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Abstract
Condition monitoring of industrial equipment has become a critical aspect in Industry 4.0. This paper shows the design, 
implementation and testing of a low-cost Industrial Internet of Things (IIoT) system designed to monitor electric motors 
in real-time. This system can be used to detect operating anomalies and paves the way for building predictive maintenance 
models. The system is built using low-cost hardware components (wireless multi-sensor modules and single-board comput-
ers as gateways), open-source software and open cloud services, where all the relevant information is stored. The module 
collects real-time vibration data from electric motors. Vibration analyses in the temporal and frequency domains were car-
ried out in both modules and gateways to compare their capabilities. This approach is also a springboard to using edge/fog 
computing to save cloud resources. A system prototype has been tested in the laboratory and in an industrial dairy plant. The 
results show that the proposed system can be used for continuous monitoring of any rotatory machine with similar accuracy 
to professional monitoring devices but at a significantly lower cost.
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1  Introduction

Electric motors are essential in the modern industry: they are 
ubiquitous in manufacturing, electric power generation and 
petrochemical plants to name but a few. Unforeseen failures 
of equipment powered by electric motors can provoke high 
economic losses, making equipment maintenance essential.

Traditional reactive maintenance only carries out main-
tenance activities after failure detection. Widespread pre-
ventive maintenance implies periodic maintenance activi-
ties based on previous experience about the periodicity of 
failure. Predictive maintenance is an ideal approach for 
saving costs and preventing equipment failure. In Industry 

4.0, failures are predicted based on real-time information 
received from sensors in industrial equipment [1].

Condition monitoring is now the most powerful tool for 
predictive maintenance. It is based on online monitoring of 
physical variables for fault diagnosis. Most failures can be 
identified as anomalous vibration, sound or electric current 
profiles, in the time and frequency domains [2].

In this paper, we present a prototype of a real-time moni-
toring system based on low-cost wireless multi-sensor 
modules. It can be used to detect operating anomalies and 
to collect vibration datasets for implementing predictive 
maintenance of electric motors. Apart from having a sig-
nificantly lower cost than professional monitoring devices, 
it offers continuous monitoring, vibration frequency analysis 
and fog computing. It can collect measurements efficiently 
and as accurately as portable vibration analysers. However, 
this system requires neither specialized staff nor third-party 
licensed software to analyse the collected data.

The rest of the paper is organized as follows. Previous 
research works are outlined in Section 2. The proposed mon-
itoring system is presented in Section 3. Section 4 details the 
experimental plan carried out. Results are discussed in Sec-
tion 5. Finally, Section 6 contains the concluding remarks 
and outlines future work.
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2 � Background

Condition monitoring is one of the bases of Industry 
4.0  [3]. Many systems have been developed to moni-
tor current, pressure, temperature and other variables 
in industrial plants. With the advances in microelectro-
mechanical systems, it is possible to deploy myriads of 
low-cost sensors capable of sensing, computing and com-
municating wirelessly to gather information for environ-
ment and equipment monitoring [4]. These sensors are 
connected using wireless sensor networks. They send 
data to the cloud for storage or further processing using 
IoT protocols and technologies [5]. Many public cloud 
service providers offer IoT services using standard pro-
tocols for real-time storage and develop analytics from 
the data. This makes it possible to use historical data to 
predict future equipment failures.

On occasions, the amount of data to be sent to the 
cloud or the latency of sending data to the cloud and 
back to the sensors/actuators is excessive. In these cases, 
moving part of the computation close to the sensors may 
alleviate the resources consumed in the network and the 
cloud. The fog computing paradigm promotes the use of 
resources of smart sensors and gateways interconnecting 
sensors in conjunction with the cloud resources [6, 23]. 
Fog deployments require defining the topology for inter-
connecting sensors and with gateways providing access 
to the cloud. Sensors usually generate data streams that 
can be pre-processed, aggregated or filtered before reach-
ing the cloud [7]. Similarly, some of the data analytics 
may be carried out by gateways. Thus, the organization 
of the fog is critical for balancing computing load and 
network resource consumption in order to save public 
cloud costs and reduce latency.

Detection of operation anomalies can be carried out 
even when no data from previous failures in the equip-
ment is available [8]. When available, machine-learning 
models based on binary classification are used to pre-
dict failures in the near future in order to plan repairs or 
equipment replacement [9]. The prediction models are 
trained and tested using the historical labelled data with 
information about previous failures in the equipment. The 
amount of historical data can be huge, so real-time stor-
age in the cloud is an effective solution, giving rise to 
cloud based predictive maintenance [10].

Induction electric motors are major actuators in most 
industrial factories, so cloud based predictive mainte-
nance of electric motors is of special importance. This 
is supported by the amount of research work in the field 
in recent years [11]. Mechanical and electrical failures 
produce vibration in electric motors with different ampli-
tudes and frequencies [12]. Thus, solutions monitoring 

the health of motors mainly focus on measuring vibration 
and temperature.

Currently, there are two main types of systems used 
to measure vibrations in industrial rotatory machinery. 
Firstly, there are sensors directly installed by the manu-
facturers of the machinery. These are designed to be used 
with specific software and proprietary data formats from 
the manufacturer. Secondly, there are portable vibration 
analysers [13, 14]. Not only do they use specific software 
and proprietary data formats, but they are also expensive 
devices not suitable for continuous monitoring due to the 
need to carry out in-place analysis by specialized staff.

An IoT solution for the monitoring of industrial 
machinery in an electric plant is presented in [15]. The 
authors use an IoT protocol stack composed of 802.15.4, 
6LoWPAN, RPL and CoAP to monitor temperature and 
vibration of several pumps. However, they do not analyse 
vibration in the frequency domain nor include any cloud 
processing.

There are also solutions using the cloud as storage for 
further processing of the monitored temperature and/or 
vibration signals of inductive motors [16, 17]. The main 
drawback of this approach is that data is rarely filtered or 
pre-processed taking advantage of intermediate systems 
between the sensors and the cloud. The authors in [18] 
propose sending raw data to a private cloud in order 
to prepare training and testing datasets to be sent to a 
machine-learning model in the public cloud.

Finally, there are deployments using low-cost 
equipment to monitor vibration in industrial equip-
ment [19–21]. A framework for distributing computa-
tionally demanding tasks across sensors, fog nodes and 
the cloud is presented in [22]. Gateways at the fog layer 
perform computation and classification of vibration sig-
nals coming from sensors attached to motors. However, 
this solution does not analyse vibration in the frequency 
domain.

The main contribution of this paper is the development 
of a prototype that brings together continuous monitoring 
with low-cost multi-sensor modules and gateways, vibra-
tion frequency analysis and fog computing, proposing an 
innovative way towards predictive maintenance applica-
tions in Industry 4.0. It efficiently collects measurements 
comparable with portable vibration analysers without the 
need of specialized staff.

3 � Monitoring system

The following subsections present the architecture, compo-
nents and software features of the monitoring system.
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3.1 � System architecture

As can be seen in Fig. 1, the system architecture is composed 
of three layers in which the information can be processed. 
The first layer is the edge layer, which is composed of all 
the IoT sensors. The second layer is the fog layer, which 
contains the gateways. The last layer is the cloud, where all 
the relevant data is stored, visualized and analysed.

All the layers have computing capacity. In the edge layer, 
the filtering, aggregation and data transformation is carried 
out directly by the sensors. The fog layer allows the gateways 
to collect data from multiple sensors using Bluetooth Low 
Energy (BLE) and continue processing them. Both the edge 
and fog layers help distribute the processing of information 
between sensors and the cloud, improving latency and reduc-
ing the amount of data to transfer to the cloud.

3.2 � System components

The multi-sensor module used in the edge layer is the low-
cost SensorTile.box by ST Microelectronics (Fig. 2), which 
features an ARM Cortex-M4 processor with DSP and FPU, 
2 MB of programmable flash memory and eight integrated 
sensors, including movement and humidity sensors. 
LM6DSOX is the movement sensor. It has an accelerometer, 
a magnetometer and a gyro, measuring vibrations with 
an output data rate of up to 5 kHz. The humidity sensor 
is the HTS221. It measures the relative humidity and the 
temperature of the environment. The module supports 
wireless communication with the BLE protocol. The 
wireless nature of the module allows for very fast and 
economical deployment in the industrial environment.

The gateway used in the fog layer is the low-cost single-
board computer Raspberry Pi 4 Model B, shown in Fig. 2. It 
features 4 GiB RAM, two micro-HDMI ports, two USB 2.0 
ports, two USB 3.0 ports, as well as one CSI and one DSI 
port to connect a camera and a touchscreen. The Ethernet 
interface supports data rates up to 1 Gbps. It also includes 
WiFi, Bluetooth 5.0 and BLE interfaces. The CPU + GPU 
is the Broadcom BCM2711 (4C Cortex-A72 ARM v8 64-bit 
SoC @1.5 GHz). It has been integrated into an aluminum 
case with a fan to keep the temperature of the device stable.

Finally, the cloud layer is composed of an MQTT broker, 
Node-RED, InfluxDB and Grafana (see Fig. 3). The gateway 
is connected to the MQTT broker and publishes messages 
with the bin amplitudes of the computed spectra. These 
messages are received, processed and stored in an InfluxDB 
database by various Node-RED flows. Finally, this data is 
displayed on a dashboard using Grafana. It is an open-source 
cloud which can be containerized, facilitating its deployment 
in any infrastructure, public or private.

3.3 � System software

A custom firmware for the multi-sensor module has been 
developed, allowing the accelerometer to sample vibra-
tion at 5 kHz with a range of 8 G. These samples in time 

Gateway Gateway Gateway

Cloud

Fog

Edge IoT Sensor 
networks

Storage IoT analy�cs

Fig. 1   System architecture

Fig. 2   Multi-sensor module (left) and gateway (right) Fig. 3   Cloud
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domain do not provide enough insight into the vibration of 
the electric motor to identify anomalous conditions. Two 
steps must be followed. First, acceleration data is filtered 
and integrated to obtain velocity. Second, raw velocity 
data is transformed into the frequency domain using the 
Fast Fourier Transformation (FFT). Data is windowed 
using a Hanning window to prevent aliasing. The output 
of the FFT is the root mean square (RMS) velocity ampli-
tude as a function of frequency. FFT is computed in both 
the multi-sensor module and the gateway to evaluate the 
capacity of each to support that processing task. Within 
the module, the library used is the CMSIS DSP software 
library, designed for use in Cortex-M processor based 
devices. The FFT computation using this library uses an 
array with a maximum of 8192 velocity samples over time, 
due to memory limitations. Within the gateway, the func-
tion used is FFT from the SciPy python library, using an 
array of up to 65536 samples. These intervals, of 8192 
and 65536 samples, equivalent to 1.6 and 13 seconds of 
motor operation, monitor enough revolutions of the motor 
to cover its whole dynamic behaviour while allowing good 
precision (number of bins) in the frequency spectrum.

Multi-sensor modules and gateways communicate using 
the BLE protocol, which is used to transmit small packets 
of data read by the multi-sensor modules, while consuming 
less battery power than other protocols. The main drawback 
of this protocol is its communication range: no more than 
a few meters can be reached between two BLE devices in 
indoor areas. Finally, data is transferred from the gateway to 
the cloud layer using MQTT.

4 � Experimental plan

An IIoT prototype addressing the proposed architectural 
model has been developed and deployed in two scenarios. 
The prototype was initially deployed and tested in the lab-
oratory to monitor a low-power motor with no workload. 
Using the results of these tests, the prototype was upgraded 
and deployed in an industrial factory to monitor two electric 
motors with real workload.

4.1 � Scenario 1: Low‑power motor in laboratory

The first scenario uses a single-phase asynchronous elec-
tric motor with a permanent capacitor and a speed of 
1500 rpm. It has a power output of 0.25 kW and a voltage 
of 250 V/50 Hz. This motor was bolted to the floor of the 
laboratory to avoid vibrations due to loose mounting. The 
multi-sensor module was stuck to the motor plate using dou-
ble-sided adhesive tape. The gateway was positioned close to 
the module. The gateway processes the data received from 
the module and sends the captured data to the cloud layer.

4.2 � Scenario 2: Pumps in an industrial dairy plant

The second scenario corresponds to an industrial dairy 
plant (see Fig. 4). In this case, two pumps are monitored. 
These pumps have a speed of 3000 rpm, a power output 
of 15 kW and a voltage of 230 V/50 Hz. The pumps work 
in different production lines and are monitored in differ-
ent months of the annual maintenance cycle for changing 
bearings. Two multi-sensor modules (front and back) are 
fixed to each pump using metal zip ties (see Fig. 5) and 
connected to a gateway that communicates with the cloud 

AP

Fig. 4   Scenario 2: industrial factory

back front

Fig. 5   Scenario 2: multi-sensor modules locations
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layer via a WiFi Access Point (AP). Figure 6 shows the 
location of the pumps and the corresponding gateways in 
the dairy plant.

Keeping BLE radio on most of the time to send raw 
acceleration samples may be a concern in the multi-sensor 
modules from the point of view of energy consumption. 
However, multi-sensor modules may be powered with the 
same power lines used for the motors, so batteries are not 
necessary.

5 � Results

This section shows the results of testing the prototype in the 
laboratory and the industrial scenario.

5.1 � Scenario 1

The fast Fourier transform was used to calculate the ampli-
tude spectrum (0 to 2500 Hz) in both multi-sensor (edge 
layer) and gateway (fog layer) devices to assess the maxi-
mum resolution achieved and the resources consumed. 
Figure 7 shows the lowest 500 Hz of the amplitude spectra 
computed by the multi-sensor module, the gateway and a 
popular portable vibration analyser (model COMMTEST 
VB8). Although the spectra in Fig. 7 are not directly com-
parable as they correspond to different times of the motor 
operation, all the graphs show three relevant amplitudes in 
frequency bins around 100, 200 and 300 Hz. These frequen-
cies are harmonics of the double line frequency (2XLF), 
which is 50 Hz in Europe.

The resolution of the spectrum computed in the gateway 
is 0.076 Hz, but higher resolutions are also possible at the 
cost of longer capturing and transmission times. In contrast, 

Pump 1

Gateway 1

Gateway 2 Pump 2

Fig. 6   Scenario 2: pumps and gateways locations

Fig. 7   Spectra
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the maximum resolution achieved in the spectra computed 
in the multi-sensor module is 0.61 Hz due to limitations of 
the CMSIS DSP library. In most conditions this resolution is 
enough. However, on occasions a higher resolution spectra 
may be necessary to differentiate close frequency compo-
nents or sidebands.

Figure 8 shows the time needed to run the FFT algorithm 
in the multi-sensor module and the gateway. FFT sizes over 
8192 samples are not possible in the multi-sensor module 
due to CMSIS DSP library limitations. In the case of the 
gateway, it is possible to compute FFTs of 65536 samples. 
The figure shows that the higher computing power of the 
gateway causes the time difference to increase with the 
FFT size. Nevertheless, the processing times in both the 
multi-sensor module and the gateway are adequate for most 
applications.

Depending on where the spectrum is computed, the 
total latency until the captured signal is transformed 
into the frequency domain and available at the gateway 
may vary. This latency has two components (see Fig. 9): 
the time to compute the FFT (either at the multi-sensor 
module or the gateway) and the transmission time of data 
from the multi-sensor to the gateway. There are two situ-
ations to consider for the transmission time. When the 
FFT is computed at the multi-sensor module, this time 
corresponds to the transmission of the resulting FFT bin 
amplitudes (see Fig. 9a), while when the FFT is computed 
at the gateway, this time corresponds to the transmission 
of the raw acceleration samples (see Fig. 9b). The times 
indicated in Fig. 9 are defined in Table 1.

The capture of acceleration samples is carried out using 
two memory buffers, so that while one of them is being 
filled the other is transmitted. Thus, most of the transmis-
sion time of the raw data to the gateway is overlapped with 
the capture ( tt1 ). However, the BLE link limits the transfer 
speed, so the transmission time grows dramatically with 
large FFT sizes, since large numbers of raw samples must 
be transmitted.

Figure 10 shows the contribution of each component 
to the latency when processing FFTs of different sizes 
at the multi-sensor module and gateway. In both cases, 
the transmission time is the factor that contributes to the 
latency the most. Latencies reduce in the gateway due 
mainly to lower transmission times. Depending on the 
application, latency may be critical. Long-term detection 
of operation anomalies in the motor due to component 
wear do not benefit from low latency processing. How-
ever, low latency is necessary to achieve real-time moni-
toring and fast short-term detection of operation anoma-
lies. Immediate identification of loose, imbalanced or 
incorrect mounting of motors bearings after a scheduled 
maintenance shutdown is essential to prevent personal or 
equipment damage.

Transmission speed mainly depends on the network link 
strength. A study was carried out to determine the maximum 
distance possible between the multi-sensor module and the 

Fig. 8   Data processing time for FFT

Fig. 9   Latency components

Table 1   Components of data latency

Time Definition

tc time to capture acceleration samples
tpm processing time at the multi-sensor module
tt transm. time of FFT bin amplitudes to the gateway
Lpm latency when processing at the multi-sensor
tt1 first part of transm. time of raw data to gateway
tt2 second part of transmission time
tpg processing time at the gateway
Lpg latency when processing at the gateway
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gateway. A gateway was positioned at a fixed point and a 
multi-sensor module was moved progressively further from 
the gateway, with no obstacles between them, taking the 
RSSI level between the devices for each position. In order 
for a signal to be considered good, providing reliable packet 
forwarding, it must have an RSSI level above -80 dBm [25]. 
According to the results shown in Fig. 11, the RSSI level is 
above -80 dBm for distances under 11 meters.

In addition to a maximum distance, BLE imposes some 
restrictions on the number of multi-sensor modules that 

can be handled by a single gateway. As empirically tested, 
the maximum number of multi-sensor modules that can 
be managed at the same time by a gateway is 15. Addi-
tional modules fail to connect to the gateway. Therefore, a 
gateway can handle up to 15 multi-sensor modules simul-
taneously as long as they are within a range of 10 meters.

The gateway has to deal with most of the computational 
workload in the case that FFTs are computed at the gate-
way. Figure 12 shows the average time needed to compute 
the FFT in the worst case, when the gateway is computing 
the FFTs of all the multi-sensor modules simultaneously. 
The computation time depends on the sizes of the FFTs 

Fig. 10   Latency when processing FFT

Fig. 11   RSSI vs. distance gateway-multisensor

Fig. 12   FFT computing time from 1 to 15 sensors
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and the number of modules. The figure shows that time 
increases linearly with the size of the FFTs.

5.2 � Scenario 2

The spectra from the two pumps in the dairy plant exhibit 
peaks at close frequencies and sidebands, so high preci-
sion spectra are necessary. Thus, FFTs are only computed 
at the gateway (fog layer) in this scenario: the multi-sensor 
modules periodically send raw acceleration samples to the 
gateways.

Wireless communications are challenging in the indus-
trial dairy plant, not only because there are metal pipes 
all over the plant, but also because the pumps where the 
multi-sensor modules were deployed, as well as the gate-
ways, are placed in metallic cabinets to protect them from 
frequent floor cleaning operations with water (see Fig. 6) . 
Therefore, although the distances separating multi-sensor 
modules and gateways are within the optimal range 

(around 5 meters), obstacles between them significantly 
reduce the maximum transfer speed. As a result, the 
latency of communications dramatically increases.

Figure 13 shows the components of the latency when 
computing FFTs of different sizes at the gateway for a 
single axis. The processing time corresponds to 2 concur-
rent FFTs, one for each multi-sensor module, and its con-
tribution to latency is negligible. As expected, the trans-
mission time is prevalent because the period between 
packet transmissions must be enlarged to avoid packet 
loss. Comparing this figure with Fig. 10, latency is seen 
to increase 8-10 times, reaching the order of minutes for 
the highest FFT size. This information is essential when 
taking a decision about the FFT size. A trade-off between 
latency and resolution of the spectrum must be consid-
ered. According to this analysis, spectra with the high-
est resolution (using 65536 acceleration samples) can be 
computed for the three axes every 6 minutes.

A visualization dashboard has been built in Grafana 
for continuous monitoring of the front and back vibra-
tion (at the three axes) of the two pumps in the dairy 
plant. Figure 14 shows one of the windows in dashboard 
corresponding to the front broadband RMS vibration 
amplitudes, at the three axes, for pump 1. The tempo-
ral resolution in the window is 6 minutes and the whole 
period represented corresponds to one operation cycle 
of the pump (40 hours approximately). The coloured 
horizontal lines correspond to thresholds established by 
International Standard 20916-1:2016 [24] to indicate the 
severity level of vibrations. The dashboard helps monitor 
the health of the pumps throughout their operating cycles 
and detect possible anomalies in the operation, such as 
the peak observed close to the centre of the window.

The vibration spectrum at every point in the dashboard 
window can also be computed to further analyse the 
vibration signal. This can be used to look for anomalies 
during pump operation. Figure 15 shows the spectrum 
of the vibration signal corresponding to one of the sam-
ples depicted in Fig. 14. Feature extraction techniques 
can be used to select important frequency bins from the Fig. 13   Latency in scenario 2 (FFT at gateway)

Fig. 14   Dashboard window to monitor vibrations of pump 1
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spectrum. The amplitude and the evolution of the ampli-
tude for these bins during pump operation is critical. As 
an example, two relevant frequency bins in the spectrum 
shown in Fig. 15 are those around 49.2 Hz and 246 Hz. 
The first bin corresponds to the running speed of the 
pump motor (1X) and the second bin corresponds to the 
vane pass frequency (VPF) of the pump. As the pump 
impeller has 5 vanes, the VPF is 5 times the 1X frequency. 
The actual amplitudes of the frequency bins can be cal-
culated based on the amplitudes of close bins around the 
peak ( Aj ) and the noise power bandwidth of the window 
used (1.5 for the Hanning window) with Eq. 1.

Figure 16 shows the variation of amplitude corresponding 
to 1X and VPF peaks during an operation cycle of pump 1. 

(1)Aestimated =

∑j+3

i=j−3
Ai

noise power bandwidth of window

The variations in amplitude during the cycle are due to 
changes in the pressure of the milk rather than to changes 
in the pump state. This spectrum analysis can be used for 
automatic detection and diagnosis of anomalies during the 
pump operation.

6 � Conclusions and future work

The design, implementation and testing of a low-cost 
IIoT system for condition monitoring of electric motors 
in real-time has been presented. The system is designed 
using low-cost hardware components: wireless multi-
sensor modules and single-board computers as gateways, 
open-source software and open services in the cloud. The 
modules collect real-time vibration data from electric 
motors. Vibration analyses in the temporal and frequency 
domains have been conducted to detect operation anom-
alies and facilitate predictive maintenance of electric 
motors through low-cost real-time monitoring.

The proposed system architecture considers edge and 
fog computing layers as an alternative to cloud layer for 
computing application tasks. The capabilities of multi-
sensor modules on the edge layer and of the gateways 
on the fog layer are compared. Vibration frequency is 
analysed as an example of a critical application task. The 
results of the comparison are easily applicable to other 
modules and gateways with similar characteristics, aiding 
in the decision as to where to compute the critical task 
most efficiently.

Future work will be geared towards developing an auto-
matic anomaly detection system at the gateway. If the gate-
way detects important changes in the amplitudes of the 
relevant frequency bins, it will notify the maintenance tech-
nicians, warning that there may be a relevant change in the 
condition of the motor and preventing unforeseen outages.
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Fig. 15   Amplitude spectrum of 
pump 1 with zoom-in details

Fig. 16   1X and VPF amplitude evolution in pump 1
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