remark 3.1. The condition on the regularity of Ω∂ allows us to use Galerkin’s finite-dimensional approx-
imations in the proof of better regularity of the solution. However, this assumption is not necessary. It can
be relaxed by means of approximation of the domain with the boundary CΩ 2

∂ ∈ by an expanding family of
smooth domains. The family of the corresponding solutions converges to the solution of the problem in the
approximated domain.

Remark 3.2. The Lipschitz continuity of the modulating coefficient a x t,( ) and the exponents p x t,( ), q x t,( )

at t 0= is essential for approximation of the initial datum u0 via density of smooth functions in the
Musielak-Orlicz-Sobolev space. The proof relies on results of the recent work [19] where this regularity
of the data was assumed. When t 0> , the same regularity of the data is assumed for the derivation of the
interpolation inequalities, which involve second-order derivatives.

Notation: Throughout the rest of the text, the symbol C will be used to denote the constants that can be
calculated or estimated through the data but whose exact values are unimportant. The value of C may vary
from line to line even inside the same formula. Whenever it does not cause a confusion, we omit the
arguments of the variable exponents of nonlinearity and the coefficients. We will use the shorthand nota-
tion v vxx i j

N
x x

2
, 1

2
i j∣ ∣ ∣ ∣= ∑

=

.

4 Auxiliary propositions

Until the end of this section, the notation p( )⋅ , q( )⋅ , a( )⋅ is used for functions not related to the exponents
and coefficient in (1.1) and (5.1).

Lemma 4.1. (Lemma 1.32, [4]) Let Ω Lip∂ ∈ and p C QT
0( )∈ . Assume that u L T L W Q0, ; Ω p

T
2

0
1,( ( )) ( )( )

∈ ∩

∞

⋅

and

u t u z Mess sup , d .
T

Q

p z

0,
2,Ω
2

T

( ) ∣ ∣
( )

( )
∫

‖ ⋅ ‖ + ∇ = < ∞

Then

u C C C M p N ω, , , , ,p Q, T ( )( )‖ ‖ ≤ =

⋅

±

where ω is the modulus of continuity of the exponent p( )⋅ .

The proof in [4] is given for the case B xΩ R 0( )= . To adapt it to the general case, it is sufficient to consider
the zero continuation of u to a circular cylinder containing QT .

Let us accept the notation
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β ε

γ z ε a z ε z Q ε

s s

s s s s

,

, , , , 0.
ε

ε
N

T

2 2

2 2 2 2p z q z2
2

2
2 �

( ) ∣ ∣

( ) ( ∣ ∣ ) ( )( ∣ ∣ )
( ) ( )

= +

= + + + ∈ ∈ >

− −

(4.1)

With certain abuse of notation, we will denote by γ x s,ε( ) the same function but with the exponents p, and q
and the coefficient a depending on the variable x Ω∈ .

Lemma 4.2. (Lemma 4.1, [5]) Let CΩ 1
∂ ∈ , u C Ω2( )∈ and u 0= on Ω∂ . Assume that

p p p p
N

N
p p C p L

β u u x u x M u x M

: Ω , , const,
2

2
, Ω , ess sup ,

d , d , d .ε

p x

xx
p x

0

Ω

Ω

2
2 2

Ω

2
0

Ω

1

[ ]

( ) ( ) ∣ ∣

( )∣ ∣ ∣ ∣
( )

( )
∫ ∫ ∫

↦ =

+

< ⋅ ∈ ∇ =

∇ < ∞ = ∇ =

− + ±

−

−

(4.2)

Then for every

N
r r r p

p N N
2

2
4

2 2( )+

≕ < < ≔

+ +

∗

∗

−

−

(4.3)

and every δ 0, 1( )∈

β u u x δ β u u x C u xd d 1 dε

p x r

ε

p x

xx
p x

Ω

2
2 2

Ω

2
2 2

Ω

( )∣ ∣ ( )∣ ∣
⎛

⎝

⎜⎜
∣ ∣

⎞

⎠

⎟⎟

( ) ( )
( )

∫ ∫ ∫

∇ ∇ ≤ ∇ + + ∇

+ − −

(4.4)

with an independent of u constant C C δ p N r M MΩ, , , , , ,0 1( )= ∂

± .

Theorem 4.1. (Theorem 4.1, [5]) Let CΩ 1
∂ ∈ , u C T C0, ; Ω0 2([ ] ( ))∈ and u 0= on TΩ 0,[ ]∂ × . Assume that

p Q p p p const
p C Q with the modulus of continuity ω

N
N

p p L

β u u z u t M u z M

: , , ,

2
2

, ess sup ,

d , sup , d .

T

T

Q

Q

ε

p z

xx
T

Q

p z

0

2
2 2

0,
2,Ω
2

0 1

T

T T

[ ]

( )

∣ ∣

( )∣ ∣ ( ) ∣ ∣
( )

( )

( )
∫ ∫

↦ =

∈

+

< ∇ =

∇ < ∞ ‖ ‖ = ∇ =

− + ±

−

−

(4.5)

Then for every

N
r r r p

p N N
2

2
4

2 2( )+

= < < =

+ +

∗

∗

−

−

and every δ 0, 1( )∈ , the function u satisfies the inequality

β u u z δ β u u z C u zd d 1 d
Q

ε

p z r

Q

ε

p z

xx

Q

p z
2

2 2
2

2 2

T T T

( )∣ ∣ ( )∣ ∣
⎛

⎝

⎜
⎜

∣ ∣
⎞

⎠

⎟
⎟

( ) ( )
( )

∫ ∫ ∫

∇ ∇ ≤ ∇ + + ∇

+ − −

(4.6)

with an independent of u constant C C N T δ p ω r M M, Ω, , , , , , ,0 1( )= ∂

± .

Lemma 4.3. LetΩ N�⊂ , N 2≥ be a bounded domain with the boundary CΩ 2
∂ ∈ , and a W Ω1, ( )∈

∞ be a given
nonnegative function. Assume that v W WΩ Ω3,2

0
1,2( ) ( )∈ ∩ and denote

K a x ε v v v v v Sn nΔ d ,
Ω

2 2 p x 2
2( )( ∣ ∣ ) ( ( ) ( ) )

( )

∫

= + ∇ ∇ ⋅ − ∇ ∇ ⋅ ⋅∇

∂

−

(4.7)

where n stands for the exterior normal to Ω∂ . There exists a constant L L Ω( )= ∂ such that
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K L a x ε v v Sd .
Ω

2 2 2p x 2
2( )( ∣ ∣ ) ∣ ∣

( )

∫

≤ + ∇ ∇

∂

−

Lemma 4.3 follows from the well-known assertions, see, e.g., [33, Ch. 1, Sec. 1.5] for the case a 1≡ ,
N 2, 3= , or [3, Lemma A.1] for the case of an arbitrary dimension.

Lemma 4.4. Let Ω∂ be a Lipschitz-continuous surface and a( )⋅ be a nonnegative function on Ω. Assume that
a q W, Ω1, ( )∈

∞ , with

q L a L, .,Ω ,Ω 0‖∇ ‖ ≤ < ∞ ‖∇ ‖ ≤ < ∞

∞ ∞

There exists a constant δ δ Ω( )= ∂ such that for every u W Ωq1, ( )( )
∈

⋅

δ a x ε u u S C a x u u a z u u u xd ln 1 dq x q x q x

Ω

2 2 2

Ω

1q x 2
2( )( ∣ ∣ ) ∣ ∣ ( ( )∣ ∣ ∣ ∣ ( )∣ ∣ ∣ ∣ ∣∣ ∣ ∣ )( ) ( ) ( )

( )

∫ ∫

+ ≤ ∇ + + +

∂

−

−

(4.8)

with a constant C C q L L N, , , , Ω0( )=

+ .

The assertion immediately follows from [5, Lemma 4.4].

Corollary 4.1. Under the conditions of Lemma 4.4, for every λ 0, 1( )∈ and ε 0, 1( )∈

a x ε u u S λ a x ε u u x L u x

L a z u u x K

d d d

ln d

q x

q x

Ω

2 2 2

Ω

2 2 2
0

Ω

Ω

q x q x2
2

2
2( )( ∣ ∣ ) ∣ ∣ ( )( ∣ ∣ ) ∣ ∣ ∣ ∣

( )∣ ∣ ∣ ∣ ∣∣

( )

( )

( ) ( )

∫ ∫ ∫

∫

+ ≤ + ∇ +

+ +

∂

− −

(4.9)

with independent of u constants K, L, L0.

Theorem 4.2. Let CΩ 2
∂ ∈ , u C Ω2( )∈ and u 0= on Ω∂ . Assume that a( )⋅ satisfies the conditions of Lemma 4.4,

p( )⋅ satisfies the conditions of Lemma 4.2, and

q q q N
N

q W q L: Ω , 2
2

, , Ω , ess sup .1,

Ω
[ ] ⎛

⎝
⎞
⎠

( ) ∣ ∣↦ ⊂

+

∞ ∈ ∇ =

− + ∞

If for a.e. x Ω∈

q x p x r with
N

r p
p N N

2
2

4
2 2

,( ) ( )
( )

< +

+

< <

+ +

−

−

then for every λ 0, 1( )∈

γ x u u S λ γ x u u x C u x, d , d 1 dε ε xx
p x

Ω

2

Ω

2

Ω

( )∣ ∣ ( )∣ ∣
⎛

⎝

⎜⎜
∣ ∣

⎞

⎠

⎟⎟
( )

∫ ∫ ∫

∇ ∇ ≤ ∇ + + ∇

∂

(4.10)

with a constant C depending on λ and the constants p±, N , L, L0, but independent of u.

We omit the proof that follows from Lemma 4.4 and Corollary 4.1 – see the proofs of Theorem 4.2 and
Corollary 4.1 in [5].

Since C HΩ Ωm
1

0
3( ) ( )⊂ ∩� , the interpolation inequalities of this section remain true for every function

w m∈ � , m �∈ .

5 Regularized problem

Given ε 0> , let us consider the following family of regularized double-phase parabolic equations:
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u γ z u u F z u u Q
u
u u ε

div , , , in ,
0 on Γ ,

0, . in Ω, 0, 1 ,

t ε T

T

0

⎧

⎨
⎩

( ( ) ) ( )

( ) ( )

∂ − ∇ ∇ = ∇

=

= ∈

(5.1)

where F z u,( ) is defined in (1.2), γ z s,ε( ) is introduced in (4.1), and γ z u u,ε( )∇ ∇ is the regularized flux
function. The solution of problem (5.1) is understood in the sense of Definition 3.1.

5.1 Galerkin’s method

Let ε 0> be a fixed parameter. The sequence uε
m{ }( ) of finite-dimensional Galerkin’s approximations for the

solutions of the regularized problem (5.1) is sought in the form

u x t u t ϕ x, ,ε
m

j

m

j
m

j
1

( ) ( ) ( )( ) ( )
∑

=

=

(5.2)

where ϕ W Ωj 0
1,2( )∈ and λ 0j > are the eigenfunctions and the corresponding eigenvalues of problem (2.8).

The coefficients u tj
m ( )( ) are defined as the solutions of the Cauchy problem for the system of m ordinary

differential equations:

u t γ z u u ϕ x F z u u ϕ x

u u ϕ j m

, d , , d ,

0 , , 1, 2, , ,

j
m

ε ε
m

ε
m

j ε
m

ε
m

j

j
m m

j

Ω Ω

0 2,Ω

⎧

⎨

⎪

⎩
⎪

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

∫ ∫

′ = − ∇ ∇ ⋅∇ + ∇

= = …

(5.3)

where γε is defined in (4.1). By Lemma 2.2, the functions u m
m0

( )
∈ � can be chosen so that

u u ϕ ϕ ϕ ϕ ϕ

u u W

, span , , , ,

in Ω .

m

j

m

j j m

m

0
1

0 2,Ω 1 2

0 0 0
1,

( ) { }

( )

( )

( )

∑

= ∈ …

→

=

�

(5.4)

By the Carathéodory existence theorem, for every finitem, system (5.3) has a solution u u u, , ,m m
m

m
1 2( )( ) ( ) ( )

… in
the extended sense on an interval T0, m( ), and the functions u ti

m ( )( ) are absolutely continuous and differ-
entiable a.e. in T0, m( ). The a priori estimates derived in Section 6 show that for every m the function
u x T,ε

m
m( )( ) belongs to ϕ ϕspan , , m1{ }… and satisfies the estimate

u T u T T C f u u, , , , 0ε
m

m ε m m Q
m m

2,Ω
2

0 2,
2

0 2,Ω
2

0T( ) ( ( ) ) ( )( ) ( ) ( )
‖∇ ⋅ ‖ + ⋅ ≤ + ‖ ‖ + ‖∇ ‖ +� �

with the function � defined in (1.5) and a constant C independent of m and ε. This estimate allows one to
continue each of uε

m( ) to the maximal existence interval T0,( ).

6 A priori estimates

6.1 A priori estimates I: the case ≡Φ 0 and ≡Ψ 0

Lemma 6.1. LetΩ be a bounded domain with the boundary Ω Lip∂ ∈ , p q,( ) ( )⋅ ⋅ satisfy (3.1), a( )⋅ satisfies (3.3),
u L Ω0

2( )∈ , and f L QT0
2( )∈ . The function uε

m( ) satisfies the estimates

u t γ z u u z C f usup , , d e
t T

ε
m

Q

ε ε
m

ε
m T

Q
0,

2,Ω
2 2

1 0 2,
2

0 2,Ω
2

T

T( ) ( )∣ ∣
( )

( ) ( ) ( )
∫ ( )

‖ ⋅ ‖ + ∇ ∇ ≤ ‖ ‖ + ‖ ‖

∈

(6.1)

and
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u a z u z C γ z u u z Cd , d ,
Q

ε
m p z

ε
m q z

Q

ε ε
m

ε
m

2
2

3

T T

(∣ ∣ ( )∣ ∣ ) ( )∣ ∣( ) ( ) ( ) ( ) ( ) ( )
∫ ∫

∇ + ∇ ≤ ∇ ∇ + (6.2)

where the constants Ci are independent of ε and m.

Proof. By multiplying jth equation of (5.3) by u tj
m ( )( ) and then by summing up the results for j m1, 2, ,= … ,

we obtain

t
u t u t u t γ z u u x f x t u x1

2
d
d

, , d , d .ε
m

j

m

j
m

j
m

ε ε
m

ε
m

ε
m

2,Ω
2

1 Ω

2

Ω

0( ) ( )( ) ( ) ( )∣ ∣ ( )( ) ( ) ( ) ( ) ( ) ( )
∫ ∫

∑

‖ ⋅ ‖ = ′ = − ∇ ∇ +

=

(6.3)

By the Cauchy inequality,

t
u t γ z u u x f t u t1

2
d
d

, , d 1
2

, 1
2

, .ε
m

ε ε
m

ε
m

ε
m

2,Ω
2

Ω

2
0 2,Ω

2
2,Ω
2( ) ( )∣ ∣ ( ) ( )( ) ( ) ( ) ( )

∫

‖ ⋅ ‖ + ∇ ∇ ≤ ‖ ⋅ ‖ + ‖ ⋅ ‖ (6.4)

Now, rewriting the last inequality in the equivalent form,

t
u t γ z u u x f t1

2
d
d

e , e , d e
2

, ,t
ε

m
L

t
ε ε

m
ε

m
t

Ω
2

Ω

2
0 2,Ω

2
2( ( ) ) ( )∣ ∣ ( )( )

( )

( ) ( )
∫

‖ ⋅ ‖ + ∇ ∇ ≤ ‖ ⋅ ‖

− −

−

and integrating with respect to t, we arrive at the inequality

u t γ z u u z C f usup , , d e ,
t T

ε
m

L
Q

ε ε
m

ε
m T

Q
0, Ω

2 2
0 2,

2
0 2,Ω

2

T

T2( ) ( )∣ ∣ ( )
( )

( )

( )

( ) ( )
∫

‖ ⋅ ‖ + ∇ ∇ ≤ ‖ ‖ + ‖ ‖

∈

(6.5)

where the constant C is independent of ε and m. Since a z( ) is a nonnegative bounded function, the second
assertion follows from (6.5) and the inequality

a z u a z ε u
a z ε u u u ε

ε a z a z

2 if ,

2 2 otherwise. □
ε

m q z
ε

m ε
m

ε
m

ε
m

2 2
2 2 2

2

q z
q z

q z q
2

2
2

2 2

( )∣ ∣ ( )( ∣ ∣ )
⎧

⎨
⎩

( )( ∣ ∣ ) ∣ ∣ ∣ ∣

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )

( )

( )
∇ ≤ + ∇ ≤

+ ∇ ∇ ∇ ≥

≤

−

+

(6.6)

Lemma 6.2. Let Ω be a bounded domain with CΩ k
∂ ∈ , k 2 N

2⎡⎣ ⎤⎦
≥ + . Assume that p q,( ) ( )⋅ ⋅ satisfies (3.1),

(3.2), and (3.5) and a( )⋅ satisfy (3.3). If u W Ω0 0
1,2( )∈ and f L T W0, ; Ω0

2
0
1,2(( ) ( ))∈ , then for a.e. t T0,( )∈ , the

following inequality holds:

t
u t C γ z u u x

C u x u t f t

1
2

d
d

, , d

1 d , ,

ε
m

ε ε
m

ε
m

xx

ε
m p z

ε
m

W

2,Ω
2

0

Ω

2

1

Ω

2,Ω
2

0 Ω
2

0
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( ) ( )∣( ) ∣

⎛

⎝
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⎞

⎠

⎟⎟
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( ) ( ) ( )
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‖∇ ⋅ ‖ + ∇

≤ + ∇ + ‖∇ ⋅ ‖ + ‖ ⋅ ‖

(6.7)

with independent of m and ε constants C p0 min 1, 10 { }< < −

− and C 01 > .

Proof. Let us multiply each of equations in (5.3) by λ uj j
m( ) and sum up the results for j m1, 2, ,= … :

t
u t λ u t u t

λ u γ z u u ϕ x λ u f x t ϕ x

γ z u u u x f x t u x

1
2

d
d

,

div , d , d

div , Δ d , Δ d .

ε
m

j

m

j j
m

j
m

j

m

j j
m

ε ε
m

ε
m

j
j

m

j j
m

j

ε ε
m

ε
m

ε
m

ε
m

2,Ω
2

1

1 Ω 1 Ω

0

Ω Ω

0

( ) ( ) ( ) ( )

( ( ) ) ( )

( ( ) ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
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∫ ∫

∫ ∫

∑

∑ ∑

‖∇ ⋅ ‖ = ′

= ∇ ∇ +

= − ∇ ∇ −

=

= =

(6.8)
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Since CΩ k
∂ ∈ with k 2 N

2[ ]≥ + , then u t H C, Ω Ωε
m

m 0
3 1( ) ( ) ( )( )

⋅ ∈ ⊂ ∩� . Therefore, the first term on the right-
hand of (6.8) can be transformed by means of the Green formula:
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where n nn , , N1( )= … is the outer normal vector to Ω∂ ,
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Substitution into (6.8) leads to the inequality
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The terms on the right-hand side of (6.9) are estimated in three steps.
Step 1: Estimate on J1. Since a z 0( ) ≥ and p z q z( ) ( )< inQT , the term J1 is merged on the left-hand side.
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Indeed:
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Step 2: Estimate on J2. By the Cauchy inequality, for every δ 00 > ,
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with a constant C C C C N δ, , ,1 1 0( )=

∗ ∗∗ . Let us denote
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Take the numbers r1 and r2 such that
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with a constant C C C r r, ,1 1 2( )= . Let us transform the integrand of the second integral using the following
inequality:
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By using (6.13) and the interpolation inequality of Lemma 4.2, we finally obtain
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with any δ 0, 11 ( )∈ and C C δ1( )= . Gathering (6.10) and (6.14), we finally obtain:
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with a constant C depending on δi and a t, ,Ω( )‖ ⋅ ‖

∞

, but independent of ε and m.
Step 3: Estimates on Ja and J Ω∂ . Let ρ r r,( )∈
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∗.
Applying Young’s inequality and (6.13), we obtain the estimate
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where C C a N q, ,,Ω( )″

=

″

‖∇ ‖

∞

is independent of ε and m. By Lemma 4.2, we obtain
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−

for any δ 0, 12 ( )∈ and a constant C independent of ε and m.
To estimate J Ω∂ , we use Lemma 4.3 and Theorem 4.2:
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Ω

Ω
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∣ ∣ ( )( ( ) ( ))

( )∣ ∣

( )∣( ) ∣
⎛

⎝

⎜⎜
∣ ∣

⎞

⎠

⎟⎟

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

∫

∫

∫ ∫

≤ ∇ ∇ ⋅ − ∇ ⋅∇ ∇ ⋅

≤ ∇ ∇

≤ ∇ + + ∇

∂

∂

∂
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with an arbitrary δ 0, 13 ( )∈ andC depending on δ3, p, q, a, Ω∂ , and their differential properties, but not on ε
and m. To complete the proof and obtain (6.7), we gather the estimates of J1, J2, Ja, and J Ω∂ and choose δi so
small that

p δ ηmin 1, 1 0. □
i

i
0

3
{ }

∑

− − = >

−

=

Lemma 6.3. Under the conditions of Lemma 6.2

u t γ z u u z C u fsup , , d e 1
T

ε
m

Q

ε ε
m

ε
m

xx
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L T W0,
2,Ω
2 2

0 2,Ω
2

0 0, ; Ω
2

T

2
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1,2( ) ( )∣( ) ∣ ( )
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( ( ))∫

‖∇ ⋅ ‖ + ∇ ≤ + ‖∇ ‖ + ‖ ‖

′

(6.15)

and for every r0 p
p N N

4
2 2( )

< <

+ +

−

−

,

u z u z Cd d
Q

ε
m q z

Q

ε
m p z r

T T

∣ ∣ ∣ ∣( ) ( ) ( ) ( )
∫ ∫

∇ + ∇ ≤

″

+

(6.16)

with constants C, C′, and C″ independent of m and ε.

Proof. Multiplying (6.7) by e C t2 1− and simplifying, we obtain the following differential inequality:

t
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d
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Integrating it with respect to t and taking into account (6.1) and (6.2), we arrive at the following estimate: for
every t T0,[ ]∈ ,
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Substitution of the aforementioned estimate into (6.7) gives
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Integrating it with respect to t and using (6.2) to estimate the integral of uε
m p z∣ ∣( ) ( )

∇ on the right-hand side,
we obtain
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To prove estimate (6.16), we make use of Theorem 4.1. Let us fix a number r r r,( )∈

∗

∗ with r
∗

, r∗ defined in
(6.12). Split the cylinder QT into the two parts Q Q p z r 2T T { ( ) }= ∩ + ≥

+ and Q Q p z r 2T T { ( ) }= ∩ + <

− and
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ε
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ε
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the estimate on I
+

follows immediately from Theorem 4.1 and (6.15). To estimate I
−

, we set B =

+

Q z u ε:T ε
m{ ∣ ∣ }( )

∩ ∇ ≥

− , B Q z u ε:T ε
m{ ∣ ∣ }( )

= ∩ ∇ <

−

− . The estimate on I
−

follows from Theorem 4.1 and (6.15)
because

I u z u u z ε z

ε u u z ε T

C ε u u z

d d d

2 d Ω

1 d .

B B

ε
m p z r

B

ε
m

ε
m

B

p z r

B

ε
m

ε
m p r

Q

ε
m

ε
m

2 2

2 2 2

2 2 2

p z r

r p p z r

T

p z r

2
2

2
2

2
2

2
2

∣ ∣ (∣ ∣ ) ∣ ∣

( ∣ ∣ ) ∣ ∣ ∣ ∣

⎛

⎝

⎜
⎜

( ∣ ∣ ) ∣ ∣
⎞

⎠

⎟
⎟

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

∫ ∫ ∫

∫

∫

= ∇ = ∇ ∇ +

≤ + ∇ ∇ +

≤ + + ∇ ∇

−

∪

+ +

+

+ −

+

+ −

−

− −

−

+

+ −

−

+ −

By combining the aforementioned estimates, using the Young inequality, and applying (6.15), (6.2), and
Theorem 4.1, we obtain (6.16) with r r r,( )∈

∗

∗ :
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If r r0,( ]∈

∗

, the required inequality follows from Young’s inequality. □

Corollary 6.1. Under the conditions of Lemma 6.3
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Q

ε
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(6.17)

with an independent of ε and m constant C.

Corollary 6.2. Let condition (3.5) be fulfilled. Under the conditions of Lemma 6.3
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with a constant C independent of m and ε.

Proof. Condition (3.5) entails the inequality
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By Young’s inequality, the assertion follows then from (6.17):
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with an independent of m and ε constant C, which depends on the constants in conditions (3.2).
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Proof. By multiplying (5.3) with uj
m

t( )( ) and summing over j m1, 2, ,= … , we obtain the equality
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By using the identity
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we rewrite (6.20) as:
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(6.21)

The first term on the right-hand side of (6.21) is estimated by the Cauchy inequality:
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To estimate i
 , we use (6.1), (6.2), (6.11), (6.14), and (6.16). Fix two numbers r r r r, , 0, 11 2( ) ( )∈ ∈
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+




The required inequality (6.19) follows after gathering the aforementioned estimates, integrating the result in
t and applying (5.4). □

6.2 A priori estimates II: the case ≢Φ 0 and/or ≢Ψ 0

We proceed to derive a priori estimates in the case when the equation contains the nonlinear source that
depends on the solution and its gradient. The difference in the arguments consists in the necessity to
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estimate the integrals of the terms that appear after multiplication of F z u u, ,ε
m

ε
m( )( ) ( )

∇ by uε
m( ), uΔ ε

m( ),

and uεt
m( ).

(1) Let us multiply jth equation of (5.3) by uj
m( ) and sum up. In the result we arrive at equality (6.3) with

the right-hand side containing the additional terms,
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Assume that Ψ satisfies (3.8) and Φ satisfies (3.9) with σ p1 < <

+ −. Using the Cauchy, Young, and Poincaré
inequalities we find that for every t T0,( )∈
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where δ 0, 1( )∈ is an arbitrary constant andC is the constant from inequality (2.6)with r p=

−. We plug this
estimate into (6.4) and use (6.6) with a 1≡ and q substituted by p. Choosing δ sufficiently small, we
transform (6.4) to the form
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Integrating this inequality in t, we obtain the following counterpart of Lemma 6.1.

Lemma 6.5. Assume that a( )⋅ , p( )⋅ , q( )⋅ , u0, and f0 satisfy the conditions of Lemma 6.1. If Ψ and Φ satisfy
conditions (3.8) and (3.9), respectively, then
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with independent of ε and m constants Ci.

(2) Estimate on u tε
m

2,Ω( )( )
‖∇ ‖ . We follow the proof of Lemma 6.2: by multiplying each of equations in (5.3)

by λ uj j
m( ) and summing the results, we arrive at equality (6.8) with the additional terms on the right-

hand side:
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Estimate of 1
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� . By the Green formula and by virtue of (3.8),
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with arbitrary δ 0> and independent of ε and m constants. 2� is estimated likewise:
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To estimate 1� , we assume σ σ p2 ≤ ≤ <

− + −. By the inequalities of Young and Poincaré,
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Observe that in the case Ψ 0≡ , we have 01
1( )
=� , and the assumption p2 < − becomes superfluous.
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Following the proof of Lemma 6.3, we arrive at the inequality
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with new constants C and C′, which do not depend on ε and m. The last term on the right-hand side of this
inequality is estimated by virtue of Lemma 4.1 and estimates (6.23) and (6.24).

Lemma 6.6. Under the conditions of Lemma 6.5,
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with an independent of ε and m constants C, C′, and a constant C depending only on T, and the quantities on
the right-hand sides of (6.1), (6.2). If Ψ 0≡ , estimate (6.26) holds for p 2≥

− .
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( )
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Let us make use of the Gagliardo-Nirenberg inequality. If θ 0, 1
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with a constant C depending on uε
m

2,Ω
( )

‖ ‖ , already estimated in Lemma 6.5 for σ p<

+ −. Combining these
inequalities with (6.19), we obtain
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The last integral on the right-hand side is estimated by virtue of Lemma 4.1 and the estimates of Lemma 6.5.
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Lemma 6.7. Let in the conditions of Lemma 6.6
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with a constant C independent of ε and m. If Ψ 0≡ , estimate (6.29) is true for p 2≥

− .

7 Existence and uniqueness of strong solutions

7.1 Regularized problem

Theorem 7.1. Let u0, f , p, q, a, and Ω∂ satisfy the conditions of Theorem 3.1. Then for every ε 0, 1( )∈ ,
problem (5.1) has a unique solution uε, which satisfies the estimates
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with a constant C0 depending on the data but not on ε. Moreover, uε possesses the property of global higher
integrability of the gradient: for every,
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Proof. Let ε 0, 1( )∈ be a fixed parameter. Under the assumptions of Theorem 3.1, there exists a sequence of

Galerkin approximations uε
m( ) defined by formulas (5.2). The functions uε

m( ) satisfy estimates (6.1), (6.2),
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In the third line, we made use of the uniform estimate

ε u z C u z Cd 1 d ,
Q

ε
m

Q

ε
m p z r2 2

T

q z p z
q z

T

1
2 1( ∣ ∣ )

⎛

⎝

⎜
⎜

∣ ∣
⎞

⎠

⎟
⎟

( ) ( ) ( )
( )( ( ) )

( ( ) )
∫ ∫

+ ∇ ≤ + ∇ ≤

+

−

−

328  Rakesh Arora and Sergey Shmarev



which follows from (3.5) and (6.16). The functions uε
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By taking ξ uk ε
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By the density of k k1⋃
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Simplifying and letting λ 0→ we find that
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The initial condition for uε is fulfilled by continuity because u C T L0, ; Ωε
2([ ] ( ))∈ .

Uniqueness of the weak solution is an immediate byproduct of monotonicity. Let u and v are two
solutions of problem (5.1). Take an arbitrary τ T0,( ]∈ . Choosing u v− for the test function in equalities
(3.4) for u and v in the cylinder Q τΩ 0,τ ( )= × and subtracting the results and applying (7.6), we arrive at
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Letting m → ∞, by using the convergence properties of the sequences uε
m{ }( ) , vm{ }, wm{ }, and then com-

paring the result with (7.5) with f z u wΨ , ε0 ( )+ + on the right-hand side, we conclude that the limit
function satisfies (7.8) for every ξ Qq T( )( )∈

⋅

� . The limits ηε and χε are identified then by monotonicity.

To prove that z uw Φ , ε( )= ∇ , it is enough to show that u uε
m

ε
( )

∇ → ∇ a.e. in QT . It follows from the weak

convergence u uε
m

ε
( )

∇ ⇀ ∇ in L Qq
T( )( )⋅ , the strong convergence u uε

m
ε

( )
→ in L QT

2( ), and the Mazur Lemma,

see [12, Ch.3, Cor.3.8], that there exists a sequence vε
m{ }( ) such that vε

m
m

( )
∈ � , each vε

m( ) is a convex combina-
tion of u u u, , ,ε ε ε

m1 2{ }( ) ( ) ( )
… , and

v u Qin .ε
m

ε q T( )( )
( )→

⋅

� (7.9)

Let us define wm m∈ � as follows:

u w u u w wdist , min : .ε m Q ε m ε Q mq T q T( )( ) ( )( ) ( ){ }

‖ − ‖ = ≡ ‖ − ‖ ∈

⋅ ⋅

� �� �

Because of (7.9) such wm exists and

u u w u v mdist , 0, .ε m ε m Q ε ε
m

Qq T q T( ) ( )
( )

( )( ) ( )
= ‖ − ‖ ≤ ‖ − ‖ → → ∞

⋅ ⋅

� � � (7.10)

By the properties of the modular and the strong convergence u uε
m

ε
( )

→ in L QT
2( ), we also have

u w u w z

u u u w u w z

d

2 2 d 0

ε
m

m Q

Q

ε m
q z

ε
m

ε Q ε m Q

Q

ε m
q z

2,
2

2,
2

2,
2

T

T

T T

T

∣ ( )∣

∣ ( )∣

( ) ( )

( ) ( )

∫

∫

‖ − ‖ + ∇ −

≤ ‖ − ‖ + ‖ − ‖ + ∇ − →

(7.11)

as m → ∞. Since uε
m( ) satisfy identities (7.4)with f0 substituted by F z u u, ,ε

m
ε

m( )( ) ( )
∇ , and uε satisfy (3.4)with

the regularized fluxes γ z u u,ε ε ε( )∇ ∇ and the source f z u wΨ , ε0 ( )+ + , the functions u w,ε
m

m m
( )

∈  are
admissible test functions in the integral identities for uε

m( ) and uε. By subtracting these identities and
rearranging the result, we obtain

γ z u u γ z u u u u z

u u u w z u w z
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( ) ( ) ( )

( ) ( ) ( )
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( ) ( )

∫

∫ ∫

∫

∫

∇ ∇ − ∇ ∇ ∇ −

= − − − + − −

+ − −

− ∇ ∇ − ∇ ∇ ∇ −

(7.12)

By the choice of wm and due to the convergence properties (7.3), all terms on the right-hand side of (7.12)
tend to zero as m → ∞. The left-hand side is bounded from below because of the strict monotonicity of the
function ε ξ ξ2 2 p 2

2( ∣ ∣ )+

−

with ε 0, 1[ )∈ , p 2≥ . By using (7.6) with p z 2( ) ≥ and (7.12) we find that
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u u 0ε
m

ε∣ ( )∣( )
∇ − → in L Qp

T( )( )⋅ . Hence, u uε
m

ε
( )

∇ → ∇ a.e. in QT up to a subsequence, and z uw Φ , ε( )= ∇ as
required.

To prove the uniqueness we assume, for contradiction, that problem (5.1) with Φ 0≡ has two strong
solutions u u Q, q T1 2 ( )( )∈

⋅

� . The function u u1 2− is an admissible test function in the integral identities (3.4)
for ui. Combining these identities and using (7.6), we arrive at the inequality:

u u t z u z u u u z1
2

Ψ , Ψ , d .
t

1 2 2,Ω
2

0 Ω

1 2 1 2( ) ( ( ) ( ))( )
∫∫
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If z s b z sΨ ,( ) ( )= , this inequality takes the form
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1 2 2,Ω
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1 2 2,Ω
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( ) ( ) ( ) ( )
∫

‖ − ‖ ≤ ‖ − ‖ ∈ =

whence u u t 01 2 2,Ω( )‖ − ‖ = in T0,( ) by Grönwall’s inequality. Let z sΨ ,( ) be monotone decreasing in s for
a.e. z QT∈ . Then z u z u u uΨ , Ψ , 01 2 1 2( ( ) ( ))( )− − ≤ a.e. in QT and

u u t T1
2

0 in 0, . □1 2 2,Ω
2 ( ) ( )‖ − ‖ ≤

7.2 Degenerate problem. Proofs of Theorems 3.1 and 3.2

We begin with the proof of Theorem 3.1 and assume that F f z0( )≡ . Let uε{ } be the family of strong solutions
of the regularized problems (5.1) satisfying estimates (7.1). These uniform in ε estimates enable one to

extract a sequence uεk{ }
and find functions u Qq T( )( )∈

⋅

� , η χ L Q, q
T

N( ( ))( )
∈

′ ⋅ with the following properties:
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(7.13)

In the third line, we make use of the uniform estimate

ε u z C u z Cd 1 d ,
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ε

Q

ε
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T
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−

which follows from (3.5) and (7.2). Moreover, u C T L0, ; Ω2([ ] ( ))∈ . Each of uεk satisfies the identity

u ξ z γ z u u ξ z f ξ zd , d d
Q

ε t

Q

ε ε ε

Q

0
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k k k
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∫ ∫ ( ) ∫
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for all ξ Qq T( )( )∈
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� , which yields
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Q

t

Q Q
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� (7.15)

To identify η and χ, we use the monotonicity argument. Take ξ uεk= in (7.14):

u u z γ z u u u z f u zd , d d .
Q

ε t ε

Q

ε ε ε ε

Q

ε0

T

k k

T

k k k k

T

k∫ ∫ ( ) ∫
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According to (7.7), for every ϕ Qq T( )( )∈

⋅

� ,
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a.e. in QT as k → ∞, and because the integrand
of J k1, has the majorant,
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then J 0k1, → by the dominated convergence theorem. Combining (7.15) with (7.16) and letting k → ∞, we
find that for every ϕ Qq T( )( )∈

⋅

� ,

ϕ a z ϕ ϕ η a z χ u ϕ zd 0.
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Choosing ϕ u λζ= + with λ 0> and ζ Qq T( )( )∈

⋅

� , simplifying, and then letting λ 0→

+, we conclude that
for every ζ Qq T( )( )∈
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�

u u a z u u η a z χ ζ zd 0.
Q

p z q z2 2

T
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Since the sign of ζ is arbitrary, the last relation must be the equality. It follows that in (7.15) η a z χ( )+ can be
substituted by u u a z u up z q z2 2∣ ∣ ( )∣ ∣( ) ( )

∇ ∇ + ∇ ∇

− − . Since u C T L0, ; Ω2([ ] ( ))∈ , the initial condition is fulfilled by
continuity. Estimates (3.7) follow from the uniform in ε estimates of Theorem 7.1 and the lower semiconti-
nuity of the modular exactly as in the proof of Theorem 7.1. Uniqueness of a strong solution is an immediate
consequence of the monotonicity. Theorem 3.1 is proven.

Proof of Theorem 3.2. The sequence of solutions of the regularized problems (5.1) contains a subse-
quence uεk{ }

that has the convergence properties (7.13) and satisfies the uniform estimates of Theorem 7.2

(i). It follows that there exist v L Qw, T
2( )∈ such that v z u vΨ ,k εk( )

= ⇀ and z uw wΦ ,k εk( )
≡ ∇ ⇀ in

L QT
2( ). The pointwise convergence u uε → entails the equality v z uΨ ,( )= . Following the proof of Theorem

7.2, we conclude that the limit function u solves problem (1.1)with the source f z u wΨ ,0 ( )+ + . The equality
z uw Φ ,( )= ∇ will follow if we show that u uεk∇ → ∇ a.e. inQT . Take u u Qε q Tk ( )( )− ∈

⋅

� for the test function
in identities (3.4) for uεk and u. Subtract these identities and rewrite the result in the following form:

γ z u u γ z u u u u z

u u u u z u u z z u z u u u z

γ z u u γ z u u u u z

w w

, , d

d d Ψ , Ψ , d

, , d .

Q

ε ε ε ε ε

Q

ε t ε

Q

k ε

Q

ε ε

Q

ε ε0

T

k k k k k

T

k k

T

k

T

k k

T

k k

( ( ) )

( ) ( ( ))

( ( ) ( ) )

∫ ( ) ( )

∫( ) ( ) ∫ ( ) ∫ ( ) ( )

∫ ( )

∇ ∇ − ∇ ∇ ⋅∇ −

= − − − + − − + − −

+ ∇ ∇ − ∇ ∇ ⋅∇ −

Double-phase parabolic equations with variable growth and nonlinear sources  333



The first two terms on the right-hand side of these inequality tend to zero when ε 0k → as the products of
weakly and strongly convergent sequences. The third term tends to zero because u u 0ε Q2,k T‖ − ‖ → , while

z uΨ , εk( )
and z uΨ ,( ) are uniformly bounded in L QT

2( ). To prove that the last term tends to zero, we use the
same arguments as in the case of the integral J k1, in the proof of Theorem 3.1. By virtue of (7.6) and (2.5)

u uεk∇ → ∇ in L Qp
T

N( ( ))( )⋅ and a.e. in QT .
The uniqueness follows by the same arguments as in the case of the nondegenerate problem.
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