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A B S T R A C T

In this paper, semantic segmentation networks such as UNet and DeepLabV3+ are evaluated and compared
against Random Forest and Support Vector Machines in the field of step-heating active infrared thermography
for subsurface defect detection and localization. To collect information from an entire digital recording
sequence into a particular image, post-processing methods such as PCT, PPT, Kurtosis, Skewness and TSR
are used. Two datasets are created, one with 3-channel images using PCT, and one using all the above post-
processing methods to condense the heating and cooling processes into 30-channel images. This evaluation
study shows that DeepLabV3+ is able to detect most defects in specimens with a similar structure to training
samples without false positives even for defects of different depth and area. UNet requires the use of 30-channel
images to achieve results closer to DeepLabV3+. Random Forest and Support Vector Machines are unable to
compete with the recent methods as they are unable to detect defects correctly.
. Introduction

Quality control is of significant interest in industry, causing contin-
ous efforts to improve on previous methods. Non-destructive testing
NDT) is a set of analysis methods to inspect, test, and evaluate materi-
ls, components, or systems without harming the object. This approach
as advantages over destructive testing (DT): it can be used to analyze
very item instead of one for each batch and the repeatability of the
ests make it possible to repair the products, which leads to lower cost
ince items need not be replaced after testing. Additionally, since the
bject is not damaged during the test, NDT tests can also be applied
o detect failures as a maintenance method during the lifetime of the
roduct, improving long-term use, and safety [1].

NDT methods can be divided into Contact and Non-Contact. Con-
act methods are ultrasonic testing, eddy current testing, magnetic
esting, and penetrant testing. Non-Contact methods are air-coupled ul-
rasonic, radiography testing, thermography, shearography, and visual
nspection [2].

Today, the most common analysis of defects is done manually by an
xpert in the field. The results of non-contact NDT inspections, and of
ome automated contact techniques as well, are generally represented
hrough images. In these situations, the experts usually use image post-
rocessing techniques to make their job faster. Even so, this approach is
till costly and time-consuming compared to the potential of a solution
ased on deep learning.

∗ Corresponding author.
E-mail address: UO251056@uniovi.es (O.D. Pedrayes).

In recent years, deep learning approaches have made significant
advances in the field of infrared thermography [3–7]. Infrared ther-
mography does not need coupling media facilitating the production
and speed of scans. This approach has no harmful side effects (such as
radiation in X-ray evaluation), improving safety and inspection rates
in prolonged use cases. Infrared thermography can be grouped into
passive and active. Passive infrared thermography uses the differences
in the temperature of the product under natural conditions, that is,
without applying heat to the object [8]. Active infrared thermog-
raphy evaluates temperature differences during and after a heating
process. It is important to mention that there is no agreement on the
appropriate stimulation and post-processing methodology for a given
material and flaw type [9]. This heating process can be done using
photographic flashes, halogen lamps, ultrasonic transducers, or other
methods [10]. Depending on the method used to heat the item, active
infrared thermography can be classified in [6]:

1. Pulsed Thermography (PT): the object is heated for a short time,
typically with a flash lamp or a coil for Eddy Current Pulse
Thermography [11].

2. Step-Heating Thermography (SHT): the object is heated for
longer periods than PT, reaching deeper defects.
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3. Lock-in Thermography (LT): the object is heated by a modulated
heatwave. The temperature changes are compared to the original
heatwave revealing defects.

This paper evaluates multiple state-of-the-art methods for image
egmentation. Image segmentation is the task of grouping the pixels
f an image by creating a segmentation mask. High-level segmentation
lgorithms generate an easily interpretable classification such as bicy-
le or road using low-level features, including contrast levels, edges,
extures, etc. The most common approaches to image segmentation are
hown below:

• Threshold segmentation is the simplest method and consists of
classifying pixels with respect to a threshold value.

• Edge-based segmentation is one of the most common approaches.
This method identifies edges of different objects in an image using
differences in texture, contrast, gray level, color, saturation and
other features.

• Region-based segmentation algorithms find groups of pixels by
locating seed points. The seed points increase or decrease in size
and can merge together to produce different regions.

• Watershed segmentation treats the image as if it were a topo-
graphic map. It considers the brightness of a pixel as its height
and finds the lines that run along the top of those ridges.

• Clustering algorithms divide the image into clusters of pixels
that have similar characteristics. It separates the data elements
into clusters where the elements in one cluster are more similar
compared to the elements present in other clusters.

• Convolutional networks generate low-level feature maps in an
automated fashion. This means that these features do not need
to be easily understood by humans. After generating the low-
level feature maps, neural networks recognize the relationships
between the different features to classify the pixels of the image.
Neural networks for the classification of each pixel in an image
are known as semantic segmentation networks. If the distinction
between multiple instances or objects of the same class is added,
it is known as instance segmentation. And if both ideas are
combined, so that there are classes without instances and classes
with instances, it is known as panoptic segmentation.

emantic segmentation is one of the most recent methods for image
egmentation and has proven to be of great use in other fields such
s autonomous driving [12] or crop classification [13]. This approach
eems the most suitable given the growing trend for using deep learning
odels with active infrared thermography [6,7]. Semantic segmenta-

ion networks are evaluated for defect localization in composites using
tep-heating thermography. Given its popularity and the flexibility of
ts structure to adapt to changes in the required inputs, the semantic
egmentation network UNet [14] is used for this evaluation. In ad-
ition, the semantic segmentation network DeepLabV3+ [15] is also
valuated, given its more recent and complex architecture. Then, as
basis for comparisons, the older methods Random Forest (RF) and

upport Vector Machines (SVM) are used as well.
In a thermographic NDT inspection, the raw results consist of a

equence of thermal images that contain the temperature evolution
istory of each pixel in the observed scene. There is an explicit limi-
ation in VRAM when using convolutional neural networks, requiring
nformation from every frame about the heating and cooling processes
o be compiled into different channels of a particular multichannel im-
ge. Post-processing techniques are used to accomplish this: Principal
omponent Thermography (PCT), Pulsed Phase Thermography (PPT),
urtosis, Skewness, and Thermographic Signal Reconstruction (TSR).
hese methods help compile information from the whole sequence into
ifferent channels of a particular image and improve the signal-to-noise
atio (SNR). These methods will be discussed in more depth in the
‘Post-processing methods’’ subsection. In this way, the network can
ecognize patterns of all the frames from a sequence simultaneously.
2

The most obvious advantage of UNet is that it is capable of pro-
cessing images with more than three channels. In this study, UNet is
evaluated with images consisting of 30 channels using the methods
described. However, to provide a fair comparison, images with three
channels are also tested. This allows for a comparison with another
more recent semantic segmentation network DeepLabV3+ [15], and
other older methods such as Random Forest (RF) [16] and Support
Vector Machines (SVM) [17].

Recent works tend to use simple or manually created convolutional
network architectures [18,19] and older methods for object detection
such as FasterRCNN [20]. There are few papers that use more recent,
complex semantic segmentation architectures [4,21]. Those that do use
a more modern architecture typically use UNet or one of its variations,
but it appears that none of them explore the use of more than three
channels against the use of only three channels per image. Moreover,
the use of DeepLabV3+ in the field of defect detection is scarce [22],
and to the best of the authors’ knowledge, non-existent on the subject
of subsurface defect detection.

The composite laminate evaluated in this work is a carbon-fiber-
reinforced polymer (CFRP) laminate. Known for its strength-to-weight
ratio and rigidity, it is often used in aircraft, cars, or bicycle frames
[23]. NDT methods are preferred for CFRP since this material is costly,
and an impact can create delamination inside the material, provoking
subsurface damage invisible on the surface. Creating large datasets
in NDT thermography is a costly and time-consuming process. For
this reason, many papers use only a few specimens for their studies
[24–26], so approaches that do not require large datasets (as is the
case with UNet), or the need to use a pretrained model (as is the case
with DeepLabV3+), are required. In this study, only one specimen is
used to generate the datasets for training. By rotating the specimen 10◦,
up to 36 different digital recordings are generated with non-repeating
data. Since the specimen has a different illumination and background
for each digital recording, and it has to be heated and cooled again,
the resulting data can be considered new and non-repeating, unlike
other methods that consist of rotating the images. To further validate
the trained models, another two new specimens on which to perform
the testing are added.

The dataset containing the training and testing samples for semantic
segmentation is described in the ‘‘Dataset’’ subsection and is released
for public usage in the following DOI: https://doi.org/10.5281/zenodo.
5426792.

2. Materials and methods

2.1. Carbon-fiber-reinforced polymer laminate

CFRP is a composite material composed of a reinforced carbon fiber,
and a matrix to bind the reinforcements together. Fig. 1 shows: a
general photograph of the specimen to be used for training (Fig. 1(a));
a photograph showing its measurements (Fig. 1(b)); and a photograph
showing the location of the defects (Fig. 1(c)). The 360 mm ×240 mm
specimen is 2.5 mm thick, following a 12-ply structure as seen in Fig. 2.

The specimen has artificially induced flaws. In this specimen there
are two different types of defects: Polytetrafluoroethylene (PTFE) thin
films, and steel chips defects. There are 12 defects, 9 are PTFE thin films
and 3 are steel chips defects. The PTFE films simulate delaminations,
which are common defects in composite materials produced by the
separation of adjacent plies, while the steel inserts simulate accidental
inclusion of small pieces of cutting tools used during the manufacturing
process of the material.

There are three different sizes of PTFE (12 mm×12 mm, 7 mm×
7 mm, and 5 mm×5 mm) each at 3 different depths (0.63 mm, 1.46 mm,
and 2.08 mm), and only one size of steel chip (5 mm×5 mm) located
at 0.63 mm, 1.46 mm, and 2.08 mm. The bottom three defects are
steel chips defects and the rest are PTFE defects. The height of the
defects was measured with a calibrated caliber obtaining a value of

https://doi.org/10.5281/zenodo.5426792
https://doi.org/10.5281/zenodo.5426792
https://doi.org/10.5281/zenodo.5426792
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Fig. 1. Photographs of the specimen.

0.06 mm. In Fig. 2, the location of the defects in the specimen is shown.
The depths and layers of the defects are presented from shallowest to
deepest, from left to right: the first column of defects has a depth of
0.63 mm, the second column 1.46 mm and the third column 2.08 mm.

A greater surface area of the defect implies a greater heat flow
affected by the presence of the defect; and consequently, it implies
a greater variation of temperatures in the areas near the defect. On
the other hand, the shallower the depth, the lower the lateral heat
dissipation effect. As a consequence of the presence of a defect, the
3

Fig. 2. Arrangement of the defects and dimensions of the specimen.

heat flow towards the surface will be less degraded, making the thermal
effect on the surface more evident.

2.2. Infrared thermography using step heating

The CFRP laminate is heated using two halogen lamps (eurolite
PAR-64 Profi floorspot model of 1 000 W) for ten seconds. After the
ten seconds, the two lamps are turned off to let the object cool down
for another ten seconds. This process is recorded (using an IR detector
NETD of less than 55 mK, and optics of 25 mm F/1 lenses) for a total of
twenty seconds at 50 FPS at a resolution of 640 × 480 pixels, resulting
in a total of 1,000 frames for each digital recording. The camera used
to record the digital recordings is a Xenix Gobi 640 GigE model with
a spectral range between 8-14 μm and a pixel resolution of 480 𝑥 640.
In Fig. 3 a diagram of the setup for the recordings with the location,
distance and angle of the infrared camera, halogen lamps, and specimen
is shown.

The heating time necessary to reveal the presence of defects was
roughly defined by numerical simulation in a preliminary stage, and
subsequently, the definite heating time was verified by experimental
assessment. This time span produced the maximum number of defects
to be detected preventing the sample from overheating.

Subsurface defects heat and cool down at different rates than the
rest of the object. The active stimulation is applied to exploit this
feature as a way to obtain the maximum possible contrast between the
defects and the rest of the object. For each digital recording, the CFRP
laminate is cooled down to room temperature before the process starts,
to avoid heating the object at different temperatures.

Fig. 4 shows this heating and cooling process for a pixel with defect
and a nearby pixel without defect (see Fig. 5). In addition, these same
reference points are added but with the specimen rotated 120◦ (see
Fig. 6). No absolute values are needed, only the differences between
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Fig. 3. Diagram of the setup of the recordings.

Fig. 4. Heating and cooling signal intensities for the time sequence of the CRFP
laminate. Signal color correspond to those of Figs. 5 and 6.

Fig. 5. Pixels used for reference in Fig. 4 for the specimen rotated 0◦.

nearby pixels are required to locate the defects. When rotating the
specimen it can be observed that the response is not the same. This
is because the thermal energy is not transmitted uniformly throughout
the specimen, which is of great interest in order to create a dataset that
allows the network to generalize.
4

Fig. 6. Pixels used for reference in Fig. 4 for the specimen rotated 120◦.

2.3. Post-processing methods

Image post-processing methods are used to summarize the infor-
mation of a full digital recording into a particular multichannel im-
age. This data compression is necessary to be able to use UNet and
DeepLabV3+ due to their computational cost. To study the effect of
this compression, two different approaches are evaluated.

The first approach converts the heating process of the digital record-
ing into an image with 3 different channels using only the Principal
Component Thermography (PCT) [27] method. This approach is tested
with all the methods (Random Forest, Support Vector Machines, UNet,
and DeepLabV3+).

The second approach takes advantage of both the heating and
cooling sequences and uses 15 channels for each, resulting in images
with 30-channel. Each channel stores post-processed images generated
by the following methods: PCT [28], PPT [29,30], Kurtosis [31], Skew-
ness [32] and TSR [33,34], as detailed in their respective subsections.
This approach can only be tested with UNet.

2.3.1. Principal Component Thermography (PCT)
PCT is applied to each pixel time history, calculating a linear trans-

formation to the initial data from the eigenvectors of the associated
covariance matrix. Using this method a distinction between defect and
non-defect is more easily visible.

In this study, for the 3-channel images, each post-processed image
corresponds to components 1st, 3rd and 4th of the PCT of the heating
sequence (500 frames). The second component is not used for the 3-
channel images since the signal to noise ratio is higher in the 3rd and
4th components [23].

For the 30-channel images, the first four channels of the PCT
are used in both the heating (500 frames) and cooling (500 frames)
sequences separately, thus giving a total of eight channels.

2.3.2. Pulsed Phase Thermography (PPT)
PPT is a method to calculate the phase of thermographic data

per pixel time history based in the Discrete Fourier Transform (DFT)
algorithm [35]. The DFT algorithm is usually used in image post-
processing to filter out periodic noise. It can be used to obtain an image
that only represents the edges. For the 30-channel images, the phase
of the minimum frequency is used, obtaining a post-processed image
for the heating process and another for the cooling process. Eq. (1)
is used to calculate PPT, where T is the temperature, n the frequency
increment, N the number of frames, i the imaginary number, 𝑅𝑒𝑛 is the
real part of the DFT, and 𝐼𝑚𝑛 the imaginary one.

𝐹𝑛 =
𝑁−1
∑

𝑇 (𝑡)𝑒
2𝜋𝑖𝑡𝑛
𝑁 = 𝑅𝑒𝑛 + 𝐼𝑚𝑛 (1)
𝑡=1
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Fig. 7. Example of a 30-channel images. Images with a red label are obtained from the heating sequence. Images with a blue label are obtained from the cooling sequence..
Eq. (2) is used to calculate the phase.

𝜙 = 𝑎𝑡𝑎𝑛
(

𝐼𝑚𝑛
𝑅𝑒𝑛

)

(2)

2.3.3. Kurtosis
Kurtosis measures the degree of peakedness of a distribution. If the

distribution is the same as the normal distribution it has a value of
zero, if it is higher it has a positive value, and if it is lower a negative
value. In this case this measure is calculated per pixel time history
using the heating and cooling sequences, obtaining two channels for
the 30-channel images.

Eq. (3) is used to calculate Kurtosis. T is the temperature data from
the pixel time history, 𝑇̄ is the mean of the temperature data, s the
standard deviation, and N the number of frames.

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
∑𝑁

𝑖=1(𝑇𝑖 − 𝑇̄ )4∕𝑁
𝑠4

(3)

2.3.4. Skewness
Skewness measures the lack of symmetry. A positive skew means

that the longest tail of the distribution is at the right of the histogram
and the reverse for the negative skew. A distribution that is fully
symmetric has a value of zero. The skewness is calculated per pixel
using every frame in the heating process or cooling process. For the
30-channel images, this results in two channels, one for the heating
process and another for the cooling process.

Eq. (4) is used to calculate Skewness. T is the temperature data from
the pixel time history, 𝑇̄ is the mean of the temperature data, s the
standard deviation, and N the number of frames.

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
∑𝑁

𝑖=1(𝑇𝑖 − 𝑇̄ )3∕𝑁
(4)
5

𝑠3
2.3.5. Polynomial fit
Polynomial fit, also known as Thermographic Signal Reconstruction

(TSR) when calculated using logarithmic expressions, is a method for
estimating thermal diffusivity by removing noise from a thermal signal
based on a sequence. This method is calculated per pixel time history
and is commonly used for defect detection. It is considered that a
degree of 7 generally provides optimal results for defect detection
in laminates [36]. This generates one post-processed image for the
coefficients of each degree plus its coefficient zero. Taking this into
consideration, for the 30-channel images, eight channels for the heating
process and another eight channels for the cooling process are created.

Eq. (5) is used to calculate the Polynomial fit. T is the temperature
pixel time history, n is the degree and t is the time or frame of the
thermogram.

𝑇 (𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 +⋯ + 𝑎𝑛𝑡

𝑛 (5)

2.4. Dataset

Using the method described in Section 2.2, 36 digital recordings are
generated. All the digital recordings record the same CFRP laminate
using different rotations, which alters lighting, lamp reflections and
background among other things. This process is done to obtain more
data for training and to improve variability. For each digital recording
the CFRP laminate is rotated 10◦. From each digital recording, two
images (one with 3 channels and the other one with 30 channels) are
generated using the post-processing methods mentioned in Section 2.3.
In Fig. 7 an example of every post-processed image from one of the 30-
channel images is shown. The objective of this study is not visualization
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Fig. 8. The UNet architecture used for optimal results. (This graphic is inspired from the UNet architecture paper [14]).
ut detection and localization. Fig. 7 merely provides an understanding
f the inputs to be fed into the neural networks.

Ground truth masks are generated by experts in the field, who verify
hat the defects are correctly classified.

Two datasets are created, one that uses images with 3 channels and
nother that uses images with 30 channels. In this way, a compari-
on can be made to determine if more information results in better
ccuracy. Each dataset consists of 36 images. The first 30 are used for
raining and the last 6 for testing and visualization. Both datasets can be
ound at the following DOI: https://doi.org/10.5281/zenodo.5426792.

Classes are divided in ‘‘defect’’ and ‘‘other’’. The objective is binary
lassification so the ‘‘defect’’ class is the target class, and the ‘‘other’’
lass is the non-target class that refers to everything else, including the
est of the specimen and the background of the digital recording.

.5. Analysis of the evaluated architectures

.5.1. Unet
UNet is one of the first and most referenced networks in semantic

egmentation with over 29,000 cites of its original paper in Google
cholar. Its original purpose was for binary classification to segment
ells in biomedical imagery and to train and produce precise predic-
ions with as few training images as possible [14]. The name ‘‘UNet’’
omes from its u-shaped architecture as the result of a symmetric
ncoder–decoder. UNet was quickly adapted to work with all kinds of
magery and class number as it offers a high degree of flexibility thanks
o its simple layout. This has caused the rapid development of new
ariations. An overview of the UNet architecture used in this evaluation
tudy can be seen in Fig. 8.

.5.2. Deeplab
DeepLab is a semantic segmentation architecture made by Google.

eepLabV1 [37] presents atrous convolutions to tune the resolution at
hich features are calculated. DeepLabV2 [38] details Atrous Spatial
yramid Pooling (known as ASPP) to increase the accuracy of predic-
ions at different scales. DeepLabV3 [39], tunes the ASPP module and
ses a Batch Normalization module to simplify the setup of the data
liminating the need for a manual normalization. DeepLabV3+ [15]
s the fourth and most recent version of DeepLab. It converts its
rchitecture to a encoder–decoder architecture. There is an auto ma-
hine learning version called AutoDeepLab [40] which is based on the
eepLabV3+ architecture. An overview of the DeepLabV3+ architec-

ure used in this work can be seen in Fig. 9. The DCNN module is the
6

backbone network used and it usually is a variation of ResNet, Xception
or MobileNet.

2.6. Network parameters

This section provides a brief description of the network parameters
used to modify the architectures.

UNet and DeepLabV3+ have some common network parameters:
the input size, which controls the resolution and channels of the input
images, the number of classes to use in the experiment, and the use
of padding to fill each convolution to keep the resolution of the final
feature map the same size as the input.

UNet has two controllable network specific parameters consisting
of the depth of the architecture, which is based on the number of
max pooling layers, and the number of filters at each level, which is
controlled by the number of filters at the first level and then multiplied
by two at each level.

DeepLabV3+ has a specific controllable network parameter called
output stride. This parameter controls the separation between each step
of a convolution. It is calculated as the result of the division between
the input image resolution and the final feature map. For example, an
input image that has a resolution of 512 × 256 pixels and a final feature
map of 32 × 16 would result in an output stride of 16.

In all cases, the initialization of the convolutional filter weights
follows the Kaiming He et al. [41] algorithm.

2.7. Training parameters

This section lists the training parameters used to train the models.
Optimal training parameters are re-evaluated for every change in the
network parameters described in Section 2.6.

As a first step, the optimal batch size, learning rate and number
of epochs are investigated. This process is repeated for each solving
algorithm available, which in this case are Adam or Stochastic Gradient
Descent with Momentum (SGDM). On the other hand, the value of the
L2 regularization is studied separately, to apply a penalty to the loss
function in order to decrease the complexity of the model and reduce
overfitting.

Then, if the Precision and Recall metrics are unbalanced, different
class balancing approaches are evaluated. Methods such as inverse
frequency weighting (IFW), mean frequency weighting (MFW) and

manually chosen custom weights are evaluated.

https://doi.org/10.5281/zenodo.5426792
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Fig. 9. The DeepLabV3+ architecture used in the experiments. This graphic is inspired from the DeepLabV3+ paper [15].
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In this work, the use of a gradient clipping value, to constrain the
maximum possible value of the gradient, is not necessary, since the
exploding gradient problem is not present in the training process.

Finally, to add new data samples, improve variability and reduce
overfitting, data augmentation methods are applied to the training set.
These methods consist of enlarging or flipping the images. In addition,
the dataset is shuffled before each epoch to minimize overfitting.

2.8. Performance metrics

This section provides a brief description of the metrics used [42] to
evaluate the performance of the trained models.

• True positive (TP): correctly classified pixels.
• True negative (TN): pixels correctly classified as belonging to

other classes.
• False positive (FP): pixels classified wrongly as the target class.
• False negative (FN): pixels wrongly classified as belonging to

other classes.
• Precision (P): Percentage of correctly classified pixels from the

total number of predictions for a particular class.

𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(6)

• Recall (R): Percentage of correctly classified pixels from the total
number of pixels for a particular class.

𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(7)

• F-score (F1): Value that combines Precision and Recall making
it easier to compare models. A good model should have a bal-
ance between Precision and Recall. This metric should not be
used alone as it does not indicate whether the two metrics are
balanced. This metric is equivalent to the Dice Coefficient with
two classes.

𝐹1 =
2 × 𝑃 × 𝑅
𝑃 + 𝑅

(8)

• Intersection-Over-Union (IoU): Value that measures the similarity
between ground truth and prediction. This metric is equivalent to
7

the Jaccard Index.

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛

= 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

(9)

.9. Training procedure

The network and training parameters must be tuned to reach the
est possible results. In this evaluation, these hyperparameters are
alibrated manually for each network, obtaining the best configuration
or each parameter one by one. The effects of changing multiple pa-
ameters at the same time has not been studied in depth. However, a
anual process that would research every combination of parameters

s not feasible. In this regard, there is still leeway to improve results but
he time required is far too great for a small improvement in accuracy.

To obtain realistic results, the datasets are divided in training and
esting images. From the total of 36 images, the first 30 are used for
raining and the last 6 for testing and visualization.

To select the best experiments both Precision and Recall are eval-
ated. When both metrics are high and are balanced it is considered
s a good result. If they are unbalanced, the accuracy of the model
s compromised. A high Precision and a low Recall means that the
odel is predicting few pixels but those that are predicted are correct.

f the Recall is high and the Precision low, it means that the model
s predicting more pixels than there are in the ground truth. Only the
etrics of the target class are provided because the non-target class is

rrelevant.
To offer a better representation and facilitate the understanding

f the metrics, visualization examples of the six testing images are
rovided for the best experiment of each architecture. This can help
o give a better idea of how the model is predicting the defects.

The hardware used to train the models of the experiments consist
f a GPU NVIDIA RTX 2080 Ti and a I7-9700 K CPU.

. Results and discussions

.1. Random forest and support vector machines

Random Forest runs several decision tree algorithms. Each decision
ree gives a classification and the choice with the most ‘‘votes’’ is the
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Table 1
Metrics for the experiments with Random Forest and Support Vector Machines.

Method Precision Recall IoU F1

RF .103 .132 .061 .116
SVM .037 .604 .036 .069

final prediction. Support Vector Machines search for a hyperplane with
the widest margin between the two classes that best separates two
different classes of data points.

Experiments are carried out with Random Forest and Support Vector
Machines as a basis for making comparisons. Both use the same feature
vector, which is calculated using thirteen features. The first three
features consist of the red, green and blue (RGB) values of each pixel
of the input image, which correspond to the first, third and fourth
components of PCT.

The fourth feature is the local binary pattern (LBP), a texture
descriptor used in computer vision, calculated by thresholding the
neighborhood of every pixel into a binary number using a 3 × 3
grid, and converting the result to a decimal number [43]. To calculate
the neighborhood components, a radius of 24 is used totaling in 192
neighbors. LBP is applied to a gray scale version of the 3-channel
images in order to obtain more spatial context. LBP is calculated with
Eq. (10), where P is the total number of neighbors, R the radius, c is to
the central pixel and g is the value of a pixel.

𝐿𝐵𝑃𝑃 ,𝑅 =
𝑃−1
∑

𝑝=0
𝑠(𝑔𝑝 − 𝑔𝑐 )2

𝑝 with 𝑠(𝑥) =
{

1, if 𝑥 ≥ 0;
0, otherwise. (10)

The last nine features consist of multiple Haralick texture features,
which are texture descriptors used in computer vision for image classi-
fication. All Haralick features are based on the gray-level co-occurrence
matrix which shows the frequency at which each gray level occurs
in a pixel at a fixed geometric location with respect to other pixels.
The features used are: angular second moment, contrast, correlation,
sum of square: variance, inverse difference moment, sum average, sum
entropy, and entropy. Equations for all the Haralick texture features are
in [44]. Haralick features are applied to the gray scale version of the
3-channel images in order to obtain more spatial context.

A subsampling to the feature vector of each image is done in order
to reduce training time and memory usage. This generates 1,000 obser-
vations per image with 13 features per observation. With 30 images to
train, 30,000 observations are used for training.

For Random Forest the number of estimators and their maximum
depth is manually optimized. In addition, different class weights are
tested for both Random Forest and Support Vector Machines. The
optimal experiments for each methods are listed in Table 1. The best
Random Forest experiment uses 1000 estimators and a maximum depth
of 10. In the case of Support Vector Machines a radial basis function
kernel is used, and the gamma value is calculated as the inverse of the
multiplication of the number of features by the variance. In both cases
the class weight for the non-target class and for the target or defect
class is balanced using the proportional inverse of the class frequencies.
Results from these experiments can be seen in Table 1.

According to Table 1, both experiments obtain low metrics: below
12% in F1-Score. To prove that these values are too low, visualizations
of Random Forest and Support Vector Machines are shown in Figs. 10
and 11 respectively.

In SVM, the edges of the specimen are classified as defects, this is
due to the great variance between the specimen and the background. In
RF, although this can be observed in some cases, it is much less obvious.
Moreover, both models predict many more pixels from the most shallow
defects as these are the ones with the most variance.

There is a circular area detected at the bottom of both RF and
SVM. This area is the reflection of the heating lamps. By observing
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Fig. 11, it is clear that SVM is very sensitive to these artifacts, more
Table 2
Network parameters for UNet.

Network parameters

Parameter 3-channel images 30-channel images

Input size 640 × 480 × 3 640 × 480 × 30
Classes 2 2
Depth 4 4
Filters on first level 32 32
Padding Yes Yes

Table 3
Training parameters for UNet.

Training parameters

Parameter 3-channel images 30-channel images

Solver Adam Adam
Epochs 1000 1000
Batch size 8 4
Learning rate 0.001 0.001
Class weighting 0.35–0.65 0.20–0.80
Gradient clipping No No
L2 regularization 0.0001 0.0001
Data augmentation Mirror in X/Y Mirror in X/Y
Shuffle Yes Yes

Table 4
Metrics for the experiments with UNet.

Experiment Precision Recall IoU F1

3-channel images .689 .717 .542 .703
30-channel images .764 .726 .593 .745

so than RF. These reflections can be avoided by positioning the camera
properly, although this is not always possible in real inspections due to
lack of space. It is very common to find reflections in real inspections.
Therefore, it seems reasonable to include them in the study and analyze
the robustness of the models in their presence. Although the effects can
be minimized using Plexiglas filters.

Theoretically, better results could be achieved by improving the
feature vector. The selection of features has the most significant impact
on how well these methods perform. However, in this study, common
features for image segmentation are used [43,44].

3.2. UNet

This section presents the optimal segmentation results with UNet
for 3-channel images and 30-channel images. Both experiments have
the same optimal hyperparameters ( Tables 2 and 3) with the exception
of batch size and class weights. Since the images with 3 channels take
less memory than the images with 30 channels, the maximum batch
size can be increased from four to eight images. In the case of the class
weights, the optimal weights differ between datasets from a value of
0.65 to 0.80.

The depth of the UNet architecture coincides with the original
implementation but the number of filters on the first level has been
reduced by two. This affects the whole architecture dividing the num-
bers of filters by two. Using fewer filters means faster training times
and increased batch sizes. There is no need for gradient clipping since
there is no exploding gradient problem. L2 regularization works best
when using the 0.0001 default. All the training data is shuffled before
every epoch to prevent overfitting.

The metrics from the testing of the ‘‘30-channel images’’ and ‘‘3-
channel images’’ experiments can be seen in Table 4.

Table 4 shows a great difference between using 3 and 30 channels.
In this case the 30-channel images experiment has an almost 5% higher
F1-Score. Both experiments surpass 70% in F1-Score and obtain a

balance between Precision and Recall.
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Fig. 10. Visualization of the predicted results for Random Forest. (1st col.) Original images, (2nd col.) ground truth masks, (3rd col.) predictions, (4th col.) original images and
ground truth masks, (5th col.) original images with predictions.
The 3-channel images experiment takes 00 h:31 m:31 s to train with
the specified hardware, whereas the 30-channel images experiment
takes 02 h:15 m:15 s. The extra channels make the architecture more
complex.

To accompany these results a visualization of the testing images can
be seen in Figs. 12 and 13. In these figures a great difference between
models can be seen. The experiment for 3-channel images (Fig. 12)
detects all defects although the ones with more depth have a much
smaller area than the ground truth and there are some false positives.
Fig. 13 has much less noise but it has trouble detecting all the defects
in some of the images.

3.3. DeepLabV3+

This section presents the best experiment with DeepLabV3+ with
3-channel images. Table 5 shows the network architecture parame-
ters. In this case the backbone architecture that performs the best is
Xception65. Xception71 has more layers and therefore more VRAM is
needed for the same batch size. A smaller batch size, even when using
a network with more layers, performs worse. For this same reason, an
output stride of 16 is preferred.

Table 6 shows the training parameters. In this case, DeepLabV3+
has a more complex architecture than UNet so the maximum batch
size possible for eleven gigabytes of VRAM is four images. The value of
the optimal class weight for the 3-channel images is the same as UNet.
There is no need for gradient clipping since there is no exploding gradi-
ent problem. Furthermore, this architecture works better with a smaller
learning rate than UNet. The best L2 regularization value coincides with
9

Table 5
Network parameters for DeepLabV3+.

Network parameters

Input size 640 × 480 × 3
Classes 2
Backbone Xception65
Output stride 16
Padding Yes

Table 6
Training parameters for DeepLabV3+.

Training parameters

Solver Adam
Epochs 1000
Batch size 4
Learning rate 0.0005
Class weighting 0.35–0.65
Gradient clipping No
L2 regularization 0.00004
Data augmentation Scale 0.5–2.0 with 0.25 steps
Shuffle Yes

that recommended by the developers. The whole training set is shuffled
before every epoch to prevent overfitting.

To achieve faster training times and allow the model to generalize
better, the training starts from a pre-trained model on the ImageNet
dataset [45].

The metrics from the testing of the ‘‘3-channel images’’ experiment
can be seen in Table 7.
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Fig. 11. Visualization of the predicted results for Support Vector Machines. (1st col.) Original images, (2nd col.) ground truth masks, (3rd col.) predictions, (4th col.) original
images with ground truth masks, (5th col.) original images with predictions.
Table 7
Metrics for the experiment with DeepLabV3+.

Experiment Precision Recall IoU F1

3-channel images .760 .786 .629 .773

In Table 7 the results show high values for the metrics, above 77%
in F1-Score and with Precision and Recall balanced. This experiment
obtains even better results than the 30-channel images experiment with
UNet, which is impressive given the difference between the 30-channel
images and 3-channel images experiments in UNet.

This experiment with DeepLabV3+ takes 01 h:18 m:27 s, more than
2.5 times longer than UNet under the same conditions. However, is still
almost two times faster than the 30-channel experiment with UNet.

To accompany these results a visualization of the testing images can
be seen in Fig. 14. In these figures a great difference between models
is observed with respect to those of UNet. This model detects almost
every defect and has virtually no noise. It has most trouble detecting
5 mm×5 mm defects at maximum depth. However, in the majority of
the testing images all the defects are found.

3.4. Discussion

Neither Random Forest nor Support Vector Machines can detect
defects in CFRP laminates using the image post-processing methods
described. The metrics (Table 8 and Fig. 15) and visualization images
(Figs. 10, 11, 12, 13 and 14) make it clear that these methods are not re-
liable enough, at least with the features selected, to detect defects with
10
high confidence. They do not generalize well enough. Thermographic
data generally has high levels of noise and low levels of contrast. These
characteristics give high variance to the features for the same defect,
making them difficult to detect for conventional models such as RF and
SVM.

In the case of UNet, results are much improved. With the 3-channel
images the metrics might be considered low. However, the defects are
all distinguishable in the visualization images although there is some
noise in the predictions. When it comes to the 30-channel images, the
result metrics show a clear improvement. The noise of predictions is
vastly reduced and the visualization images show that almost all the
defects are found.

DeepLabV3+ performs better than UNet even when only the 3-
channel images can be used. This evaluation provides the best results,
nearing 80% of F1-Score. The visualization images are clearer than
those produced by UNet and almost all of the defects are found.
DeepLabV3+ is more computationally complex than UNet under the
same conditions, requiring more than twice as much training time.
However, DeepLabV3+ is still almost twice as fast as UNet with 30
channels.

For semantic segmentation models, unlike SVM and RF models,
lamp reflection is not classified as a defect. This is desirable in real
inspections, where reflections are often unavoidable. This indicates
that the manually created features are not enough to learn that the
reflection is not a distinguishing feature of the defects. However, UNet
and DeepLabV3+ are able to ‘‘learn’’ that the reflections are not a
distinct part of the defects. This is possible because by rotating the
specimen, the reflection is not always in the same part of the specimen.
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Fig. 12. Visualization of the predicted results for UNet evaluated with 3 channels. (1st col.) Original images, (2nd col.) ground truth masks, (3rd col.) predictions, (4th col.)
original images with ground truth masks, (5th col.) original images with predictions.
Table 8
Metrics for all the methods.

Experiment Precision Recall IoU F1

RF (3-channel) .103 .132 .061 .116
SVM (3-channel) .037 .604 .036 .069
UNet (3-channel) .689 .717 .542 .703
UNet (30-channel) .764 .726 .593 .745
DeepLabV3+ (3-channel) .760 .786 .629 .773

4. Other samples

This section evaluates new specimens with different internal struc-
tures. The objective of these evaluations is to observe how far the
semantic segmentation models generalize. For this purpose, the predic-
tions of these specimens are run with the previous models, trained with
the specimen presented in Section 2.1.

The defects of these specimens are artificially generated, however,
they may be slightly offset from the original scheme. For this reason, an
ultrasonic inspection is performed to find and check the real positions
of the defects. The ground truth of these two new specimens is gener-
ated by a manual procedure. First, a probe is passed over the surface
of the specimen, scanning the signal it receives in a similar way to an
oscilloscope. In this way, it is possible to detect signal changes that
are indicative of a defect. This defective area is marked with a pencil
on the specimen itself. Finally, using the thermographic image and the
11
Table 9
Metrics for specimen 2.

Experiment Precision Recall

UNet (3-channel images) .56 .47
DeepLabV3+ (3-channel images) .83 .41

RGB image in which the pencil marks can be observed, a ground truth
mask is generated manually by observing and overlapping both images.

The first specimen has a similar structure to the training specimen.
However, this specimen has half the depth (1.125 mm) and a smaller
number of layers (6 plies). In this case, the depth of the defects is
0.75 mm, 0.56 mm, and 0.19 mm from left to right. The top three
defects are steel chips defects and the rest are PTFE defects. (See
Fig. 16).

As can be seen in Fig. 17, all the defects of the part are successfully
detected with DeepLabV3+. It appears that the smaller defects have a
predicted area greater than the area of the ground truth defects. UNet is
also able to detect almost all of the defect but the predicted image has
more noise. In Table 9 metrics for this evaluation are obtained. These
metrics present lower precision than expected due to this increase in
the area of small defects.

The second specimen has a very different structure from the training
specimen. This specimen not only has greater depth (20 plies and a
total depth of 3.825 mm), but also, ply 7 is of greater depth and
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Fig. 13. Visualization of the predicted results for UNet evaluated with 30 channels. Only the first three channels are shown in the image, which consist of the first, third and
fourth components, using exactly the same channels as the 3-channel images. (1st col.) Original images, (2nd col.) ground truth masks, (3rd col.) predictions, (4th col.) original
images and ground truth masks, (5th col.) original images with predictions.
Table 10
Metrics for specimen 3.

Experiment Precision Recall

UNet (3-channel images) .56 .50
DeepLabV3+ (3-channel images) .84 .32

reflectivity (See Fig. 18). This ply is 20 mm thick and is called ‘‘Rohacell
core’’ and is a registered trademark of structural foams that have high
mechanical performance (https://www.rohacell.com/en). These foams
have been used in the aeronautical sector for a long time to lighten
composite materials and are currently used for the same purpose in
other industries, such as the automotive and wind sectors.

There are no defects deeper than that of the Rohacell core because
with thermography it is not possible to detect defects due to the
fact that it is a great thermal insulator. The depth of the defects are
0.38 mm, 0.75 mm, 1.125 mm from left to right. The bottom three
defects are steel chips defects and the rest are PTFE defects.

As can be seen in Fig. 19, most of the defects are not detected
successfully. It seems that the new layer aggressively affects the reflec-
tivity and therefore the behavior of the model for defect detection. In
Table 10 the metrics for this evaluation are obtained. These metrics
obviously present very poor results.

As a result of these evaluations, it can be observed that as long as the
tested specimen has a similar structure to that of the training specimen,
12
high quality detections can be achieved even if the depth of the
specimen is not exactly the same as in the training specimen. However,
if the specimen structure is severely altered, by adding an inner layer
with different reflectivity, or very drastic depth changes, the semantic
segmentation models are not able to find all the defects in the specimen.
In particular, the Rohacell core changes the boundary conditions of
the heat transfer problem, which affects the results obtained in the
inspections.

5. Conclusion

This paper studies different solutions from the computer vision
branch for pixel-based defect detection in CFRP specimens. It eval-
uates older and more common models such as Random Forest and
Support Vector Machines against state-of-the-art approaches such as
convolutional neural networks for semantic segmentation.

Semantic segmentation networks are capable of detecting subsur-
face defects far outperforming older methods such as Random Forest
or Support Vector Machines. In addition, semantic segmentation has
a great advantage over object detection thanks to its ability to detect
defects of any shape, not only square defects.

More complex and modern networks like DeepLabV3+ tend to
perform better, but increasing the amount of data per sample given
to the model is almost as effective, as seen with UNet. Using 30-
channel images instead of 3-channel images significantly improves

https://www.rohacell.com/en


Measurement 200 (2022) 111653O.D. Pedrayes et al.
Fig. 14. Visualization of the predicted results for DeepLabV3+. (1st col.) Original images, (2nd col.) ground truth masks, (3rd col.) predictions, (4th col.) original images with
ground truth masks, (5th col.) original images with predictions.
Fig. 15. Bar graph for all the methods.

predictability. To ensure reproducibility and further investigations, the
dataset generated for this article is publicly available in the following
DOI: https://doi.org/10.5281/zenodo.5426792.
13
Fig. 16. Diagram of specimen 2.

https://doi.org/10.5281/zenodo.5426792
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Fig. 17. Specimen 2.

Fig. 18. Diagram of specimen 3.
14
Fig. 19. Specimen 3.

To increase the validity of this study, evaluations of the DeepLabV3+
and UNet trained models for the 3-channel dataset are performed
on new specimens with different internal structures. This evaluation
proves that as long as the specimen has a similar internal structure,
defect detection with strong results is possible.

Without performing testing on composite specimens with naturally
occurring flaws, it is not possible to validate this technique. Almost
all defects are easily detected and without false positives in this test
for artificially induced defects with DeepLabV3+. The structure of the
specimens needs to be similar to the training samples. A larger and
more varied dataset would produce improved results.

It is apparent that these technologies could provide a solid support
to help experts who have to check each specimen manually. Consider-
ing how fast the field of computer vision is evolving, it would be no
surprise if deep learning algorithms become the norm for subsurface
defect detection.

This study shows that there is still room for improvement in this
field. For example, a GPU with more than eleven gigabytes of VRAM
could slightly improve the results offered in this evaluation work by in-
creasing the batch size. In addition, if the architecture of DeepLabV3+
were modified to accept 30-channel images, it could improve its results,
although this would further limit the VRAM required.
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