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1 Introduction

The study of the AdS/CFT correspondence in low dimensions has seen renewed interest in
the last few years [1–49]. On the AdS side of the correspondence, a plethora of new AdS3
and AdS2 solutions of Type II and eleven dimensional supergravities with different amounts
of supersymmetries have been constructed. In turn, on the CFT side it has been possible
to identify the 2d and 1d CFTs dual to some of these solutions as IR fixed points of explicit
quiver field theories, from where it has been possible to explore some of their properties,
in particular to compute their central charge. These AdS/CFT pairs thus represent perfect
scenarios where the Bekenstein-Hawking entropy of black strings and black holes can be
computed microscopically. This is particularly promising for the large classes of black strings
and black holes with N = (0, 4) and N = 4 supersymmetries constructed in [4, 11, 22–
25, 34, 35, 37–40, 42–44, 46], which enable extensions of the seminal studies in [50, 51].
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Another interesting interpretation of low dimensional AdS spaces is as holographic duals
of CFT’s describing defects within higher dimensional CFT’s [52–56]. Notable examples
of such realisations for AdS3 and AdS2 spaces have been reported in [6–8, 16, 33, 35, 36,
38, 40, 43, 44, 57–59]. A hint that this interpretation may be possible is when the low
dimensional AdS space flows asymptotically (locally) in the UV to a higher dimensional
AdS geometry, which contains extra fluxes. These fluxes partially break the isometries
(and typically also the supersymmetries) of the higher dimensional AdS space, and can
be associated to extra defect branes embedded in the geometry. We will see that some of
the AdS3 solutions constructed in this paper allow for an interpretation as surface defects
within 6d (1, 0) CFT’s dual to AdS7 geometries.

AdS2/CFT1 holography features particular challenges not shared by higher dimensional
AdS/CFT. These have to do mainly with the non-connectedness of the boundary of AdS2
and with the interpretation of the central charge of the dual super-conformal quantum
mechanics (SCQM), which does not allow for finite energy excitations [60–64]. Therefore
directly applying AdS2/CFT1 holography to the microscopic description of extremal black
holes is not straightforward, and interesting alternative ways to make this possible have been
proposed in the literature (see for example [65–68]). Recently, it has been shown [37] that
for AdS2 spaces related to AdS3 through compactification or T-duality an understanding of
the SCQM as a chiral half of a 2d CFT (following the ideas in [62, 64]) allows one to sidestep
these difficulties, providing explicit set-ups where the microscopic description program can
been carried out in detail. It is likely that the solutions that we construct in this paper will
allow for similar applications.

In this paper we construct new AdS3 solutions with small (0, 4) supersymmetry in mas-
sive Type IIA supergravity. The small N = 4 superconformal algebra is characterised by an
SU(2) R-symmetry with generators transforming in the 2⊕2, as such backgrounds realising
this algebra should respect this isometry which requires an S2 factor (either round or with
U(1)s fibred over it). Small N = (0, 4) backgrounds of Type II supergravity of the warped
product form AdS3×S2×M5 were recently classified across [21, 48] under the assumptions
that M5 contains no necessary isometries and S2 does not experience an enhancement to S3.
Our focus here will be on solutions that lie outside these assumptions,1 namely solutions
containing a warped AdS3×S3 factor. These have the benefit of being compatible with
an enhancement to small N = (4, 4), a maximal case for AdS3 with relatively few known
examples. We are aware of only the U-duality orbits of the D1-D5 near horizon [69], the
d = 11 solution of [36] and the type IIB class of [70], albeit with no explicit examples. This
enhancement is of course not guaranteed by the presence of an S3 factor and indeed the class
that we construct generically supports just (0, 4) supersymmetry. However an enhancement
to N = (4, 4) is possible when the class is suitably restricted, which allows us to find explicit
examples with both (0, 4) and (4, 4) supersymmetry that we shall study in some detail.

The paper is organised as follows. In section 2 we construct the general class of
AdS3×S3×M4 solutions of massive type IIA supergravity with N = (0, 4) supersymmetries
that are the focus of the paper. We do this by generalising the Minkowski6 solutions

1Though they are related to classes in [48] via T-duality.
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constructed in [71] to also include D2 and D4-branes. We check the supersymmetries and
provide the explicit brane intersection, consisting on D2-D4 branes ending on D6-NS5-D8
bound states [72], from which the AdS3 solutions arise in the near horizon limit. We
further show that any solution to minimal N = 2 supergravity in 6d gives rise to a solution
of massive IIA supergravity sharing the same warping and internal space as our class.
In section 3 we show that when M4 =S2 × Σ2, with Σ2 a 2d Riemann surface, and the
geometry is foliated over the Σ2, the AdS3 solutions flow asymptotically in the UV to the
AdS7×S2 × I solutions of massive IIA supergravity constructed in [73], dual to 6d (1, 0)
CFTs living in D6-NS5-D8 intersections [74, 75]. This allows us to interpret this subclass
of solutions as holographic duals of 2d (0, 4) CFTs describing D2-D4 defects inside the 6d
CFTs. We construct the 2d (0, 4) quiver gauge theories that flow in the IR to the duals of
our solutions, and show that they can be embedded within the 6d quivers constructed in [75].
This extends (and corrects, in the precise sense discussed in the paper) the constructions
in [35] for the massless case. In section 4 we focus on the subclass of solutions for which
M4 = T3 × I and the geometry is foliated over the interval, first in massless IIA. We
show that these solutions arise in the near horizon limit of D2-D4-NS5 brane intersections,
and enjoy an enhancement to N = (4, 4) supersymmetry. Our constructions represent a
key step forward in the identification of the holographic duals of (4, 4) 2d CFTs living in
D2-D4-NS5 Hanany-Witten brane set-ups, studied long ago in [76–78]. As a consistency
check of our proposal we show that the holographic and field theory central charges are in
exact agreement. In section 5 we complete the analysis of the AdS3×S3×T4× I solutions in
the presence of Romans mass. We show that these backgrounds are associated to D2-D4-D8
intersections preserving (0, 4) supersymmetries, that can be globally embedded in Type I’
string theory. We perform this explicit construction and check the matching between the
field theory and holographic central charges. Section 6 contains our conclusions, where we
summarise our results and discuss future lines of investigation, in particular the possibility
of constructing new AdS2 solutions with N = 4 by acting with Abelian and non-Abelian
T-dualities on our new classes of solutions [79]. Finally in appendix A we complement
our analysis in section 3 with the construction of a domain wall solution to 7d minimal
supergravity that flows to the AdS7 vacuum asymptotically.

2 A new class of N = (0, 4) AdS3 solutions in massive IIA

A class of solutions in massive IIA that has born much fruit over the years is the D8-D6-NS5
flat-space brane intersection [72]. This is a class of 1

4 BPS warped Minkowski6 solutions
which support an SU(2) R-symmetry realised by a round 2-sphere in the internal space.
All AdS7 solutions in Type II supergravity are contained in this class as well as examples
of compact Mink4 × T2 vacua [80, 81]. A generalisation of this class without the 2-sphere
was found in [71], where solutions with O planes back-reacted on a torus were found. The
metric and fluxes of solutions in this generalised class take the local form

ds2 = 1√
h
ds2(R1,5) + g

[ 1√
h
dρ2 +

√
hds2(R3)

]
, e−Φ = h

3
4
√
g
, (2.1)

F0 = ∂ρh

g
, F2 = − ?3 d3h, H3 = ∂ρ(hg)vol(R3)− (?3d3g) ∧ dρ,
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where h, g have support on (ρ,R3) and (d3, ?3) are the exterior derivative and Hodge dual
on R3. Away from the loci of possible sources the Bianchi identies of the 2 and 3-form
impose that

∂ρ

(
∂ρh

g

)
= 0, ∇2

3g + ∂2
ρ(gh) = 0, ∇2

3h+ F0∂ρ(gh) = 0, (2.2)

with any solution to this system giving rise to a solution of massive IIA supergravity,
provided any localised source terms are also calibrated.

In this section we will present a generalised version of this class for which

R1,5 → AdS3 × S3, (F0, F2, H3)→ (F0, F2, F4, H3), (2.3)

giving rise to AdS3 vacua of massive IIA preserving small N = (0, 4) supersymmetry, as
explained in section 2.1. We shall construct a system of intersecting branes in flat space
giving rise to these AdS3 vacua in a near horizon limit in section 2.2, and finally establish
that in fact any solution of minimal N = 2 supergravity in d = 6 can be embedded into
massive IIA with a similar ansatz for the metric and fluxes in section 2.3.

2.1 A small N = (0, 4) AdS3 class with source D8-D6-NS5 branes

In this section we present a new class of AdS3 solutions preserving small N = (0, 4)
supersymmetry with possible D8-D6-NS5 sources.

The general form of the metric and dilaton of solutions in this class is nothing more
than (2.1) with R1,5 → AdS3 × S3,

ds2 = q√
h

[
ds2(AdS3) + ds2(S3)

]
+ g

[ 1√
h
dρ2 +

√
h

(
dz2

1 + dz2
2 + dz2

3

)]
, e−Φ = h

3
4
√
g
,

(2.4)

where AdS3 and S3 both have unit radius and q is a redundant constant we keep to
make contact with later sections more smooth. We have introduced (z1, z2, z3) coordinates
spanning the R3 factor for later convenience. The fluxes this solution supports are

F0 = ∂ρh

g
, F4 = 2q

(
vol(AdS3)+vol(S3)

)
∧dρ, (2.5a)

F2 =−(∂z1hdz2∧dz3+∂z2hdz3∧dz1+∂z3hdz1∧dz2), (2.5b)

H3 = ∂ρ(hg)dz1∧dz2∧dz3−(∂z1gdz2∧dz3+∂z2gdz3∧dz1+∂z3gdz1∧dz2)∧dρ, (2.5c)

where the additional 4-form with respect to (2.1) is to be expected given that the external
space has been replaced with a curved product space. The Bianchi identities of the fluxes,
in regular regions of the internal space, require that F0 is constant and

(∂2
z1 + ∂2

z2 + ∂2
z3)g + ∂2

ρ(gh) = 0,
(∂2
z1 + ∂2

z2 + ∂2
z3)h+ F0∂ρ(gh) = 0, (2.6)

– 4 –
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which exactly reproduce (2.2) and define solutions in this class. Actually these constraints
give rise to two local classes depending on whether F0 = 0 or not. As F0 = 0 demands
∂ρh = 0, the governing PDEs reduce to those of a flat space D6-NS5 brane intersection. On
the other hand when F0 6= 0, one is free to divide by it and take

g = ∂ρh

F0
. (2.7)

Given this one can then show that (2.6) reduce to a single PDE

(∂2
z1 + ∂2

z2 + ∂2
z3)h+ 1

2∂
2
ρ(h2) = 0, (2.8)

reproducing the novel behaviour of [72] when we impose SO(3) invariance in (z1, z2, z3). Let
us now move on to address the amount of supersymmetry solutions in this class preserve.

2.1.1 Supersymmetry

The preservation of supersymmetry for AdS3 vacua in massive IIA can be phrased in terms
of differential bi-spinor relations first introduced for N = (0, 1) in [15]. In the conventions
of [47] for a solution decomposing as

ds2 = e2Ads2(AdS3) + ds2(M7), F = f+ + e3Avol(AdS3) ∧ ?7λf, (2.9)

with purely magnetic NS flux, dilaton Φ and where λfn = (−1)[n2 ]fn, these are2

dH3(eA−ΦΨ−) = 0, dH3(e2A−ΦΨ+)− 2eA−ΦΨ− = 1
8e

3A ?7 λ(f+),

(Ψ− ∧ λf+)
∣∣∣∣
7

= −1
2e
−Φvol(M7), (2.10)

where Ψ± can be defined in term of spinors supported by M7. However one does not need
to make specific reference to these, it is sufficient that Ψ± realises a G2×G2-structure. For
our purposes it will be sufficient to consider a restricted case where the intersection of these
two G2’s is a strict SU(3)-structure for which one may parameterise

Ψ+ = −Im
(
e−iJ

)
+ V ∧ ReΩ, Ψ− = −ImΩ− V ∧ Re

(
e−iJ

)
, (2.11)

where V is a real 1-form defining a vielbein direction in M7, while (J,Ω) can be written in
terms of a further 3 complex vielbein directions E1, E2, E3 as

J = E1 ∧ E1 + E2 ∧ E2 + E3 ∧ E3, Ω = E1 ∧ E2 ∧ E3. (2.12)

The class of solutions of the previous section preserves N = (0, 4) supersymmetry if it
preserves 4 independent SU(3)-structures which each obey (2.10). As the class contains an
S3 factor one can define 1-forms (La, Ra) for a = 1, 2, 3 such that

dLa = 1
2εabcLb ∧ Lc, dRa = −1

2εabcRb ∧Rc, ds2(S3) = 1
4(La)2 = 1

4(Ra)2, (2.13)

2We are also assuming unit radius AdS3 and have fixed an arbitrary constant below. The truly general
conditions are given in [47]. Note that we have inverted what is referred to as N = (1, 0) and N = (0, 1)
with respect to that reference.
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with La a singlet/triplet under the SO(3)L/R subgroup of SO(4) = SO(3)L×SO(3)R, with
the charge of Ra the opposite. It is possible to show that the SU(3)-structure defined
through the vielbein

Ea = −√gh
1
4dxa + i

1
2µh 1

4
La, V =

√
g

h
1
4
dρ (2.14)

solves (2.4), realising N = (0, 1) explicitly. This gets enhanced to N = (0, 4) because Ψ±
depend on the 3-sphere through La, dLa, which are SO(3)R triplets, and vol(S3), an SO(4)
invariant, with only the later entering the physical fields. As such, if (2.14) solves (2.10) so
to does the SU(3)-structure that results after performing a generic constant SO(3) rotation
of La in (2.14), which one can exploit to generate another 3 independent SU(3)-structures
necessarily solving (2.10) for the same physical fields, for 4 SU(3)-structures in total. That
it is specifically small N = (0, 4) that is realised for this class rather than some other
superconformal group is obvious once one notes that any other choice would necessitate
additional isometries not present in the class generically. Additionally, through Hopf fiber T-
duality, it is possible to map the class of solutions to that of section 3.3 of [48], specialised to
the case where the local coordinate x there is an isometry, which proves this more rigorously.

Given the round 3-sphere in this class one might wonder whether, or under which
conditions, there is an enhancement to N = (4, 4). This would require a further 4 N = (1, 0)
SU(3)-structures to be supported by the background, which should solve a cousin of (2.10)
with Ψ− → −Ψ−.3 These need to span the 3-sphere in terms of Ra as each N = 4 sub-sector
must be a singlet with respect to the R-symmetry of the other. One can show that the vielbein

Ea = √gh
1
4dxa + i

1
2µh 1

4
Ra, V = −

√
g

h
1
4
dρ (2.15)

does give rise to an SU(3)-structure which solves the N = (1, 0) conditions, with a further 3
implied by this as before. However the RR 2-form now changes sign with respect to (2.5b).
The only way to have the same physical fields compatible with both left and right N = 4
sub-sectors is to fix dh = 0, ie

h = constant⇒ N = (4, 4), (2.16)

which makes F2, F0 trivial. Generically however just N = (0, 4) is preserved. Finally we
should comment that when h 6= constant one is free to replace S3 by the lens space S3/Zk
without breaking any further supersymmetry. Instead, when h = constant the Lens space
breaks N = (4, 4) to N = (0, 4).

2.2 The brane picture

In this section we show that the class of solutions (2.4) can be obtained as the near-horizon
limit of a brane intersection defined by D2-D4 branes ending on D6-NS5-D8 bound states,
as depicted in table 1.

3Beware this map does not hold in full generality, only for the restricted case we consider. See [47] for
full details.
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x0 x1 r ϕ1 ϕ2 ρ ζ θ1 θ2 θ3

D2 x x x
D4 x x x x x
NS5 x x x x x x
D6 x x x x x x x
D8 x x x x x x x x x

Table 1. 1
8 -BPS brane intersection underlying the N = (0, 4) AdS3 solutions (2.4). (x0, x1) are

the directions where the 2d dual CFT lives, (r, ϕi) are spherical coordinates spanning the 3d space
previously parameterised by (z1, z2, z3), ζ is the radial coordinate of AdS3 and θi parameterise the S3.

Imamura’s D6-NS5-D8 flat-space intersection [72] is described by the supergravity
solution (2.1). Adding D2-D4 branes the 10d metric becomes

ds2 = h−1/2
[
H
−1/2
D4 H

−1/2
D2 ds2(R1,1) +H

1/2
D4 H

1/2
D2 (dζ2 + ζ2ds2(S3))

]
+ h−1/2 g H

1/2
D4 H

−1/2
D2 dρ2 + h1/2 g H

−1/2
D4 H

1/2
D2 (dr2 + r2ds2(S2)) ,

(2.17)

where we have parameterised the 2d Minkowski spacetime R1,1 with (x0, x1), the 4d space
transverse to the D2-D4 branes with coordinates (ζ, θi) and the 3d space parameterised by
(z1, z2, z3) in the previous subsections with spherical coordinates (r, ϕi). We take the D4
and D2 charges completely localised within the worldvolume of the D6-NS5-D8 branes, i.e.
HD4 = HD4(ζ) and HD2 = HD2(ζ), with the functions h(ρ, r) and g(ρ, r) describing the D6-
NS5-D8 bound state as in (2.1).4 We introduce the following gauge potentials and dilaton,

C3 = H−1
D2 vol(R1,1) ∧ dρ ,

C5 = H−1
D4 h g r

2 vol(R1,1) ∧ dr ∧ vol(S2) ,
C7 = HD4 h

−1 ζ3 vol(R1,1) ∧ dζ ∧ vol(S3) ∧ dρ ,
B6 = HD4 g

−1 ζ3 vol(R1,1) ∧ dζ ∧ vol(S3) ,

eΦ = h−3/4 g1/2H
1/4
D2 H

−1/4
D4 ,

(2.18)

from which the fluxes read
F2 = −∂rh r2 vol(S2) ,
H3 = −∂rg r2 dρ ∧ vol(S2) +HD2H

−1
D4 ∂ρ (h g) r2 dr ∧ vol(S2) ,

F4 = ∂ζH
−1
D2 vol(R1,1) ∧ dζ ∧ dρ− ∂ζHD4 ζ

3 vol(S3) ∧ dρ ,
(2.19)

plus a Romans’ mass F0. The equations of motion and Bianchi identities for the D2-D4
branes and the D6-NS5-D8 branes can then be solved independently, such that

HD2 = HD4 and ∇2
ζ HD4 = 0 , (2.20)

for the D2-D4 subsystem, and

∂ρh = F0 g and ∇2
r h+ 1

2∂
2
ρ h

2 = 0 , (2.21)

4In [72] the functions g and h are respectively called S and K.
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for the D6-NS5-D8 branes. Here ∇2
r and ∇2

ζ are, respectively, the Laplacians in spherical
coordinates on the 3d flat space transverse to the D6-NS5-D8 branes and the 4d space trans-
verse to the D2-D4 branes. The equations in (2.21) coincide with (2.2) and then (2.7), (2.8).
In turn, the equations in (2.20) can be easily solved for

HD4(ζ) = HD2(ζ) = 1 + q

ζ2 , (2.22)

where q is an integration constant.
Taking the limit ζ → 0 the ζ coordinate becomes the radial coordinate of an AdS3

factor, and the metric (2.17) and the fluxes (2.19) take the form5

ds2
10 = q h−1/2

[
ds2(AdS3) + ds2(S3)

]
+ h−1/2g dρ2 + h1/2g

(
dr2 + r2ds2(S2)

)
,

F2 = −∂rh r2 vol(S2) , eΦ = h−3/4g1/2 ,

H3 = −∂rg r2 dρ ∧ vol(S2) + ∂ρ (h g) r2 dr ∧ vol(S2) ,
F4 = 2q vol(AdS3) ∧ dρ+ 2q vol(S3) ∧ dρ ,

(2.23)

with (h, g) satisfying (2.21). Therefore, we recover the AdS3×S3 backgrounds (2.4) with
the 3d transverse space that was parametrised by (z1, z2, z3) now written in spherical
coordinates (r, ϕi). Our new class of solutions can thus be interpreted as the low-energy
regime of D6-NS5-D8 bound states [72] wrapping an AdS3×S3 geometry, with the geometry
associated to the bound state uniquely fixed by the functions h and g, and the D2-D4
intersection completely resolved into the AdS3×S3 geometry.

2.3 An uplift of 6d minimal N = 2 ungauged supergravity

The fact that the system of governing PDEs (2.6) support solutions with both a warped
Mink6 and an AdS3× S3 factor is highly suggestive that it should actually work for any
solution to 6d N = 2 ungauged supergravity with SU(2) R-symmetry (see for instance [82]).
In this subsection we show that this is indeed the case.

The pseudo action of the aforementioned 6d theory is

S6 =
∫
d6x
√
−g6

(
R− 1

3H
(6)
abcH

(6)abc
)
, (2.24)

where H(6) is a closed self dual 3-form, the latter constraint needing to be imposed after
varying the action. It is possible to show that this theory can be embedded into massive
IIA as

ds2 = 1√
h

[
c−2ds2

6 + gdρ2
]

+ g
√
h

(
dz2

1 + dz2
2 + dz2

3

)
, e−Φ = h

3
4
√
g
, (2.25)

for fluxes

F0 = ∂ρh

g
, F4 = 2c2H(6)∧dρ, (2.26)

F2 =−(∂z1hdz2∧dz3+∂z2hdz3∧dz1+∂z3hdz1∧dz2), (2.27)

H3 = ∂ρ(hg)dz1∧dz2∧dz3−(∂z1gdz2∧dz3+∂z2gdz3∧dz1+∂z3gdz1∧dz2)∧dρ, (2.28)
5We redefined the Minkowski coordinates as (t, x1)→ q (t, x1).
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where c is an arbitrary constant. We have confirmed that the 10d equations of motion are
implied by those following from the 6d action together with (2.6). Therefore, any solution
to the 6d theory gives rise to a solution in massive IIA once (2.6) are imposed. All such
supersymmetric solutions were classified some time ago in [83].

3 Defects within N = (1, 0) 6d CFTs

In this section we focus on the particular subclass of solutions featured by a (locally) AdS7
asymptotics, and discuss their dual interpretation as surface defects within the 6d N = (1, 0)
CFTs dual to the AdS7 solutions of massive Type IIA supergravity constructed in [73].

Our first aim will be to derive the particular set of coordinates for which the AdS7
asymptotics is manifest. This can be done by direct calculation in 10d or by making use
of the consistent truncation of massive IIA supergravity to minimal 7d N = 1 gauged
supergravity [84]. From the latter perspective the 10d solutions take the form of a domain
wall with AdS3×S3 worldvolume with a locally AdS7 vacuum at infinity, that arises upon
consistent truncation from the AdS7×S2 × I solutions of [73] (see appendix A). In 10d
one can see from the brane picture studied in subsection 2.2 that D2-D4 branes break the
isometries of the R1,5 worldvolume common to the D6-NS5-D8 intersection, as

R1,5 −→ AdS3 × S3,

leaving intact the conformal symmetries of AdS3. In the UV the AdS7 vacuum emerges as
a foliation of the AdS3 × S3 subspace over an interval.

With the insight coming from the supergravity analysis, we will construct 2d (0, 4)
quiver gauge theories that flow in the IR to the CFTs dual to the AdS3 solutions and show
that they can be embedded within the 6d quivers constructed in [74, 75], dual to the AdS7
solutions in [73].

3.1 The AdS7 vacua of massive IIA and their dual 6d CFTs

We start by briefly reviewing the main properties of the AdS7 solutions of massive IIA
supergravity and of their 6d dual CFTs.

The solutions in [73] are described by AdS7×S2 foliations over an interval preserving 16
supercharges. They arise in the near horizon limit of a D6-NS5-D8 intersection, constructed
in [81]. In the parametrisation of [75] they take the form

ds2
10 =π

√
2
[
8
(
−α
α̈

)1/2
ds2(AdS7)+

(
− α̈
α

)1/2
dy2+

(
−α
α̈

)1/2 (−αα̈)
α̇2−2αα̈ds

2(S2)
]
, (3.1)

e2Φ = 3825/2π5 (−α/α̈)3/2

α̇2−2αα̈ , (3.2)

B2 =π

(
−y+ αα̇

α̇2−2αα̈

)
vol(S2) , (3.3)

F2 =
(

α̈

162π2 + πF0αα̇

α̇2−2αα̈

)
vol(S2). (3.4)
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The solutions are specified by the function α(y), which satisfies the differential equation

α′′′ = −162π3F0. (3.5)

Let us now recall the main ingredients of the 6d quivers dual to these solutions. We
will follow [75] and [85]. Equation (3.3) implies that there are NS5-branes located at given
positions in the y-direction, that can be labelled by an integer number k. Piecewise α(y)
functions defined in intervals [k, k + 1] between NS5-branes can then be constructed, with
continuous first and second derivatives, and third derivative satisfying

α′′′k = −81π2βk, (3.6)

at a given [k, k + 1] interval. Given that QD8 = 2πF0 this implies that

Q
(k)
D8 = βk, (3.7)

at a [k, k + 1] interval. βk are therefore integer numbers, and (βk−1 − βk) are the numbers
of D8-branes that are introduced at each y = k position. Integrating (3.6) one finds

αk(y) = −27
2 π

2βk(y − k)3 + 1
2γk(y − k)2 + δk(y − k) + µk, for y ∈ [k, k + 1], (3.8)

where (γk, δk, µk) are constants that are determined by imposing continuity of α, α′, α′′.
The condition that α′′k = α′′k−1 at y = k imposes that

γk = −81π2βk−1 + γk−1 = −81π2(β0 + β1 + · · ·+ βk−1). (3.9)

This implies that the D6-brane charge at each interval, given by

Q
(k)
D6 = 1

2π

∫
S2
F̂2,= −

γk
81π2 , (3.10)

where F̂2 = F2 − F0 ∧B2 is the Page flux, defining a charge that should be integer. In turn,
α′k = α′k−1 and αk = αk−1 at y = k determine, respectively,

δk = −81
2 π

2βk−1 + γk−1 + δk−1, µk = −27
2 π

2βk−1 + 1
2γk−1 + δk−1 + µk−1. (3.11)

The continuity conditions need to be supplemented by conditions at the boundaries of the
y-interval. For this to be geometrically well-defined the asymptotic form of the metric needs
to approach one of 4 physical behaviours compatible with the metric factors, namely a
regular zero or singular D6, O6 or D8/O8 behaviour. Two of these arise generically: one
can choose the integration constants such that α = 0 at a boundary of the space, in which
case the behaviour corresponds to fully localised D6-branes, or one can impose that α′′ = 0,
in which case one finds fully localised O6-planes. The other behaviours are possible with
specific tunings of α when F0 6= 0: one can tune α such that in the boundary interval
α = −q2(y)α′′, for qn = qn(y) an order n polynomial, then as long as q2 has non degenerate
zeros — the zero of α′′ is regular. Like-wise one can simultaneously impose α′′ = 0 and
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D6 x x x x x x x
D8 x x x x x x x x x
NS5 x x x x x x

Table 2. 1
4 -BPS brane intersection underlying the 6d (1, 0) CFTs living in D6-NS5-D8 brane

intersections. The directions (x0, x1, x6, x7, x8, x9) are the directions where the 6d CFT lives. x2 is
the field theory direction, along which the D6-branes are stretched. (x3, x4, x5) are the directions
realising the SO(3) R-symmetry.

Figure 1. Quiver describing the field theory living in D6-NS5-D8 intersections. The circles
denote (1, 0) vector multiplets and the lines (1, 0) bifundamental matter fields. The quiver has
been terminated with (βP−1 − βP ) D8-branes at the end of the space, with βP = γP

81π2 and
γP = −81π2∑P−1

l=1 βl.

(α′)2 − 2αα′′ = q3α
′′, then the behaviour at the zero of α′′ = 0 is that of a localised O8,

which may be coincident to additional D8s.
The D6-NS5-D8 brane set-up associated to the solutions is the one depicted in table 2.

Here the D6-branes play the role of colour branes while the D8-branes play the role of
flavour branes [86, 87]. In 6d language the quantised charges give rise to the quiver depicted
in figure 1, as discussed in [75, 85]. One can check that 6d anomaly cancellation is fulfilled
given that at each gauge node of the quiver

2Nk = 2Q(k)
D6 = Nk

f = Q
(k−1)
D6 +Q

(k+1)
D6 + ∆Q(k)

D8 , (3.12)

with ∆Q(k)
D8 = βk−1 − βk.

3.2 The surface defect ansatz

In this subsection we search for a solution within the class constructed in section 2 that is
asymptotically AdS7. The first step is to decide on the form of the external 7d and internal
3d spaces. We shall assume that the metric takes the form

1√
2π
ds2 = L2

√
− α

α′′
ds2(M1,6) + ∆1dy

2 + ∆2ds
2(S2),

ds2(M1,6) = P 2
[
ds2(AdS3) + 1

m2ds
2(S3)

]
+Q2dx2, (3.13)

where P,Q are functions of x only and ∆1,2 are functions of x and y. We find it convenient
to fix q = 1 in this section, which we are free to do without loss of generality. The first
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step is to impose SO(3) symmetry in (2.4), so that (z1, z2, z3)→ (r, S2). Then we need to
arrange for a change of coordinates (r, ρ)→ (x, y) such that (3.13) emerges. Our experience
in the previous sections suggests we take

r = q1(x)α, ρ = −q2(x)α′. (3.14)

By comparing (2.4) to (3.13) we then see we must fix

h = 1
2P 4L4π2

(
−α
′′

α

)
, g = 4L8π4P 6q2

2Q
2

(q̇1)2(q2
1(α′)2 − 2L4π2P 4q2

2αα
′′) (3.15)

and solve
q1q̇1 = 2L4π2P 4q2q̇2. (3.16)

Turning our attention to the Bianchi identities, we find that F0 = constant, under the
assumption that α′′′ = −162π3F0, imposes that

4q1Ṗ = P q̇1, (q̇1)2 = 2πL8

34 P 6Q2q2, (3.17)

and implies the remaining Bianchi identities. Modulo diffeomorphisms the 3 ODEs we have
can be solved without loss of generality as

P = 23/2x, Q = − 23/2

(c+ x4) 1
4
, q1 = 64L6

34 x4, q2 = 8L4

34π

√
c+ x4, dc = 0. (3.18)

The NS sector of the solution then takes the form

ds2

8
√

2πL2 =
[√
− α

α′′

(
x2(ds2(AdS3)+ds2(S3)

)
+ dx2
√
c+x4

)

+
√
c+x4

x2

√
−α′′
α

(
dy2 + α2x4

∆ ds2(S2)
)]
,

e−Φ = L
√

∆
342 5

4π
5
2x(c+x4) 1

4

(
−α
′′

α

) 3
4
, B2 =−L2π

(
−y+ x4αα′

∆

)
vol(S2), (3.19)

where we have defined
∆ = x4

(
(α′)2 − 2αα′′

)
− 2cαα′′, (3.20)

while the RR fluxes are

F0 = − 1
162π3α

′′′, F2 = F0B2 −
L2

162π2 (162F0π
3y + α′′)vol(S2),

F4 = −24L4

34π
d(
√
c+ x4α′) ∧

(
vol(AdS3) + vol(S3)

)
,

F6 = F4 ∧B2 −
24L6

34 d(
√
c+ x4(α− yα′)) ∧

(
vol(AdS3) + vol(S3)

)
∧ vol(S2) (3.21)

Notice that as x → ∞, x−4∆ → 1 and the entire NS sector tends to that of the AdS7
solutions in massive IIA reviewed in the previous subsection, where the AdS7 radius is
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1. The same is true for the RR 0 and 2 form fluxes, however the 4 form does not tend
to zero in this limit, which reflects the presence of a D2-D4 defect. That the directions
(AdS3, S3, x), tend to AdS7 can be confirmed by computing the Riemann curvature tensor.
The solution is bounded from below in a way that depends on the tuning of c: when c ≥ 0
x is bounded to the interval [0,∞), when c = 0 there is a curvature singularity at the lower
bound that we do not recognise as physical but for c 6= 0, defining x = z

1
4 , the metric at

this locus tends to

ds2

8
√

2πL2 =
√
− α

α′′

[√
z

(
ds2(AdS3)+ds2(S3)

)
+ 1

16
√
cz

3
2

(dz2+z2ds2(S2))
]
+
√
c

8
√
z

√
−α
′′

α
dy2.

If we had − α
α′′ = 1, this would be the behaviour one expects of a stack of localised D6

branes on (AdS3, S3, y), with NS5 branes inside them of worldvolume (AdS3, S3) smeared
along y. Since − α

α′′ 6= 1 generically what we actually have is a slight generalisation of this:
rather than the NS5 branes being evenly smeared along y such that the direction is an
isometry, they form a y dependent distribution. Finally if c < 0 we can fix c = −b4 and the
metric is bounded below at x = b where one sees the behaviour of ONS5 fixed planes6 that
are smeared along y. The most attractive of these 3 behaviours is the second,7 so from here
we shall assume c > 0 so that x ∈ [0,∞).

In the next subsection we construct the 2d quivers dual to the solutions defined
by (3.19)–(3.21), and show that they can be embedded in the 6d quivers discussed in the
previous subsection, dual to the AdS7 solutions. Before we do that we state the value of
the holographic central charge computed using the Brown-Henneaux formula [88] for later
comparison with the field theory result,

chol = 26

37π4

∫
dxdy x3 (−αα′′). (3.22)

3.3 Surface defect CFTs

In this subsection we construct the 2d quivers that flow in the IR to the CFTs dual to the
solutions defined by (3.19)–(3.21). We show that in a certain limit these quivers can be
embedded in the 6d quivers constructed from the D6-NS5-D8 sector of the brane intersection.

We start analysing the brane charges associated to the D2-D4-D6-NS5-D8 brane set-up
underlying the solutions. One can see from the expressions for F0 and F2 in (3.21) that
the D8 and D6 quantised charges of the AdS3 solutions coincide with those of the AdS7
backgrounds, given by equations (3.7) and (3.10). In turn, for finite x there are NS5-branes
located at fixed values in y and also in x. Since we are interested in embedding the 2d
CFT in the 6d CFT associated to the D6-NS5-D8 subsystem, we will take x large enough
such that we can neglect the (H3)xS2 component of the NS-NS 3-form flux and take the
NS5-branes located at fixed positions in y, as in the D6-NS5-D8 subsystem. The fluxes
associated to the AdS3 solutions are then compatible with the brane intersection depicted
in table 1, that we repeat in table 3 below in a generic system of coordinates for a better
reading. Note that the R-symmetry of the 2d field theory living in the brane set-up is

6The S-dual of O5-planes.
7See our discussion on smeared ONS5s below (4.15).
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D2 x x x
D4 x x x x x
D6 x x x x x x x
D8 x x x x x x x x x
NS5 x x x x x x

Table 3. 1
8 -BPS brane intersection underlying the AdS3 solutions (3.19)–(3.21). (x0, x1) are the

directions where the 2d dual CFT lives. x2 is the field theory direction, that we identify with y, where
the NS5-branes are located (for x sufficiently large). The D2 and D6-branes are stretched in this
direction. (x3, x4, x5) are the directions associated to the isometries of the S2 while (x6, x7, x8, x9)
are those associated to the S3.

the SO(3)R ⊂ SO(4) symmetry group of the S3, while for the 6d field theory living in the
D6-D8-NS5 brane intersection it is identified with the SO(3) symmetry group of the S2.
This is exactly what happens for 2d (4, 4) field theories arising upon compactification from
6d (1, 0) CFTs, where the SO(3) R-symmetry of the 6d theory becomes the R-symmetry
of the Coulomb branch of the 2d theory, and the SO(3)L×SO(3)R R-symmetry of the
Higgs branch of the 2d theory arises in the dimensional reduction [89–91]. In our (0, 4)
theories there is just a Higgs branch, since the Coulomb branch contains no scalars, and
the R-symmetry is just the SO(3)R arising in the dimensional reduction.

The Hanany-Witten brane set-up associated to the brane intersection in table 3 is
depicted in figure 2. In this set-up the D2-branes play the role of colour branes. They are
stretched in the y-direction, which is divided into intervals of length 1 in our units, where
NS5-branes are located. The D6-branes are also stretched in this direction, however they lie
as well along the x direction, which is non-compact, therefore they become flavour branes.
The D4-branes lie as well along the x direction, so they are also flavour branes, and so are
the D8-branes. In order to construct the quiver that lives in this set-up one needs to look
at the quantisation of the open strings stretched between the different branes. This has
been studied in detail in various references (see for instance [46]), to which we refer the
reader for more details. There are three types of massless modes to consider:

• D2-D2 strings: there are two cases to consider, depending on whether the two end-
points of the string lie on the same stack of D2-branes or on two different stacks,
separated by an NS5-brane. Let us consider first the case in which the two end-
points lie on the same stack. For D2-branes stretched between NS5-branes there is a
N = (0, 4) vector multiplet and a N = (0, 4) adjoint twisted hypermultiplet, coming
from the motion of the D2-branes along the (x6, x7, x8, x9) directions. Since these
scalars are charged under the R-symmetry of the solution they combine into a twisted
hypermultiplet. The N = (0, 4) vector multiplet and the N = (0, 4) adjoint twisted
hypermultiplet then build up a N = (4, 4) vector multiplet.
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∆Q
(1)

D8D8 ∆Q
(2)

D8D8

∆Q
(1)

D4D4 ∆Q
(2)

D4D4

Q
(1)

D2D2

Q
(1)

D6D6 Q
(2)

D6D6

Q
(2)

D2D2

Figure 2. Hanany-Witten brane set-up associated to the AdS3 solutions (3.19)–(3.21).

Let us consider now the case in which the end-points of the string lie on two different
stacks of D2-branes, separated by an NS5-brane. The massless modes arise from
the intersection of the two stacks of D2-branes and the NS5-brane. This fixes the
degrees of freedom moving along the (x6, x7, x8, x9) directions, leaving behind the
scalars associated to the (x3, x4, x5) directions, together with the A2 component of
the gauge field. These give rise to a N = (4, 4) hypermultiplet in the bifundamental
representation, since the scalars are uncharged under the R-symmetry of the solution.

• D2-D4 strings: strings with one end on D2-branes and the other end on orthogonal
D4-branes in the same interval between NS5-branes contribute with fundamental
(4, 4) hypermultiplets, associated to the motion of the strings along the (x3, x4, x5)
directions plus the A2 component of the gauge field.

• D2-D6 strings: strings with one end on D2-branes and the other end on D6-branes
in the same interval between NS5-branes contribute with fundamental (0, 4) twisted
hypermultiplets, associated to the motion of the string along the (x6, x7, x8, x9)
directions, which are charged under the R-symmetry of the solution. Strings with
one end on D2-branes and the other end on D6-branes in adjacent intervals between
NS5-branes contribute with fundamental (0, 2) Fermi multiplets.

• D2-D8 strings: strings with one end on D2-branes and the other end on orthogonal
D8-branes in the same interval contribute with fundamental (0, 2) Fermi multiplets.

The previous fields give rise to the quivers depicted in figure 3. In these quivers the D6 and
D8-brane charges are the ones given by equations (3.10) and (3.7), while the D2 and D4
brane charges at each interval are given by

Q
(k)
D2 = 1

(2π)5

∫
Ix,S2,S3

F̂6 = 4
34π2

∫
Ix
dx

2x3
√
c+ x4

αk (3.23)

and
∆Q(k)

D4 = 1
(2π)3

∫
Iy ,S3

F̂4 = 4
34π2

√
c+ x4

∫ k+1

k
dy α′′k. (3.24)

As the x-direction is semi-infinite the D2-brane charges diverge, as expected from their
defect interpretation. Note that the cancellation of gauge anomalies for the gauge groups
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Figure 3. 2d quivers associated to the AdS3 solutions (3.19)–(3.21). Circles denote (4, 4) vector
multiplets, black lines (4, 4) bifundamental hypermultiplets, grey lines (0, 4) bifundamental twisted
hypermultiplets and dashed lines (0, 2) bifundamental Fermi multiplets.

associated to them is still given by

2Q(k)
D6 = Q

(k−1)
D6 +Q

(k+1)
D6 + ∆Q(k)

D8 , (3.25)

as for the 6d quivers depicted in figure 1. Here we have taken into account that (0, 4)
fundamental multiplets contribute 1 to the gauge anomaly, (0, 2) fundamental Fermi
multiplets contribute -1/2 and the remaining vector and matter fields do not contribute
since they are (4, 4) (the reader is referred to [23, 46] for more details).

Next we turn to the computation of the central charge. We show that, as expected,
this quantity diverges, as x is not bounded from above.

Central charge. The central charge of a 2d (0, 4) CFT can be computed away from
criticality, since it equals the anomaly in the two-point function of the R-symmetry current.
In our normalisation this expression is given by [90]

cR = 3Tr[γ3Q2
R], (3.26)

with QR the R-charge under the U(1)R ⊂ SU(2)R, γ3 is the chirality matrix in 2d, and
the trace is taken over all fermions in the theory. In order to compute the R-symmetry
anomaly we recall the following well-known facts:

• (0, 4) vector multiplets contain two left-moving fermions with R-charge 1.

• (0, 4) twisted hypermultiplets contain two right-moving fermions with R-charge 0.

• (0, 4) hypermultiplets contain two right-moving fermions with R-charge -1.

• (0, 2) Fermi multiplets contain one left-moving fermion with R-charge 0.
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Figure 4. 2d quivers completed in a symmetric way.

• (4, 4) vector multiplets consist on a (0, 4) vector multiplet and a (0, 4) adjoint twisted
hypermultiplet. Therefore they contribute with 2 to the R-symmetry anomaly.

• (4, 4) hypermultiplets consist on a (0, 4) hypermultiplet plus a (0, 4) Fermi multiplet.
Therefore they contribute with 2 to the R-symmetry anomaly.

This gives the well-known expression for the central charge [90]

cR = 6(nhyp − nvec), (3.27)

where nhyp stands for the number of (0, 4) (untwisted) hypermultiplets and nvec for the
number of (0, 4) vector multiplets. In order to compute these numbers we first need to
choose the precise way in which we would like to close the y interval. Our choice is to take
α = α′ = α′′ to vanish at both ends of the interval, and to glue the quiver to itself at a
given value y = P + 1, in a continuous way. The resulting quivers are the ones depicted in
figure 4, where the notation is the same used in figure 3. This is of course just a possible
way to globally define the y-direction, and one could consider many others. For the quivers
depicted in figure 4 we have

nhyp = 2
P∑
k=1

Q
(k)
D2Q

(k)
D4 +Q

(P+1)
D2 Q

(P+1)
D4 + 2

P∑
k=1

Q
(k)
D2Q

(k+1)
D2 , (3.28)

and

nvec = 2
P∑
k=1

(Q(k)
D2)2 + (Q(P+1)

D2 )2, (3.29)

which lead to

cR = 6
[(

2
P∑
k=1

Q
(k)
D2Q

(k)
D4 +Q

(P+1)
D2 Q

(P+1)
D4

)
+
(

2
P∑
k=1

Q
(k)
D2(Q(k+1)

D2 −Q(k)
D2)− (Q(P+1)

D2 )2
)]

.

(3.30)
Given that the D2-brane charge is infinite we need a prescription to regularise it. We will
evaluate all charges at a given value of x and finally sum over all of them. Doing this
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one can check that the contribution of the second big bracket to (3.30) is subleading in x
compared to that of the first big bracket. We then find an expression that diverges in x

in exactly the same way as the holographic central charge computed in (3.22), and agrees
with it to leading order in P (that is, for long quivers). Explicitly, the leading order in P
of (3.30) gives

cR = 27

37π4

∫
Ix
dxx3

P∑
k=1

µkγk. (3.31)

In order to show the matching with the holographic central charge we should recall that
the holographic central charge is to be identified with [92]

chol = cL + cR
2 . (3.32)

Therefore we need to compute first cL. In order to do this we can use that

cL − cR = Trγ3, (3.33)

which leads to [46]
cL − cR = 2n(0,4)

H − n(0,2)
F , (3.34)

where n(0,4)
H refers to the number of isolated (0, 4) hypermultiplets and n(0,2)

F to the number
of isolated (0, 2) multiplets. It can be checked that cL = cR identically for our quivers
due to the condition of anomaly cancellation. Therefore chol = cR and both quantities can
readily be compared. Indeed, we find, to leading order in P ,

chol = 26

37π4

∫
dxx3

[
2

P∑
k=0

∫ k+1

k
dy(−αα′′)

]
= 27

37π4

∫
Ix
dxx3

P∑
k=1

µkγk + . . . (3.35)

which exactly agrees with (3.31), to leading order.
As expected, these quantities diverge in x due to its non-compact character. This shows

that the 2d quiver CFTs associated to the (3.19)–(3.21) solutions are ill-defined per se, and
only find a meaning in the UV when the deconstructed extra dimensions where the 6d
CFTs live emerge. Still, our analysis in this section shows that, for x suitably large, we can
nicely embed the D2 and D4 defect branes within the 6d quiver theories associated to the
D6-NS5-D8 mother branes to produce non-anomalous, albeit infinitely charged, 2d quivers.

Note that the quivers discussed in this subsection differ from the quivers constructed
in [35] for D2-D4-NS5-D6 intersections. The main difference is that in that reference it was
wrongly stated that the D2-D6 branes were accounting for bifundamental hypermultiplets
and the D2-D4 for bifundamental twisted hypermultiplets, while the careful quantisation
of open strings carried out in this section shows that these hypermultiplets are in fact
interchanged. This explains why in reference [35] it was not possible to match the behaviour
in x of the field theory and holographic central charges.

4 N = (4, 4) AdS3 from D2-D4-NS5 branes

In this section we consider the particular limiting case in which the coordinates (z1, z2, z3)
of the solutions given by (2.4) span a 3-torus T3 that the warp factors are independent
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of. We show that the brane intersection reduces to the (4, 4) D2-D4-NS5 Hanany-Witten
brane set-ups discussed long ago in [76–78]. These brane set-ups are the two dimensional
realisations of the D3-NS5-D5 brane intersections constructed by Hanany and Witten [93]
and later extended to other dimensions. These Dp-NS5-D(p+ 2) brane intersections realise
p dimensional field theories with 8 supercharges that flow to CFTs in the IR (for p < 4),
in the UV (for p > 4), or are conformal per se (for p = 4). AdSp+1 geometries with 16
supercharges dual to these CFTs have been constructed in the literature for p = 6, 5, 4, 3
(see [73–75, 94–106]),8 but the p = 2 case remained an open problem.9

In this section we fill this gap, and construct explicit AdS3×S3 duals to (4, 4) D2-
D4-NS5 brane set-ups. In subsection 4.1 we state the main properties of the solutions,
consisting of AdS3×S3 × T3 geometries foliated over an interval. In subsection 4.2 we
construct the 2d quivers that describe the field theory living in the brane set-ups, and show
the agreement between their central charge and the one computed from the supergravity
solutions. In subsection 4.3 we discuss the M-theory realisation of these solutions. This
allows us to relate them to the AdS3×S2×T4×I solutions of massless Type IIA supergravity
constructed in [21]. The common M-theory origin of both classes of solutions implies that
they flow to the same 2d dual CFT in the IR, that we interpret as a manifestation of mirror
symmetry, as discussed in [76–78]. Finally in subsection 4.4 we construct new N = (0, 4)
solutions of Type IIB supergravity related by T-dualities to the previous ones. One such
class is holographically dual to D3-brane boxes constructions [108] with small N = (0, 4)
supersymmetry.

4.1 AdS3×S3 × T3 solutions with (4, 4) supersymmetries

Imposing the condition that the coordinates (z1, z2, z3) of the solutions given by (2.4) span
a 3-torus T3 that the warp factors are independent of one finds the subclass of solutions

ds2 = q√
h

[
ds2(AdS3) + ds2(S3)

]
+ g√

h
dρ2 + g

√
h ds2(T3), (4.1)

F0 = ∂ρh

g
, e−Φ = h

3
4
√
g
, (4.2)

F4 = 2q vol(AdS3) ∧ dρ+ 2q vol(S3) ∧ dρ, (4.3)

H3 = ∂ρ(hg) vol(T3), (4.4)

F6 = 2q gh vol(T3) ∧ (vol(S3) + vol(AdS3)), (4.5)

where g, h are functions of ρ satisfying the Bianchi identities

∂ρ

(
∂ρh

g

)
= 0, ∂2

ρ(gh) = 0, F0∂ρ(gh) = 0. (4.6)

The smearing of the functions g and h over the T3 imply that the underlying brane
intersection simplifies. In this section we will focus on the massless limit F0 = 0, to later

8Also partially for p = 1 (see [29]).
9In [107] a probe brane analysis revealed an AdS3×S3 geometry as gravity dual of a (4, 4) CFT.
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x0 x1 z1 z2 z3 ρ ζ θ1 θ2 θ3

D2 x x x
D4 x x x x x
NS5 x x x x x x

Table 4. 1
4 -BPS brane intersection underlying the geometry (4.1) with F0 = 0. (x0, x1) are the

directions where the 2d dual CFT lives, (z1, z2, z3) span the T3 on which the D4-branes are wrapped,
ζ and θi parameterise respectively the radial coordinate of AdS3 and the S3, and ρ is the field
theory direction.

analyse the non-vanishing Romans’ mass case in section 5. When F0 = 0 we have

h = h0 = constant, (4.7)

and the Bianchi identities imply that

g′′ = 0. (4.8)

These assumptions imply the exclusion of D8 and D6 branes from the set-up of table 1. More-
over, there is a supersymmetry enhancement to N = (4, 4), as discussed in subsection 2.1.1.
We thus obtain a class of N = (4, 4) AdS3 × S3 × T3 backgrounds fibered over an interval
whose underlying brane intersection is the one depicted in table 4. The quantised charges
of the D2-D4-NS5 branes are computed from the F4, H3 and F6 magnetic fluxes, given
by (4.3)–(4.5). In order to define the Page fluxes one notes however that it is not possible to
define a B2 globally, and that the flux that gives rise to quantised D2-brane charges is rather

f̂6 = f6 − C3 ∧H3 = 2 q h0(g − ρ g′) vol(T3) ∧ vol(S3), (4.9)

where f̂p stands for the magnetic component of Fp. We will use this definition of the 6-form
RR magnetic flux to compute the charge associated to the D2 branes. We will take h0 = 1
without loss of generality.10 The definition given by (4.9) implies that the Page charge
associated to D2-branes is sensitive to gauge transformations of the C3 RR potential. In
order to carefully account for these we will take as representative of C3 the one satisfying11

1
(2π)3

∫
S3
C3 ∈ [0, 1]. (4.10)

This is inspired by the more familiar condition that the NS-NS 2-form potential lie in the
fundamental region. In order to accomplish this we need to take

C3 = −2 q
(
ρ− 2π

q
k

)
vol(S3), (4.11)

for ρ ∈ [2π
q k,

2π
q (k + 1)]. Given that the D4-brane charge is obtained via computing

Q
(k)
D4 = 1

(2π)3

∫
Iρ,S3

F̂4, (4.12)

10This constant can be absorbed through a rescaling of ρ and the radius of AdS3.
11We choose units with α′ = gs = 1.
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this gives Q(k)
D4 = 1 for I = [ 2π

q k,
2π
q (k + 1)]. Therefore there is a single D4 brane in each

such interval. This clarifies the role played by the large gauge transformations performed
between intervals: a D4-brane is localised on the boundaries of the intervals, generating a
strong coupling realisation of the Hanany-Witten brane creation effect.12 Taking the whole
interval spanned by ρ to be [0, 2π

q (P + 1)], with P as defined below, we then find a total
number of (P + 1) D4-branes.

We proceed by solving the Bianchi identity g′′ = 0. The function g must be continuous,
but it can have discontinuities in its first derivative at the locations of the D4-branes, at
ρ = 2π

q k. The most general solution is then

gk = αk + βk
2π

(
ρ− 2π

q
k

)
, for ρ ∈

[2π
q
k,

2π
q

(k + 1)
]
. (4.13)

Imposing that the space begins and ends at ρ = 0, 2π
q (P + 1), where g vanishes, we find

g(ρ) =


β0
2πρ , 0 ≤ ρ ≤ 2π

q

αk + βk
2π

(
ρ− 2π

q k
)
, 2π

q k ≤ ρ ≤
2π
q (k + 1), k = 1, . . . , P − 1

αP + βP
2π

(
ρ− 2π

q P
)
, 2π

q P ≤ ρ ≤
2π
q (P + 1).

(4.14)

The condition g (2π
q (P + 1)) = 0 implies βP = −q αP , while continuity across the different

intervals implies the conditions

αk = 1
q

k−1∑
j=0

βj , k = 1, . . . , P. (4.15)

The behaviour close to the zeros of g, which bound the solution, is that of an ONS5 plane
(the S-dual of an O5 plane) that is smeared over the T3. Of course for an O-plane in
string theory such a smearing is not really physically allowed as the plane should lie at
the fixed point of the orientifold involution. Our solutions here are in supergravity, but
as we approach the ONS5 the curvature becomes large and that description should be
supplemented by α′ corrections. One can hope that such higher order effects conspire to
localise the ONS5 behaviour in string theory — indeed [109] argues that smeared O-planes
can be a good approximation to localised ones in some instances. However if one takes
the conservative view and insists on fully localised O-planes in supergravity, all is not lost:
the compatibility of a class of solutions with smeared O-planes often suggests that it is
also compatible with localised planes. Such solutions are harder to construct, but one can
view the solution here as a positive first step in that direction. As this subtly involves
the boundaries of the space we expect such generalisations to exhibit qualitatively similar
physical behaviour.

12In the usual Hanany-Witten effect NS5-branes are created. Uplifting this phenomenon to M-theory and
reducing along a worldvolume direction of the M5-branes one finds the same effect happening for D4-branes.
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The quantised charges in the different [2π
q k,

2π
q (k + 1)] intervals are thus given by

Q
(k)
D2 = 1

(2π)5

∫
T3,S3

F̂6 = q

(
g − g′

(
ρ− 2π

q
k

))
= q αk =

k−1∑
j=0

βj , (4.16)

Q
(k)
NS5 = 1

(2π)2

∫
T3
H3 = βk, (4.17)

Q
(k)
D4 = 1

(2π)3

∫
Iρ,S3

F̂4 = 1. (4.18)

This implies that the constants βk must be integer numbers, as they are directly related
to the number of branes in the brane set-up. This confirms that the suggested brane
configuration is the one given in table 4. Substituting our expression for g into the Bianchi
identities we find

dH3 = h0
2π

P∑
k=1

(βk − βk−1)δ
(
ρ− 2π

q
k

)
dρ ∧ vol(T3) , (4.19)

df̂6 = −q h0
π

P∑
k=1

(βk − βk−1)
(
ρ− 2π

q
k

)
δ

(
ρ− 2π

q
k

)
dρ ∧ vol(T3) ∧ vol(S3) = 0,

where f̂6 denotes the magnetic component of the 6-form Page flux. They are thus satisfied
up to source terms, which indicate the presence of (βk−1 − βk) NS5-branes at ρ = 2π

q k,
where the slope of g changes. These branes are wrapped on the AdS3×S3 subspace of the
geometry and smeared over the T3.

Finally, the central charge computed with the Brown-Henneaux formula gives, for this
class of solutions13

chol = 3
π
q2
∫
dρ h g. (4.20)

This will be later compared to the corresponding field theory expression.

4.2 2d dual CFTs

In order to extract the quiver QFTs associated to the previous solutions we need to account
for the ordering of the NS5-branes along the ρ direction, together with the net number of
D2-branes ending on each of them and the D4-branes orthogonal to both types of branes.
The massless modes that give rise to the quiver QFT are then coming from the strings
stretching between the D-branes in the same interval between NS5-branes, or between
adjacent intervals. There are three types of massless modes to consider:

• D2-D2 strings: there are two cases to consider. Open strings with both end points
lying on the same stack of D2-branes give rise to N = (4, 4) vector multiplets, while
those with end points on two different stacks separated by an NS5-brane give rise to
N = (4, 4) hypermultiplets in the bifundamental representation.

13Note that this expression is also valid when F0 6= 0.
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• D4-D4 strings: depending on the size of the T3, on which the D4-branes are wrapped,
these strings do not contribute massless modes. Given that D4-D4 strings are T-dual
to D2-D2 strings, the open strings would contribute a (4, 4) vector multiplet for a
stringy size T3.

• D2-D4 strings: strings with one end on D2-branes and the other end on orthogonal
D4-branes in the same interval between NS5-branes contribute with fundamental
(4, 4) hypermultiplets, associated to the motion of the strings along the (z1, z2, z3)
directions plus the A5 component of the gauge field.

The relevant data to construct the quivers associated to these massless modes are the
linking numbers of the D4-branes and the NS5-branes. To define these we use that the
brane set-up depicted in table 4 is T-dual to the Type IIB construction studied in [93], and
use the definitions

li = ni + LNS5
i , for the D4-branes (4.21)

l̂j = −n̂j +RD4
j , for the NS5-branes, (4.22)

where ni is the number of D2-branes ending on the ith D4-brane from the right minus
the number of D2-branes ending on it from the left, n̂j is the same quantity for the jth
NS5-brane, LNS5

i is the number of NS5-branes lying on the left of the ith D4-brane, and
RD4
j is the number of D4-branes lying on the right of the jth NS5-brane.14 Following [110]

it is then possible to read the data of the QFT living in the brane set-up from the linking
numbers, namely, the gauge group G = U(N1) × · · · × U(Nk), the bifundamental fields
transforming in the (Ni, N̄i+1) representations, and the fundamental matter, transforming
under U(Mi) for each group.

The way to proceed is as follows. The linking numbers of both the D4 and NS5 branes
define an integer number N , as N = ∑p

i=1 li = ∑p̂
j=1 l̂j , where p and p̂ are the numbers

of D4-branes and NS5-branes, respectively. This is the number of D2-branes that end on
the left on a collection of D4 branes and on the right on a collection of NS5-branes. Any
brane configuration can be pictured in this way after suitable Hanany-Witten moves. Now,
in order to read the quiver, we consider the partition N = ∑p̂

j=1 l̂j , where the NS5-branes
have to be ordered such that l̂1 ≥ l̂2 ≥ · · · ≥ l̂p̂, and a second partition defined from a list of
positive integer numbers satisfying q1 ≥ q2 ≥ · · · ≥ qr, N = ∑r

s=1Msqs, with the numbers
Ms indicating how many times the different integers qs appear in the partition. The set of
integers qs is defined such that the number of terms in the decomposition that are equal or
bigger than a given integer j, that we denote as mj , satisfy that

i∑
j=1

mj ≥
i∑

j=1
l̂j , ∀i = 1, . . . , p̂. (4.23)

From these two partitions the ranks of the different U(Ni) gauge groups of the quiver are
then computed as

Ni =
i∑

j=1
(mj − l̂j). (4.24)

14Our conventions are related through T and S dualities to the conventions in [110].
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D4 D4 D4 D4 D4

β0 NS5 β1 NS5 β2 NS5 βP−1 NS5 βP NS5

α1 D2

α2 D2 αP −1 D2

αP D2

Figure 5. Brane set-up associated to the quantised charges (4.16)–(4.18), in units of q.

In turn, the numbers Ms appearing in the N = ∑r
s=1Msqs decomposition give the ranks of

the fundamental matter groups that couple to each of the gauge groups. A detailed account
of this construction can be found in [106]. It will become clearer after we illustrate it with
the particular brane set-up that is the subject of our analysis.

Let us now apply these rules to the construction of the field theory associated to our
solutions, defined by g(ρ) as in (4.14). The brane set-up is read from the numbers of branes
at each ρ ∈ [2π

q k,
2π
q (k + 1)] interval, determined by equations (4.16)–(4.18). Moreover, as

discussed below equation (4.14), βP anti-NS5-branes must end the space at ρ = 2π
q (P + 1).

The resulting brane set-up is then the one depicted in figure 5. From this brane configuration
we can read the linking numbers for the D4-branes

li =
i−2∑
r=0

βr + 2βi−1, i = 1, . . . , P (4.25)

and for the NS5-branes

l̂1 = l̂2 = · · · = l̂β0 = P,

l̂β0+1 = l̂β0+2 = · · · = l̂β0+β1 = P − 1,
...

l̂β0+β1+···+βP−3+1 = l̂β0+β1+···+βP−3+2 = · · · = l̂β0+β1+···+βP−2 = 2,
l̂β0+β1+···+βP−2+1 = · · · = l̂β0+β1+···+βP−1 = 1,
l̂β0+β1+···+βP−1+1 = · · · = l̂β0+β1+···+βP−1+βP = 1. (4.26)

From the linking numbers we construct the total number of D2-branes ending on D4-branes
on the left and NS5-branes on the right. This is given by

N =
P∑
i=1

li =
β0+···+βP∑

j=1
l̂j =

P−1∑
k=0

(P − k + 1)βk. (4.27)

Now, from N we define the two partitions that will allow us to read the quiver CFT. The
NS5-branes in our brane set-up are ordered such that l̂1 ≥ l̂2 ≥ · · · ≥ l̂ ˆβ0+···+βP . These
linking numbers define then one of the two partitions, N = ∑β0+···+βP

j=1 l̂j . In turn, for the
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D4-branes we take

N = β0︸︷︷︸+β0 + β1︸ ︷︷ ︸+β0 + β1 + β2︸ ︷︷ ︸+ · · ·+ β0 + β1 + · · ·+ βP−2︸ ︷︷ ︸+2 (β0 + β1 + · · ·+ βP−1)︸ ︷︷ ︸
(4.28)

from where

m1 = m2 = · · · = mβ0 = P + 1,
mβ0+1 = · · · = mβ0+β1 = P,

...
mβ0+β1+···+βP−3+1 = · · · = mβ0+β1+···+βP−2 = 3,
mβ0+β1+···+βP−2+1 = · · · = mβ0+β1+···+βP−1 = 2. (4.29)

These numbers satisfy the condition (4.23) ∀i = 1, . . . , (β0 + · · ·+ βP ). We then find for
the ranks of the gauge groups

N1 = m1 − l̂1 = P + 1− P = 1, N2 = N1 +m2 − l̂2 = 2, . . . Nβ0 = β0,

Nβ0+1 = β0 + 1, . . . Nβ0+β1+···+βP−1 = β0 + β1 + · · ·+ βP−1, (4.30)

to then start decreasing

Nβ0+β1+...βP−1+1 = β0 + β1 + · · ·+ βP−1 − 1, . . . Nβ0+β1+...βP−1+βP−1 = 1. (4.31)

That is, the ranks of the gauge groups increase in units of 1 till the value β0 +β1 + · · ·+βP−1
is reached, to then start decreasing, again in units of one, till the gauge group of rank 1 is
reached, corresponding to the D2-branes stretched between the last pair of NS5-branes.

Finally, from the partition (4.28) we have that

Mβ0 = Mβ0+β1 = · · · = Mβ0+β1+···+βP−2 = 1, Mβ0+β1+···+βP−1 = 2. (4.32)

This implies that the gauge groups with ranks β0 = q α1, β0+β1 = q α2, till β0+· · ·+βP−2 =
q αP−1 have U(1) flavour groups, while the gauge group with rank β0 +β1 · · ·+βP−1 = q αP
has flavour group U(2). The rest of gauge groups have no flavour groups attached. The
resulting quiver is depicted in figure 6. One can check that the number of gauge nodes
equals the total number of NS5-branes minus 1, as it should be. In this quiver circles denote
(4, 4) vector multiplets and black lines (4, 4) bifundamental hypermultiplets. Note that we
have rescaled it such that the intervals have length [0, 2π], as it is more standard in the
literature, and therefore

αk =
k−1∑
j=0

βj , for k = 1, . . . , P. (4.33)

Our proposal is that the QFTs defined by these quivers flow in the IR to the 2d CFTs
dual to the class of solutions defined by (4.1)–(4.5), with h = constant and g given by (4.14).
Next we will provide a non-trivial check of this proposal, consisting on the matching between
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Figure 6. 2d quiver associated to the brane set-up depicted in figure 5. Circles denote (4,4) vector
multiplets and black lines (4,4) bifundamental hypermultiplets. The gauge groups with ranks αk,
with k = 1, . . . , P − 1 to the left of the gauge group with rank αP have U(1) flavour symmetries.
The gauge group with rank αP has U(2) flavour symmetry. The rest of gauge groups do not have
attached any flavours.

the field theory and holographic central charges. However, before we do that we should recall
that the Higgs and Coulomb branches of 2d (4, 4) theories are described by different CFTs,
with the different branches having different R-symmetries and usually different central
charges [89, 90]. Thus, the question arises as to which of these branches of the theory is
described holographically by our class of solutions. The basis of the argument in [90] is that
the scalars should be singlets under the SO(4) R-symmetry of the 2d CFT. In our case this
symmetry is associated to the isometry group of the 3-sphere in the internal space. Since the
scalars in the Higgs branch are singlets under this group the Higgs branch flows to a CFT with
R-symmetry coming from this SO(4). In turn, the scalars in the Coulomb branch transform
in the (2,2) representation of SO(4), so the Coulomb branch must flow to a 2d CFT with
R-symmetry coming from the SU(2) associated to the S2 living in the T3 (this is locally R3),
which should be enhanced to SO(4) at strong coupling (see below). Based on this argument
our solutions must be holographically dual to the Higgs branch 2d CFT. Accordingly, the
holographic central charge must match the central charge of the Higgs branch.

Given that our theories are (4, 4) supersymmetric, we can use the expression that gives
the central charge of the left or right-moving SU(2) group of R-symmetries to compute
the central charge of the Higgs branch, given by equation (3.27), c = 6(nhyp − nvec), where
nhyp stands for the number of (0, 4) hypermultiplets and nvec for the number of (0, 4)
vector multiplets. Note that they can also stand, respectively, for the number of (4, 4)
hypermultiplets and (4, 4) vector multiplets, more useful for our quiver constructions, since
their respective (0, 4) Fermi multiplets and (0, 4) adjoint twisted hypermultiplets do not
contribute to the R-symmetry anomaly. For the quivers depicted in figure 6 we have

nhyp = 2
αP−1∑
k=1

k(k + 1) + q
P−1∑
k=1

αk + 2q αP and nvec = 2
αP−1∑
k=1

k2 + α2
P . (4.34)

This gives

c = 6 q
P∑
k=1

αk. (4.35)
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QD4

QD2

Figure 7. Quiver associated to the solution with g = constant, corresponding to the T-dual of the
D1-D5 system.

The holographic central charge was computed in the previous section. It is given by
expression (4.20). Taking h = 1 and g as defined by (4.14), (4.33) it reduces to

chol = 6 q
P∑
k=1

αk. (4.36)

We thus find exact agreement with the field theory calculation.
A particular example in our class of solutions is when the interval is periodically

identified, in which case the function g has to be constant. This gives the quantised charges
QD2 = q g, QD4 = 1, for ρ ∈ [0, 2π

q ]. For ρ ∈ [0, 2π] we have QD2 = g, QD4 = q. This
solution describes the T-dual of the D1-D5 system when the CY2 is a T4, and the T-
duality takes place along one of the directions of the T4. The D5-branes become D4-branes
smeared on the T-duality direction and the quiver collapses to the one describing the D1-D5
system, depicted in figure 7 (for ρ ∈ [0, 2π]). Equation (3.27) gives the well-known result
c = 6QD2QD4 for the central charge, in agreement with the holographic result.

4.3 Realisation in M-theory

In this subsection we look into the M-theory regime of the brane intersection depicted
in figure 4. At strong coupling the D4-branes become M5-branes wrapped on the 11th
direction, while the NS5-branes become M5’-branes transverse to it. Thus, the Hanany-
Witten configuration consists on M2-branes stretched between M5’-branes with M5-branes
orthogonal to them. In M-theory the M5 and the M5’ branes are however equally non-
perturbative, so one could alternatively consider the configuration in which the M2-branes
are stretched between the M5-branes with the M5’-branes orthogonal to them.

In order to read off the field content associated to this configuration in weakly coupled
string theory we need to reduce to ten dimensions in a direction in which the M5-branes
become NS5-branes. In our set-up this can be achieved reducing along the Hopf-fibre
direction of the S3, which is transverse to the M5-branes. This halves the number of
supersymmetries and creates a D6-brane. Moreover, in the reduction the T3 combines with
the S1 (that played before the role of eleventh direction, that we denote by ψ) to produce
a T4. The resulting brane set-up is the one depicted in table 5, which is the one underlying
the AdS3×S2 × T4 × I solutions constructed in [21], restricted to the massless case. In the
particular brane intersection associated to our solutions there are αj D2-branes15 and a D6-

15With the αj defined as in (4.33).
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x0 x1 z1 z2 z3 ψ ρ ζ θ1 θ2

D2 x x x
NS5 x x x x x x
D4 x x x x x
D6 x x x x x x x

Table 5. 1
8 -BPS brane intersection associated to the solutions in [21]. (x0, x1) are the directions

where the 2d dual CFT lives. (z1, z2, z3, ψ) span the T4, on which the NS5 and D6 branes are
wrapped. The coordinates (ζ, θ1, θ) are the transverse directions realising the SO(3)-symmetry
associated with the isometries of the S2.

Figure 8. 2d quiver associated to the AdS3 × S2 × T4 × I solutions with αk D2-branes and k

D6-branes wrapped on the T4. Circles denote (0, 4) vector multiplets, blue lines (4, 4) twisted
hypermultiplets, red lines (0, 4) hypermultiplets and dashed lines (0, 2) Fermi multiplets.

brane wrapped on the T4 stretched between NS5-branes, that play the role of colour branes.
Note however that in order to have a consistent IIA supergravity background the number
of D6-branes should be large, which implies that prior to the reduction the S3 has to be
modded by Zk, such that k D6-branes are obtained upon reduction. Additional (βj−1 − βj)
orthogonal D4-branes at each interval play the role of flavour branes. The holographic
central charge can be obtained from the result in [23], where this quantity was computed for
the general class of solutions in [21]. One can check that for our configuration it agrees with
the holographic central charge computed in (4.36), multiplied by k due to the Zk orbifolding,
that mods out the S3 by Zk. The field theory living in the brane intersection can also be
determined from the general study in [23].16 The result is the quiver gauge theory depicted
in figure 8. In this figure circles denote (0, 4) vector multiplets, blue lines (4, 4) twisted
hypermultiplets, red lines (0, 4) hypermultiplets and dashed lines (0, 2) Fermi multiplets.
2d (0, 4) theories do not have a Coulomb branch, since (0, 4) vector multiplets contain no
scalars. In turn, for the Higgs branch one can use expression (3.27), which gives rise to17

cR = 6 q k
P∑
j=1

αj . (4.37)

16See also [46], where some corrections to the analysis in [23] were pointed out.
17Here the factor of q arises because the quiver has to be rescaled by q in order to account for the rescaling

of the quiver of figure 6.
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In this case this is the right-moving central charge, since the theory is (0, 4) supersymmetric.
However, using expression (3.34) one can see that cL = cR, due to the condition of anomaly
cancellation. One can now see that this expression agrees with the central charge of (the
Higgs branch of) the quiver depicted in figure 6, given by expression (4.35).18 This result
shows that the different light multiplets appearing in the quivers depicted in figures 6 and 8,
both of which are precise deductions of perturbative string theory, lead to the same central
charge. Of course the reason for this agreement is the common origin in M-theory of both
classes of solutions. Field theoretically what we find is a realisation of the mirror symmetry
of the dual CFT, in the precise sense discussed below.

4.4 Realisation in Type IIB

The common M-theory origin of both classes of solutions implies that they are related by
S-duality once they are T-dualised onto Type IIB string theory. This is another reason
why they should flow to the same CFT in the IR. Which deformation would be more
convenient to use away from the critical point depends as usual on the concrete value
of the gauge coupling. At the level of the solutions, once they have been T-dualised to
Type IIB supergravity both classes become (0, 4) supersymmetric, because the T-duality
on the AdS3 × S3 × T3 × I solutions, (4, 4) supersymmetric in Type IIA, takes place along
the Hopf-fibre of the S3, and this halves the supersymmetries to (0, 4).19 These Type IIB
solutions are interesting on their own, since they provide explicit holographic duals to
D3-brane boxes constructions [108], realising in this case small N = (0, 4) supersymmetry.20

In the next subsection we construct these Type IIB backgrounds, and show that they
are related by an SL(2,R) transformation to the T-duals (along a circle on the T4) of the
AdS3×S2 × T4 × I solutions of massless Type IIA constructed in [21].

The brane set-up associated to the T-dual of the AdS3×S3×T3× I solutions studied in
section 4 is depicted in table 6, while that associated to the T-dual of the AdS3×S2×T4× I
solutions constructed in [21] is depicted in table 7. One can check that these brane set-ups
are S-dual to each other. Furthermore, one can see that the S-duality of Type IIB string
theory interchanges the (0, 4) hypermultiplets and (0, 4) twisted hypermultiplets associated
to the massless string modes living in the respective Type IIB configurations. This is the
2d manifestation of the mirror symmetry present in 3d gauge theories [93, 111], which
besides inverting the coupling constant, interchanges the scalars in the hypermultiplets and
vector multiplets, and therefore the Higgs and Coulomb branches of the 3d theory. Given
that 2d (0,4) field theories do not have a Coulomb branch, since (0,4) vector multiplets
contain no scalars, 2d mirror symmetry cannot be realised as the interchange between the
Higgs and Coulomb branches. Remarkably, mirror symmetry is realised in this set-up as
the interchange between the scalars transforming under the SU(2)R symmetry, i.e those
belonging to the twisted hypermultiplets, with those that are singlets under the SU(2)R, i.e

18Multiplied by k due to the orbifolding by Zk.
19Still, the 2d dual CFT does not change, independently on the number of supersymmetries that are

manifest in the UV.
20Recall that, instead, the D3-brane boxes constructed in [108] have SO(4)R symmetry, and should

therefore be dual to AdS3 solutions with large N = (0, 4) supersymmetry.
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x0 x1 z1 z2 z3 ρ ζ ψ θ1 θ2

D3 x x x x
D5 x x x x x x
NS5 x x x x x x
NS5’ x x x x x x

Table 6. 1
8 -BPS brane intersection T-dual to the brane intersection depicted in table 4, realising a

D3-brane box model. (x0, x1) are the directions where the field theory lives, (z1, z2, z3) span the T3,
ρ is the direction where the NS5-branes are located, ζ and θi are respectively the radial coordinate
of AdS3 and the angles that parameterise the S2, and ψ parameterises the S1 generated upon the
dualisation, where the NS5’-branes are located. (ρ, ψ) are thus the two directions of the brane box.

x0 x1 z1 z2 z3 ψ ρ ζ θ1 θ2

D3 x x x x
NS5 x x x x x x
D5 x x x x x x
D5’ x x x x x x

Table 7. 1
8 -BPS brane intersection T-dual to the brane intersection depicted in table 5. (x0, x1)

are the directions where the field theory lives, (z1, z2, z3) span a T3, ψ is the T-duality circle and ρ
is the field theory direction. This configuration is S-dual to the configuration in table 6.

the ones belonging to the untwisted hypermultiplets. This extends very naturally the mirror
symmetry present in 3d gauge theories to these 2d theories, and parallels the interchange
between chiral and twisted chiral superfields inherent to mirror symmetry in supersymmetric
sigma models.

4.4.1 Solutions of Type IIB supergravity

In this subsection we complement the above holographic discussion with the explicit
construction of the Type IIB supergravity solutions.

We start presenting the T-dual of the solutions studied in section 4. T-dualising along
the Hopf fiber of the S3 of the AdS3 × S3 × T3 solutions given by (4.1)–(4.5) we obtain the
Type IIB backgrounds

ds2 = q h−1/2
[
ds2(AdS3) + 4−1 ds2(S2)

]
+ q−1 h1/2 dψ2 + g

[
h−1/2dρ2 + h1/2 ds2(T3)

]
,

e−Φ = (q h)1/2 g−1/2 , H3 = ∂ρ (hg) vol(T3)− 2−1 vol(S2) ∧ dψ,
F1 = g−1 ∂ρ h dψ ,

F3 = −2−1q vol(S2) ∧ dρ,
F5 = 2 q vol(AdS3) ∧ dρ ∧ dψ + 2−1 q g h vol(T3) ∧ vol(S2) , (4.38)
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where ψ parameterises the T-duality circle.21 In order to provide the local representation
of the brane set-ups of tables 6 and 7 we need to focus on the particular situation

h = constant, g′′ = 0, (4.39)

corresponding to the massless solutions in Type IIA. In this case the metric exhibits the
characteristic behaviour of NS5-branes wrapped on an AdS3×S2×S1 geometry. Indeed, it
can be verified that these solutions arise in the near horizon limit of a D3-D5-NS5-NS5’
brane solution representing the bound state of table 6, where the D3-D5-NS5’ branes have
been fully localised within the worldvolume of the NS5 branes (as it was done for the HD2(ζ)
and HD4(ζ) harmonic functions in section 2.2). We will restrict to this subclass of solutions,
characterised by a vanishing axion, in the remainder of this section.

Let us now perform an SL(2,R) rotation parameterised by an angle ξ ∈ [0, π2 ],

R =
(

cos ξ − sin ξ
sin ξ cos ξ

)
, (4.40)

in this subclass of solutions. Starting with a “seed” background described by fluxes, dilaton,
metric and axio-dilaton F(n),s, Φs, ds2

10,s and τs = C0,s + ie−Φs , R acts as usual,

(
F̃3
H3

)
=
(

cos ξ − sin ξ
sin ξ cos ξ

)(
F3,s
H3,s

)
,

τ = cos ξ τs − sin ξ
sin ξ τs + cos ξ , F5 = F5,s .

(4.41)

Note that even if our seed solutions are characterized by a vanishing axion, this transforma-
tion generates a non-trivial profile for C0. This implies that the 3-form flux associated to
the rotated solution is given by F3 = F̃3 − C0H3. Finally, the metric in the string frame
transforms as ds2

10 = | cos ξ + sin ξ τ | ds2
10,s. Applying these rules to the backgrounds given

by (4.38) the following one-parameter family of solutions is obtained,

ds2 = ∆1/2
[
qh−1/2

[
ds2(AdS3)+4−1 ds2(S2)

]
+q−1h1/2 dψ2+g

[
h−1/2dρ2+h1/2 ds2(T3)

]]
,

∆ = c2+qhg−1 s2 ,

e−Φ = ∆−1(hq)1/2 g−1/2 , C0 = sc∆−1
(
hqg−1−1

)
,

H3 = ch∂ρ gvol(T3)−2−1 cvol(S2)∧dψ−2−1 sqvol(S2)∧dρ,
F3 =−2−1 q c∆−1vol(S2)∧dρ−sqh2g−1∆−1∂ρ gvol(T3)+2−1sqhg−1 ∆−1vol(S2)∧dψ,
F5 = 2qvol(AdS3)∧dρ∧dψ+2−1 q ghvol(T3)∧vol(S2) , (4.42)

21This solution is an example contained in the class of [48] section 3.1: one should identify (h, g) and
(P,G) there, restrict u′ = 0 and impose that ∂zi are all isometries.
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where s = sin ξ and c = cos ξ.22 In particular, the family of S-dual solutions is obtained by
setting ξ = π

2 in the above class, giving rise to

ds2 = q3/2g−1/2
(
ds2(AdS3) + 4−1ds2(S2)

)
+ q−1/2h g−1/2dψ2

+ q1/2g1/2dρ2 + q1/2g1/2 h ds2(T3),
e−Φ = (q h)−1/2g1/2 , H3 = −2−1q vol(S2) ∧ dρ
F3 = −h ∂ρ g vol(T3) + 2−1vol(S2) ∧ dψ,
F5 = 2 qvol(AdS3) ∧ dρ ∧ dψ + 2−1 q g h vol(T3) ∧ vol(S2) . (4.43)

One can observe that, as expected, the 5-branes exchange their roles, with the metric now
exhibiting the characteristic behaviour of D5-branes wrapped on a AdS3×S2×S1 geometry,
originated by a D3-D5’-NS5 fully-backreacted intersection. One can also verify that these
solutions arise in the near horizon limit of the brane intersection depicted in table 7, where
the D3-D5’-NS5 branes are fully localised within the worldvolume of the D5-branes.

The class of solutions presented in this section can be related to the Type IIB N = (0, 4)
AdS3 solutions constructed in [40], from slightly more general, D3-D5-NS5-D5’-NS5’, brane
set-ups. The easiest way to show this is by relating the solution with ξ = π

2 given in (4.43)
with equation (2.7) in [40]. One needs to impose that HNS5′ = 1, rename HD5′ = g and
smear the solution in [40] in such a way that HD5′ = g is delocalised over the internal R3,
such that it can be replaced by a T3.

5 AdS3×S3 × T3 in Type I’

In this section we return to the solutions constructed in section 4 but we now focus on the
massive case F0 6= 0. Recall that we had the AdS3×S3 × T3 geometries fibered over an
interval given by (4.1)–(4.5), with defining functions satisfying the Bianchi identities (4.6).
In the massive case we choose to write (g, h) in terms of a function u as

h =
√
u, g = c√

u
, (5.1)

such that the Bianchi identities are satisfied with c constant and u a linear function. The
solutions then take the form

ds2 = q

u
1
4

[
ds2(AdS3) + ds2(S3)

]
+ c

u
1
4

[
ds2(T3) + 1√

u
dρ2

]
, e−Φ = u

5
8
√
c
, (5.2)

F0 = u′

2c , F4 = 2 q
(
vol(AdS3) + vol(S3)

)
∧ dρ, (5.3)

F6 = 2 q cvol(T3) ∧ (vol(S3) + vol(AdS3)) (5.4)

The underlying brane set-up is the one depicted in table 8. As mentioned above, u has to
be a linear function in order to satisfy the Bianchi identities. We will take it to be piece-
wise linear such that D8-branes can be introduced at the different jumps of its derivative,

22This generalised solution is an example contained in the class of [48] section 3.2: again one should
identify (h, g) with (P,G) there, restrict u′ = 0 and impose that ∂zi are all isometries.
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x0 x1 z1 z2 z3 ρ ζ θ1 θ2 θ3

D2 x x x
D4 x x x x x
D8 x x x x x x x x x

Table 8. 1
8 -BPS brane intersection underlying the geometry (5.2)–(5.4). (x0, x1) are the directions

where the 2d dual CFT lives, (z1, z2, z3) span the T3, where the D4’s and the D8’s are wrapped, ρ
is the field theory direction, where the D2 branes are stretched, and θi parameterise the S3.

according to the expression for F0 in (5.3). We take the space to begin at ρ = 0 and end at
ρP , where u vanishes. At the zeros of u the solutions behave as

ds2 = q√
x

[
ds2(AdS3) + ds2(S3) + c ds2(T3)

]
+ 4c
√
xdx2, e−Φ = x

5
4
√
c
, (5.5)

where ρ = x2, which is the behaviour of a localised D8/O8 system on AdS3×S3 × T3. We
will then define the solutions globally by embedding them into Type I’ string theory, that is,
introducing O8 orientifold fixed points at both ends of the space and 16 D8-branes (together
with their mirrors under Z2) at arbitrary positions in ρ. Taking ρP = ρ17 = π and the 16
D8-branes located at arbitrary points ρ1, . . . , ρ16 between ρ = 0 and ρ17 = π, we have that
u(ρ) is given by

u(ρ) =



−16c
2π ρ, 0 ≤ ρ1

α1 − 14c
2π (ρ− ρ1), ρ1 ≤ ρ ≤ ρ2

...

αk + 2c(k−8)
2π (ρ− ρk), ρk ≤ ρ ≤ ρk+1

...

α15 + 14c
2π (ρ− ρ15), ρ15 ≤ ρ ≤ ρ16

α16 + 16c
2π (ρ− π), ρ16 ≤ ρ ≤ π,

(5.6)

where, for continuity the αk must satisfy

αk = αk−1 −
2c
2π (9− k)(ρk − ρk−1), for k = 1, . . . , 16. (5.7)

In turn, in order to satisfy the condition u(π) = 0 the positions of the D8-branes must be
such that

17∑
k=1

(9− k)(ρk − ρk−1) = 0. (5.8)

Note that this is trivially satisfied when ρ17−k = π − ρk, with k = 1, . . . , 8, i.e. when the
D8-branes are symmetrically distributed along the interval, and also when the D8-branes
are equally spaced, such that ρk − ρk−1 = π/16 for all k.
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Figure 9. Quiver associated to the AdS3×S3 × T4 solutions in Type I’.

Besides the D8-brane charge jumping by +1 at the position of each D8-brane, we have
the quantised charges

Q
(k)
D2 = 1

(2π)5

∫
T3,S3

f6 = c q (5.9)

Q
(k)
D4 = 1

(2π)3

∫
Iρ,S3

F4 = q

2π (ρk+1 − ρk). (5.10)

The number of D2-branes must thus be the same in all intervals, with c = QD2/q, while the
jump in the D4-brane charge must be given by (5.10).

With these ingredients we can proceed to construct the quiver gauge theories that flow
in the IR to the CFTs dual to our solutions. In order to account for the different massless
fields that build the quivers we look at the quantisation of the open strings stretched between
the different branes in the brane set-up depicted in table 8. Following [112]23 we find:

• D2-D2 strings: open strings with both ends on the same stack of D2-branes give
rise to (0, 4) SO(QD2) vector multiplets and (0, 4) hypermultiplets in the symmetric
representation of SO(QD2).

• D2-D4 strings: open strings stretched between D2 and D4 branes give rise to N = (0, 4)
hypermultiplets in the bifundamental representation of SO(QD2)× Sp(2QD4).

• D2-D8 strings: open strings stretched between D2 and D8 branes give rise to (0, 2)
Fermi multiplets in the bifundamental representation of SO(QD2)× SO(QD8).

These massless modes give rise to the (0, 4) disconnected quivers depicted in figure 9. In
these quivers anomaly cancellation imposes that

2Q(k)
D4 = ∆Q(k)

D8 = 1, (5.11)

as explained below equation (3.25). Given that D4-branes in Type I’ carry 1/2 units of
charge [113], in order to obtain a consistent CFT in the IR the D4-branes must be located in
exactly the same positions in ρ as the D8-branes. This fixes the total number of D4-branes

23In this reference the projection induced by the orientifold fixed points was carefully analysed for the
Type I D1-D5 system, T-dual to our D2-D4-D8 brane set-up.
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to 16.24 This condition needs to be imposed on the supergravity solution in order to
describe a proper Type I’ background with a well-defined 2d dual CFT. It is likely that
this condition arises as a consistency condition of the supergravity solution itself, however
we leave confirmation of this for future work.

Finally, substituting (5.1) in (4.20) it is straightforward to see that the holographic
central charge for this class of solutions is given by

chol = 48QD2, (5.12)

and that this matches exactly the field theory result, obtained from (3.27), which gives in
this case

cR = cL = 6
16∑
k=1

QD2Q
(k)
D4 = 48QD2. (5.13)

6 Conclusions

In this paper we have constructed a new class of AdS3×S3×M4 solutions of massive Type IIA
supergravity with N = (0, 4) supersymmetries and SU(3) structure. We have then analysed
separately two interesting subclasses of solutions. The first one is when M4 =S2 × Σ2, with
Σ2 a 2d Riemann surface, and the geometry is foliated over the Σ2. We have shown that the
AdS3×S3×S2 × Σ2 geometries flow in the UV, asymptotically locally, to the AdS7×S2 × I
geometries constructed in [73]. This points at a possible interpretation of the solutions as
describing surface defect CFTs within the 6d (1, 0) CFTs dual to the AdS7 solutions. We
have checked that this interpretation is correct by explicitly embedding the 2d (0, 4) quivers
associated to the AdS3 solutions into the 6d quivers that describe the 6d (1, 0) CFTs dual
to the AdS7 spaces. Our analysis extends25 the results in [35], where AdS3 solutions dual to
surface defect CFTs embedded in the 6d (1, 0) CFT dual to the AdS7 solution to massless
Type IIA supergravity [114] were constructed, allowing now for F0 6= 0. In our analysis
we have been able to show the exact agreement between the field theory and holographic
central charges, even if both quantities are divergent due to the existence of the non-compact
direction inherent to the defect. Indeed, the whole point of the defect interpretation is
that the presence of the non-compact direction allows to build up the AdS7 geometry
asymptotically and therefore to complete the non-compact AdS3 solutions in the UV.

The second case that we have addressed in detail is when M4 = T3 × I and the
AdS3×S3 × T3 geometry is foliated over the interval. We have studied separately the
massless and massive cases, starting with the former. We have shown that in this case there
is a supersymmetry enhancement to (4, 4), and that the solutions are holographically dual
to 2d CFTs with 8 supercharges living in D2-D4-NS5 Hanany-Witten brane set-ups. This is
the trivial extension to 2d of the 3d Hanany-Witten brane set-ups constructed in [93], and
even if they were studied long ago [76–78] the holographic duals were still missing in the
literature. In this paper we have taken the first step towards filling this gap. Our only point

24Note that it is possible to consider the situation in which some of the ρk coincide, such that a group of
D8-D4 branes is added at that position.

25And corrects, as explained in section 3.3.
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of concern is that the global completion that we have found for our AdS3 constructions is in
terms of smeared ONS5 orientifold fixed planes. ONS5 orientifold fixed planes are perfectly
well-defined objects in string theory (one way of defining them is as S-duals of O5-planes),
but in our construction they are smeared on the T3. As we discuss below (4.15), it is possible
that the smearing of the ONS5s is an artifact of the supergravity approximation and is
resolved in string theory. However if one is to take a more conservative view, the existence
of our solutions with smeared ONS5s also suggests the existence of similar solutions in
supergravity with localised ONS5s, as is often the case in constructions involving O-planes.
Such solutions are generically far harder to construct, and lie outside the scope of this work,
but one can view our solutions as an important first step in this direction. We have shown
that the embedding of this class of solutions within M-theory and Type IIB supergravity
sheds some light onto some of their properties. The first realisation relates them to the
AdS3×S2 × T4 × I solutions of massless Type IIA supergravity constructed in [21].26 This
realisation allows one to interpret the quiver CFTs dual to the solutions studied in this
paper, which exhibit (4, 4) supersymmetry, and the quiver CFTs associated to the massless
solutions in [21], (0, 4) supersymmetric, as deformations of a unique 2d (4, 4) CFT, which
exhibits different supersymmetries depending on how it is deformed in the UV. We have
completed our analysis with an study in Type IIB string theory, where both AdS3/CFT2
pairs are related by S-duality. The realisation in Type IIB shows that mirror symmetry
in 2d interchanges the scalars in the hypermultiplets and twisted hypermultiplets, instead
of the scalars in the vector multiplets and hypermultiplets (and therefore the Coulomb
and Higgs branches) as in 3d [93, 111]. That mirror symmetry can still be realised in this
way in theories without a Coulomb branch is a remarkable output of our analysis. These
AdS3 solutions in Type IIB provide concrete examples within the broad classification of
AdS3×S2×M5 vacua with M5 supporting an identity-structure derived in [48].

Finally, we have extended our study of the AdS3×S3 × T3 × I solutions by turning
on a Romans’ mass. We find solutions with local non-compact parts glued together with
localised D8-branes, bounded between D8/O8s. The solutions so constructed can be globally
embedded within Type I’ string theory allowing us to propose a dual AdS/CFT pair: we
provide evidence for our proposal by comparing the central charges of the two theories,
finding exact agreement. In this case the condition for anomaly cancellation of the 2d quivers
required that we impose an additional constraint on the dual supergravity background by
hand — it would be interesting to reproduce this condition with a gravity computation.
The solutions constructed in this section are the small N = (0, 4) analogues of a similar
class of geometries on AdS3×S3×S3 × I constructed in [19]. It would be interesting to
explore what the CFT dual of these solutions is also, and to what extent it is similar to our
proposal here.

26The class of solutions in [21] is more general, since they allow for a non-vanishing Romans’ mass. Here
we come across the massless subclass due to the connection via M-theory.
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A Defect interpretation as a 7d domain wall

In this appendix we complement the analysis of section 3.2 by showing that the coordinates
in which the AdS7 geometry appears asymptotically emerge naturally in a 7d domain wall
solution to 7d N = 1 minimal supergravity [84].

We start considering N = 1 minimal gauged supergravity in seven dimensions [84].
The minimal field content (excluding the presence of vectors) is given by the gravitational
field, a real scalar X and a 3-form gauge potential B3. The 7d background in which we are
interested was introduced in [6] and further studied in [7]. It has the following form

ds2
7 = e2U(µ)

(
ds2(AdS3) + ds2(S3)

)
+ e2V (µ)dµ2 ,

B3 = b(µ)
(
vol(AdS3) + vol(S3)

)
,

X = X(µ) .

(A.1)

The BPS equations were worked out in [6]. They are given by

U ′ = 2
5 e

V f , X ′ = −2
5 e

V X2DXf , b′ = −2 e2U+V

X2 , (A.2)

where the BPS superpotential has the form

f(h, g, X) = 1
2
(
hX−4 +

√
2 gX

)
. (A.3)

The flow (A.2) preserves 8 real supercharges (it is BPS/2 in 7d) and in order to be consistent
with the field equations has to be endowed by an odd-dimensional self-duality condition,
which takes the form

b = −e
2U X2

h
. (A.4)

The truncation from massive IIA performed in [84] requires that the two gauging parameters
g and h respect the relation h = g

2
√

2 . We anticipate that in order to derive the change of
coordinates linking the aforementioned 7d geometry to the near-horizon (2.23) one does
not need the explicit solution of the 7d BPS equations (A.2). Nevertheless we present here
the solution that can be obtained by imposing the following gauge,

e−V = −2
5 X

2DXf . (A.5)
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In this situation the BPS equations can be easily integrated out to give [6]

e2U = 2−1/4g−1/2
(

µ

1− µ5

)1/2
, e2V = 25

2 g2
µ6

(1− µ5)2 ,

b = −21/4 g−3/2 µ5/2

(1− µ5)1/2 , X = µ ,

(A.6)

with µ running between 0 and 1. The behaviour at the boundaries is such that when µ→ 1
the domain wall (A.1) is locally AdS7, since in this limit we have

R7 = −21
4 g2 +O(1− µ)2 , X = 1 +O(1− µ) , (A.7)

where R7 is the 7d scalar curvature. In turn, when µ → 0 the 7d spacetime exhibits a
singular behaviour.

We show now that the AdS3 solutions given by (2.23) can be related to the 7d domain
wall geometries defined by the BPS equations (A.2). We first consider the embedding of the
7d geometry within massive IIA. The consistent truncation has been derived in [84] and in
what follows we will use the notation of [73, 75]. The uplift of the 7d domain wall (A.1) to
massive IIA reads

ds2 = 16π
g

(
−α
α̈

)1/2
X−1/2

[
e2U(µ)

(
ds2(AdS3) + ds2(S3)

)
+ e2V (µ)dµ2

]
+ 16π

g3 X5/2
[(
− α̈
α

)1/2
dy2 +

(
−α
α̈

)1/2 (−αα̈)
α̇2 − 2αα̈X5ds

2(S2)
]
,

eΦ = 3423π5/2

g3/2
X5/4

(α̇2 − 2αα̈X5)1/2

(
−α
α̈

)3/4
,

B2 = 23√2π
g3

(
−y + αα̇

α̇2 − 2αα̈X5

)
vol(S2) ,

F2 = −
(

α̈

342π2 + 23√2π
g3 F0

αα̇

α̇2 − 2αα̈X5

)
vol(S2)

F4 = 23

34π

(
α̈kdy + α̇k′dµ

)
∧
(
vol(AdS3) + vol(S3)

)
,

(A.8)

where ds2
7, X7 and B3 are the 7d fields defined in (A.1), satisfying the BPS equations (A.2).

The function α(y) defines the internal geometry associated to the AdS7 vacuum and was
already introduced in section 3.2. We can now relate this domain wall solution to the
AdS3×S3 geometry (2.23). First, one shows that the near horizon geometry (2.23) takes
the form given by (A.8) if one redefines the (ρ, r) coordinates in terms of the domain wall
coordinates (µ, y) as

ρ = 8
√

2
34πg q

α̇X2e2U , r = 27

34q2 g2 αX
−1e4U , (A.9)

and fixes
h = −g2q2e−4UX

28π2

(
α̈

α

)
, g = 38 2−6π2q3X4e−6U

α̇2 − 2αα̈X5 . (A.10)
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In this calculation the 7d BPS equations (A.2) and the self-duality condition (A.4) need to
be used, together with h = g

2
√

2 . Moreover, one needs to set g3 = 27/2 in order to match
the 2-form fluxes. This is exactly the value needed to reproduce locally the AdS7 solutions
of [73] in the limit µ→ 1.

Open Access. This article is distributed under the terms of the Creative Commons
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