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Abstract
In this paper, a parallel computing method is proposed to perform the background 
denoising and wheezing detection from a multi-channel recording captured during 
the auscultation process. The proposed system is based on a non-negative matrix 
factorization (NMF) approach and a detection strategy. Moreover, the initialization 
of the proposed model is based on singular value decomposition to avoid depend-
ence on the initial values of the NMF parameters. Additionally, novel update rules 
to simultaneously address the multichannel denoising while preserving an orthog-
onal constraint to maximize source separation have been designed. The proposed 
system has been evaluated for the task of wheezing detection showing a significant 
improvement over state-of-the-art algorithms when noisy sound sources are present. 
Moreover, parallel and high-performance techniques have been used to speedup the 
execution of the proposed system, showing that it is possible to achieve fast execu-
tion times, which enables its implementation in real-world scenarios.

Keywords Non-negative matrix factorization (NMF) · Singular value decomposition 
(SVD) · Parallel computing · Wheezing detection · Denoising · Multi-channel

1 Introduction

Breath sounds analysis is a relevant technique to assess the state of lungs and other 
organs that compose the respiratory system. Abnormal sounds overlapping normal 
respiratory sounds can alert of a respiratory disorder. Thus, one of the main chal-
lenges for current biomedicine is the development of new methodologies to process 
respiratory sounds and to obtain reliable and individualized biomedical information, 

Pablo Revuelta-Sanz, Damian Martínez-Muñoz, Juan Torre-Cruz and José Ranilla have contributed 
equally to this work.

 * Antonio J. Muñoz-Montoro 
 munozantonio@uniovi.es

Extended author information available on the last page of the article

http://orcid.org/0000-0001-9518-8955
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04706-x&domain=pdf


1572 A. J. Muñoz-Montoro et al.

1 3

by using non-invasive techniques. Fortunately, respiratory sounds can be acquired 
by an easy and non-invasive auscultation procedure, which allows the extraction 
of relevant information from the lungs and helps to reduce diagnostic time [1, 2]. 
Therefore, auscultation remains one of the most widely used techniques to detect 
any lung disease. However, this technique suffers from two main limitations, the 
high dependence on ambient noise surrounding auscultation, preventing a reliable 
diagnosis [3], and the high subjectivity of physicians, who sometimes are not able to 
recognize sounds related to a physiological disorder [4].

Removing ambient noises from auscultation recordings to maximize the reliabil-
ity of diagnoses has been a hot topic in the biomedical signal processing field dur-
ing the last decade. In this sense, most of the approaches developed are based on 
adaptive filtering [5–9] and spectral subtraction [10–13]. Fleeter and Wodicka [7] 
proposed to apply two adaptive filtering algorithms, least mean square (LMS) and 
normalized LMS (NLMS), to reduce auscultation noise in an aircraft with reduced 
adaptation time. Chang and Lai [11] developed a spectral subtraction method based 
on mel-frequency cepstral coefficients (MFCC), autoregressive (AR) and dynamic 
time warping (DTW). The algorithm was applied to the lung sound signals under 
noisy conditions, before the extraction of lung sound features. Emmanouilidou et al. 
[12] proposed a two-microphone multiband spectral scheme to remove the back-
ground noise while preserving the lung sounds to maximize the informative diag-
nostic value obtained from auscultation. The method analyzes each frequency band 
in a non-uniform manner and uses prior knowledge of the target sounds to apply a 
penalty in the spectral domain. On the other hand, recent researches based on non-
negative matrix factorization (NMF) approaches have addressed this type of bio-
medical problem [14–16]. Torre-Cruz et al. [14] proposed an incremental algorithm 
based on non-negative matrix partial co-factorization (NMPCF) that improves the 
quality of biomedical sounds captured in auscultated recordings by applying the 
conventional NMPCF from a multi-channel scenario rather than a single-channel.

On the other hand, one of the diagnoses that are still not correct nowadays due to 
the subjective evaluation of the physician is the wheezing detection. Wheeze sounds 
have been considered a reliable indicator of the degree of the bronchial obstruction 
related to several pulmonary diseases [17], such as asthma, acute bronchitis, and 
bronchiolitis. These sounds are characterized for some specific spectral [18–20] 
and temporal [18, 20, 21] features. However, wheeze and normal breath sounds are 
mixed together in the time-frequency domain since both are simultaneously gener-
ated by the same airflow [22, 23]. Several strategies have been proposed to deal with 
wheezing detection in the literature, such as spectral peaks detection [24, 25], Hid-
den Markov Models [26], Gaussian mixture models [27], auditory modelling [28], 
wavelet transforms [29], autoregresive models [30], and neural networks [31–35]. 
Recently, NMF approches have been also proposed for the wheezing detection 
obtaining promising results [36, 37].

In this work, a parallel computing system is proposed to address jointly the back-
ground denoising and the wheezing detection from a multi-channel recording cap-
tured during the auscultation process. Specifically, a two-channel signal model, suit-
able to distinguish between wheezing and normal breath sounds, is proposed. To 
deal with this problem, the periodicity principle of the wheezing sounds is exploited. 
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The proposal is an efficient and fast implementation that is able to perform the 
decomposition of the input mixture by using a NMF approach and to perform the 
wheezing detection by using a sparse descriptor. Unlike previous NMF-based meth-
ods [14, 37] where incremental and recursive algorithms with high computational 
cost were proposed, the main contribution of this work is a signal decomposition 
method that allows to perform jointly the denoising and the wheezing detection of 
an input respiratory signal in a single step, reducing thus the computational cost of 
the algorithm. Moreover, we have introduced an initialization method based on sin-
gular value decomposition (SVD) to avoid dependence on the initial values of the 
NMF parameters. The tested scenarios show that, combining parallel and high-per-
formance techniques, our proposal can be applied to real scenarios.

According to the best of our knowledge, there has not yet been presented a holis-
tic and flexible system that addresses jointly both problems on parallel shared-mem-
ory systems. As a proof of concept, some experiments are performed on a dataset of 
real-world audio samples, showing promising results in terms of computational and 
reliability.

The structure of the rest of the article is as follows. In Sect.  2, we present the 
problem formulation and briefly review the multi-channel denoising and wheezing 
detection based on NMF approaches. The proposed system is presented in Sect. 3. 
Experimental results are shown in Sect. 4. Finally, we summarize the work and dis-
cuss the future perspectives in Sect. 5.

2  Background

2.1  Problem formulation

The problem considered in this work is the detection of wheezing sounds from the 
two-channel signal recorded by a digital stethoscope. Thus, the observed signals can 
be formulated as

where the time-domain sample index is denoted by n, xE(n) is the external signal 
captured by the external microphone that records the ambient noise signal v(n), and 
xI(n) represents the internal signal captured by the stethoscope and composed by the 
biomedical sounds s(n) from the subject and the ambient noises v(n) surrounding the 
subject that are still heard inside the human body.

From (1), the short-time Fourier transform (STFT) of both external and internal 
signals can be expressed as

(1)xI(n) = s(n) + v(n)

(2)xE(n) = v(n)

(3)XI(f , t) = S(f , t) + V(f , t)
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where XI(f , t) , XE(f , t) , S(f,  t) and V(f,  t) represent the magnitude spectrograms of 
xI(n) , xE(n) , s(n) and v(n), respectively. Note that f ∈ [1,F] and t ∈ [1, T] denote 
the frequency bin and time frame indices, respectively. Collecting F frequency 
bins and T time frames, we define the magnitude spectrogram matrices �I ∈ ℝ

F×T
+

 , 
�E ∈ ℝ

F×T
+

 , � ∈ ℝ
F×T
+

 and � ∈ ℝ
F×T
+

 , where �I =
[
�I(1),… , �I(t),… , �I(T)

]
 and 

�I(t) =
[
XI(1, t),… ,XI(f , t),… ,XI(F, t)

]T . �E(t) , �(t) and �(t) are defined in the 
same manner as �I(t) . Finally, �E , � and � are defined similarly to �I.

2.2  Multi‑channel denoising based on NMPCF

During the auscultation, noisy environments can prevent a proper diagnosis of sub-
jects. Ambient noise often overlap with biomedical sounds, thereby polluting valu-
able clinical information.

This problem is tackled in [14]. The authors proposed an algorithm for denoising 
the two-channel biomedical signal captured by a stethoscope in very noisy environ-
ments. The proposal consists of an incremental algorithm based on a Non-negative 
Matrix Partial Co-Factorization (NMPCF) approach. The decomposition model pre-
sented was given by

where �̂I ∈ ℝ
F×T
+

 and �̂E ∈ ℝ
F×T
+

 are the estimated magnitude spectrogram of the 
internal and external signals, respectively. �S ∈ ℝ

F×KS

+  and �S ∈ ℝ
KS×T

+  are the bases 
and gains matrices of the biomedical sounds and �V ∈ ℝ

F×KV

+  and �V ∈ ℝ
KV×T

+  are 
the bases and gains matrices of the ambient noise, all of them obtained from the 
internal signal. The parameters KS and KV denote the number of bases related to 
the biomedical sounds and the ambient noise, respectively. �V ∈ ℝ

KV×T

+  is the gain 
matrix of the ambient noise obtained from the external signal.

Note that this model allows to factorize jointly �I and �E . In this way, the spec-
tral patterns of the ambient noise are shared in the same dictionary �V assuming 
that the noise are simultaneously active in both spectrograms. On the other hand, �S 
represents the spectral patterns of the biomedical sounds that are only active in the 
internal magnitude spectrogram �I.

The authors proposed to deal with the factorization by minimizing the general-
ized Kullback–Leibler DKL(�|�̂) divergence [14]. The update rules for this signal 
model can be found in [14].

To improve the biomedical signal estimation, the authors proposed an incre-
mental algorithm that runs NMPCF several times. The algorithm relies on run-
ning NMPCF taking as input the biomedical signal estimate from the previous 

(4)XE(f , t) = V(f , t)

(5)
�I ≈ �̂I = �̂ + �̂ =

[
�S �V

]

�����
�

[
�S�V

]

���
�

= �S�S + �V�V

(6)�E ≈ �̂E = �̂ = �V�V
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incremental iteration. In this way, all spectral patterns associated to ambient noises 
are extracted from the target signal. In this approach, the external signal is fixed for 
all incremental iterations since it is only composed by ambient noises.

Finally, the reconstruction of the target signals is carried out by using the inverse 
overlap-add STFT combined with a soft-filter strategy. Thus, the estimated param-
eters are used to predict the spectrograms of the biomedical and ambient noises sig-
nals by

where ⊙ represents the element-wise product. The reader can refer to [14] for more 
details.

2.3  Wheezing detection based on ONMF

The detection of wheeze sounds from single-channel audio mixtures based on 
orthogonal NMF (ONMF) (i.e., the orthogonality constraint integrated into the NMF 
factorization procedure) has been addressed in [37]. The authors propose a recursive 
algorithm based on the periodicity principle to discriminate between wheezing and 
normal breath spectral templates assuming that a wheeze sound exhibits a strongly 
periodic or tonal nature.

The decomposition model presented in that work is given by

where �̂ ∈ ℝ
F×T
+

 is the estimated magnitude spectrogram of the input signal, 
� ∈ ℝ

F×K
+

 is the bases matrix and � ∈ ℝ
K×T
+

 is the activations matrix. K is the num-
ber of bases or components.

The factorization in (9) is carried out by minimizing a global objective function 
D(�|�̂) which integers the Kullback–Leibler divergence DKL(�|�̂) and the orthogo-
nality constraint �(�) [37]. Thus, the update rules were defined as follows

where � and � are initialized as random positive matrices.
Then, Torre-Cruz et al. [37] proposed a clustering process to classify the bases 

� computed in the ONMF decomposition. This clustering is based on the periodic 

(7)ŝ(t) = iSTFT

(
�I ⊙

|�S�S|2

|�S�S|2 + |�V�V |2

)

(8)v̂(t) = iSTFT

(
�I ⊙

|�V�V |2

|�S�S|2 + |�V�V |2

)

(9)� ≈ �̂ = ��

(10)� ← �⊙

√
��T

��T��T

(11)� ← �⊙
�T�

��T�
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and non-periodic nature of a wheeze and normal breath sound. The sparse descriptor 
Gini index in the frequency domain is used to distinguish between bases with a high 
periodicity and bases with a low periodicity.

This factorization and clustering procedure is repeated recursively to improve the 
estimated wheezing spectrogram. At each recursive iteration i, the wheezing spec-
trogram is the input of recursive iteration i + 1 in order to obtain a new set of ONMF 
bases that must be reclustered into wheezing bases or normal breath bases accord-
ing to the discrimination performed by the sparse descriptor Gini index. Then, the 
authors define a threshold to determine the optimal iteration io that implies the stop 
of the recursive process.

3  Proposed algorithm for multi‑channel wheezing detection

In this work, a multi-channel system based on NMF for wheezing detection is pre-
sented. Specifically, we propose a two-channel signal model suitable to distinguish 
between wheezing and normal breath sounds. To deal with this problem, the perio-
dicity principle of the wheezing sounds is exploited. For this purpose, an efficient 
and fast implementation has been developed that is able to perform the decomposi-
tion of the input mixture using a NMF approach and to perform the wheezing detec-
tion using a sparse descriptor. As a result, we propose a software solution that satis-
fies two essential requirements: mobility and real-time scenarios. Thus, our design 
takes into account the low memory resources and low computational power of 
cheap and handheld devices, what can allow an easy implementation in the medical 
services.

The block diagram of the proposed algorithm is depicted in Fig.  1. As can be 
observed, the issue has been decomposed into three main stages: signal preprocess-
ing, signal decomposition and wheezing detection. The following subsections detail 
the main function and the procedure of each stage.

3.1  Signal preprocessing

As can be seen in Fig. 1, the preprocessing stage must be computed beforehand and 
consists of two successive steps: signal representation and parameter initialization.

Considering the mixture model described in Sect. 2.1, the first step consists of 
computing the STFT of the audio mixtures xI(n) and xE(n) (see details in Sect. 2.1). 
Then, we propose to use an effective initialization step for the NMF approach with 

Fig. 1  Block diagram of the proposed algorithm
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the aim of reducing its computational complexity and improving the factorization. 
NMF is a powerful unsupervised learning method that extracts meaningful nonnega-
tive features from an observed nonnegative data matrix. However, the result obtained 
by this algorithm always depends on the initial values of the NMF parameters, due 
to the existence of local minima. To solve this problem, we propose a unique initiali-
zation for the NMF bases parameters based on SVD [38]. Thus, any random values 
or hyperparameters are not required. The main feature of this approach is that the 
NMF algorithm converges to the same solution while rapidly providing an approxi-
mation with error almost as good as that obtained via the deployment of alternative 
initialization schemes [38].

In this work, we propose to initialize the bases �S and �V in (5) and (6) by using 
the left singular matrix obtained by SVD. The basic property of the SVD relies on 
the fact that every matrix � ∈ ℝ

m×n
+

 of rank R can be expressed as the sum of R lead-
ing singular factors,

where �1 ≥ ⋯ ≥ �R ≥ 0 are the nonzero singular values of � and {�r, �r}Rr=1 the cor-
responding left and right singular vectors. With the singular values in a diagonal 
matrix � and the corresponding singular vectors forming the columns of two orthog-
onal matrices � and � , the SVD decomposition can be expressed as

Note that the rank of this decomposition is R. In this regards, we propose to apply 
the SVD algorithm to �I and to initialize bases and activations implementing a low 
rank approximation following the approach described in [39] to reduce the size of 
the NMF parameters and, therefore, the computational complexity of the signal 
decomposition stage. Thus, the rank-k approximation of �I can be formulated as

where �(k) is a diagonal matrix compounded by the first k singular values. Then, 

|�
(
�(k)

0

)1∕2

| is used to initialize the bases, while the activation matrices are initial-

ized with random values for the factorization stage. As can be observed, in this case 
the number of bases for the NMF algorithm is k, where k ≪ R.

The computational complexity of the preprocessing stage is mainly determined 
by the STFT and SVD computation. For the STFT implementation, the FFTW pack-
age [40] has been used. The overall complexity of the sequential version to compute 
the magnitude spectrogram of the input is given as

(12)� =

R∑

r=1

�r�r�
T
r
,

(13)� = ���T

(14)�
(k)

I
= �

(
�(k)

0

)
�T

(15)O
(
T (F log2(F))

)
,
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where F is the total number of frequency bins and T is the number of frames. For 
the parallel design of the STFT computation, we have exploited parallel and work-
sharing constructors of OpenMP [41] and we have chosen a coarse-grained paral-
lelism for our implementation (i.e., running several sequential FFT simultaneously 
by using the proper OpenMP directives (pragma omp parallel)). This approach pro-
vided the best performance. Therefore, the parallel complexity can be approximated 
by

where p is the total number of used cores.
Regarding the parameter intialization step, the SVD algorithm has been imple-

mented using the LAPACK implementation based on blocked Householder transfor-
mations presented in [42]. Thus, the SVD of a matrix � is firstly obtained by a bidi-
agonalization method that consists of applying orthogonal matrices on both the left and 
right sides of � . These two orthogonal matrices are represented as products of elemen-
tary Householder reflectors. After the bidiagonal reduction, LAPACK solves the bidi-
agonal SVD using QR iteration by applying the Givens rotations. Finally, the singular 
vectors of � are obtained. The overall complexity of the described implementation for 
the SVD algorithm is O

(
T3

)
 according to [42].

The pseudocode of this stage is detailed in lines (1)–(4) of Algorithm 1.

3.2  Signal decomposition

As can be observed in Fig.  1, the second main stage of the proposal is the signal 
decomposition. This stage iteratively decomposes the multichannel mix signal using an 
NMF-based approach.

In this work, we propose to extend the decomposition signal model presented in 
Sect. 2.2 to deal with the wheezing detection of the multi-channel input signal. As the 
model in (5)–(6) provides an approximation factorization of the input spectrograms, the 
aim is to find a factorization that optimizes a given goodness-of-fit measure called cost 
function. Thus, the corresponding NMF problem can be rewritten as a constrained opti-
mization problem for a given cost function C . In this way, we propose to apply the gra-
dient descend algorithm to minimize the following cost function between the observed 
and the estimated signal spectrograms

where DKL(�‖�̂) is the generalized Kullback–Leibler divergence [43] and �o(�S) is 
the orthogonality constraint that ensure that the estimated bases �S are as dissimilar 
(orthogonal) as possible. Both functions are defined as follows

(16)O

(
T

p
(F log2(F))

)
,

(17)C = DKL(�‖�̂) + DKL(�‖�̂) + 𝛾o(�S)

(18)DKL(�|�̂) =
∑

ft

� log
�

�̂
− � + �̂
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where the Trace(�) operator computes the sum of diagonal elements of a square 
matrix � , T is the transpose operator and ��o is a constant factor used to calibrate the 
importance of the orthogonality constraint in the decomposition process.

In this way, the update rules to estimate the signal model parameters are given 
by

where �MN denotes an all-ones matrix composed of M rows and N columns, ⊙ and ⊘ 
represent element-wise product and division, respectively.

These update rules are efficiently implemented and run iteratively until the 
cost function converges.

The implementation of the multiplicative update rules (20)–(24) has been 
performed following two parallelization techniques: (1) calling BLAS [44] and 
(2) using OpenMP directives. The multiplicative update rules results in matrix-
matrix products (calculated by calling BLAS subroutine dgemm) along with 
other less computationally intensive auxiliary operations. Thus, the computa-
tional complexity of the parallel version is given by

where K represents the number of NMF bases and Niter is the total number of itera-
tions of the NMF algorithm.

The pseudocode of this second stage can be founded in lines (5)–(13) of 
Algorithm 1.

(19)�o(��) = ��o

∑

KSKS

�S�
T
S
− Trace(�S�

T
S
)

(20)�S ← �S ⊙
(�⊘ �̂)�T

S
+ 𝛽𝛾o�S

�FT�
T
S
+ 𝛽𝛾o�S�KSKS

(21)�V ← �V ⊙
(�⊘ �̂)�T

V
+ (�⊘ �̂)�T

V

�FT�
T
V
+ �FT�

T
V

(22)�S ← �S ⊙
�T
S
(�⊘ �̂)

�T
S
�FT

(23)𝐆V ← 𝐆V ⊙
𝐁T
V
(𝐗⊘ �̂�)

𝐁T
V
𝟏FT

(24)𝐇V ← 𝐇V ⊙
𝐁T
V
(𝐘⊘ �̂�)

𝐁T
V
𝟏FT

(25)O

(
FTKNiter

p

)
,



1580 A. J. Muñoz-Montoro et al.

1 3

3.3  Wheezing sound detection

Finally, wheezing detection is the last main stage of the proposed algorithm, as can 
be seen in Fig. 1. This stage determines the health status of the subject. To deal with 
this purpose, once obtained the spectral bases of the biomedical signal �S , the pro-
posed algorithm has to differentiate between wheeze and normal breath sounds. This 
differentiation is carried out based on the periodic nature of wheeze sounds. In this 
sense, we propose to use a sparse descriptor, and particularly the Gini index � in the 
frequency domain [37].

The Gini index � computes the degree of periodicity of each basis estimated dur-
ing the signal decomposition stage. A spectral basis with a high � value denotes a 
high periodicity and can be classified as a wheezing basis. Mathematically, the Gini 
index descriptor is defined for the k-th spectral basis �S(k) ∈ ℝ

F
+
 as follows

where (26) is a normalized definition, i.e. �(�S(k)) ∈ [0, 1] for any spectral basis 
�S(k).

After computing the Gini index for all bases �S , we propose to apply a thresh-
olding process to cluster the bases. In particular, we fix a threshold � based on the 
median of the � values provided by the Gini index for �S . Thus, we can identify the 
wheezing bases based on the criteria �(�S(k)) ≥ � and arrange them in a new matrix 
�W ∈ ℝ

F×KW

+  , where KW is the total number of wheezing bases (i.e., KW = KS∕2 ). 
Similarly, �W ∈ ℝ

KW×T

+  is built based on the selected bases. Note that this threshold-
ing approach has been widely exploited in the literature [45, 46] providing a promis-
ing discrimination performance between periodic and non-periodic bases.

To detect the patient’s health status, the estimated wheezing spectrogram 
�W ∈ ℝ

F×T
+

 must be reconstructed, using the wheezing bases and their correspond-
ing activations, as �W = �W�W . Then, the spectral energy distribution � for �W is 
computed as

In this manner, � represents a vector composed of the spectral energy distribution 
along time frames. An unhealthy patient will present a spectral energy distribution 
concentrated in narrowband, i.e., a spectral peak from a periodic signal. Therefore, 
as in the previous case, we use the Gini index � to determine whether the spectral 
energy distribution � is related to an unhealthy or healthy patient [37] as follows

(26)�(�S(k)) =
F + 1

F
−

2

F

∑F

f=1
(F + 1 − f )Bs(f , k)

∑F

f=1
BS(f , k)

(27)�(f ) =

T∑

t=1

XW (f , t)

(28)Ω =

{
1 if 𝛽(�) ≥ 𝛾 �

0 if 𝛽(�) < 𝛾 �
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where Ω ∈ {0, 1} labels the patient status as unhealthy ( �(�) ≥ � � ) or healthy 
( 𝛽(�) < 𝛾 � ), and � ′ is a threshold fixed to 0.5 in order to guarantee the maximum 
detection rate [37].

Attending to the parallel implementation of the wheezing detection process, the 
computational complexity of this stage is given by

Note that this stage consists of a set of basic scalar operations and small search and 
sorting problems applied to independent vectors. Therefore, the solution adopted 
was to address these operations simultaneously by using the proper OpenMP direc-
tives (pragma omp parallel for) and the matrix operation by calling BLAS subrou-
tine dgemm.

The pseudocode of the proposed wheezing detection algorithm is detailed in lines 
(14)–(21) of Algorithm 1.

(29)O

(
KWFT

p

)
.
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4  Evaluation and experimental results

4.1  Experimental datasets

In this section, the proposed system is evaluated for the task of wheezing detection 
in multi-channel mixtures. In this evaluation, we have used two different types of 
experiments. First, we have assessed the performance and reliability of our proposal 
combining different datasets. As sound sources of ambient noises, we have used the 
dataset proposed in [14]. This audio collection takes into account a wide range of 
ambient noises classified as the most typical disturbing noises surrounding a medi-
cal office during the auscultation process. In this way, five types of ambient noise 
are considered: ambulance siren, baby crying, babble, car and street. As respiratory 
sound sources, we have combined the dataset proposed in [47] and the dataset pro-
posed in [37]. The former is composed of 16 recordings of unhealthy and healthy 
patients, with duration between 4 and 51  s. The latter is composed of 8 mixtures 
from unhealthy patients with duration between 7 and 22 s, with a total of 41 wheez-
ing and 63 respiratory cycles. To generate the multi-channel noisy mixtures, several 
Signal-to-Noise Ratios (SNR) [48] have been applied in the mixing process simulat-
ing high noisy environments.

The second experiment was conducted on a synthetic database to analyse the per-
formance of the application in terms of efficiency and speedup. For this purpose, 
we generated multi-channel synthetic mixtures with different durations, from 60 to 
900 s.

4.2  Experimental setup

The experimentation was conducted on the NVIDIA Jetson AGX Xavier develop-
ment kit. This is an embedded system-on-chip (SoC) with an eight-core ARM v8.2 
64-bit CPU. Xavier supports different kinds of running modes (configurable with 
the NVPModel command tool). In this way, different power consumption (10  W, 
15 W, 30 W and full power), running cores (2, 4, 6 and 8) and CPU frequencies can 
be selected using NVPModel. This setup allows to emulate the upper bound for the 
best performance that can be reached with a wide range of mobile devices such as 
smartphones, laptops, tablets and other embedded systems under controlled condi-
tions. Xavier runs Ubuntu Linux 18.04.1 LTS, the OpenBlas1 library (release 0.3.20, 
February 2022), the FFTW2 library (release 3.3.10, September 2021) and the GNU 
C Compiler 7 with the specification 4.5 of OpenMP. OpenBLAS is an optimized 
BLAS library based on GotoBLAS2 1.13 BSD.

To evaluate the detection performance, the sensitivity, the specificity and the 
accuracy metrics have been used. These metrics are commonly accepted in the field 
of wheezing detection and thus allow a fair comparison with other state-of-the-art 

1 https:// www. openb las. net.
2 http:// www. fftw. org.

https://www.openblas.net
http://www.fftw.org
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methods. In particular, the sensitivity represents the probability of detecting wheez-
ing samples correctly and can be computed as SE =

TP

TP + FN
 . The specificity repre-

sents the probability of detecting normal breath samples correctly and can be com-
puted as SP =

TN

TN + FP
 . Finally, the accuracy represents the probability of detecting 

wheezing/normal breath samples correctly and can be computed as 
ACC =

TP+TN

TP + FP + TN + FN
 . The terms TP, FN, FP and TN are the amount of the true 

positive, false negative, false positive and true negative test results, respectively.
To evaluate the benefits of proposal, the wheezing detection performance of our 

method has been compared with other state-of-the-art algorithms: HMMFL [47], 
TSVM [49] and MKNN [50]. MKNN and TSVM are supervised approaches. How-
ever, HMMFL and the proposed method do not use any type of training material.

4.3  Results

Firstly, Table 1 summarizes the comparison results between the proposed method 
and the reference state-of-the-art methods in terms of wheezing detection as a func-
tion of SNR. Note that Table  1 shows the mean results obtained for the different 
ambient noises. In general, the detection performance improves significantly as 
SNR increases. TSVM performs worse in terms of SE compared to SP. This means 
that this method has the ability to detect very clear wheezing sounds at the expense 
of others that are actually wheezing as well. Therefore, the number of FN is much 
higher than the number of FP. That could be due to the fact that this method is based 
on a cascade system composed of two SVM training models, where a sound is clas-
sified as wheezing if both models detect it. HMMFL has the opposite behavior to 
TSVM, i.e., the SP metric tends to be larger than the SE metric. This method has the 
ability to detect all wheezing sounds at the expense of wrongly annotating others. 
Therefore, the number of FP is much higher than the number of FN. Note that this 
method is based on Hidden Markov model (HMM) to detect frequency lines. This 
strategy fails when clinical noise is added in the same frequency band as the wheez-
ing sounds, since the spectral lines detected are longer in duration than the wheezing 
sounds themselves. Finally, MKNN obtains intermediate results in terms of SE and 
SP.

On the other hand, the proposed method shows high robustness in terms of SE 
even in very adverse noisy environments (i.e., SNR = − 10 dB). This demonstrates 
the strong ability of our proposal to detect the presence of wheezing sounds even 
when they may be masked by loud noises. Concerning the SP metric, the proposed 
method obtains worse results compared to SE. This suggests that the system tends 
to increase the number of FP in exchange for detecting the full range of wheezing 
sounds. In any case, for high SNR values, it obtains better results than the com-
pared methods. Overall, the high ACC results reveal the great reliability of our pro-
posal under adverse scenarios. According to the experiment, for SNR higher than 
0 dB, the accuracy obtained by the proposal is always very similar, improving only 
a 4%. Note that for SNR = 5 dB and SNR =10 dB only one audio sample was badly 
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labeled. This is an important finding, because it reveals that the maximum detection 
performance is achieved in the SNR range [0, 5] dB.

Secondly, a computational performance test has been designed and run. The com-
putational results for this experiment are presented in Fig.  2. Here, the length of 
the audio files was varied from 60 to 900  s in order to assess the efficiency and 
speedup of the proposal. Figure 2a shows the execution times as a function of the 
used cores of the Xavier device under full power conditions. As can be observed, 
the run time of the system increases with the length of the audio. In particular, the 
execution times of the sequential version are very high, which prevents its use in real 
applications. For example, for the case of audio samples with a duration of 15 min, 
the algorithm would run in more than 20 min. This fact justifies the use of parallel 
and high-performance techniques to solve the target problem.

Regarding the parallel approach, it can be seen that execution times decrease as 
the number of cores used increases. For the case of using 2 cores, the execution 
times are similar to the duration of the audio signals. However, in the other tested 
scenarios, the measured times are much shorter than the duration of the audios. 
Highlight that, in the case of 8 cores, the execution times are very low compared 
to the audio duration. For example, for the case of audio samples with a duration of 
15 min, the algorithm would run in approximately 3 min.

The efficiency of the system is depicted in Fig. 2b. As can be seen, efficiency has 
a very stable behavior even for short audio durations. Therefore, we can assert that 
our system scales correctly according to the theoretical complexity estimations when 
the number of processors and the size of the problem grow. In this regard, the Open-
BLAS library has a weird behavior for 6-core runs. To verify that this behavior is 
only due to the combination of OpenBLAS and Xavier, several independent experi-
ments were performed. These consisted of testing the performance of cblas_?gemm 
routines (where ? could be “d”, “s”, “c”, “z”, etc. depending on the data type used) 
with different types of matrices (square and rectangular). In this sense, for square 
matrices, the obtained efficiency for six cores was slightly superior to eight cores. 
For rectangular matrices, the performance for six cores was worse than for eight 

(a) (b)

Fig. 2  Experimental results as a function of the audio length measured in seconds and the number of 
used cores of the NVIDIA AGX Xavier
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cores, especially when the dimensions of the resulting matrix were much smaller 
than the inner dimension of the matrix product. Note that the latter scenario is the 
most frequent in this proposal. Moreover, an independent test was also performed 
using OpenBLAS on a Xeon Silver 4110 processor. The behavior observed was very 
similar. Therefore, we can claim that this behavior is only due to how the library 
performs these operations.

Finally, as the purpose is to test our system on up-to-date embedded sys-
tems, we have selected two test modes of Xavier following the current market 
trend: Mode 2 (4 cores, 15 W) and Mode 3 (8 cores, 30 W). Table 2 shows the 

Table 2  Execution times 
measured in seconds for each 
stage and operating mode

Xavier mode Dur. [s] SFFT SVD NMF Detect. Total

Mode 2 (4 cores, 
15W)

60 0.1 1.3 42.1 0.0 43.6
180 0.2 2.6 123.3 0.1 126.3
300 0.3 3.7 197.5 0.1 201.8
420 0.5 5.6 276.2 0.2 282.5
540 0.6 7.1 356.3 0.2 364.3
660 0.7 8.1 439.3 0.3 448.5
780 0.8 9.9 521.1 0.3 532.2
900 1.0 10.8 601.1 0.4 613.4

Mode 3 (8 cores, 
30W)

60 0.1 1.1 24.0 0.0 25.3
180 0.2 1.9 69.1 0.1 71.3
300 0.3 2.7 115.0 0.1 118.1
420 0.3 3.6 161.3 0.1 165.4
540 0.4 4.3 212.4 0.2 217.3
660 0.5 4.8 263.6 0.2 269.1
780 0.5 5.6 312.4 0.2 318.9
900 0.6 6.7 357.0 0.3 364.7

4 cores, full power 60 0.1 0.5 21.7 0.0 22.4
180 0.1 1.3 62.8 0.0 64.3
300 0.2 1.9 101.1 0.1 103.3
420 0.3 2.5 141.2 0.1 144.1
540 0.3 2.9 181.8 0.1 185.1
660 0.4 3.7 221.4 0.1 225.7
780 0.5 4.3 261.5 0.2 266.5
900 0.5 5.0 301.3 0.2 307.0

8 cores, full power 60 0.1 0.6 12.8 0.0 13.5
180 0.2 0.9 36.2 0.0 37.3
300 0.2 1.4 59.3 0.1 61.1
420 0.3 1.7 82.6 0.1 84.7
540 0.3 2.0 105.9 0.1 108.4
660 0.3 2.6 127.4 0.1 130.4
780 0.3 2.9 152.4 0.1 155.7
900 0.3 3.3 175.7 0.2 179.5
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computational results obtained for the algorithm stages and for these operation 
modes compared to the full power modes. Again, it can be observed that the exe-
cution times of Mode 2 are a little below the length of the audios, while in the 
case of Mode 3 they remain significantly below this length (being almost a third). 
Focusing on the stages that compound the system, it can be seen that the running 
times of the signal representation and wheezing detection stages are negligible in 
relation to the total execution time. On the other hand, the measured times from 
the SVD stage are approximately two order of magnitude lower than those of the 
signal decomposition stage.

Table 3  Efficiency for each 
stage and operating mode

Xavier mode Dur. [s] SFFT SVD NMF Detect. Total

Mode 2 (4 cores, 
15W)

60 0.55 0.19 0.94 0.51 0.93
180 0.76 0.18 0.95 0.44 0.95
300 0.82 0.20 0.99 0.51 0.98
420 0.77 0.18 0.99 0.54 0.98
540 0.82 0.18 0.98 0.54 0.98
660 0.84 0.19 0.97 0.55 0.98
780 0.83 0.18 0.97 0.54 0.98
900 0.85 0.19 0.97 0.48 0.98

Mode 3 (8 cores, 
30W)

60 0.29 0.12 0.84 0.34 0.81
180 0.50 0.14 0.86 0.37 0.84
300 0.50 0.14 0.85 0.35 0.83
420 0.58 0.14 0.85 0.37 0.83
540 0.65 0.13 0.83 0.31 0.82
660 0.66 0.15 0.81 0.34 0.80
780 0.64 0.15 0.82 0.35 0.80
900 0.70 0.15 0.82 0.34 0.81

4 cores, full power 60 0.49 0.27 0.94 0.47 0.92
180 0.61 0.22 0.96 0.55 0.94
300 0.73 0.23 0.99 0.46 0.98
420 0.73 0.24 0.99 0.55 0.98
540 0.77 0.25 0.99 0.53 0.98
660 0.78 0.25 0.99 0.53 0.98
780 0.82 0.26 0.99 0.53 0.99
900 0.83 0.23 0.99 0.54 0.99

8 cores, full power 60 0.31 0.13 0.80 0.27 0.76
180 0.28 0.16 0.83 0.32 0.81
300 0.35 0.15 0.85 0.29 0.83
420 0.37 0.17 0.85 0.33 0.83
540 0.50 0.18 0.85 0.33 0.84
660 0.62 0.18 0.86 0.36 0.85
780 0.64 0.19 0.86 0.35 0.84
900 0.63 0.18 0.86 0.33 0.84
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An interesting conclusion of the effect of reducing the energy consumption of the 
platform could be inferred from the results obtained. As can be observed, execution 
times are reduced by half when no power limits are imposed.

Table  3 shows the efficiency evolution obtained for the algorithm stages. Note 
that the efficiency for Mode 2 was computed with respect to the sequential version 
limited to 15 W, the efficiency for Mode 3 was computed with respect to the sequen-
tial version limited to 30 W, and the full power modes efficiencies were computed 
with respect to the sequential version without power limit. As expected, limiting the 
power of Xavier has no impact on the efficiency of the algorithm. Finally, as can be 
seen in the results obtained, the overall efficiency is determined by the efficiency of 
the NMF stage, which is the one with the highest computational burden.

5  Conclusion

Auscultation has proven to be a very useful procedure to diagnose cardio-respiratory 
pathologies. However, this technique suffers from two main limitations, the high 
dependence on ambient noise surrounding auscultation and the high subjectivity 
of physicians. Most recent approaches have shown ways to overcome some of the 
drawbacks of this medical technique, although with evident limitations. The work 
proposed in this paper tackles the compound problem of the background denois-
ing and the wheezing detection from a multi-channel recording captured during the 
auscultation process, providing a real-time implementation. To our best knowledge, 
our proposal is the first implementation that addresses this problem obtaining reli-
able results along with promising computation times. This has been achieved by the 
intensive use of parallel and high-performance computation techniques. In particu-
lar, the proposal is decomposed into three main stages: signal preprocessing, signal 
decomposition and wheezing detection. The signal preprocessing stage deals with 
the representation of the input signal and with the parameter initialization. Param-
eter initialization is based on SVD and tries to avoid dependence on the initial val-
ues of NMF parameters. The decomposition stage implements the NMF rules for 
the decomposition of the multi-channel approach. Finally, the wheezing detection is 
performed based on the Gini index � sparse descriptor in the frequency domain.

Finally, for future work, the challenge would be to design a hardware prototype 
to implement the proposed method. In addition, biomedical features other than 
wheezing would be analyzed to develop a framework capable of detecting multiple 
pathologies.
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