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Abstract

Fuzzy sets generalize the concept of sets by considering that elements belong to

a class (or fulfil a property) with a degree of membership (or certainty) ranging

between 0 and 1. Fuzzy sets have been used in diverse areas to model gradual

transitions as opposite to abrupt changes. In econometrics and statistics, this

has been especially relevant in clustering, regression discontinuity designs, and

imprecise data modelling, to name but a few. Although the membership func-

tions vary between 0 and 1 as the probabilities, the nature of the imprecision

captured by the fuzzy sets is usually different from stochastic uncertainty. The

aim is to illustrate the advantages of combining fuzziness, imprecision, or partial

knowledge with randomness through various key methodological problems. Em-

phasis will be placed on the management of non-precise data modelled through

(fuzzy) sets. Software to apply the reviewed methodology will be suggested.

Some open problems that could be of future interest will be discussed.
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1. Introduction

Fuzzy sets were introduced in Zadeh [1965] as mathematical objects defined

via a membership function that generalizes the characteristic function of a set

by associating each element of a class with a grade ranging between 0 and 1.

The concept of fuzzy set has been long related to fuzzy logic and fuzzy systems,5

since their original use regards largely to that area (see, e.g., Mamdani and As-

silian [1975], Takagi and Sugeno [1985] and Zadeh [1973, 1975]). However, the

flexibility of considering gradual transitions as opposite to abrupt changes has

made the idea flourish fast in a variety of problems where full membership/non-

membership is sometimes too restrictive, such as clustering or decision-making10

(see, e.g., Bezdek [1981], Bellman and Zadeh [1970], Ruspini [1969] and Zim-

mermann [1976]).

Fuzzy logic and fuzzy inference systems have been used to incorporate im-

precise or vaguely-defined information, such as natural language concepts, in

decision-making problems or knowledge-based forecasting in economics (see,15

e.g., Chen et al. [2006] and Cheng et al. [2013]). The impact of many of these

approaches in applied econometrics literature has been discrete, partially due to

the lack of any objective or statistical validity measure of the conclusions, even

when statistical concepts are involved (see, e.g., Maciel et al. [2016] and Wang

et al. [2011]). Nevertheless, the use of imprecise information has been proved to20

be statistically valuable in certain situations (see, e.g., Fisher et al. [2016] and

Manski and Tamer [2002] for the particular case of interval data).

Other relevant uses of the concept of fuzziness in econometrics and statistics

can be found in the context of clustering, where the membership to a cluster is

not sharp, or regression-discontinuity designs (see, e.g., Bezdek [1981], Calonico25

et al. [2014], Hahn et al. [2001] and Yang et al. [2006]), where there is some

blurriness around the threshold determining who is eligible for certain treatment.

Fuzzy sets have also been frequently used to model non-precise statistical

data (see, e.g., Denœux [2000], Diamond [1988], González-Rodŕıguez et al. [2012]

and Viertl [2011]). This is one of the most successful uses of fuzzy sets in the30
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area. Fuzzy data arise as a generalization of interval data, or in higher dimen-

sions, of set-valued data, in order to formalize the blurriness of the boundaries of

elements that are essentially imprecise, in the sense of not being constrained to

a single point in Rn (see, e.g., Ferraro et al. [2010]). Set-valued data have been

used in statistics and econometrics through the theory of random sets to deal35

with convex particles, cell shapes, partial identification and multivariate risk

measures (see, e.g., Carleos et al. [2014], Choirat and Seri [2014], Molchanov and

Cascos [2016] and Molchanov and Molinari [2018]). In particular, interval data

are used to represent fluctuations or ranges, grouped data, censoring, rounding,

or to deal with partial identification (see, e.g., Beresteanu and Molinari [2008],40

Cameron and Huppert [1989], de Carvalho [2007], Manski and Molinari [2010]

and Ramos-Guajardo and González-Rodŕıguez [2013]).

Fuzziness is also used to represent imprecision or vagueness, e.g., in the con-

text of linguistic variables [Zadeh, 1975] or expert ratings [González-Rodŕıguez

et al., 2012]. In practice, most of the fuzzy subsets of R are a generalization of in-45

tervals, both conceptually and methodologically (see, e.g., Ferraro et al. [2010]).

Depending on the aim, fuzzy, set-valued or interval data can either be consid-

ered the (complex) statistical data of interest per-se, or the imperfect observ-

able outcomes of some underlying precise un-observed statistical data of interest

(compare, e.g., Manski and Tamer [2002] and Ramos-Guajardo and González-50

Rodŕıguez [2013]). The latter is sometimes called epistemic approach, while

the former is called ontic approach (see, e.g., Colubi and González-Rodŕıguez

[2015]).

Among the various existing frameworks to handle fuzzy data associated with

a standard random experiment, those with more impact relate to the concept55

of fuzzy random variable introduced by Puri and Ralescu [1986]. This concept

has generated a full body of statistical literature (see, e.g. Colubi et al. [2011],

Körner [2000] and Näther [1997]). These statistical tools have been frequently

used in areas such as insurance, blind testing or psychology, to name but a few

(see, e.g. Coppi al. [2006], Ramos-Guajardo et al. [2019] and Shapiro [2009]).60

For instance, the space of fuzzy sets has been proposed as a rich alternative
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to Likert scales in order to capture more information in intrinsically imprecise

data, like evaluations, medical diagnoses or quality ratings (see, e.g., González-

Rodŕıguez et al. [2012] and Lubiano et al. [2016]).

The aim is to discuss several key approaches merging fuzziness and stochas-65

tic uncertainty in econometrics and statistics and clarify their potential use for

future research in this area. The selected topics cover examples where the tran-

sition between two states can be made gradual, e.g., fuzzy clustering and fuzzy

regression discontinuity designs (Section 2), the management of non-precise sta-

tistical data (Section 3), and the difference between fuzzy regression and regres-70

sion with (fuzzy) set-valued data (Section 4). Some remarks and a summary of

relevant open problems will be put together to conclude (Section 5).

2. Fuzzy transitions

Formally, a traditional (sub-)set A of a reference class E is characterized by

a function uA : E → {0, 1} so that uA(x) = 1 if x ∈ A and uA(x) = 0 if x /∈ A.75

In contrast, a fuzzy set A of a reference class E is characterized by a function

uA : E → [0, 1] where uA(s) is interpreted as the membership degree of s to the

fuzzy set A, i.e., the boundaries of the set are blurred: there is a fuzzy transition

between belonging or not belonging to the set [Zadeh, 1965].

This section describes two instances of gradual transitions useful in econo-80

metrics and statistics: fuzzy clustering and fuzzy regression discontinuity de-

signs. Note that both of them are fuzzy approaches for non-fuzzy data.

2.1. Fuzzy clustering

Traditional (hard) cluster analysis aims to determine k homogeneous and

separate groups or clusters from a set of n objects according to a given dissimi-85

larity measure based on p observed variables {Xi}pi=i (see Henning et al. [2015]

for an in-depth review on hard clustering). However, there are situations in

which some objects have intermediate features among clusters and, as a con-

sequence, cannot be clearly assigned. In such cases, a classical hard clustering
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approach leads to an unnatural classification since each data point is restricted90

to belonging to just one cluster, being the points similar within each group and

different from those in other groups [Jain et al., 1999]. Different soft-clustering

approaches can be used to overcome this drawback by allowing the objects to

belong to more than one cluster, as it is the case of the fuzzy clustering described

below. For completeness, other soft-clustering approaches are briefly described95

at the end of the section.

One of the best-known contributions of the fuzzy set theory to exploratory

data analysis is fuzzy clustering. Fuzzy clustering relaxes the hard clustering

approach by considering that the points can belong to each group with a certain

membership degree between 0 and 1. In this way, the transition between the100

clusters becomes fuzzy.

As for hard clustering, there are many ways to obtain fuzzy clusters de-

pending on, e.g., the similarity criterion, the existence of constraints, the shape

of the clusters, or the nature of the data set, which can be Euclidean or non-

Euclidean, complex, contaminated or high-dimensional, to name but a few (see,105

e.g., D’Urso and Giordani [2006], Ferraro et al. [2021], Hathaway and Bezdek

[1993], Huang et al. [2012] and Krishnapuram and Keller [1993]). Economic-

related applications can be found, e.g., in production, accounting or hedge funds

analysis (see, e.g., Gibson and Gyger [2007], Qu and Zhang [2010] and Yang et

al. [2006]).110

The basic fuzzy k−means (or fuzzy c−means) problem can be formalized

as follows [Bezdek, 1981]. The aim is to find the centroids cj that determine

the clusters Cj , and the membership uij of each data point xi to Cj , for all

i = 1, . . . , n and j = 1, . . . k, so that the dissimilarity within each cluster is

minimized according to a given criterion. At first, the dissimilarity measure115

was based on the Euclidean distance, but it can be any d defined on the space

where the data points live (originally, R). The common fuzzy k−means considers

that the sum of memberships of each point to all the clusters must be 1, that

is,
∑k

j=1 uij = 1 for all i = {1, . . . , n}.

Moreover, the approach depends on a parameter m > 1 called fuzzifier that
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has a smoother effect and controls how much the clusters overlap. The usual

value of the fuzzifier is m = 2 (see, e.g., Klawonn and Höppner [2003]). Given

a set of centroids (non necessarily the optimal ones), the membership degree of

each point xi is computed in terms of the dissimilarity measure as follows:

uij =
1∑k

l=1

(
d(xi,cj)2

d(xi,cl)2

)1/(m−1)
.

And given the membership degrees uij for i = {1, . . . , n} and j = {1, . . . , k},120

the centroids of the cluster Cj are computed as

cj =

∑n
i=1 u

m
ijxi∑n

i=1 u
m
ij

.

With this notation, the problem is to find the centroids {c∗1, . . . , c∗k} such

that

{c∗1, . . . , c∗k} = argmin
{c1,...ck}

n∑
i=1

k∑
j=1

um
ijd(xi, cj)

2.

As a generalization of the k−means algorithm, the fuzzy k−means algorithm

is recursive, and updates the solution starting from an arbitrary set of centres.

An extensive review of some of the most relevant fuzzy clustering methods based

on the classical fuzzy k−means can be found in Ferraro [2021].125

The R package ‘fclust: Fuzzy Clustering’ [Ferraro et al., 2019] implements

algorithms for fuzzy clustering, cluster validity indices and plots for cluster va-

lidity and visualizing fuzzy clustering results. An illustrative example of fuzzy

clustering can be found in Ferraro et al. [2019]. There, the fuzzy k-means

method with m = 1.2 has been applied to the NBA dataset available in the R130

package ‘fclust’. The dataset contains variables on 30 NBA teams for the reg-

ular season 2017-2018, such as field goal percentage, free throw percentage and

offensive rebounds. Two clusters were found according to the fuzzy silhouette

index. From an interpretability point of view, the best teams are more related

to the first cluster and the worst teams to the second one.135

In addition to fuzzy clustering, other approaches can be considered “soft”.

Namely, possibilistic clustering [Krishnapuram and Keller, 1993] also assigns
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membership degrees to different clusters, but it aims at relaxing the unit-sum

constraints of the membership degrees by adding a penalization term. The

membership values can be interpreted as degrees of possibility of the points to140

belong to the clusters. Thus, data points that are far from all the prototypes are

assigned to the different clusters with membership degrees closer to 0. Rough

clustering [Pawlak, 1982, 1992] is another soft approach that is based on the

concept of rough set, which is characterized by lower and upper approximations,

so that each object can be assigned to a lower approximation or to two or more145

upper approximations or boundary regions according to the distances between

each object and each prototype.

Finally, the model-based clustering can also be considered a soft method

since it produces a soft partition of the units. The posterior probability of be-

longing to a cluster plays a role comparable to that of the membership degree.150

However, both approaches are conceptually different; namely, a membership de-

gree cannot be understood as a probability measure because there is no random

generation process previously assumed and, conversely, the posterior probability

is neither associated with the fuzziness of the partition. The most used approach

in this framework is the mixture of Gaussian densities (see, for instance, Fraley155

and Raftery [2002], Kasa and Rajan [2022] and McLachlan and Peel [2000]), al-

though other extensions involving different parametric distributions have been

proposed as, for instance, a mixture of t-distributions (see, e.g., Murray and

Browne [2017] and Peel and McLachlan [2000]) or other non-Gaussian multi-

variate data [Sahin and Czado, 2022]. An expanded review of the latest advances160

on soft methods can be found in Ferraro and Giordani [2020].

2.2. Fuzzy regression discontinuity designs

Regression Discontinuity Designs (RDDs) are used to assess interventions

where the eligibility to take part in an event, or receive a given treatment,

or not is determined by a cutoff point c ∈ R once the individuals are ranked165

according to an eligibility criterion X (see, e.g., Imbens and Lemieux [2008],

Lee and Lemieux [2010] and Thistlethwaite and Campbell [1960]). An RDD
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assumes that none of the individuals i below the cutoff (Xi < c) receives the

treatment (Wi = 0), while all the individuals above the cutoff (Xi ≥ c) receive

the treatment (Wi = 1), that is, there are no cross-overs or no-shows. Individ-170

uals just around the cutoff are analyzed to assess the potential (non-observed)

causal impact of treatment, denoted Yi(1) and Yi(0), being the observed out-

come Yi = WiYi(1) + (1 − Wi)Yi(0). RDDs are sometimes described as local

randomized experiments, in the sense that the relationship between the outcome

and the eligibility criterion around the cutoff is assumed to be continuous (i.e.,175

there are no confounders), which implies randomization.

The usual parameter of interest is the average causal effect at the cutoff,

that is

τ = E(Yi(1)− Yi(0)|X = c).

Since Yi(1) − Yi(0) is not observable, under the RDD continuity conditions, τ

can be equivalently expressed as

τ = lim
x↓c

E(Yi|Xi = x)− lim
x↑c

E(Yi|Xi = x),

which can be estimated, e.g., with nonparametric techniques [Hahn et al., 2001].

Further improved inferences are also available (see, e.g., Calonico et al. [2014]).

The lack of cross-overs or no-shows is not always realistic, and while there

may be a clear threshold determining who is eligible for the treatment, a small180

percentage of those below, but near the threshold, may receive the treatment,

while a small percentage of those above, but near the threshold, may not receive

the treatment. Since the cutoff is not sharp anymore, this RDD is called Fuzzy

Regression Discontinuity Design, or FRDD for short (see, e.g., Hahn et al. [2001]

and Imbens and Lemieux [2008], which deals with both sharp and fuzzy RDD,185

or Bertanha and Imbens [2020] and Dong [2018], that are related to the FRDD

approach).

In this context, however, the blurriness is actually related to the conditional

probabilities P (W = w|X = x), with w = 0, 1, which differs from most cases

when fuzziness is considered in Zadeh’s sense. FRDD are usually handled with

a similar methodology as RDD by considering the subpopulation of compliers,
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i.e., those individuals who would not take the treatment if the cutoff were below

Xi and would take it above Xi. In this case, the parameter of interest is the

average causal effect for compliers at x = c, that is,

τf = E(Yi(1)− Yi(0)|i complier, Xi = c).

This parameter can be expressed in a more tractable way under mild conditions

by scaling the jump of outcome discontinuity by the jump of the treatment

discontinuity

τf =
limx↓c E(Yi|X = x)− limx↑c E(Yi|Xi = x)

limx↓c E(Wi|Xi = x)− limx↑c E(Wi|Xi = x)
.

Thus, the same techniques used to estimate τ can be applied to estimate τf

and no instrument from the standard fuzzy theory based on Zadeh’s concept is

required. This approach has been frequently applied in econometrics (see, e.g.,190

Basten and Betz [2013] and Cardella and Depew [2014]).

The R package ‘rdd: Regression Discontinuity Estimation’ [Dimmery, 2018]

provides the tools to undertake estimation in both sharp and fuzzy Regression

Discontinuity Designs. Other works involving further developments and ap-

plications related to the FRDD approach can be found in Arai et al. [2021],195

Cattaneo et al. [2016] and Choi and Lee [2018].

As an illustrative example of the treatment assignment in FRDD, the clini-

cal study on the initiation of HIV early antiretroviral treatment in South Africa

developed in Bor et al. [2014] can be considered. The study population in-

cluded the patients who had a first CD4 lymphocyte count between 1 January200

2007 and 11 August 2011 and were under surveillance. The previous guide-

lines recommended treating all people with initial CD4 counts of less than 200

cells/mm3 and, according to this, the proportion receiving treatment declined

noticeably at this threshold. Applying the FRDD approach, the probability of

receiving treatment was notably higher for patients with CD4 counts below this205

threshold. Even so, several people below that threshold did not receive treat-

ment, whereas several above the threshold did, likely because of other clinical

symptoms. Such crossover, relative to the assignment threshold, motivates the
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use of fuzzy RDD. In contrast, when employing sharp RDD, the probability of

receiving early antiretroviral treatment would have been exactly 1 above the210

threshold and 0 below it.

3. Interval and (fuzzy) set-valued data

Non-precise data are frequently modelled through (fuzzy) sets verifying some

convenient conditions such as boundedness or convexity. This section will in-

troduce first interval data and after fuzzy data following the so-called ontic215

approach [Colubi and González-Rodŕıguez, 2015]. An R package containing

all the methods described in Section 3 can be obtained from the author upon

request.

3.1. Random intervals: Interval data

Let Kc(R) =
{
[a, b] : a, b ∈ R, a < b

}
be the space of bounded and closed220

intervals. Any A ∈ Kc(R) can be characterized by means of the mid-point

and the spread, through the t−vector tA = (midA, sprA) ∈ R2 (with sprA ≥

0). This representation allows us to separate two important concepts: location

(related to the mid-point) and imprecision (related to the spread).

The natural interval arithmetic onKc(R) is defined in terms of the Minkowski

addition and the product by a scalar, A+ λB = {a+ λb : a ∈ A, b ∈ B} for all

A,B ∈ Kc(R) and λ ∈ R. It verifies that

tA+λB = (midA+ λmidB, sprA+ |λ|sprB).

Of course, this arithmetic does not agree with the natural arithmetic on R2,225

and the space (Kc(R),+, ·) is not linear, but semilinear (cone structure). The

natural difference is called Hukuhara difference, that is, A −H B = C, with

C ∈ Kc(R) so that A = B + C, and it exists if spr B ≤ spr A.

Metrics in Kc(R) can be inherited from the general expressions of the metrics

in R2. For instance, the well-known Hausdorff distance can be expressed as the

L1−metric, i.e.,

dH(A,B) = d1(tA, tB) = |midA−midB|+ |midA− sprB|.

10



Weights of the distance between mid-points (location) and spreads (imprecision)

can be considered. The general L2−metrics are very convenient in statistics. A

general (weighted) L2−distance can be defined as follows,

d2τ (A,B) = d22,τ (tA, tB) = (1− τ)(midA−midB)2 + τ(sprA− sprB)2,

(see, e.g., Sinova et al. [2012]).

The notions of random interval and expected value can equivalently be inher-

ited from the ones in R2 through the t−vector, from the general ones in metric

spaces, or as a particular case of the theory of compact and convex random

sets (see, e.g., Molchanov and Molinari [2018]). Thus, given a probability space

(Ω,A, P ) a mapping X : Ω → Kc(R) is random interval if tX = (midX, sprX)

is an R2−random vector (with sprX ≥a.s. 0), and E(X) is the interval so that

tE(X) = E(tX). The variance can also be defined through the Frechet ap-

proach, or equivalently, as σ2
X = (1 − τ)V ar(midX) + τV ar(sprX). Since all

these concepts depend only on the metric and the semi-linear structure, all the

interpretation and usual properties hold. This is not the case for the covari-

ance of two random intervals X and Y that can be defined only in terms of the

t−vector in R2 or, equivalently, as

Cov(X,Y ) = (1− τ)Cov(midX,midY ) + τCov(sprX, sprY ).

The covariance does have the classical meaning and properties since, for in-230

stance, X can be non-degenerated and equal to −X. However, it can be con-

nected with the strength of “linear relationships” (see, e.g., Blanco-Fernández

et al. [2011]).

In order to handle statistical interval data and derive inference, e.g., on the

expected value, asymptotic techniques are usually considered. One of the rea-235

sons for such a consideration is that no normal distribution (but a degenerated

one on the mid-points) lives in R× [0,+∞), due to the boundedness restriction

of the spread, and there is no parametric model for random intervals widely used

in applications. Any model in R×[0,+∞) is a candidate, e.g., (N (µ, σ), χ2
l ) and

this is usually applied in simulations, but methods not relying on parametric240
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distributions are preferred (see, e.g., Gil et al. [2007], Ramos-Guajardo et al.

[2020]).

Asymptotic results are supported by general large sample probabilistic re-

sults, such as the Strong Law of Large Numbers, or the (distance-based) Cen-

tral Limit Theorem particularized to Kc(R) (see, e.g. Molchanov and Molinari245

[2018]). Asymptotic/bootstrap confidence regions and hypothesis tests can be

developed similarly to the real case.

For the confidence regions, theory developed for the (non-parametric) confi-

dence estimation of the mean of non-negative random variables can be used in

combination with the standard theory to estimate the mean of the t−vector in250

R× [0,+∞). Alternatively, the following method based on bootstrapping valid

for the general case (not relying on linearity or ordering) can be applied. Note

that in K(R) ‘confidence intervals’ cannot be expressed as the sample mean

plus/minus a given quantity depending on the (estimated) variability and the

sample size. That is why the confidence regions are not specified by upper and255

lower bounds, but expressed in terms of distances.

Confidence Regions (CR) can be defined as balls centred on the sample

mean with radius determined via bootstrapping. For the case of the mean, if

(1− β) ∈ (0, 1) be confidence level, then the CRβ−confidence ball will be

CRβ = B(X, δ) = {A ∈ Kc(R)|dτ (A,X) ≤ δ},

where the radius δ verifies the coverage condition

P (µ ∈ B(X, δ)) = P (dτ (µ,X) ≤ δ) = 1− β.

Thus, δ should be the (1−β)-quantile of the distribution of dτ (µ,X). In practice,

δ can be approximated by the corresponding bootstrap (1 − β)-quantile. This

approach is theoretically well-supported and provides adequate empirical results

for moderate or large sample sizes, but not for small sample sizes. As usual,260

a way to improve the results is to consider the variability. The standardized

confidence interval is slightly conservative, but it can be applied even for small

sample sizes with good results (e.g., n = 10).
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Hypothesis testing approaches can also be developed (see, e.g., Blanco-

Fernández and González-Rodŕıguez [2016] and Blanco-Fernández and Warren-265

Liao [2015]). Consider, for example, the one-sample test. LetX be an integrable

random interval and A ∈ Kc(R). The aim is to test H0 : E(X) = A against

H1 : E(X) ̸= A. This can be done through the t-vector by applying techniques

in R × (0,+∞]. However, for the sake of the generalization, and in order to

take into account the metric structure, the test can be expressed in terms of270

distances to avoid using (not well-defined) differences, like for the confidence

regions. Thus, the null hypothesis can be written as H0 : dτ (E(X), A) = 0, and

the alternative hypothesis as H1 : dτ (E(X), A) > 0. Asymptotic techniques are

supported by the Central Limit Theorem (CLT). In the same way, the boot-

strapped CLT supports bootstrapping. The one-sample statistics can be defined275

as T =
[
dτ

(
X,A

)]2
/Ŝ2, where Ŝ 2 is the quasi-variance. Similarly, bootstrap

two-sample and ANOVA tests can be established [Nakama et al., 2010]. In prac-

tice, they show the usual empirical behaviour in the Behrens-Fisher problem,

which can be lessened as for the real case.

Inference on the (real-valued) variance has been developed for both one and

k−samples analogously to the real case. For instance, the Levene-type statistics

for k random intervals X1 . . . Xk can be defined

Rk
n =

∑k
i=1 ni

(
σ̂2
Xi

− σ̂2
)2∑k

i=1 σ̂
2
(dτ (Xi,Xi·))2

,

where σ̂2 = 1
n

∑k
i=1 niσ̂

2
Xi

and σ̂Xi is the sample variance ofXi [Ramos-Guajardo280

and Lubiano, 2012].

Hypothesis tests that regard concepts inherently related to sets are of par-

ticular interest, such as inclusion or overlapping (see, e.g., Beresteanu and Moli-

nari [2008] and Ramos-Guajardo et al. [2020]. Among these problems, partial

inclusion can be considered a first attempt to formalize statistically “fuzzy” hy-285

pothesis, and it is especially relevant for its generality [Ramos-Guajardo et al.,

2014].

An example to illustrate the applicability of the hypothesis testing theory
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for the variance of a random interval has been provided in Ramos-Guajardo

and González-Rodŕıguez [2013]. The purpose of the study was to determine if290

the variability of the tidal fluctuation in Gijón (Spain) changed in 2010 with

respect to 2009. Knowing that the variability of tides fluctuation in 2009 was

.0593, the aim was to check if that of 2010 can be considered the same with the

information of the tidal fluctuation of 50 days of 2010 by using the proposed

test for the variance. Since the null hypothesis was not rejected at the usual295

significance levels, the variability of the tidal fluctuations in Gijón in 2010 cannot

be considered different from the one in 2009.

3.2. Random sets: Set-valued data

The extension of the concept of interval to higher dimensions, even for the

fuzzy case, has been frequently focused on preserving closeness and, more conve-300

niently, convexity. Thus, the theory of (convex and bounded) closed sets of Rp,

usually based on the Minkowski addition and the Hausdorff distance, has been

well-developed for statistical/econometric purposes (see, e.g., Choirat and Seri

[2014], Matheron [2018], Molchanov and Cascos [2016], Molchanov and Moli-

nari [2014] and Simó et al. [2004]). The support function allows us to embed305

the space of convex compact sets into a linear functional space by preserving

important metric and arithmetic properties, which has frequently simplified the

study of set-valued random elements (see, e.g., Adusumilli and Otsu [2017] and

Beresteanu and Molinari [2008]).

Recently, a more general alternative, based on star-shaped sets, a directional310

Minkowski addition, and L2−type metrics, has shown to be convenient from a

formal and a practical point of view [González-Rodŕıguez et al., 2018]. Star-

shaped sets relax the condition of convexity to directional convexity from a

given point (see, e.g., Klain [1997]). They are useful to represent, e.g., (almost)

convex particles or cell shapes [Carleos et al., 2014, Choirat and Seri, 2014].315

The main advantages of this approach are:

1. It generalizes the concept of mid/location and spread/imprecision by para-

metrizing the sets by a crisp centre and a radial function;
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2. The propagation of the uncertainty is made directionally, which avoids the

general dilation produced by the Minkowski addition;320

3. The cone where the space is embedded is explicitly known, in contrast to

what happens for the support function, so it allows us to fully exploit the

rich statistical theory in Hilbert spaces.

The aim is to handle a set A through a centre cA ∈ A and the polar function

from ρA. Let Ac = A − cA be the associated set ‘centred at 0’. A closed set

A ⊂ Rp with 0 ∈ A is a star-shaped set w.r.t. 0 if for any a ∈ A, γa ∈ A for all

γ ∈ [0, 1], that is, if the segment joining 0 and a fully belongs to A. Thus,

A = {γρA(u) | γ ∈ [0, 1], u ∈ Sp−1},

where Sp−1 is the unit sphere and ρA(u) = sup{γ ∈ [0,∞) | γu ∈ A} for all u ∈

Sp−1 is the polar function. In order to avoid ill-definitions, and as usual when325

handling functional data, ρA will be assumed to be square-integrable, that is,

ρA ∈ L2(Sp−1, ϑp), where ϑp is the Lebesgue measure over the unit sphere.

The space of centred star-shaped sets is denoted by X0. The space of centred

star-shaped sets with square-integrable boundary will be denoted X2
0.

Generally, A ⊂ Rp is a star-shaped set, i.e. A ∈ X, if there exists x ∈ A

so that A − x = {a − x | a ∈ A} ∈ X0. Therefore, the star-shaped sets will be

characterized by (cA, ρAc), i.e.,

A = {cA + γρAc(u) | γ ∈ [0, 1], u ∈ Sp−1}.

By defining the interval Iu(A
c) = [−ρAc(−u), ρAc(u)] for each u ∈ Sp−1, a

directional Minkowski addition can be defined so that Iu(A
c +Bc) = Iu(A

c) +

Iu(B
c) for all A,B ∈ X. This is equivalent to consider

Ac +Bc = {γ(ρAc(u) + ρBc(u)) | γ ∈ [0, 1], u ∈ Sp−1},

and analogously for the product by a scalar,

λ ·Ac = {γ(|λ|ρAc(sign(λ)u)) | γ ∈ [0, 1], u ∈ Sp−1}.
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for all λ ∈ R. In this way,

A+B = (cA, ρAc) + (cB , ρBc) = (cA + cB , ρAc + ρBc),

and λ(cA, ρAc(·)) = (λcA, |λ|ρAc(sign(λ) ·)). This arithmetic propagates the330

imprecision directionally, and not as a general dilation as happens for the usual

Minkowski addition, which can be convenient in many applications.

Let H = Rp × L2(Sp−1, ϑp) and τ ∈ (0, 1). For any (x1, f1), (x2, f2) ∈ H,

inspired on the mid-spread metric for intervals, the τ−inner product is defined

as 〈
(x1, f1), (x2, f2)

〉
τ
= (1− τ)xt

1 · x2 + τ
[
f1, f2]2,

where
[
f, g

]
2
=

∫
Sp−1 f1(u)f2(u)ϑp(du). The Hilbert space (H,

〈
·, ·

〉
τ
) is sep-

arable. Let || · ||τ denote its induced norm. The space of star-shaped sets is

embedded in H as follows. Let Γ : Rp × X0 → H so that Γ(c, A) = (c, ρA). Let

A,B ∈ X2
0, x, y ∈ Rp, the metric is defined as

d2τ ((x,A), (y,B)) = ||Γ(x,A)− Γ(y,B)||2τ

= (1− τ)(x− y)t · (x− y) + τ

∫
Sp−1

(ρA(u)− ρB(u))
2ϑp(du).

As usual when dealing with L2 spaces, equivalence classes are considered.

Thus, A and B are in the same equivalence class if ρA = ρB a.s.−ϑp.

The mapping Γ : Rp × X2
0 → H is an isometry preserving the arithmetic,335

and Γ(Rp × X2
0) = Rp × L2(Sp−1, ϑp)

+ is a closed convex cone. The space

(Rp×X2
0, dτ ) is complete and separable, and dτ is invariant under rigid motions.

One of the main advantages of this embedding w.r.t. the one induced by the

support function is that in the first situation, the arriving cone is perfectly

identified, and it is trivial to determine the set associated with any element of340

the cone, which is not easy in the case of the support function.

A missing point until now is the determination of the centre cA for any

A ∈ X2, where X2 denotes the space of star-shaped sets with square-integrable

boundary. The idea is to define as centre a point of the kernel, ker(A) =

{x ∈ A |A − x ∈ X2
0}, which is a non-empty, convex and closed set. The
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problem is that the ker(A) may be affected by noise, and be different for two

elements in the same equivalence class. Thus, a previous ‘cleaning’ is requested.

Let A ∈ X2 with bounded ker(A), so that it is meaningful to search for its

centre, otherwise any point would serve. Thus, ker(A) ∈ Kc(Rp). Consider the

subspace generated by the linear span of A:

span(A) =

{
k∑

i=1

λiai | k ∈ N, ai ∈ A, λi ∈ R

}
,

and let int(A) be the interior of A within its span. If int(A) ̸= ∅, then

cA = centre of mass of ker(cl(int(A))). If int(A) = ∅, let λker(A) be Lebesgue

measure on ker(A), then cA = centre of mass w.r.t. λker(A) of ker(A). In this

way, cA is robust against negligible noise affecting the kernel.345

Figure 1 shows an example of a star-shaped set A in R2 and its centred

version Ac. Regarding the main probabilistic concepts and results, let (Ω, A, P )

Figure 1: Star-shaped set A in R2, its center cA, its associated radial function for u = (1, 0),

and the corresponding centred set Ac.

be a probability space. A mapping X : Ω → Rp×X2
0 is called Random L2−Star-

shaped Set (R2S) if Γ ◦X is an H−valued random element. If X is an R2S so

that E(dτ (X, 0)) < ∞, then the expected value E(X) is defined as the element350
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in Rp × X2
0 so that Γ(E(X)) = E(Γ(X)). In this case both Bochner and Pettis

expectations agree.

Let X,Y be an R2Ss so that E(d2τ (X, 0)) < ∞ and E(d2τ (Y, 0)) < ∞, then

the (scalar) variance is defined as

V ar(X) = E
(
d2τ (X,E(X))) = E(||Γ(X)− E(Γ(X))||2τ

)
.

Similarly, the (scalar) covariance can be defined as

Cov(X,Y ) = E
(〈
Γ(X)− E(Γ(X)),Γ(Y )− E(Γ(Y ))

〉
τ

)
.

Moreover, the covariance operator CΓ(X) : H → H is defined as

CΓ(X)(x) = E
(〈
(Γ(X)− E(Γ(X))), x

〉
τ
(Γ(X)− E(Γ(X)))

)
for all x ∈ H. Thus, Cov

(〈
Γ(X), x

〉
τ
,
〈
Γ(X), y

〉
τ

)
=

〈
CΓ(X)(x), y

〉
τ
for all

x, y ∈ H.

The Central Limit Theorem (CLT), and other asymptotic results, can be355

derived from the well-known CLT in Hilbert Spaces (see, e.g., Araujo and

Gine [1980]). Thus, let X1, . . . , Xn be an i.i.d. sequence of R2Ss so that

E(d2τ (X1, 0)) < ∞, then

� n1/2
(
Γ
(
1
n

∑n
i=1 Xi

)
− E(Γ(X1))

)
→ ZΓ(X1) weakly in H,

� nd2τ
(
1
n

∑n
i=1 Xi, E(X1)

)2
τ
→ ∥ZΓ(X1)∥2τ weakly in R,360

where ZΓ(X1) is a centred Gaussian H−valued random element with CZ =

CΓ(X1). As a result, the same inferential techniques based on distances described

for random intervals, such as confidence interval for the means, ANOVA or

homoscedasticity tests, can be stated for random sets in higher dimensions.

As an illustrative example involving star-shaped data, the study in Ferraro365

et al. [2022] can be considered. The dataset refers to 41 Cantabrian coast

stones (Spain), namely, 19 river stones and 22 sea stones. The shape and the

roundness were measured. The first feature was parameterised through star-

shaped random sets. After applying a fuzzy k-means approach for such type
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of data 2 clusters were obtained. The results were consistent with what was370

expected, since most of the sea stones are rounder than the river ones and

therefore are more related to one of the clusters.

3.3. Random fuzzy sets: Fuzzy data

Fuzzy data have been long handled as realizations of random fuzzy sets, or

fuzzy random variables, whose α−levels are convex compact random sets. That375

is, the theory of convex compact random sets has been extended level-wise to

cover the fuzzy sets (see, e.g., González-Rodŕıguez et al. [2012], Körner [2000],

Näther [1997] and Puri and Ralescu [1986]). From an ontic point of view, fuzzy

data can be treated as values belonging to a metric space endowed with a semi-

linear structure, so it is possible to develop different statistical techniques for380

metric spaces. Dealing with the whole (fuzzy) sets instead of summarizing them

by, for instance, their central points, allows capturing the intrinsic imprecision

inherent to certain kinds of data, such as ranges or perceptions (see, e.g., Fer-

raro et al. [2010], Fisher et al. [2016] and González-Rodŕıguez et al. [2012]).

Specifically, in Fisher et al. [2016] it is shown that considering the daily range385

of process data through intervals in a financial problem involving regression

produces better forecasts than considering only the mean prices.

Following the discussion in Section 3.2, the general alternative based on ran-

dom star-shaped sets can be further extended level-wise. This section will intro-

duce the basic concepts and results. For more details, see González-Rodŕıguez390

[2022].

Fuzzy sets will be characterized by a centre, or location, in Rp and radial

function defined level-wise for the corresponding fuzzy set centred on 0. The

space of fuzzy star-shaped sets (w.r.t. 0) is denoted by

F0(Rp) = {A : Rp → [0, 1] |Aα ∈ X0 ∀α ∈ (0, 1]},

where Aα = {x ∈ Rp |A(x) ≥ α} for all α > 0. The arithmetic is extended

level-wise, that is, (A+ γB)α = Aα + γBα for all α ∈ (0, 1]. The polar function
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is defined as ρA : Sp−1 × (0, 1] → R+ so that ρA(u, α) = ρAα(u) for all u ∈

Sp−1, α ∈ (0, 1]. An example of a fuzzy set A in R is provided in Figure 2.

Figure 2: Fuzzy set A in R, its center cA and its associated radial function for u = (1, 0)

395

Considering square-integrable polar functions, and

F2
0(Rp) = {A ∈ F0(Rp) | ρA ∈ L2(Sp−1 × (0, 1], ϑp × λ)},

the embedding is Γ : Rp × F2
0(Rp) → H so that Γ(c, A) = (c, ρA), where H =

Rp×L2(Sp−1×(0, 1], ϑp×λ). The metric on the separable Hilbert space can also

be extended level-wise. Let φ be an L2 density with support [0, 1] (in practice

φ = 1), and τ ∈ (0, 1), let (x1, f1), (x2, f2) ∈ H, then

〈
(x1, f1), (x2, f2)

〉
τ,φ

= (1− τ)xt
1 · x2 + τ

∫ 1

0

[
f1(·, α), f2(·, α)]2φ(α)λ(dα),

where
[
f, g

]
2
=

∫
Sp−1 f1(u)f2(u)ϑp(du). The induced norm will be denoted by

|| · ||τ,φ. In this way, the metric on Rp × F2
0(Rp) can be defined as

d2τ,φ((x,A), (y,B)) = ||Γ(x,A)− Γ(y,B)||2τ,φ

= (1− τ)(x− y)t · (x− y)

+τ

∫ 1

0

∫
Sp−1

(ρA(u, α)− ρB(u, α))
2φ(α)ϑp(du)λ(dα).
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As before, Γ(Rp×F2
0) = Rp×L2(Sp−1× (0, 1], ϑp×λ)+ is a closed convex cone,

Γ : Rp × F2
0 → H is an isometry preserving the arithmetic, and (Rp × F2

0, dτ ) is

a complete and separable metric space.

The centre of the fuzzy sets must belong to all the α-level sets. Thus, it must

belong to the 1-level set. In details, a function A : Rp → [0, 1] is a (non-centred

at 0) fuzzy star-shaped set in FX(Rp) if there exists c ∈ Rp with Aα − c ∈

X0 ∀α ∈ (0, 1]. Consider

ker(A) = {x ∈ A1 |Aα − x ∈ X2
0 ∀α ∈ (0, 1]},

and assume that it is bounded, then ker(A) ∈ Kc(Rp). Consider the subspace

generated by the linear span of A1. If int(A1) ̸= ∅, then cA is defined as the

centre of mass of ker∗(A), where

ker∗(A) = {x ∈ A1 | cl(int(Aα − x)) ∈ X2
0 ∀α ∈ (0, 1]} ∈ Kc(Rp).

However, if int(A1) = ∅, then cA will be defined as the centre of mass of ker(A)

with respect to λker(A), the Lebesgue measure on ker(A).400

In this way, all the theoretical framework provides the same structure of

the embedding in a cone of a Hilbert space that was used to establish the

concepts of random element, expected value, variance and covariances, as well

as the asymptotic results for the case of random sets. As a result, all the

inference derived from them is valid for the fuzzy case. Using essentially the405

same notation, bootstrap confidence sets, and hypothesis tests for the mean

and the variance can be established and supported theoretically. The empirical

results continue to be analogous to the real case.

An illustrative case study involving a one-way ANOVA test for fuzzy data can

be found in González-Rodŕıguez et al. [2012]. The study concerns an experiment410

in which people were asked for their perception of the relative length of several

line segments with respect to a fixed longer segment that is used as a standard

for comparison. A sample of 17 people from various countries, professions,

ages and sexes have been considered. The study reflects that the test is more

affected by differences in imprecision. In addition, significant differences have415
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been detected among individuals, between men and women and among females.

Still, no significant differences are detected among males, who are concluded to

be more uniform in expressing their perceptions.

4. Regression: Fuzzy regression and regression with (fuzzy) sets

Fuzzy regression was not initially introduced as a statistical model. How-420

ever, the difference among fuzzy regression, fitting curves with fuzzy data, and

estimate regression models with fuzzy data has not always been clear, and it

has been frequently argued that fuzzy regression can substitute, and even “work

better”, than standard regression models under various circumstances (see, e.g.,

Kim et al. [1996] and Savic and Pedrycz [1991]). In contrast to the real case, the425

lack of linearity of the space of fuzzy or set-valued data makes the fitting prob-

lem different from the estimation problem. That is because considering or not

the data generation process leads to unequal restrictions in the minimization

problem [González-Rodŕıguez et al., 2009]. In order to contribute to clarify-

ing the particularities from a statistical point of view, these methodologies are430

presented in this section and their use is detailed.

4.1. Fuzzy/possibilistic regression

Fuzzy regression, also known as possibilistic regression, was introduced by

[Tanaka et al., 1982] as a way to substitute the random deviations between

the observed values and the predicted ones assumed in the standard regression435

models by fuzziness of the parameters. This is justified because those deviations

are considered to be associated with “indefiniteness of the system structure” or

vagueness, e.g., due to the involvement of human assessments, or a lack of

precise knowledge. Thus, no data generation process is postulated. The fuzzy

regression just seeks a numerical fit with fuzzy parameters belonging to certain440

parametrized classes by usually applying some linear programming techniques

optimizing a criterion related to the fuzziness of the system.

In other words, fuzzy regression can be applied to fit a fuzzy function to

relate any dependent variable with an arbitrary number of independent variables
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based on a set of tuples {yi, xi1, . . . , xik}ni=1. However, this flexibility comes445

with a price: since the fit is performed numerically, without assuming any data

generation process, there is no statistical guarantee on the estimations and no

inference can be derived. This is clearly in contrast with the econometrics and

statistical standards, but it can be of some help for descriptive purposes, as a

fitting technique, by allowing some flexibility on the definition of the parameters450

through fuzziness. Applications in economics can be found, e.g., in Berry-Stölzle

et al. [2010], Malyaretz et al. [2018] and Muzzioli et al. [2015]. For instance, a

comparison between different fuzzy regression models to estimate the implied

volatility smile function in a financial framework has been carried out in Muzzioli

et al. [2015].455

Tanaka’s fuzzy regression fits linear functions with symmetric triangular

fuzzy parameters with either fuzzy or crisp output and crisp inputs. Sym-

metric triangular fuzzy sets are determined by a centre and a spread, so they

are formally equivalent to intervals, although conceptually they are different. A

fuzzy set U is called symmetric triangular fuzzy number if for a given u ∈ R

and r > 0, its membership function is

U(x) =

1− |u−x|
e ifu− r < x < u+ r

0 elsewhere

.

In this case U is simply denoted by U = (u, r). The arithmetic between fuzzy

numbers is equivalently defined by Zadeh’s extension principle [Zadeh, 1975]

or by extended level-wise the interval arithmetic, i.e., for two triangular fuzzy

numbers U1 = (u1, r1), U2 = (u2, r2), and λ ∈ R,

U1 + λU2 = (u1, r1) + λ(u2, r2) = (u1 + λu2, r1 + |λ|r2).

Let {Yi, x1i, . . . , xki}ni=1 be a set of data, where Yi = (yi, ei) are triangular

fuzzy numbers and xij ∈ R for all i = 1, . . . , n and j = 1 . . . k. Tanaka’s fuzzy

regression is meant to fit a fuzzy linear function

Y = A0 +A1x1 + . . .+Akxk,
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where Aj are symmetric triangular fuzzy numbers (αj , cj) for all j = 1, . . . k.

The aim is to find (αj , cj) minimizing the fuzziness of the model, defined as

the sum of spreads of all the fuzzy parameters, under the constraint that the

membership value of yi to its “fuzzy estimate” Y ∗
i is at least h for all i = 1, . . . , n,

where h is fixed a priori. The value h ∈ [0, 1] is seen as a measure of goodness of

fit or compatibility between the dataset and the fuzzy linear function. Formally,

the problem can be written as follows:

min

k∑
j=0

cj ,

subject to:
k∑

j=0

αjxij + (1− h)

k∑
j=0

cj |xij | ≥ yi,

k∑
j=0

αjxij − (1− h)

k∑
j=0

cj |xij | ≤ yi,

c ≥ 0, α ∈ R, xi0 = 1.

The R package ‘fuzzyreg: Fuzzy Linear Regression’ [Skrabanek and Mar-

tinkova, 2019] implements different algorithms for fuzzy regression.

4.2. Fuzzy least-squares

A closer viewpoint of fuzzy regression to the standard regression is the so-

called “fuzzy least-squares” [Diamond, 1988], where the aim is again to fit a460

linear function with fuzzy parameters. Instead of applying linear programming

techniques to minimize the fuzziness under certain constraints, it searches for the

fuzzy linear function that minimizes the overall distance between the observed

fuzzy values and the predicted ones as traditional least-squares does. Some

constraints must be imposed in order to cope with the lack of linearity of the465

space of fuzzy sets, inherited from the lack of linearity of the space of intervals or,

more generally, compact and convex sets. Several distances can be defined and,

depending on the type of fuzzy sets, different solutions have been established

(see, e.g., Bargiela et al. [2007], Diamond and Körner [1997] and D’Urso and

Gastaldi [2000]).470
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The advantage of using least-squares is that the solution is delivered with

an objective measure of the goodness-of-fit, based on the explained variability.

However, these problems are just numerical fittings, and no data generation

process is assumed, so no statistical estimation is provided. This is also the case

of some regression problems for interval data (see, e.g., Diamond [1990] and Gil475

et al. [2002]). For example, a least squares approach for analyzing the degree

of dependence between the systolic and diastolic blood pressure of 59 patients

from a hospital in Asturias (Spain) from a descriptive point of view has been

developed in Gil et al. [2002].

In the simpler case, given a set of fuzzy data {(Yi, Xi)}, the problem is

to find the closest affine transformation, that is, the closest linear function

Y = aX +B, where α ∈ R and B is a fuzzy set. In order to define the problem

mathematically, the considered space of fuzzy sets is frequently Fc(Rp), which

is the space of fuzzy sets with convex and compact level sets (see, e.g., Puri and

Ralescu [1986]). Sometimes more restrictive parametrized classes are considered,

such as LR-fuzzy numbers, i.e., fuzzy sets of R determined by a centre, a left

spread and a right spread [Dubois and Prade, 1980]. The distance between

the values predicted by the affine transformation and the observed outputs is

measured in terms of a given metric d (see, e.g., Trutschnig et al. [2009]). The

minimization problem can be ill-posed if no conditions are assumed, given the

conical structure associated with the usual arithmetic between fuzzy sets (see,

e.g., Diamond [1990] and Gil et al. [2002]). Thus, formally the problem is to

find α ∈ R and B sot hat

min

n∑
i=1

d(Yi, αXi +B)

under certain suitable constraints making the problem and the solution well-480

defined in the considered space of fuzzy sets. For general fuzzy sets, the con-

ditions are quite restrictive, while for LR-fuzzy numbers they are essentially

related to the non-negativity of the spreads. The R package ‘fuzzyreg: Fuzzy

Linear Regression’ [Skrabanek and Martinkova, 2019] implements the original

fuzzy least-squares [Diamond, 1988].485
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4.3. Regression with fuzzy/interval data through separate models

Later on, some models including random errors have also been labelled as

“fuzzy regression”, although their aim differs from the original Tanaka’s regres-

sion. Many of these models do not assume a data generation process of the

data themselves yet. In contrast, they consider data generation processes sep-490

arately for the characterizing parametrizations, e.g., minima and suprema, or

centres and spreads, which does not always imply any explanatory relationship

among the original variables (see, e.g., Coppi et al. [2006] and Lima Neto and de

Carvalho [2008]). As an example, the dependence relationship of the daily at-

mospheric concentration of carbon monoxide (CO) in Rome (Italy) with a fuzzy495

summary of meteorological variables by considering hourly information during

21 days has been analyzed in Coppi et al. [2006] through the least square esti-

mation of a linear regression model with LR fuzzy response based on separate

models.

In the case of interval data, let al, au, am and as denote respectively the

lower bound, upper bound, mid-point and spread of an interval A. Given a set

of interval-valued pairs {(Yi, Xi)}, the technique of the separate models consists

in assuming linear regression models between either lower bound and upper

bounds, or between mid-points and spreads, that is:

yl = α1x
l + β1ϵ1 and yu = α2x

u + β2ϵ2 or

ym = α1x
m + β1ϵ1 and ys = α2x

s + β2ϵ2,

where α1, α2, β1, β2 ∈ R and ϵ1 and ϵ1 are the (real-valued) random errors. Once500

more, conditions are requested to guarantee that the models are well-defined

and the solutions are coherent within the space of interval data. For instance,

the model linking the spreads is not meaningful as defined, since both ys and

xs are non-negative variables. During the estimation process, ill-definition in

the predicted values can be avoided by using constraint least-squares, but this505

does not solve the problem out-of-sample. A solution developed in Ferraro

and Giordani [2012] consists in using Box-Cox transformations to establish the
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models relating to the spreads. In Ferraro and Giordani [2012], LR fuzzy sets are

considered, which formally just adds another equation for the spreads. Cross-

relationships between minima and maxima, or mid-points and spreads, could510

be trivially considered.

The R package ‘iRegression: Regression Methods for Interval-Valued Vari-

ables’ [Lima Neto et al., 2016] implements some separate regression methods

for interval-valued variables. It should be noted that none of these models

are regression models between interval-valued random elements, in the sense of515

modelling E(Y |X = x) by considering the concept of expected value of random

interval, and hence, the arithmetic between intervals.

4.4. Regression models with fuzzy/interval data

Standard regression models in statistics assume a data generation process

making the conditional expected value E(Y |X = x) to be a regression function520

in a given family, e.g., a linear, quadratic or smooth function, to name but a

few. The simpler case, to compare with Section 4.2, has been developed in

González-Rodŕıguez et al. [2009]. In that study, the proposed regression model

was applied to analyze the linear relationship between the quality of the trees

in a reforestation area in Asturias (Spain) and the quality of the land, where525

the measurement of both characteristics was given in terms of trapezoidal fuzzy

numbers by expert perception.

In order to avoid ill-definitions for the non-negativity, the independent term

is assumed to be embedded in the error term, that is, given two random fuzzy

setsX and Y with non-negative and finite variances, the data generation process

is

Y = αX + ϵ,

where α ∈ R, ϵ is a fuzzy-valued random error with E(ϵ|X) = B ∈ Fc(Rp). Thus,

the population regression function is E(Y |X) = αX + B. This model implies

that ϵ is the Hukuhara difference between Y and αX, that is ϵ = Y −H αX, and

since the data are assumed to be generated from the model, the least-squares
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problem can be constrained to impose the existence of the residuals, that is,

min
α∈A

n∑
i=1

d(Yi, αX +B),

where A = {α ∈ R|Yi −H (αXi + B) exists for all i = 1, . . . n}. Under these

conditions, closed expressions for the estimators of α and B can be obtained.

This model is, however, very restrictive, as it assumes the relationship among530

complex data to be represented in a single scalar α ∈ R. More flexible models

exploiting functional regressions are expected in the context of fuzzy star-shaped

sets (see, e.g., Ferraty et al. [2019], González-Rodŕıguez and Colubi [2017] and

Matsui [2020]).

Also for the interval case, more flexible models have been considered (see, e.g.

Blanco-Fernández et al. [2013, 2011]). By using the notationA = [midA±sprA],

and the canonical decomposition of interval as A = midA[1± 0] + sprA[0± 1],

Garćıa-Bárzana et al. [2020] proposed a general model for random intervals as:

Y = α1mid
−→
X [1± 0] + α2spr

−→
X [0± 1] + α3mid

−→
X [0± 1] + α4spr

−→
X [1± 0] + ϵ,

where Y is the random interval-valued response,
−→
X = (X1, . . . Xk) are the535

interval-valued explanatory variables, α1, α2, α3, α4 ∈ Rk, and ϵ is the random

interval-valued error with E(ϵ|
−→
X ) = ∆, which is also an interval. The esti-

mation can be done numerically by applying techniques to solve a constrained

minimization problem.

All these models are standard regression problems defined within metric540

spaces endowed with a semilinear arithmetic rich enough to develop inferences,

such as confidence regions and hypothesis testing (see, e.g., Blanco-Fernández

and González-Rodŕıguez [2016]). R packages and algorithms in MatLab for flex-

ible regression models for random intervals can be found at http://bellman.

ciencias.uniovi.es/smire/IntervalLM.html.545

5. Conclusions

The aim has been to review ways to handle blurriness and lack of precision

represented through (fuzzy) sets in Econometrics and Statistics. There are two
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main blocks.

The first one includes problems where relaxing sharp boundaries makes the550

data analysis more accurate and richer. As two main examples, fuzzy clustering

and FRDDs have been considered. FRDDs have a particularity with respect to

the other cases considered in the present manuscript: the blurriness is associated

with a frequentist distribution, and not with fuzziness in Zadeh’s sense [Zadeh,

1965]. However, it has been included for two reasons: 1) It is one of the topics555

where the word “fuzzy” more appears in Econometrics nowadays; 2) Neither the

frequentist nature, nor its potential to be represented as a fuzzy set, are really

exploited, and putting it in context with other problems undergoing fuzziness

can serve as inspiration for future research.

The second block comprises all those studies related to the employment of560

(fuzzy) random sets and (fuzzy) set-valued data. This block can be subdivided

into two more categories: problems related to partial identification typical in

econometrics, and problems in which the available data do not reduce to a single

observation of Rp, either because they form a set, such as ranges or convex parti-

cles, or because they represent subjective perceptions, such as medical diagnosis565

or ratings.

Interval data appear naturally in many contexts, because it is not uncom-

mon to have access only to grouped data or ranges. They can be easily ana-

lyzed through a two-dimensional vector, e.g., mid-spread. However, one should

be aware that the natural arithmetic between intervals does not agree with the570

natural arithmetic in R2, even if the restricted cone R× R+ is used to account

for the non-negativity of the spreads. Also, the metrics more meaningful for

intervals should agree with the human perception when assessing distances be-

tween intervals. In any case, a rich set of tools for the statistical analysis of

interval data is available, as shown throughout the paper.575

The generalization of the interval case can lead to two situations: compact

and convex sets of Rp, or fuzzy sets of R, which can be further extended to

fuzzy sets of Rp. The usual interval arithmetic, which is defined through the

Minkowski addition, also called dilation, is not always meaningful when work-
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ing with imprecision in higher dimensions. The reason is that the imprecision is580

expanded in all directions. An alternative has been presented through (fuzzy)

star-shaped sets and an arithmetic that extends the interval arithmetic direc-

tionally. From a formal point of view, the framework reduces to work with an

easy-to-handle cone within a Hilbert space. Thus, traditional tools of statistics

in Hilbert space and functional data analysis can be applied. This framework has585

not been fully exploited yet, but standard inferences such as confidence regions

and hypothesis tests for means and variances have already been implemented

and are available upon request.

Special attention has been paid to the associated regression problems. The

reason is that there are different points of view that are important to distinguish.590

First, the so-called Tanaka’s fuzzy regression, which lies within the possibilistic

and not the probabilistic theory. Tanaka’s fuzzy regression seeks to fit a (linear)

fuzzy function minimizing the fuzziness of the system under certain constraints

that guarantee that the function has a certain degree of agreement with the data.

It does not take into account the distance between the predictions and the data,595

as it does the traditional least-squares approaches. For this reason, fuzzy least-

squares were considered as well. However, initially, only a numerical fitting to

an affine function was considered. Probably this was done like that because in

the real case the minimization problem of searching for the numerical fitting

and the one to estimate the parameters of a potentially well-defined underlying600

regression model is the same. In contrast, these two problems are not the same

in the fuzzy (or interval) case, due to the lack of linearity of the spaces and

the constraints that this implies. In the same way, standard separate regression

models for certain kinds of parametrized fuzzy sets (including the interval case)

have also been developed. These separate models do not imply a joint model in605

the space of fuzzy sets, but they are useful to relate important features within

the fuzzy sets, such as location and imprecision. Finally, there are some standard

regression models both in the space of fuzzy sets and in the space of intervals.

Although for the interval case there are quite flexible models, the space of fuzzy

sets is not fully developed yet.610
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of a flexible simple linear model for interval data based on set arithmetic.

Computational Statistics and Data Analysis 55 (9), 2568–2578.
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González-Rodŕıguez, G., Colubi, A., 2017. On the consistency of bootstrap

methods in separable hilbert spaces. Econometrics and Statistics 1, 118–127.
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degree tests for the aumann expectation of a random interval. Information845

Sciences 288, 412–422.
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