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Abstract 
Body shape and metabolic rate can be important determinants of animal performance, yet often their effects on influential traits are evaluated in 
a non-integrated way. This creates an important gap because the integration between shape and metabolism may be crucial to evaluate meta-
bolic scaling theories. Here, we measured standard metabolic rate in 1- and 2-years old juvenile brown trout Salmo trutta, and used a geometric 
morphometrics approach to extricate the effects of ontogeny and size on the link between shape and metabolic scaling. We evidenced near-iso-
metric ontogenetic scaling of metabolic rate with size, but also a biphasic pattern driven by a significant change in metabolic scaling, from pos-
itive to negative allometry. Moreover, the change in metabolic allometry parallels an ontogenetic change from elongate to deep-bodied shapes. 
This is consistent with the dynamic energy budget (DEB) and surface area (SA) theories, but not with the resource transport network theory 
which predicts increasing allometric exponents for trends towards more robust, three-dimensional bodies. In addition, we found a relationship 
between body shape and size independent metabolic rate, with a positive correlation between robustness and metabolic rate, which fits well 
within the view of Pace-of-Life Syndromes (POLS). Finally, our results align with previous studies that question the universality of metabolic 
scaling exponents and propose other mechanistic models explaining the diversity of metabolic scaling relationships or emphasizing the potential 
contribution of ecological factors.
Key words: biphasic allometric scaling, metabolic rate, ontogenetic allometry, shape, surface-area, trout.

Maintenance metabolic rate (Mathot and Dingemanse 2015) 
is a fundamental trait for animal survival and performance 
under periods of fasting and nutritional stress. In ectotherms it 
is described by standard metabolic rate (SMR) (Priede 1985), 
which represents the minimum metabolic rate of non-torpid 
animals needed to sustain life processes at a given temperature 
(Naya and Bozinovic 2012). SMR has been positively corre-
lated with growth potential and competitive ability (Metcalfe 
et al. 1995; Norin et al. 2016; Archer et al. 2021), although 
it is aerobic scope (i.e., difference between maximal and min-
imum metabolism) that determines the energy available for 
performance functions (Van Leeuwen et al. 2011; Biro and 
Stamps 2010). More specifically, behaviours having conse-
quences for energy gain (e.g. foraging, boldness, dominance) 
or loss (e.g. locomotor performance) have strong positive 
correlations with maintenance metabolic rate (Mathot et al. 
2019). In turn, low SMRs can be adaptive under conditions 
of hypoxia (Killen et al. 2016), desiccation and nutritional 
stress (Hoffmann and Parsons 1989; Djawdan et al. 1997; 
Matzkin and Markow 2009; Schimpf et al. 2012). There is 
also evidence for a negative correlation between SMR and 
growth in the wild (Álvarez and Nicieza 2005; Robertsen et 
al. 2014; but see Arnold et al. 2021). These opposed scenarios 

are known as the ‘increased intake’ or ‘performance’ hypothe-
sis, and the ‘compensation’ or ‘allocation’ hypothesis (Arnold 
et al. 2021). A third, mixed scenario is given by the ‘context 
dependent’ hypothesis: the sign of the relationship between 
minimum metabolic rates and fitness depends upon the 
requirements to resource availability ratios (Burton et al. 
2011; Careau and Garland 2012; Arnold et al. 2021).

Body shape has important implications for an organism’s 
performance (Wainwright 1994; Rincón et al. 2007). Since 
shape and metabolic rate are closely intertwined with organ-
isms’ size (Kleiber 1947; Gould 1966; Mosimann 1970), an 
interesting question is whether intra-specific differences in 
mass- or size-corrected metabolic rate can derive, at least par-
tially, from shape changes. Size, shape and metabolic rate have 
been identified as predictors of dominance and others traits 
that can enhance fitness (Swain and Holtby 1989; Holtby et 
al. 1993; Nicieza and Metcalfe 1999; McCarthy 2000, 2001; 
Lahti et al. 2002). Physiological, behavioral, and life-histor-
ical traits are usually integrated within the concept of pace-
of-life syndrome (POLS) (Promislow and Harvey 1990; 
Ricklefs and Wikelski 2002; Biro and Stamps 2010; Careau 
et al. 2010, 2011; Réale et al. 2010). Yet, in the context of 
POLS, empirical studies of relationships between metabolic 
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rate and shape are still uncommon, likely due to a narrow 
definition of POLS (but see Dammhahn et al. 2018; Polverino 
et al. 2018; Sowersby et al. 2021). This may be paradoxical, 
because metabolism is a pivotal trait in the POLS context, 
changes in shape can affect both metabolism and its scaling 
with size, metabolism has been associated to body, cell, or 
colony shape in a variety of organisms (Brown and Lasiewski 
1972; McMahon 1973; Davies 1980; Porter and Kearney 
2009; Nespolo et al. 2011; White et al. 2011; Banavar et al. 
2014; Glazier 2014; Hartikainen et al. 2014; Killen et al. 
2016; Lagos et al. 2017; Tan et al. 2019; Rubio-Gracia et al. 
2020), and morphology is tightly linked with drivers of per-
formance and behavioural traits (e.g., locomotion, agonistic 
interactions, or mate choice) (Arnold 1983; Molina-Borja et 
al. 1998; Perry et al. 2004; Lappin and Husak 2005; Peterson 
and Husak 2006; Huyghe et al. 2010; Martínez-Cotrina et 
al. 2014).

In addition, two major theories predict metabolic scaling 
from the relationships between size, growth and geometric 
constraints affecting the diffusion and transport of materials: 
the surface area (SA) theory (Okie 2013), which includes DEB 
(dynamic energy budget) models (Kooijman 2010; Sousa et al. 
2010), and the Resource–Transport Network theory (RTN; 
also metabolic theory of ecology, MTE) (West et al. 1999; 
Brown et al. 2004; Savage et al. 2008; Banavar et al. 2010; 
but see Glazier 2014 for broader scope of metabolic theories). 
SA theory builds on the idea that resource uptake and waste 
removal depend on external exchange surfaces (Okie 2013; 
Hirst et al. 2017), and DEB models specifically focus on the 
surface area involved in uptake, which, in turn depends on 
the overall body shape (Kooijman 2010; Kearney and White 
2012). In contrast, RTN theory is based on the optimization 
of resources transport from a central hub through fractal-like 
networks (West et al. 1997, 1999; Brown et al. 2004; Savage 
et al. 2008; Banavar et al. 2010), and the POLS concept is a 
central assumption of this theory (Glazier 2015). Both com-
peting theories highlight the role of shape on metabolism (van 
der Meer 2006; White et al. 2011; Kearney and White 2012; 
Hirst et al. 2014, 2017; Glazier et al. 2015), but lead to oppo-
site predictions of how body shape changes over ontogeny 
will affect the metabolic scaling exponent b; for ontogenetic 
trends towards less flat/elongated and more robust/three-di-
mensional shapes, SA theory predicts decreasing b whereas 
RNT theory predicts increasing b (West et al. 1997; Kearney 
and White 2012; Hirst et al. 2014, 2017; Glazier et al. 2015).

In fusiform fishes like salmonids, a shift from slender to 
robust shapes results from allometric growth, although the 
‘elongated-robust’ continuum can be also a component of the 
phenotypic variation within age-classes (Price et al. 2019). Here, 
we investigated the relationship between mass- and size-inde-
pendent SMR and body shape in juvenile brown trout (Salmo 
trutta L.) from two age-classes (8- and 20-mo old) to explore 
two opposing hypotheses relating shape and basal metabolism 
at the intraspecific level. In the context of POLS (Promislow et 
al. 1990; Ricklefs and Wikelski 2002; Biro and Stamps 2010; 
Careau et al. 2010; Réale et al. 2010; Careau and Garland 
2012), metabolic rate is assumed to be a hub for the ‘slow–fast’ 
pace of life continuum (Ricklefs and Wikelski 2002; Brown et 
al. 2004; Careau et al. 2011; Glazier 2015; Auer et al. 2018a; 
Arnold et al. 2021). Here we were aimed to test two working 
hypothesis that can be implemented within the wider theoreti-
cal frameworks of POLS and surface-area models. First, accord-
ing to the POLS framework and previous research reporting 

positive links between SMR, dominance and growth (Metcalfe 
et al. 1995; McCarthy 2000, 2001; Lahti et al. 2002; Norin et 
al. 2016; Auer et al. 2018b; see also Mathot et al. 2019), we 
predicted that deep-bodied fish, which tend to be more aggres-
sive than elongate conspecifics (Swain and Holtby 1989; Warner 
and Schultz 1992; Holtby et al. 1993; Fruciano et al. 2012), 
will have higher mass- or size-independent metabolic rates than 
slender fish (hypothesis I). Second, in the absence of isometric 
scaling, larger animals should have lower mass- or size-specific 
resting metabolic rates than smaller ones of the same shape (iso-
morphs) because of a lower surface-to-mass ratio (Savage et 
al. 2007; Kooijman 2010). By the same logic, equal ‘sized’ (i.e., 
mass or volume) animals having different shapes should differ 
in mass-specific SMRs (Kooijman 2010; Okie 2013). In tele-
osts, the skin is permeable to water (Talbot et al. 1982; Styga et 
al. 2019). In the case of salmonids, the early alevin is relatively 
impermeable to water and ions, but body surface permeability 
increases as alevin develops (Talbot et al. 1982). Freshwater fish 
are hyperosmotic and may spend more than 20–50% of their 
energy budget on osmoregulation to combat the constant influx 
of water (Boeuf and Payan 2001). Because the rate of diffusion 
is proportional to the surface area, a greater surface area may 
involve higher maintenance costs. Thus, since shape can affect 
not only metabolic scaling exponents (Kearney and White 2012; 
Hirst et al. 2014, 2017; Glazier et al. 2015), but also the eleva-
tion of the metabolic allometries (Yagi and Oikawa 2014), we 
anticipate that more elongated fish (with a higher surface area 
to mass ratio) will have higher mass-specific SMRs than robust 
fish (hypothesis II).

Materials and Methods
Experimental animals
We used 238 trout aged 0+ (8-mo old) and 88 aged 1+ (20-mo 
old). The fish were originated from wild adults from river Sella 
(Asturias, northern Spain), raised in River Espinareu hatch-
ery (Centro Ictiogénico de Infiesto; Principality of Asturias). 
Each year, 30 males and 30 females were used to produce a 
pool of several thousands of fertilised eggs by crosses of 3–4 
females and 3–4 males. In each cross, the eggs from of all 
females were pooled and then fertilised with the sperm of all 
males. Embryos and juveniles were reared at the facilities of 
the Espinareu River hatchery centre (Centro Ictiogénico de 
Infiesto, Principado de Asturias) until they were transferred 
to the laboratory at the University of Oviedo, and and kept 
in holding tanks at 14 °C, natural photoperiod, and fed ad 
libitum with commercial salmonid food (Sánchez-González 
and Nicieza 2017).

Measurement of standard metabolic rate
We measured SMR in a flow-through system by using a 
thermostatted cell (MC 100, Strathkelvin Instruments Ltd, 
Glasgow, UK) equipped with a microcathode oxygen elec-
trode (Model 1302, Strathkelvin Instruments Ltd) connected 
to an oxygen meter (Model 781, Strathkelvin Instruments 
Ltd). The system consisted of 19 cylindrical chambers (inter-
nal dimensions: 26 × 154 mm; volume 81.76 cm3) immersed 
in a water bath at 14.8 ± 0.1 °C and supplied with air-sat-
urated water (100% O2). Prior to measure SMR, fish were 
unfed for 48 h to arrest food digestion, and then they were 
acclimatised in the chambers for additional 15–20 h in dark-
ness to ensure that rates of oxygen consumption get into a 
steady baseline state.
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For each individual, SMR was recorded at least twice, with 
a time interval of 90 min between measurements, in order to 
ensure that conditions within chambers had reached initial 
state. SMRs (µg O2 h

‐1) were calculated from the difference 
between outflow oxygen content in a control (empty) cham-
ber and the fish chamber (Cutts et al. 1998, 2002; Álvarez et 
al. 2006; Cano and Nicieza 2006; Sánchez-González 2015). 
We adjusted flow rate (mean ± 1SD: 15.71 ± 1.39 ml min−1) 
and trial duration to ensure that consumption rates were 
not affected by low O2 levels. Final oxygen saturation in the 
chambers always remained above 90% (see Cutts et al. 1998, 
2002; Álvarez and Nicieza 2005; Álvarez et al. 2006; Cano 
and Nicieza 2006; Sánchez-González 2015 for full details on 
the respirometry procedure). There was no consistent pattern 
or significant difference between the first and second measure-
ments of SMR (mean ± 1SE: 599.8 ± 22.2 and 611.9 ± 22.9 
µg O2 h

‐1, for first and second SMR, respectively; Wilcoxon 
signed-rank test, Z = 0.60, n = 246, P = 0.545).

Morphometric data and shape analysis
After measuring SMR, all the fish were anaesthetized in a 
solution of benzocaine (50 mg L‐1), measured (fork-length, ± 
0.01 mm; the length of a fish from the tip of its nose to the 
deepest point of the notch in the caudal fin), and weighed 
(± 0.01 g) with a portable precision balance (Mettler Toledo 
PL83-S). Fish were placed on their right side in a relaxed posi-
tion, aligned on a grid board, and checked for linearity of the 
midline in order to avoid arching effects (Valentin et al. 2008; 
Sánchez-González and Nicieza 2017). Then, images of their 
left side were captured with a digital camera; all images were 
re-scaled to 8 cm width and 300 ppi.

We captured 14 morphometric landmarks (Figure 1) 
using tpsDig 2.22 (Rohlf 2015a,b). We used a Generalized 
Procrustes Analysis (GPA; Dryden and Mardia 2016) to 
superimpose, align, scale and rotate landmark coordinates 
to a consensus coordinate system using tpsRelw 1.53 (Rohlf 
2015a, 2016), and a thin-plate spline analysis to obtain 24 
partial warps (22 uniform and 2 non-uniform shape varia-
bles (Rohlf 2015a; Rohlf et al. 1996; Nespolo et al. 2011). 
Thin-plate spline analysis and these partial warps were used 
to visualize shape changes (Zelditch et al. 2004).

Statistical analyses
We conducted a Principal Component Analysis (PCA) on 
the variances-covariances matrix (McGarigal et al. 2000; 
Zelditch et al. 2004) of the 24 shape variables and gener-
ated a set of independent shape components. We combined 
the Kaiser-Guttman criterion, visual inspection of scree 
graphs and a broken-stick procedure to estimate the num-
ber of non-trivial components (Jackson 1993; Peres-Neto et 
al. 2005). In addition, we conducted a discriminant function 
analysis (DFA) on the partial warps to explore the morpho-
logical divergence between cohorts (Zelditch et al. 2004). A 
priori probabilities were adjusted from the default according 
to the proportions of 0+ (0.73) and 1+ individuals (0.27). 
Cross-validation of the discriminant functions was con-
ducted by random resampling of experimental individuals on 
subsamples containing 90% of the cases for generating the 
discriminant functions, and 10% cases to evaluate classifica-
tion accuracy. The bootstrapping procedure was carried out 
in a loop of 1000 random samples.

After the exploratory DFA (McGarigal et al. 2000), we 
conducted a MANOVA of non-trivial components (PC1–
PC5) to test whether the differences in shape were statis-
tically significant. To equalize sampling variances, for the 
general linear models we generated a balanced data set by 
random sampling of 88 cases from the age-0 group. The 
visual inspection of residuals did not reveal strong depar-
tures from normality, and data met the assumption of equal-
ity of variance-covariance matrices (Box M = 19.29, df = 15, 
P = 0.228). Separate ANOVAs for these relative warps were 
conducted, controlling the false discovery rate (Benjamini 
and Hochberg 1995) after detection of significant multivar-
iate effects.

Body mass has an obvious implication for metabolism. 
However, since body mass and shape are not necessarily 
independent, some of the influence of body shape on SMR 
might be removed by removing the effect of body mass. Even 
though extracting the shape variables from the raw data 
of landmark coordinates removes size variation per se, the 
shape data may still contain a component of size-related 
variation due to the effects of allometry (Klingenberg 2016). 
Therefore, to examine the relationship between metabolic 
rate, shape and age, we used two proxies of body size: wet 

Figure 1. Morphometric landmarks used for the shape analyses of brown trout: (1) Snout tip; (2) posterior supraoccipital notch, (3) anterior insertion 
of the dorsal fin; (4) anterior insertion of adipose fin; (5) superior and (7) inferior insertions of the caudal fin; (6) posterior body extremity at the junction 
of lateral line and caudal fin; (8) posterior and (9) anterior insertions of the anal fin; (10) anterior insertion of the pelvic fin; (11) superior insertion of the 
pectoral fin; (12) insertion of the operculum on the ventral lateral profile; (13) posterior tip of the operculum; (14) centre of the eye. Drawing credit: 
Jorge-Rubén Sánchez-González.
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mass and centroid size (CS). CS is a measure of geometric 
scale calculated as the square root of the sum of the squared 
distances from each landmark to the centroid of the config-
uration (Claude 2008), and the most commonly used meas-
ure of size for landmark configurations (Rohlf et al. 1996; 
Monteiro 1999; Klingenberg 2016; Dryden and Mardia 
2016). Body mass and metabolic rate were log10-transformed 
to meet the assumptions of linearity and homoscedasticity, 
and to explore the allometric slopes of metabolic rate. We 
conducted ANCOVAs of log-SMR by age with log-mass (or 
log-CS). First, we compared the allometric exponents (slopes) 
of the two age-classes; if the age by size interaction is not sig-
nificant, an ANCOVA without the interaction term can be 
used to check for differences in metabolic rate adjusted for 
size variation. Second, we performed multiple regression of 
SMR on body size (Cs or mass) and shape variables to fur-
ther assess the effect of shape change on metabolic rates after 
taking into account size variation.

Multivariate normality was tested using the ‘mvnormtest’ 
package in R and the Shapiro-Wilk test for multivariate nor-
mality (Jarek 2012). Levene and Cochran’s C tests were used 
to evaluate the homogeneity of variances, and the Box’s M 
test to check the assumption of homogeneity of the dispersion 
matrices. Statistical analyses were performed using R version 
3.6.1 (R Core Team 2019).

Results
Ontogenetic shape allometry
The first three principal components from a PCA on par-
tial warps summarized 49.7% of total variance (64.3% and 
82.0% for the first five and nine components, respectively). 
PC1 (25.8%) reflects a contrast between deep-bodied and 
elongate forms. Along this elongation axis, individuals with a 
larger dorsoventral distance and a lower position of the head 
(“bull” shape) had the higher positive scores (and they were 
mostly age 1+), whereas more elongated shapes (mostly age 
0+) scattered on the negative area (Figure 2). In turn, PC2 
(14.3%) reflects disparity in the relative position of the caudal 
region: fish with a high score on PC2 have a lower relative 

position of their tail. Discriminant analyses corroborated that 
juvenile trout can be assigned to their age-class in function 
of shape: a DFA performed on the partial warps successfully 
classified 98.15% of the fish to different age groups (Wilks’ λ 
= 0.211, F24,301 = 46.88; P < 0.00001). Cross-validation con-
firmed a high overall rate of correct assignation of 97.0%, 
with success rates of 100% and 90.9% for classes 0+ and 1+, 
respectively.

A MANOVA of shape based on the most relevant compo-
nents (PC1–PC5) confirmed the differences between cohorts 
(Wilks λ = 0.31, F5,170 = 77.28, P < 0.00001). There were no 
significant differences for PC4 and PC5 (Wilks λ = 0.987, 
F2,173 =1.18, P = 0.311). In contrast, shape configurations 
summarized by the first three components differed between 
cohorts (Wilks λ = 0.325, F3,172 = 118.82, P < 0.00001; Box M 
= 5.74, df = 6, P = 0.466). Separate ANOVAs controlling for 
FDR confirmed the role of these three components in shape 
differentiation (PC1: F1,174 = 298.90, P < 0.00001; PC2: F1, 174 
= 4.76, P = 0.030; PC3: F1, 174 = 7.67, P = 0.0062). Compared 
to 1+, 0+ trout have much lower scores for PC1 (0+ CI 95% 
[‐0.0072, ‐0035]; 1+ CI 95% CI [0.0149, 0.0182]; Figure 2) 
and higher values for PC2 and PC3.

Allometric scaling of metabolic rate
The two age-classes differed markedly in mass (mean ± 1SE; 
age-0: 3.182 ± 0.131 g, n = 88; age-1: 9.699 ± 0.320 g, n = 
88; ANOVA, F1,174 = 474.29, P < 0.000001) and centroid size 
(ANOVA, F1,174= 455.69, P < 0. 000001). In addition, the met-
abolic allometries differed between age-classes. Specifically, 
the analysis of allometric slopes revealed that the centroid 
size scaling exponent was higher for age-0 than for age-1 
fish (ANCOVA; F1,172 = 9.07, P = 0.0029; Figure 3; Table 1). 
Similarly, the mass exponent differed also between age groups 
(F1,172 = 5.13, P = 0.0248; Figure 4; Table 1). The mass-scaling 
exponent of the older age group (b = 0.845) was 28.7% lower 
and outside the confidence interval of the younger age group 
(b = 1.185; Table 1). Finally, the observed exponent for all 
the fish regardless age-class (ontogenetic allometry) was very 
close to 1 (b = 1.036; Table 1; Figure 4).

Figure 2. Scores of the PCA performed on the variances-covariances matrix for the morphological variables, and deformation grids for juvenile brown 
trout (0+, magenta; 1+, green). PC1 reflects a contrast between deep-bodied (higher positive scores) and elongate (higher negative scores) forms. 
PC2 reflects disparity in the relative position of the caudal region: high positive scores indicate a lower position of the tail. The photographs represent 
extreme shapes along PC1 for near-zero scores on PC2.
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Ontogenetic changes in shape and metabolic rate
We conducted a multiple regression of log-SMR on PC1 (the 
most relevant component, associated with the elongation-ro-
bustness continuum) and log-mass or log-CS. PC1 entered the 
model regardless of the measure used as proxy for body size. 
Although most of the variation in metabolic rate is explained 
by the variation in body size, the degree of elongation or flat-
ness still explains a significant amount of the variance in SMR 
after CS (F1,173 = 12.11, P = 0.0006) or wet mass (F1,173 = 4.38, 
P = 0.0379) entry. At the same size, robust fish showed higher 
metabolic rates than more elongated fish, as indicated by pos-
itive b coefficients for PC1 (Table 2). Within age groups, we 
verified the positive effect of PC1 on SMR in the younger 
age group (F1,85 = 5.26, P = 0.0243; Table 2), confirming that 
more robust fish have higher metabolic rates. In contrast, 
after mass entered the model, the effect of PC1 on SMR was 
not significant within age groups (Table 2).

Discussion
Our results showed an ontogenetic change in the body shape 
of trout during the first year of life. Shape modifications 
affected mainly the elongation axis, as evidenced by a shift 
from relatively slender forms in young (age-0) individuals 
towards more robust, deep-bodied forms in older (age-1) 
juveniles, and were concomitant with a decrease of metabolic 
allometries with age (from positive alometry (b > 1) in age-0 

to negative allometry (b < 1) in age-1 (Table 1, Figure 4). 
These results are consistent with the prediction of SA theory 
(decreasing b with increasing body thickness), but not with 
RTN theory (increasing b with increasing elongation) (Hirst 
et al. 2014; Glazier et al. 2015). Moreover, we found a pos-
itive covariation of shape (PC1) and metabolic rate (Table 
2), with more robust fish having higher metabolic rates than 
more elongated fish after correcting for mass or centroid size. 
These results support hypothesis I, which is consistent with 
the pace-of-life idea, but they did not support hypothesis II 
regarding surface-area constraints: a larger surface area to 
mass ratio would imply higher maintenance costs associ-
ated to osmoregulation. Finally, the observation of metabolic 
isometry (b ~1), positive allometry (b > 1 for age 0+), and 
the decline of metabolic exponent b with age is consistent 
with some predictions from the surface area (SA) theory, as 
well as with those from other models of metabolic scaling as 
the resource demand (RD) or system composition (SC) theory 
(for a review see Glazier 2014).

We found a near-isometric ontogenetic scaling of SMR (b = 
1.036; Table 1). At the within-species level, this value matches 
the predictions of several models of metabolic scaling, includ-
ing SA, SC, RD, DEB models, and the ‘metabolic-level bound-
aries’ hypothesis (Van der Meer 2006; Glazier 2005, 2008, 
2009a, b, 2010; Killen et al. 2010; Kearney and White 2012; 
Hirst et al. 2014). Intraspecific mass-scaling exponents for 
metabolic rate are often above the values predicted by the 

Figure 3. Metabolic allometries (standard metabolic rate on centroid 
size) for brown trout of ages 0+ (grey, black line) and 1+ (blue) 
(regression parameters: see Table 1). Logarithms were calculated on CSs 
and µg O2 h‐

1 (SMR).

Table 1. Regression summary for allometric relationships between standard metabolic rate (log10 SMR) and body mass or centroid size for first- and 
second-year juvenile brown trout (log10-transformed data)

Predictor variable Group n Adj-R
2 b [95% CI] SEb F1,86 P 

Body mass Age-0 88 0.649 1.185 [1.000–1.370] 0.039 161.95 < 0.00001

(log10mass) Age-1 88 0.364 0.845 [0.610–1.081] 0.093 50.88 < 0.00001

Total 176 0.805 1.036 [0.960–1.112] 0.032 723.02 < 0.00001

Homogeneity of slopes F1,172 = 5.13 0.0248

Centroid size Age-0 88 0.637 3.830 [3.216–4.444] 0.309 153.65 < 0.00001

(log10CS) Age-1 88 0.334 2.405 [1.689–3.121] 0.360 44.59 < 0.00001

Total 176 0.792 3.267 [3.018–3.517] 0.126 667.39 < 0.00001

Homogeneity of slopes F1,172 = 9.07 0.0029

Values are presented for adjusted coefficients of determination, allometric coefficients (slope, b), b confidence intervals (95%), and b standard errors. The 
statistical homogeneity of scaling exponents was tested by ANCOVA (slopes model).

Figure 4. Metabolic allometries (standard metabolic rate on mass) 
for brown trout of ages 0+ (grey, black line) and 1+ (blue) (regression 
parameters: see Table 1). Logarithms were calculated on grams of wet 
mass and µg O2 h‐

1 (SMR).
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general RTN model (Glazier 2005, 2014; but see Van der 
Meer 2006; Price et al. 2007; Kearney and White 2012). The 
near-isometric scaling of metabolic rate has been reported for 
pelagic organisms (Hirst et al. 2014, 2017; Glazier et al. 2015) 
and fishes (Giguère et al. 1988; Post and Lee 1996). Previous 
fish studies suggest that the ontogenetic metabolic exponent 
might be in the range 0.80–0.85, but isometric or near isomet-
ric scaling for the larval stages (Giguère et al. 1988; Post and 
Lee 1996; Bokma 2004; Killen et al. 2007).

The ontogenetic scaling in the brown trout was non-
linear, shifting from positive to negative allometric slope 
between the first and second year of life (Table 1, Figure 
3). The observed decline in b with age reinforces the evi-
dence for nonlinearity of the ontogenetic metabolic scal-
ing (Giguère et al. 1988; Post and Lee 1996; Glazier 2005, 
2018; Moran and Wells 2007; Killen et al. 2007; Streicher 
et al. 2012), and suggests that the age-specific b-values 
may fall down towards a stabilizing baseline value asso-
ciated with a threshold size, within the first year of life 
(Streicher et al. 2012). Moreover, the decrease in b with 
age may suggest a link between shape change and meta-
bolic change, as previously shown for aquatic invertebrates 
(Hirst et al. 2014; Glazier et al. 2015) and young develop-
mental stages of fishes (Giguère et al. 1988; Post and Lee 
1996). Near-isometric scaling in fish larvae has been asso-
ciated with steep initial scaling of gill-surface area, which 
would develop shallower at older ages (Post and Lee 1996; 
Hirst et al. 2014; Li et al. 2018), and oxygen absorption 
through their entire body surface. This mechanism is rele-
vant to the present study because many larval and juvenile 
fish depend heavily on cutaneous respiration (Post and Lee 
1996; Rombough and Moroz 1997; Glover et al. 2013; 
Glazier et al. 2015), and therefore would explain the link 
between shape shifting and change in metabolic scaling on 
the light of the surface-area dependence theory (Hirst et al. 
2014; Glazier et al. 2015; Glazier and Paul 2017; Li et al. 
2018; Scheuffele et al. 2021). In the same line, the skin of 
freshwater fishes is permeable to water (Talbot et al. 1982) 
and therefore the costs of osmoregulation are expected to 
change with fish size and shape (Styga et al. 2019).

In the context of system composition (SC) theory and DEB 
models, which incorporate principles of SC, SA and resource 

transport theories (Kooijman 1986, 2010; Sousa et al 2010; 
Kearney and White 2012; Glazier 2014), whole body mass 
comprises both high-energy tissues (e.g., brain, heart, or kid-
neys) and low-energy tissues (e.g., skeleton, muscle, and fat). 
Thus, body mass integrates size but also the relative propor-
tions of different tissue types, so that it can convey differences 
in the ratio from nonmetabolising ‘reserve’ mass [which has 
a very low mass-corrected metabolic rate (Hsu et al. 2003; 
Wang et al. 2010, 2012)] to metabolising mass and overall 
cellular demands. This may have two main implications for 
the observed decline in metabolic scaling. First, we found an 
overdevelopment of the dorsal region in deep-bodied fish, 
which can correspond with a greater development of skele-
tal muscle over the dorsofrontal area (landmark 3; Figure 1). 
This is consistent with the positive coefficient of PC1 after 
removal of volumetric size effects on SMR, and also in agree-
ment with both DEB (SMR proportional to structural body 
volume) theory (Kearney and White 2012). Second, a decline 
of b with age can be related to a change in body composi-
tion between ages 0 and 1. According to SC theory, negatively 
allometric scaling of metabolic rate during ontogeny can 
result from slow relative growth of high-energy tissues and 
faster relative growth of low-energy tissues (e.g., fat, skeleton 
and muscle) (Oikawa and Itazawa 1993, 2003; Huang et al. 
2013). Since age 1 fish showed a higher muscle development 
than age 0 fish, and fat storage usually increase over the first 
years of life (e.g. Rønsholdt 1995; Deudal 2002; Hurst and 
Conover 2003), the difference in the metabolic exponents 
could be driven by lower proportions of fat and muscle tissue 
in the younger fish.

Finally, the ontogenetic decrease in the metabolic exponent 
may also indicate that metabolic scaling is affected, in addi-
tion to endogenous factors (e.g. physiology, morphology), by 
ecological (external) factors (Witting 1998; Killen et al. 2010; 
Glazier 2010, 2011, 2018, 2020a; Uyeda et al. 2017; Li et al. 
2018; Hatton et al. 2019; Tan et al. 2019) and their interac-
tions (Gjoni et al. 2020; Glazier et al. 2020b). For example, 
changes in resource availability, population density, or risk of 
predation (Biro et al. 2005) can affect growth and allocation 
patterns, which in turn could alter the metabolic scaling. As 
the costs of the growth machinery contribute strongly to met-
abolic rate (Rosenfeld et al. 2015) and, in teleost fish, growth 

Table 2. Results from multiple stepwise regression of metabolic rate (log10-SMR) on body size (body mass or centroid size; log10-transformed data) for 
first- and second-year juvenile brown trout

 Size predictor: log10 centroid size Size predictor: log10 mass

Mul-R
2 Par-corr Beta SE β t85 P Mul-R

2 Par-corr Beta SE β t85 P 

Age 0

 Size 0.641 0.726 0.714 0.073 9.72 < 0.000001 0.653 0.723 0.750 0.078 9.66 < 0.000001

 PC1 0.662 0.241 0.168 0.073 2.29 0.024295 0.660 0.138 0.099 0.078 1.28 0.203943

Age 1

 Size 0.341 0.592 0.584 0.086 6.77 <0.000001 0.372 0.605 0.600 0.086 7.01 < 0.000001

 PC1 0.368 0.202 0.164 0.086 1.90 0.060560 0.383 0.136 0.109 0.086 1.27 0.207694

t173 t173

All

 Size 0.793 0.740 0.752 0.052 14.45 < 0.000001 0.806 0.746 0.807 0.055 14.74 < 0.000001

 PC1 0.807 0.256 0.181 0.052 3.48 0.000635 0.811 0.157 0.114 0.055 2.09 0.037921

Values are presented for multiple determination coefficients (Mul-R
2), partial correlation coefficients, standardized allometric exponent, beta (β), and the 

standard error for beta (SE β). Significant betas are shown in bold.

D
ow

nloaded from
 https://academ

ic.oup.com
/cz/advance-article/doi/10.1093/cz/zoac042/6591850 by H

ospital U
niversitario C

entral de Asturias user on 21 April 2023



Sánchez-González and Nicieza · Declining metabolic scaling parallels a shape change  7

rates and mortality risk decline with age, the nonlinear, 
decreasing metabolic allometry can be associated with rapid 
growth early in ontogeny, and progressively slower growth at 
older ages (Glazier et al. 2011, 2020a; Tan et al. 2019; Norin 
2021).
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