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1. Introduction

Markov Random Fields (MRF) are random vectors for which the conditional statistical 
independence structure can be expressed as a graph in which the nodes represent the 
indices of the variables [20]. More precisely, the statistical dependence of two variables 
is linked to the paths that connect those variables in the graph. If the random vector 
is Multivariate Gaussian, the notion of statistical dependence becomes equivalent to 
that of linear dependence (see, e.g., [28]) and, thus, the conditional independence of the 
variables can be studied by using the inverse of the covariance matrix [35]. In this case, 
the random vector is called a Gaussian Markov Random Field (GMRF).

GMRFs have been used in several fields of application, for example, in the context 
of image processing tasks in astronomy (e.g., classification of Polarimetric SAR Images 
[19], and astronomical image restoration [29]) and of disease control [22,27]. Typically, 
the inverse of the covariance matrix of the model is sparse, therefore some research 
has also focused on different computational aspects of GMRFs, for instance, structure 
learning [25], sampling methods [5], simulation [31,36,37] and inference [17].

We are interested in GMRFs with uniform correlation, which are a particular type 
of GMRFs in which Pearson’s correlation coefficient between adjacent variables in the 
graph is constant and equals a value in the open interval (−1, 1). This can be a reasonable 
assumption in several contexts such as the understanding of an image as a grid of pixels 
or the study of statistical mechanics problems over a toroidal lattice [35]. The case of 
the cycle graph plays an important role in the definition of the Grenander model for 
identifying object contours on digital images (see [15]).

The main objective of this paper is to study the construction and properties of the 
correlation matrix of GMRFs over cycle graphs. We determine the link between the 
automorphism group of a graph and the symmetries of the correlation matrix of any 
GMRF with uniform correlation over the graph. Then, we prove that, when considering 
a cycle graph, the associated correlation matrix is circulant and, by using some proper-
ties of circulant matrices, a useful characterization of the correlation matrix in terms of 
its inverse is provided. From this characterization we can define a method to construct 
such correlation matrix and study the asymptotic behavior of GMRFs over cycle graphs 
of large order. In addition, we study the relationship of GMRFs over cycle graphs with 
the stationary Gaussian Markov Process (GMP) on the circle as defined in [32]. In this 
context, we design a method to compute the correlation matrix and provide some asymp-
totic results. This study is not only interesting in itself, but it also serves as a starting 
point for the study of more complex models such as a GMRF over the Cartesian product 
of cycle graphs. More precisely, the Cartesian product of two cycle graphs is a regular 
lattice over a toroidal topology, which is widely used in image analysis (see [8,33,35] for 
some examples). In addition, the presented results also establish a link between Graph 
Theory and Linear Algebra, a well-established relationship that has been developed over 
the years [1,24,30,44].
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The remainder of the paper is organized as follows. In Section 2, we introduce the 
preliminary concepts and fix the notations that will be used throughout the paper. The 
link between the automorphism group of a graph and the symmetries of the correlation 
matrix is presented in Section 3. In Section 4, we provide the characterization of the 
correlation matrix of a GMRF with uniform correlation over a cycle graph, study the 
relationship with the stationary GMP on the circle and present two methods for com-
puting the correlation matrix. Finally, in Section 5, we study the asymptotic behavior
as the order of the cycle graph tends to infinity. Some conclusions and future research 
are presented in Section 6.

2. Preliminaries

In this section, preliminary concepts and notations are presented.

2.1. Simple undirected finite graphs

In this subsection, we introduce some basic concepts of Graph Theory using as main 
reference [23]. A finite graph is a pair G = (V, E), where V is the set of nodes, which 
is required to be finite, and E is the set of edges, which is a set of subsets of V of 
cardinality equal to 2. In particular, and from now on, we will consider simple graphs, 
which are graphs containing no graph loops ({i, i} /∈ E for any i ∈ V ) or multiple edges 
(E is not a multiset). The adjacency matrix AG of a graph G is the matrix such that 
(AG)i,j = 1 if {i, j} ∈ E and (AG)i,j = 0 if {i, j} /∈ E. The number of elements of V
is called the order of the graph. Unless stated otherwise, the set of nodes is assumed to 
be V = {1, . . . , n} since the elements of V are typically used as indices. For simplicity, 
throughout this paper, we refer to simple undirected finite graphs simply as graphs.

If {i, j} ∈ E, then i and j are said to be adjacent. The set of nodes to which a node 
i is adjacent is called the neighborhood of N(i), and the number of elements of N(i) is 
called the degree of i. A graph in which all the nodes are adjacent to each other is called 
a complete graph. A graph in which no node is adjacent to another is called an empty 
graph. A bipartite graph is a graph in which there exist two subsets V1 and V2 of V , 
called parts, such that V1 ∪ V2 = V , V1 ∩ V2 = ∅ and {i, j} /∈ E if i, j ∈ V1 or i, j ∈ V2.

A sequence of nodes (v1, . . . , vk) is called a walk between v1 and vk if {vi, vi+1} ∈ E

for any i ∈ {1, . . . , k − 1}. We say that v1 and vk are connected if there exists a walk 
between v1 and vk and we say that a graph is connected if any two nodes in the graph are 
connected. Given three pairwise disjoint subsets A, B and C of V , C is said to separate 
A and B if any walk between a node in A and a node in B contains a node in C. If no 
edge is repeated in a walk, then the walk is called a path, and, if v1 = vk, then the path 
is called a cycle. A graph that is only formed by a cycle is called a cycle graph. A graph 
with no cycles and connected is called a tree graph. A graph in which two nodes have 
degree 1 and all other nodes have degree 2 is called a path graph.
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Given two graphs G1 = (V1, E1) and G2 = (V2, E2), a function φ : V1 → V2 is called 
a graph homomorphism if it holds that {u, v} ∈ E1 if and only if {φ(u), φ(v)} ∈ E2. If 
φ is bijective, φ is called a graph isomorphism. A graph isomorphism in which a graph 
G is mapped onto itself is called an automorphism of G. The set of automorphisms of a 
graph G under the composition operation forms a group, see [18], denoted by Aut(G).

A cyclic permutation of maximal length is a graph automorphism φ : V → V

with V = {a0, . . . , an−1} such that φ(ai) = ai+1 (mod n) for any ai ∈ V , denoted by 
φ = (a0, . . . , an−1). A graph is called circulant if the automorphism group of the graph 
contains a cyclic permutation of maximal length. In particular, cycle graphs are circulant.

2.2. Circulant matrices

In this subsection, we recall the definition and some basic properties of circulant 
matrices. As we shall see, this type of matrices will be central to our work.

Definition 2.1. [35] A matrix C = (Ci,j)1≤i,j≤n of dimension n ×n is called a circulant ma-
trix if there exists a generating vector �c = (c0, . . . , cn−1)T such that Ci,j = cj−i (mod n). 
A circulant matrix C is then denoted by C = circ(�c), where �c is the generating vector.

The structure of a circulant matrix is the following:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 c2 . . . cn−2 cn−1

cn−1 c0 c1
. . . cn−2

cn−2 cn−1 c0
. . . . . .

...
...

. . . . . . . . . . . . c2

c2
. . . . . . . . . c1

c1 c2 . . . cn−2 cn−1 c0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In particular, we will deal with correlation matrices that are circulant. Since correlation 
matrices are always symmetric, we are interested in circulant matrices for which cj =
cn−j (mod n).

The following proposition includes some properties of circulant matrices. The proof 
can be achieved following a similar procedure as in [35]. Additionally, this result can also 
be found in [6].

Proposition 2.1. [6][35] Let C = circ(�c) be a circulant matrix of dimension n × n with 
�c = (c0, . . . , cn−1)T . It holds that:

• �vj =
(
1, wj , . . . , w

n−1
j

)T is an eigenvector of C for any j ∈ {0, . . . , n − 1} with 

associated eigenvalue λj =
n−1∑

ckw
k
j ,
k=0
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• C−1 = circ(�d) with �d = (d0, . . . , dn−1)T and

dj = 1
n

n−1∑
k=0

wk
j

λk
,

where wj = exp (−2πji/n) and i denotes the imaginary unit.

2.3. Multivariate Gaussian distribution

A continuous random vector �X has a Multivariate Gaussian distribution if any linear 
combination of its components has a Univariate Gaussian distribution (see [28]). The 
joint probability density function of a Multivariate Gaussian random vector has the 
following expression:

f(�x) = 1√
(2π)n|Σ|

exp
(
− (�x− �μ)TΣ−1(�x− �μ)

2

)
, ∀�x ∈ Rn ,

where �μ is the mean vector and Σ = (Σi,j)1≤i,j≤n is the covariance matrix. The cor-
relation matrix S is defined by Si,j = Σi,j√

Σi,iΣj,j
. If the components of a random vector 

are indexed by a set I, i.e. �X = (Xi | i ∈ I), for any A ⊂ I, we consider the notations 
�XA = (Xi | i ∈ A) and �X−A = (Xi | i ∈ I\A). Given A, B ⊆ I, we denote by ΣA,B

the submatrix of Σ whose rows are those indicated by A and whose columns are those 
indicated by B.

We denote the set of positive-definite matrices by P, i.e., the set of all symmetric 
matrices of dimension n × n (for a certain n ∈ N) such that for any non-null vector �v of 
dimension n it holds that �vTΣ�v > 0. Note that a matrix is positive definite if and only if 
its eigenvalues are strictly positive [4]. In this work, we require Σ to be positive definite.

Two continuous random vectors �X and �Y of dimensions nX and nY are said to be con-
ditionally independent, see [34], given another continuous random vector �Z of dimension 
nZ if there exist h : RnX+nZ → [0,∞] and g : RnY +nZ → [0,∞] such that:

f(�x, �y, �z) = h(�x, �z)g(�y, �z) , ∀�x ∈ RnX , ∀�y ∈ RnY , ∀�z ∈ RnZ .

We denote by �XA ⊥ �XB | �XC the fact that �XA and �XB are conditionally independent 
given �XC .

Interestingly, for a Multivariate Gaussian distribution with covariance matrix Σ, the 
conditional covariance matrix of �XA given a value of �X−A, denoted by ΣA|−A, satisfies 
that ΣA|−A = ((Σ−1)A)−1 = ΣA − ΣA,−A(Σ−A)−1Σ−A,A (see [35]).
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Example 2.1. Consider the following covariance matrix (indexed by {1, 2, 3, 4}):

Σ =

⎛
⎜⎝

1 0.5 0.4 0.3
1 2 0.3 1

0.4 0.3 0.5 0.2
0.3 1 0.2 3

⎞
⎟⎠ .

In order to determine Σ{2,3}|{1,4}, we just need to compute the inverse of Σ,

Σ−1 =

⎛
⎜⎝

1.55575 −0.217943 −1.11027 −0.0089096
−0.217943 0.673703 −0.152834 −0.192584
−1.11027 −0.152834 2.995 −0.0376945
−0.0089096 −0.192584 −0.0376945 0.400932

⎞
⎟⎠ ,

and compute the inverse of the block matrix associated with {2, 3}:

Σ{2,3}|{1,4} =
(

0.673703 −0.152834
−0.152834 2.995

)−1

=
(

1.50172 0.0766323
0.0766323 0.3378

)
.

This property ΣA|−A = ((Σ−1)A)−1 = ΣA−ΣA,−A(Σ−A)−1Σ−A,A implies that condi-
tionally independent variables are characterized by the null elements of the inverse of the 
covariance matrix. The following theorem plays an important role on the characterization 
of GMRFs, defined in the upcoming Subsection 2.4.

Theorem 2.1. [35] Let �X be a Multivariate Gaussian random vector with mean vector �μ

and covariance matrix Σ. For any i �= j, it holds that

Xi ⊥ Xj | �X−{i,j} ⇐⇒
(
Σ−1)

ij
= 0 .

2.4. Gaussian Markov random fields

A Markov Random Field (MRF) associates the components of a random vector with 
the nodes of a graph, representing the conditional dependence of the components by 
means of the edges of the graph. Formally, given a graph G = (V, E), a random vector 
�X = (Xi | i ∈ V ) is defined over the nodes of G. We are interested in three different 
properties of such random vector:

• The pairwise Markov property:

Xi ⊥ Xj | �X−{i,j} for any i, j ∈ V such that {i, j} /∈ E and i �= j .

• The local Markov property:

Xi ⊥ �X−{i}∪N(i) | �XN(i) for any i ∈ V .
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5 6
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Fig. 1. Representation of a simple graph of order 6.

• The global Markov property:

�XA ⊥ �XB | �XC ,

for any pairwise disjoint A, B, C ⊂ V with A, B �= ∅ and where C separates A and B.

A random vector �X that satisfies the global Markov property is called a Markov Random 
Field (MRF). If �X is a Multivariate Gaussian random vector, then the three properties 
above are equivalent, [39], and we refer to �X as a Gaussian Markov Random Field 
(GMRF). As a result of Theorem 2.1, given a GMRF, the Markov properties are char-
acterized by the null elements of Σ−1.

Definition 2.2. Let G = (V, E) be a graph and �XV = {Xi | i ∈ V } be a Multivariate 
Gaussian random vector with mean vector �μ and covariance matrix Σ. The random 
vector �XV is called a GMRF over G if {i, j} /∈ E implies that (Σ−1)i,j = 0.

Note that the definition above may be found in some sources with the double impli-
cation, i.e. {i, j} /∈ E if and only if (Σ−1)i,j = 0. However, for our purposes, it is more 
convenient to consider the definition with the single implication, which was already 
considered in [39]. In particular, this implies that we consider a Multivariate Gaussian 
distribution with diagonal covariance matrix to be a GMRF over any graph (not only 
over the graph with no edges).

Example 2.2. Consider a GMRF �XV with V = {1, . . . , 6} over the graph in Fig. 1. 
Since {1, 6} /∈ E, it follows from the pairwise Markov property that X1 and X6 are 
conditionally independent given X−{1,6}. Since N(6) = {3, 5}, it follows from the local 
Markov property that X1 ⊥ X6|X{3,5}. Finally, the subset of nodes {2, 5} separates 1
and 6, therefore it follows from the global Markov property that X1 ⊥ X6|X{2,5}.

A GMRF in which all Pearson’s correlation coefficients between adjacent variables 
are equal is called a GMRF with uniform correlation. This additional requirement al-
lows us to find patterns in the correlation matrix of the distribution by studying the 
automorphism group of the graph (see upcoming Section 3.1).

Definition 2.3. Let G = (V, E) be a graph. A Multivariate Gaussian random vector 
�X = (Xi | i ∈ V ) is called a GMRF with uniform correlation ρ0 ∈ (−1, 1) if the 
corresponding correlation matrix S satisfies that:
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• Si,j = ρ0 if {i, j} ∈ E;
• (S−1)i,j = 0 if {i, j} /∈ E (and i �= j).

Note that, since S is a correlation matrix, its diagonal elements equal 1 (i.e., Si,i = 1
for any i ∈ {1, . . . , n}).

2.5. The GMRF with uniform correlation construction problem

Given a graph G and a value ρ0 for the uniform correlation, we aim at finding the 
correlation matrix of a GMRF with uniform correlation ρ0 over G. This problem is a 
particular case of the GMRF construction problem defined in [39].

Theorem 2.2. [39] Let P , R ∈ P and a graph G = (V, E). There exists a unique F ∈ P

that satisfies:

• Fi,j = Pij if {i, j} ∈ E or if i = j,
• (F−1)i,j = Ri,j if {i, j} /∈ E.

We highlight the importance of finding the solution of this problem, typically in the 
case in which R is the identity matrix, since it is related to several widely studied 
topics. Firstly, this problem is equivalent to finding the Maximum Likelihood Estimation 
(MLE) of the covariance matrix of a Multivariate Gaussian distribution given some 
linear constraints over the variables [11]. Secondly, it is also equivalent to finding the 
distribution that maximizes the differential entropy among all the random vectors with 
the variances and some of the covariances specified (since it maximizes the determinant 
of the associated covariance matrix) [16]. Finding the distribution that maximizes the 
differential entropy given some restrictions is a highly studied field, some examples can be 
found in [2,12,43]. Indirectly, in this paper we are finding the distribution that maximizes 
the differential entropy while setting to a fixed value the correlation between all pairs of 
variables whose nodes are adjacent on the cycle graph.

This problem was also introduced in [11] as a covariance selection model, which has 
been shown to be very useful for reducing the number of parameters in the estimation 
of the covariance matrix of a Multivariate Gaussian distribution (and, actually, of the 
exponential family, see [39]). Finally, there is a direct link between this problem and 
the positive definite completion of partial Hermitian matrices [16]. Please also note that 
finding the matrix F in Theorem 2.2 is, in general, not easy. Numerical methods to 
solve the GMRF construction problem, not necessarily with uniform correlation, may be 
found in [3,11,39,41,42]. These algorithms are iterative approximations that converge to 
the solution. In this paper, we present two alternative methods for GMRFs with uniform 
correlation over cycle graphs (see Section 4). Our proposed methods are not based on the 
convergence to the solution but are based on finding a root of a non-linear function. The 
first one allows us to study in-depth the asymptotic properties of these distributions, 
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whereas the second one is faster than the usual procedures in the literature, since the 
complexity in time grows linearly as the order of the graph increases. Unfortunately, 
they are restricted to GMRFs with uniform correlation over cycle graphs.

Setting R = In, it is concluded that there exists a (unique) correlation matrix of a 
GMRF with uniform correlation ρ0 over G as long as there exists a positive definite 
matrix P satisfying that Pi,i = 1 for any i ∈ V and Pi,j = ρ0 if {i, j} ∈ E. In particular, 
for ρ0 ≥ 0, such matrix P always exists. For instance, we may consider P such that 
Pi,i = 1 with i ∈ V and Pi,j = ρ0 for any i, j ∈ V with i �= j. If G is bipartite (with 
parts V1 and V2) and ρ0 < 0, such matrix also exists. For instance, we may consider the 
matrix P obtained as the solution for the case in which the uniform correlation equals 
−ρ0 (which is assured to exist since −ρ0 > 0) and consider the (positive definite) matrix 
P̂ such that P̂i,j = −Pi,j if i ∈ V1 and j ∈ V2 or i ∈ V2 and j ∈ V1 and P̂i,j = Pi,j

otherwise. Unfortunately, if G is not bipartite, there exists a value ρa ∈ (−1, 0) for which 
said positive definite matrix P does not exist if ρ0 ∈ (−1, ρa). For instance, there does not 
exist a GMRF with uniform correlation ρ0 = −0.6 over the complete graph with three 
nodes. Note that the uniqueness of the solution implies that any GMRF with uniform 
correlation ρ0 over a graph G has the same correlation matrix.

3. Graph automorphisms and the correlation matrix

Given a GMRF with uniform correlation over a graph, the study of the automorphism 
group of the graph allows us to identify elements of its correlation matrix S that must 
be equal to each other. We devote this section to prove this statement and to study the 
particular case in which the graph is circulant (concluding that the correlation matrix 
must also be circulant).

3.1. General symmetries of a GMRF with uniform correlation

The easiest graphs for which we can solve the GMRF with uniform correlation con-
struction problem are the complete graph and the empty graph. For the complete graph, 
given a value of ρ0 for which S exists, S is such that Si,i = 1 for any i ∈ V and Si,j = ρ0

for any i, j ∈ V such that i �= j. For the empty graph, S is the identity matrix, regard-
less of the value of ρ0. In both cases all the nodes are interchangeable, so any bijective 
function φ : V → V is an automorphism of the graph.

The next result links directly the automorphisms of a graph to the structure of the 
correlation matrix of a GMRF with uniform correlation over the graph.

Proposition 3.1. Let G = (V, E) be a graph with V = {1, . . . , n} and consider �X =
(X1, . . . , Xn)T a GMRF with uniform correlation over G. If φ is an automorphism of 
G, then the correlation matrix of �Y =

(
Xφ(1), . . . , Xφ(n)

)T is the same as the correlation 
matrix of �X.
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Proof. The correlation matrix S of �X is such that:

• Si,i = 1, for any i ∈ V ,
• Si,j = ρ0, for any {i, j} ∈ E,
•

(
S−1)

i,j
= 0, for any {i, j} /∈ E with i �= j.

It holds that �Y is a GMRF with uniform correlation ρ0 over Ĝ = (φ(V ), Ê) with Ê =
{(φ(i), φ(j))|{i, j} ∈ E}. The correlation matrix Ŝ of �Y is another positive definite matrix 
such that:

• Ŝφ(i),φ(i) = 1, for any φ(i) ∈ φ(V ),
• Ŝφ(i),φ(j) = ρ0, for any {φ(i), φ(j)} ∈ Ê,
•

(
Ŝ−1

)
φ(i),φ(j)

= 0, for any (φ(i), φ(j)) /∈ Ê with φ(i) �= φ(j).

Since φ is bijective, so is surjective, it holds that φ(V ) = V = {1, . . . , n} and, since 
φ is a graph homomorphism, it holds that {i, j} ∈ E if and only if {φ(i), φ(j)} ∈ Ê. 
Since �Y =

(
Xφ(1), . . . , Xφ(n)

)T , S and Ŝ are both a solution of the same GMRF with 
uniform correlation construction problem. Due to the uniqueness of the solution (see 
Theorem 2.2), it is concluded that S = Ŝ. �

This result allows us to identify equal elements of the correlation matrix just by 
studying the automorphism group of the graph (Aut(G)).

Remark 3.1. Although the correlation matrices of �X and �Y coincide, for the covariance 
matrices to coincide it is necessary that σi = σφ(i) for any i ∈ V (since the covari-
ance matrix is unequivocally determined by the correlation matrix and the variances of 
the variables). Furthermore, for both �X and �Y to be identically distributed, it is also 
necessary that μi = μφ(i) for any i ∈ V (since a Multivariate Gaussian distribution is 
unequivocally determined by the mean vector and the covariance matrix).

3.2. GMRF with uniform correlation over circulant graphs

From Proposition 3.1, it is possible to see that any GMRF with uniform correlation 
over a circulant graph has a circulant correlation matrix.

Proposition 3.2. Let G = (V, E) be a graph with V = {1, . . . , n} and consider �X =
(X1, . . . , Xn)T a GMRF with uniform correlation over G. If φ = (a0, . . . , an−1) ∈
Aut(G) is a cyclic permutation of maximal length of V , then the correlation matrix 
of �Y = (Xa0 , . . . , Xan−1)T is circulant.

Proof. Let S be the correlation matrix of �Y = (Xa0 , . . . , Xan−1)T and denote its first 
row by S1 = (s0, . . . , sn−1). Let φd denote the graph automorphism resulting of applying 
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d times the graph automorphism φ = (a0, . . . , an−1). The group structure of Aut(G)
assures that φd ∈ Aut(G) and it obviously holds that φd(ai) = (ai+d (mod n)) for any 
i ∈ {0, . . . , n − 1}. From Proposition 3.1, it follows that the correlation matrix of �Z =(
Xφd(a0), . . . , Xφd(an)

)T =
(
Xad (mod n) , Xa1+d (mod n) , . . . , Xan−1+d (mod n)

)T is S. Thus, 
the elements of the ad (mod n)-th row of S satisfy that Sad (mod n),j = S1,j−ad (mod n)+1
= sj−ad (mod n) for any j ∈ {1, . . . , n}. Since this holds for any d ∈ {1, . . . , n} the latter 
property is verified for all the rows a1, . . . , an−1 and is concluded that S is a circulant 
matrix. �

We conclude that, for a circulant graph, it suffices to find an appropriate reindexing 
of the variables of the GMRF with uniform correlation in order to guarantee that the 
correlation matrix is circulant. In particular, this result holds for cycle graphs.

4. Correlation matrix of a GMRF with uniform correlation over a cycle graph

In this section, we first provide a characterization of (the inverse of) the correlation 
matrix of a GMRF with uniform correlation over cycle graphs. This characterization 
serves as a source of inspiration for a method that allows to compute such correlation 
matrix. In Subsection 4.2, we provide an alternative method for the computation of the 
correlation matrix based on the relationship between the distribution and the stationary 
GMP over the circle.

4.1. General results

We focus on the case in which the uniform correlation is not equal to zero, since the 
solution in that case is immediately given by the identity matrix. Firstly, we prove that 
the inverse of the correlation matrix of a GMRF with uniform correlation over a cycle 
graph is circulant with only three non-zero elements in each row.

Lemma 4.1. Let �X = (X1, . . . , Xn)T be a GMRF with uniform correlation ρ0 �= 0 over the 
cycle graph of order n, Cn, with correlation matrix S. It holds that S−1 = αIn + βACn

, 
for some α, β ∈ R.

Proof. Since a cycle graph is circulant, it follows from Proposition 3.2 that it is possible to 
reindex the variables in such a way that the correlation matrix Ŝ of �Y = (Xa1 , . . . , Xan

)T
is circulant. From Proposition 2.1 the inverse of a symmetric circulant matrix also is a 
symmetric circulant matrix, it follows that Ŝ−1 = circ(�d) for some appropriate �d =
(d0, . . . , dn−1)T . From Theorem 2.1 it follows that di �= 0 only if i ∈ {n − 1, 0, 1}. Since 
Ŝ−1 is symmetric, it follows that �d = (α, β, 0, . . . , 0, β)T for some α, β ∈ R. Returning 
to the original indexing of the variables, it is concluded that S−1 = αIn + βACn

. �
To complete the characterization of the correlation matrix of a GMRF with uniform 

correlation over a cycle graph, the best possible scenario would be to express α and β as 
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a simple function of ρ0 and n. Although formulas to find the inverse of circulant matrices 
with only three non-zeros elements in each row have been developed (see [38]), it is not 
evident how to express α and β in terms of ρ0 and n, since we should solve a non-linear 
equation in which the solution does not have a nice expression. However, it is possible 
to express α as a function of β and ρ0 and, ultimately, provide a characterization of the 
correlation matrix in terms of β as a root of a polynomial with coefficients that only 
depend of n and ρ0. Since there might be more than one root of the aforementioned 
polynomial, we also provide some restrictions associated with the positive definiteness 
of the matrix that will allow us to select the correct root of the polynomial.

Theorem 4.1. Let S be a matrix of dimension n × n. It holds that S is the correlation 
matrix of a GMRF with uniform correlation ρ0 �= 0 over Cn = (V, E) with V = {1, . . . , n}
if and only if S−1 = (1 − 2βρ0)In + βACn

, with ACn
being the adjacency matrix of Cn

and β ∈ R, verifying:

(1) β is root of the polynomial P (t):

(2t)n−1
n−1∏
j=0

Kj +
n−1∑
j=1

(2t)j−1

⎛
⎝ ∑

�v∈P(V )j

j∏
i=1

Kvi −
1
n

n∑
k=1

∑
�v∈P(V−k)j

j∏
i=1

Kvi

⎞
⎠ ,

with Kj = cos(2πj/n) − ρ0, P(I) denoting the powerset of I and P(I)k = {A ∈
P(I) | #A = k}.

(2) β > 1
2(ρ0−1) .

(3) β < 1
2(ρ0+1) if n is even and β < 1

2
(
ρ0−cos

(
π(n−1)

n

)) if n is odd.

Proof. (⇒) Without loss of generality, suppose that S is a circulant matrix. If this is 
not the case, consider the appropriate reindexing of the variables, as in Proposition 3.2. 
Since S S−1 = In, it holds that �c T �d = 1, where �c and �d respectively denote the 
generating vectors of the circulant matrices S and S−1. Since S is a correlation matrix 
of a GMRF with uniform correlation ρ0, it holds that �c = (1, ρ0, c2, . . . , cn−2, ρ0)T . From 
Lemma 4.1, it follows that �d = (α, β, 0, . . . , 0, β)T . Therefore, it holds that �c T �d =
α + βρ0 + 0 + · · · + 0 + βρ0 = α + 2βρ0. It is concluded that α + 2βρ0 = 1, and 
taking into account (by Lemma 4.1) that S−1 = αIn + βACn

, we can conclude that 
S−1 = (1 − 2βρ0)In + βACn

.
Let us first prove (1). From the formula for computing the inverse of a circulant matrix 

in Proposition 2.1, it follows that c0 = 1
n

∑n−1
k=0

1
λk

, where λ0, . . . , λk−1 of S−1 are the 
eigenvalues of S−1. We recall that the element c0 equals 1, since S is a correlation matrix. 
Therefore, the expression can be rewritten as 

∑n−1
k=0

1
λk

= n. Since the determinant of 
S−1 equals the product of the eigenvalues of S−1, we may multiply each side of the 
equality by the proper expression to obtain: 

∑n−1
k=0

∏n−1
j=0, j �=k λj = n|S−1|. We substitute 
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the eigenvalues of S−1 by their expanded expression detailed in Proposition 2.1 bearing 
in mind that wk is defined as wk = exp(2πik/n) and �d = (α, β, 0, . . . , 0, β), thus obtaining

λk =
n−1∑
p=0

dpw
p
k = α + β(exp(2πik/n) + exp(−2πik/n)) = α + 2β cos(2πk/n) .

Since α + 2βρ0 = 1, it is obtained that λk = 1 + 2β(cos(2πk/n) − ρ0). Thus, we can 
express the determinant of S−1 as follows

|S−1| =
n−1∏
k=0

(1 + 2β(cos(2πk/n) − ρ0)) .

We want to express the latter equality as a polynomial of β. We consider the notation 
L = {0, . . . , n − 1}. Please note that any addend of the expression of |S−1| that is multi-
plied by a factor βj is also multiplied by a factor 2j and a term 

∏
k=l1,...,lj

(cos(2πk/n) −
ρ0) for different li, . . . , lj ∈ L. Moreover, the coefficient of the polynomial associated with 
βj is 2j multiplied by the sum of the terms 

∏
k=l1,...,lj

(cos(2πk/n) − ρ0) for all possible 
combinations of different li, . . . , lj ∈ L. We denote the subsets of cardinality j of L as 
P(L)j . For any l ∈ P(L)j , we denote the j elements of l by l1, . . . , lj , i.e., l = {l1, . . . , lj}. 
By considering this notation, the determinant |S−1| may be expressed as follows:

|S−1| =
n∑

j=0
(2β)j

∑
l∈P(L)j

j∏
i=1

(cos(2πli/n) − ρ0) .

We denote, for any k ∈ L, the subset of L defined as {l ∈ L | l �= k} by L−k. Similarly 
to the determinant, which is the product of all the eigenvalues, the product of all but 
one of the eigenvalues, 

∏
j∈L−k

λj with k ∈ L has the following expression:

∏
j∈L−k

λj =
n−1∑
j=0

(2β)j
∑

l∈P(L−k)

j∏
i=1

(cos(2πli/n− ρ0) .

The right part of the equation 
∑n−1

k=0
∏n−1

j=0, j �=k λj = n|S−1| may be expressed as 
follows:

n−1∑
k=0

n−1∏
j=0, j �=k

λj =
n−1∑
j=0

(2β)j
n−1∑
k=0

∑
l∈P(L−k)j

j∏
i=1

(cos(2πli/n) − ρ0) .

We consider the notation Kj = cos(2πj/n) − ρ0 and divide by n in the equation ∑n−1
k=0

∏n−1
j=0, j �=k λj = n|S−1|, thus reaching the following expression:

(2β)n
n−1∏
j=0

Kj +
n−1∑
j=0

(2β)j
⎛
⎝ ∑ j∏

i=1
Kli −

1
n

n−1∑ ∑ j∏
i=1

Kvi

⎞
⎠ = 0 .
�v∈P(L)j k=0 l∈P(L−k)j
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Note that the constant term of the polynomial equals 0. Finally, since the constant term 
is 0, after dividing the previous expression by β (which is possible since β = 0 holds if 
and only if ρ0 = 0), the resultant expression is the one provided in (1).

We now prove Conditions (2) and (3). The matrix S−1 has to be positive definite. 
A necessary and sufficient condition for a matrix to be positive definite is that all its 
eigenvalues are strictly positive. If β < 0, the smallest eigenvalue is λ0 = α + 2β =
1 − 2βρ0 + 2β. If β > 0 and n is even, the smallest eigenvalue is λn/2 = α − 2β =
1 − 2βρ0 − 2β, whereas if β > 0 and n is odd, the smallest eigenvalues are λ(n+1)/2 =
λ(n−1)/2 = α + 2βcos 

(
π(n−1)

n

)
= 2βρ0 + 2βcos 

(
π(n−1)

n

)
.

(⇐) Let S−1 = αIn + βACn
with α = (1 − 2βρ0) and β satisfying (1), (2) and 

(3). It holds that S−1 is symmetric, circulant and, since (2) and (3) hold, the smallest 
eigenvalue is greater than 0 and, thus, S−1 is positive definite. Therefore, S is positive 
definite and, in particular, S is the covariance matrix of a GMRF over Cn since the 
elements associated with non-adjacent nodes of S−1 are equal to zero.

Proceeding inversely to the steps in the proof of (1) for the converse implication, we 
conclude that all elements of the diagonal of S are equal to one. Therefore, S is a corre-
lation matrix. Since S is circulant and symmetric, all Pearson’s correlation coefficients 
between Xi and Xi+1 (mod n) are the same for any i ∈ {1, . . . , n}. It is concluded that 
S is the correlation matrix of a GMRF with uniform correlation over Cn. Denote the 
value of this uniform correlation by ρ̂0. From the relation between α and β, it holds that 
β = 1−α

2ρ̂0
, whereas from the hypothesis it holds that β = 1−α

2ρ0
. Thus, it necessarily holds 

that ρ̂0 = ρ0. �
From the results presented in Theorem 4.1, it is possible to design a method for 

computing the correlation matrix of any GMRF with uniform correlation over a cycle 
graph (if such GMRF with uniform correlation exists) and, in particular, to obtain β.

Step 1. Compute the coefficients of the polynomial P (t) in Theorem 4.1.
Step 2. Compute the roots of P (t).
Step 3. Find the root that satisfies Conditions (2) and (3) in Theorem 4.1.
Step 4. Find the inverse of S−1 = (1 − 2βρ0)In + βACn

.

As has already been mentioned, there exist some combinations of n and ρ0 for which 
the solution of the GMRF with uniform correlation construction problem does not exist. 
If such solution exists, the above procedure allows us to obtain the value of β (and α). 
Admittedly, a brute force implementation of the method above has exponential complex-
ity, since the computation of the coefficients of the polynomial involves the power set of 
the set of nodes of the graph. Another issues are the computation of the roots of the 
polynomial and, once β is already obtained, the computation of the inverse of the matrix 
S−1. In this direction, some work has been done in recent years concerning the compu-
tation of the inverse of circulant matrices, see [6,7,14]. Nevertheless, the development of 
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an efficient algorithm for the computation of β and the correlation matrix is here left as 
a future study subject.

In the following, we provide an illustrative example for the computation of β and the 
correlation matrix for a GMRF with uniform correlation over a cycle graph.

Example 4.1. Consider the cycle graph of order 6 and ρ0 = 0.7. The values Ki (with 
i ∈ {0, . . . , 5}) are the following ones:

K0 = 0.3 , K1 = −0.2 , K2 = −1.2 , K3 = −1.7 , K4 = −1.2 , K5 = −0.2 .

We compute the coefficients of P (t), resulting in the following polynomial:

P (t) = −1.880064t5 + 6.9888t4 − 2.624t3 − 10.64t2 + 7.8t− 1.4 .

The five roots of P (t) are the following ones:

r1 = 2.5, r2 ≈ −1.247, r3 ≈ 1.713, r4 ≈ 0.4167, r5 ≈ 0.3345 .

Note that root r2 is the only one contained in the interval 
[

1
2(ρ0−1) ,

1
(2(ρ0+1)

]
=

[−1.666, 0.294]. Thus, we identify β = r2 ≈ −1.247 (and obtain α = 1 − 2βρ0 ≈ 2.746). 
Finally, we construct the inverse of the correlation matrix:

S−1 ≈

⎛
⎜⎜⎜⎜⎝

2.746 −1.247 0 0 0 −1.247
−1.247 2.746 −1.247 0 0 0

0 −1.247 2.746 −1.247 0 0
0 0 −1.247 2.746 −1.247 0
0 0 0 −1.247 2.746 −1.247

−1.247 0 0 0 −1.247 2.746

⎞
⎟⎟⎟⎟⎠ .

By inverting the matrix above, we verify that the diagonal elements equal 1 and the 
elements associated with adjacent nodes equal the uniform correlation ρ0 = 0.7:

S ≈

⎛
⎜⎜⎜⎜⎝

1 0.7 0.541 0.492 0.541 0.7
0.7 1 0.7 0.541 0.492 0.541

0.541 0.7 1 0.7 0.541 0.492
0.492 0.541 0.7 1 0.7 0.541
0.541 0.492 0.541 0.7 1 0.7
0.7 0.541 0.492 0.541 0.7 1

⎞
⎟⎟⎟⎟⎠ .

4.2. Relationship with the stationary Gaussian Markov process on the circle

In this subsection, we consider a stationary Gaussian Markov Process on the circle, 
as defined in Section 1 of [32]. Let XC = {Xi | i ∈ [0, 2π)} be a stochastic process over 
the unit circle, that is, a collection of random variables defined in a common probability 
space and indexed by the points of the unit circle. It is said that XC is a stationary 
GMP over the circle if:
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• it is a Gaussian process: any finite subset of random variables has Multivariate Gaus-
sian distribution.

• it is stationary: the process YC = {Xi+k (mod 2π) | i ∈ [0, 2π)} has the same distri-
bution as XC for any k ∈ R.

• it is simply Markovian: for any interval [a, b] ∈ [0, 2π) it holds that:

X(a,b) ⊥ X[0,a)∪(b,2π) | X{a,b} .

The explicit expression of the Pearson’s correlation coefficient between two variables 
in a stationary GMP over the circle, ρa,b, is specified in the proof of Proposition 1.1 
in [32] (in particular, see Equation (1.7)). For any a, b ∈ [0, 2π) such that |a − b| = t, it 
holds that:

ρa,b =
cosh

[
(t− π)

√
−λ/υ

]

cosh
[
π
√
−λ/υ

] ,

with λυ < 0 and cosh denoting the hyperbolic cosine function. For simplicity, we will 
denote 

√
−λ/υ by ϕ and refer to it as the parameter of the distribution.

This process can be seen as a continuous version of the GMRF with positive uniform 
correlation over cycle graphs. In fact, the distribution of the variables associated with a 
finite set of equispaced points on the circle is a GMRF with uniform correlation over the 
cycle graph.

Proposition 4.1. Let XC be a stationary GMP on the circle with parameter ϕ. Let V =
{0, 2π/n, 4π/n, . . . , 2π(n − 1)/n} be a set of n equispaced points on the circle. It holds 
that �XV is a GMRF with uniform correlation ρ0 = cosh

[( 2π
n −π

)
ϕ
]

cosh [πϕ] over Cn = (V, E), 
where E is defined by

{i, j} ∈ E if and only if j ∈ {i− 2π
n

(mod 2π), i + 2π
n

(mod 2π)} .

Proof. We will prove that �XV satisfies the local Markov property over Cn. For any i ∈ V , 
the neighborhood of i is defined as N(i) = {i−, i+}, where i+ = i + 2π

n (mod 2π) and 
i− = i − 2π

n (mod 2π). Without loss of generality, suppose that i− < i+ (otherwise, we 
may work with YC = {Xj−i− (mod 2π) | j ∈ [0, 2π)}). Since XC is simply Markovian, it 
holds that:

X(i−,i+) ⊥ X[0,i−)∪(i+,2π)) | Xi−,i+ .

Considering that i ∈ (i−, i+), V \{i−, i, i+} ⊂ [0, i−) ∪ (i+, 2π)) and N(i) = {i−, i+}
it holds that:

Xi ⊥ �X−{i}∪N(i) | �XN(i) for any i ∈ V ,
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i.e., the local Markov property holds. Since XC is a Gaussian process, �XV has Multi-
variate Gaussian distribution. From the equivalence between all three Markov properties 
when the distribution is Multivariate Gaussian [35], it is concluded that �XV is a GMRF 
over Cn.

The uniform correlation property is obtained from the fact that {i, j} ∈ E ⇐⇒
j ∈ {i − 2π

n (mod n), i + 2π
n (mod n)} ⇐⇒ |i − j| ∈

{
2π
n , 2π(n−1)

n

}
⇐⇒ ρi,j =

cosh
[( 2π

n −π
)
ϕ
]

cosh [πϕ] = ρ0. For the last step, we recall that the hyperbolic cosine is an even 
function. �

Given a value of ρ0 ∈ (0, 1) and n ∈ N, we are now interested in finding the specific 
value of ϕ that allows us to construct the GMRF with uniform correlation ρ0 over the 
cycle graph of order n. The case in which n = 1 is trivial. Fortunately, for any n > 1, 
the value of ϕ exists and is unique.

Proposition 4.2. Consider ρ0 ∈ (0, 1) and n ∈ N such that n > 1. There exists a unique 

ϕ ∈ (0, ∞) such that cosh
[( 2π

n −π
)
ϕ
]

cosh [πϕ] = ρ0.

Proof. Let f : [0, ∞) → (0, 1] be the function defined as follows:

f(ϕ) =
cosh

[( 2π
n − π

)
ϕ
]

cosh [πϕ] .

This function is a continuous function such that f(0) = 1 and, since 
∣∣( 2π

n − π
)
ϕ
∣∣ <

|πϕ|, it follows that:

lim
ϕ→∞

f(ϕ) = lim
ϕ→∞

e
( 2π

n −π
)
ϕ + e−

( 2π
n −π

)
ϕ

eπϕ + e−πϕ
= 0 .

The derivative ∂f(ϕ)
∂ϕ has the following expression:

[( 2π
n − π

)
ϕ
]
sinh

[( 2π
n − π

)
ϕ
]
cosh [πϕ] − cosh

[( 2π
n − π

)
ϕ
]
[πϕ] sinh [πϕ]

(cosh [πϕ])2
.

By applying some basic properties of hyperbolic functions (e.g., sinh(a + b) =
cosh(a) sinh(b) + cosh(b) sinh(a)), the previous derivative may be expressed as:

∂f(ϕ)
∂ϕ

=
2π
n sinh

[( 2π
n − π

)
ϕ
]
cosh [πϕ] − [πϕ] sinh

[ 2π
n ϕ

]
(cosh [πϕ])2

.

Since sinh(a) < 0 if a < 0, sinh(a) > 0 if a > 0 and cosh(a) > 0 for any a ∈ R, it 
holds that ∂f(ϕ)

∂ϕ < 0 for any ϕ ∈ (0, ∞).
Since f(0) = 1, limϕ→∞ f(ϕ) = 0 and ∂f(ϕ)

∂ϕ < 0 for any ϕ ∈ (0, ∞), it is concluded 
that f : [0, ∞) → (0, 1] is a bijective function, and, therefore, the result holds. �
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The previous result allows us to define another alternative method to compute the 
correlation matrix of a GMRF with positive uniform correlation ρ0 ≥ 0 over the cycle 
graph of order n.

Step 1. Find ϕ such that cosh
[( 2π

n −π
)
ϕ
]

cosh [πϕ] = ρ0.

Step 2. Compute sj =
cosh

[
( 2πj

n −π)ϕ
]

cosh [πϕ] for j ∈ {0, . . . , n − 1}.
Step 3. Construct the correlation matrix S = circ(�s) with �s = (s0, . . . , sn−1)T .

As it happened with β, it is not easy to provide an explicit function of ϕ in terms of n
and ρ0. However, this method results to be more efficient than the one proposed in the 
previous subsection and the ones used in the literature for general GMRFs, whose time 
complexity is of the order of O(n4+ε), with ε > 0 (see, for instance [3,42]). In this case, the 
complexity of the first step is not dependent on the value of n and the second and third 
steps have a complexity of O(n). This contrasts with the case presented in the previous 
section, for which the computation of β required the construction of a polynomial that 
led to an exponential complexity, the search for the correct root and the inversion of a 
matrix of dimension n × n.

Unfortunately, there does not exist an analogous notion for the stationary GMP on 
the circle for negative (uniform) correlation. For a negative value of ρ0, if n is even G
is bipartite, thus we can use the existence of GRMFs with negative uniform correlation 
over bipartite graphs and the construction of their associated matrices, as discussed in 
the last paragraph of Subsection 3.2. In particular, it is possible to adapt the previous 
method just by defining �s as (s0, −s1, s2, −s3, . . . , sn−2, −sn−1).

If n is odd, there is no way out and we must use the method defined in the previous 
subsection. As was stated for the first method, the development of an efficient algorithm 
for the computation of ϕ and associated correlation matrix is left as a future study 
subject.

Finally, we end the section by providing an illustrative example.

Example 4.2. Consider (as in Example 4.1) the cycle graph of order 6 and ρ0 = 0.7. We 
need to find a value of ϕ such that the following equation holds:

cosh
[
−2πϕ

3
]

cosh [πϕ] = 0.7 .

A numerical approximation of the value, using the Newton-Rapshon method, leads 

to ϕ ≈ 0.42538. Next, we just need to compute the values of sj =
cosh

[
( 2πj

6 −π)ϕ
]

cosh [πϕ] for 
j ∈ {0, . . . , 5}, which leads us to:

s0 = 1 , s1 ≈ 0.700 , s2 ≈ 0.541 , s3 ≈ 0.492 , s4 ≈ 0.541 , s5 ≈ 0.7 .

This results in S = circ(�s), which is the same matrix obtained in Example 4.1.
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Fig. 2. Values of β depending on n for positive values of ρ0 (top left), values of β depending on n for negative 
values of ρ0 (top right), values of β depending on ρ0 for different values of n (bottom left) and values of 
ϕ depending on n for positive values of ρ0. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

5. Asymptotic behavior of a GMRF with uniform correlation over a cycle graph

In this section, we study the asymptotic behavior of GMRFs with uniform correlation 
over a cycle graph. In particular, we devote our attention to the behavior of β and 
ϕ as n increases. A graphical representation of the values of β and ϕ introduced in the 
previous section can be found in Fig. 2. In the top-right and bottom-left charts, the points 
corresponding to the combinations of n and ρ0 for which the matrix S does not exist 
are not drawn. These results hint that it might be possible to obtain some asymptotic 
expression of β and ϕ as n increases. In particular, β seems to converge to a fixed value 
depending on ρ0 and ϕ seems to be linearly dependent on n, also depending on ρ0. The 
convergence of β is faster the closer ρ0 is to 0, whereas the slope of ϕ is greater the 
smaller ρ0 is.

From now on, let us introduce a slightly different notation. For clarifying the value 
of n and ρ0, we will denote by S(n, ρ0) the correlation matrix of a GMRF with uniform 
correlation ρ0 over the cycle graph of order n. Similarly, we denote by S−1(n, ρ0) the 
inverse of the matrix S(n, ρ0).

We also recall some concepts about convergence of sequences. A sequence (an)n∈N
converges to the limit a ∈ R, denoted by limn→∞ an = a, if, for any ε > 0, there exists 
n0 ∈ N such that for any n0 < n ∈ N it holds that |an − a| < ε. Given a sequence 
(an)n∈N , a subsequence (aκ(n))n∈N of (an)n∈N is the sequence obtained from selecting 
from (an)n∈N the values associated with the indices indicated by a strictly monotonically 



J. Baz et al. / Linear Algebra and its Applications 663 (2023) 32–61 51
increasing mapping κ : N → N. If a sequence (an)n∈N is bounded, then there exists 
a convergent subsequence of (an)n∈N . If the sequence (an)n∈N is not bounded, then 
there exists a subsequence (aκ(n))n∈N of (an)n∈N such that limn→∞ aκ(n) = ∞ or 
limn→∞ aκ(n) = −∞. If a sequence (an)n∈N is bounded and any convergent subsequence 
of (an)n∈N converges to the same limit a, then the sequence (an)n∈N converges to the 
limit a. For more details on the convergence of sequences, we refer to [21].

5.1. Asymptotic behavior of β

In this subsection, we study the convergence of β as n increases, for a fixed value of 
ρ0. Note that it is convenient to simultaneously work with α and β (see Lemma 4.1), 
even though we know that they are related by the identity α + 2βρ0 = 1 and thus β
converges if and only if α converges. Formally, the sequences in which we are interested 
are defined as follows.

Definition 5.1. Let S(n, ρ0) be the correlation matrix of a GMRF with uniform correla-
tion ρ0 over the cycle graph Cn, for any ρ0 ∈ (0, 1) and n ∈ N. The following sequences 
are defined:

(
α(n, ρ0)

)
n∈N =

(
S−1(n, ρ0)1,1

)
n∈N ,(

β(n, ρ0)
)
n∈N =

(
S−1(n, ρ0)1,2

)
n∈N .

As mentioned previously, the sequences are related through the equality α(n, ρ0) +
2β(n, ρ0)ρ0 = 1, for any n ∈ N, and the eigenvalues of S−1(n, ρ0) have the expression 
λk(n, ρ0) = 1 + 2β(cos(2πk/n) − ρ0) with k ∈ {0, . . . , n − 1}.

For negative values of ρ0, we define the sequences above just by choosing only the 
values of n ∈ N for which S(n, ρ0) exists. The existence of the values of S(n, ρ0) is 
assured at least for all even values of n.

The remainder of the section is devoted to proving that the sequences (α(n, ρ0))n∈N
and (β(n, ρ0))n∈N converge to the following limits (see Theorem 5.1):

lim
n→∞

α(n, ρ0) = 1 + ρ0
2

1 − ρ02 and lim
n→∞

β(n, ρ0) = − ρ0

1 − ρ02 .

The result is especially interesting since these values coincide with those of a GMRF 
with uniform correlation ρ0 over a path graph. This latter model is equivalent to the 
stationary model AR(1), which has been widely studied in the context of time series, 
see [9,26], and where, unlike in the case of a GMRF with uniform correlation over a 
cycle graph, the expression of the correlation matrix and its inverse is straightforward. 
A similar interpretation of this result follows from the fact that a circle of infinite radius 
is nothing but a line.
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Proposition 5.1. [26] Let S be the correlation matrix of a GMRF with uniform correlation 
ρ0 over the path graph of order n. It holds that:

1. (S−1)1,1 = (S−1)n,n = 1
1−ρ02 ,

2. (S−1)i,i = 1+ρ0
2

1−ρ02 , for any i ∈ {2, ..., n − 1},
3. (S−1)i,i+1 = (S−1)i+1,i = − ρ0

1−ρ02 , for any i ∈ {1, ..., n − 1}.

For proving that both sequences converge, firstly, we prove that the sequences are 
bounded.

Proposition 5.2. The sequences (α(n, ρ0))n∈N and (β(n, ρ0))n∈N are bounded.

Proof. Suppose that the sequence (α(n, ρ0))n∈N is not bounded. In such case, there 
exists a subsequence (α(κ(n), ρ0))n∈N that diverges to ±∞. We distinguish two cases.

• If limn→∞ α(κ(n), ρ0) = −∞, then α(k(n0), ρ0) < 0 for a n0 ∈ N and any n > n0. 
This contradicts the fact that S−1(k(n0 + 1), ρ0) is positive definite.

• If limn→∞ α(κ(n), ρ0) = ∞, we distinguish two subcases.
(a) If ρ0 > 0, since β(n, ρ0) = 1−α(n,ρ0)

2ρ0
, the eigenvalue α(κ(n), ρ0) + 2β(κ(n), ρ0)

= 1
ρ0

+ α(κ(n), ρ0) 
(
1 − 1

ρ0

)
tends to −∞.

(b) If ρ0 < 0, we define �k(n) = κ(n)
2 if κ(n) is even and �k(n) = κ(n)−1

2 if κ(n) is odd, 
which are the indices of the smallest eigenvalues of S−1(κ(n), ρ0). It follows that 
the eigenvalue λk(n) = α(n, ρ0) + 2β(n, ρ0) cos(2π�k(n)/κ(n)) = cos(2πk(n)/κ(n))

ρ0
+

α(κ(n), ρ0) 
(
1 − cos(2πk(n)(n)/κ(n))

ρ0

)
tends to −∞.

In both cases, the contradiction follows from the positive definiteness of S−1(κ(n), ρ0)
for any n ∈ N.

We end by noting that, if (α(n, ρ0))n∈N is bounded, then (β(n, ρ0))n∈N is also 
bounded. �

In the following, we study a convergent subsequence of (α(n, ρ0))n∈N . In particular, 
we prove that the eigenvalues of the inverse of the correlation matrix do not tend to zero 
as n increases.

Proposition 5.3. Let (α(κ(n), ρ0))n∈N and (β(κ(n), ρ0))n∈N be two convergent subse-
quences of (α(n, ρ0))n∈N and (β(n, ρ0))n∈N . It holds that

lim
n→∞

α(κ(n), ρ0) = a(ρ0) , lim
n→∞

β(κ(n), ρ0) = b(ρ0) , with a(ρ0) > |2b(ρ0)| .

Proof. Firstly, we prove that a(ρ0) > 0. Since all eigenvalues are positive, it trivially 
follows that a(ρ0) ≥ 0. Suppose that a(ρ0) = 0. Since β(n, ρ0) = 1−α(n,ρ0) , it holds 
2ρ0



J. Baz et al. / Linear Algebra and its Applications 663 (2023) 32–61 53
that b(ρ0) = (2ρ0)−1. Therefore, the eigenvalue λ0 = α(κ(n), ρ0) + 2β(κ(n), ρ0) tends to 
0 + ρ0

−1, which is strictly negative for any ρ0 < 0. We recall the definition �k(n) = κ(n)
2

if κ(n) is even and �k(n) = κ(n)−1
2 if κ(n) is odd. The eigenvalue λk(n) = α(n, ρ0) +

2β(n, ρ0) cos(2π�k(n)/κ(n)) tends to 0 − ρ0
−1, which is strictly negative for any ρ0 > 0. 

The contradiction follows from the fact that no eigenvalue can tend to a limit smaller 
than 0 because this would imply the existence of n0 ∈ N such that S−1(n0, ρ0) has a 
negative eigenvalue, which contradicts that S−1(n0, ρ0) is positive definite.

Secondly, we prove that a(ρ0) > |2b(ρ0)|. Since |α(κ(n), ρ0)| > |2β(κ(n), ρ0)| due the 
positiveness of the eigenvalues of S−1(κ(n), ρ0), it holds that a(ρ0) ≥ |2b(ρ0)|. Suppose 
that a(ρ0) = |2b(ρ0)|. It either holds that b(ρ0) = a(ρ0)

2 or b(ρ0) = −a(ρ0)
2 . The identity 

S(n, ρ0)S−1(n, ρ0) = In implies that:

α(κ(n), ρ0)ρd(κ(n), ρ0) + β(κ(n), ρ0) (ρd−1(κ(n), ρ0) + ρd+1(κ(n), ρ0)) = 0 ,

where ρd(κ(n), ρ0) is Pearson’s correlation coefficient between two variables that are 
at distance d > 0 in the graph. The limit of these Pearson’s correlation coeffi-
cients exists as a result of the expression above and the fact that the limits of 
α(κ(n), ρ0) and β(κ(n), ρ0) exist and ρ0(κ(n), ρ0) = 1 and ρ1(κ(n), ρ0) = ρ0 for any 
n ∈ N. Denoting ρd = limn→∞ ρd(n, ρ0), we arrive to the following recurrence relation: 
a(ρ0)ρd + b(ρ0) (rd−1(ρ0) + rd+1(ρ0)) = 0, for d > 0 with r0 = 1 and r1 = ρ0. We 
distinguish two cases:

• Case b(ρ0) = −a(ρ0)
2 . The solution of the recurrence relation is ρd = d(ρ0 − 1) + 1. 

Since (ρ0 − 1) is negative, if we consider d0 > 2
1−ρ0

, then it follows that rd0 < −1. 
Therefore, there exists n0 ∈ N such that ρd0(n0, ρ0) < −1, which contradicts the 
fact that S(n0, ρ0) is a correlation matrix.

• Case b(ρ0) = a(ρ0)
2 . The solution of the recurrence relation can be proved to be 

ρd = (−1)d+1(d(ρ0 +1) −1). Since (ρ0 +1) is positive, if we consider d0 > 2
ρ0+1 , then 

it follows that |rd0 | > 1. Therefore, there exists n0 ∈ N such that |ρd0(n0, ρ0)| > 1, 
which contradicts the fact that S(n0, ρ0) is a correlation matrix. �

In the following, we study the limit of Pearson’s correlation coefficient between vari-
ables at a fixed distance as the order of the cycle graph tends to infinity (see Propo-
sition 5.4). Next, we prove that the obtained expression tends to zero as the distance 
between the variables tends to infinity (see Proposition 5.5).

Proposition 5.4. Let (α(κ(n), ρ0))n∈N and (β(κ(n), ρ0))n∈N be two convergent subse-
quences of (α(n, ρ0))n∈N and (β(n, ρ0))n∈N . It holds that

ρd = lim
n→∞

ρd(κ(n), ρ0) = 1
2π

2π∫ cos (td)
a(ρ0) + 2b(ρ0) cos(t) dt ,
0
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where ρd(κ(n), ρ0) denotes Pearson’s correlation coefficient between two variables whose 
associated nodes are at distance d on the cycle graph.

Proof. From Proposition 3.2, it follows that the inverse of the correlation matrix is 
S−1(n, ρ0) = α(n, ρ0)In + β(n, ρ0)ACn

. Bear in mind that the eigenvalues of S−1(n, ρ0)
are λk(n, ρ0) = 1 + 2β(cos(2πk/n) − ρ0) with k ∈ {0, . . . , n − 1}. From Proposition 2.1, 
it follows that Pearson’s correlation coefficient between two variables whose associated 
nodes are at distance d on the cycle graph equals:

ρd(n, ρ0) = 1
n

n−1∑
k=0

e−2πid k
n

λk(n, ρ0)
= 1

n

n−1∑
k=0

e−2πid k
n

α(ρ0, n) + 2β(ρ0, n) cos(2πk/n) .

Replacing the values of α(n, ρ0) and β(n, ρ0) by their limits does not introduce any 
indeterminacy in the expression, since Proposition 5.3 assures us that the eigenvalues of 
S−1(κ(n), ρ0) do not tend to 0.

ρd = lim
n→∞

1
n

n−1∑
k=0

e−2πid k
n

α(ρ0, n) + 2β(ρ0, n) cos(2πk/n)

= lim
n→∞

1
n

n−1∑
k=0

e−2πid k
n

a(ρ0) + 2b(ρ0) cos(2πk/n) .

By using Riemann’s left approximation, [10], we obtain:

ρd = 1
2π

2π∫
0

e−itd

a(ρ0) + 2b(ρ0) cos(t) dt ,

and, from Euler’s formula, [13], we obtain:

ρd = 1
2π

⎛
⎝

2π∫
0

cos (td)
a(ρ0) + 2b(ρ0) cos(t)dt + i

2π∫
0

sin (td)
a(ρ0) + 2b(ρ0) cos(t) dt

⎞
⎠ .

Since sin(d(t +π)) = − sin(d(t −π)) and cos(d(t +π)) = cos(d(t −π)), the function in the 
latter addend is an odd function over the axis t = π, and, therefore, the latter integral 
equals zero. �
Proposition 5.5. Let (α(κ(n), ρ0))n∈N and (β(κ(n), ρ0))n∈N be two convergent subse-
quences of (α(n, ρ0))n∈N and (β(n, ρ0))n∈N . It holds that

lim lim ρd( κ(n), ρ0) = 0 ,

d→∞ n→∞
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where ρd(κ(n), ρ0) denotes Pearson’s correlation coefficient between two variables that 
are at distance d on the cycle graph.

Proof. We consider the result obtained in Proposition 5.4 and study the limit as d tends 
to infinity:

lim
d→∞

lim
n→∞

ρd(n, ρ0) = lim
d→∞

1
2π

2π∫
0

cos (td)
a(ρ0) + 2b(ρ0) cos(t)dt .

Note that {ed}∞d=0, with e0(t) = 1√
2 , ed(t) = sin(d+1

2 t) if d is odd and ed(t) = cos(d2 t) if d
is even, form an orthonormal sequence in the space of all piecewise continuous functions 
on [0, 2π] (see Theorem 4.4 in [40]) and, according to Riemman-Lebesgue’s Theorem (see 
Theorem 4.2 in [40]), it holds that

lim
d→∞

2π∫
0

f(t) ed(t) dt = 0 ,

for any f that is piecewise continuous on [0, 2π]. The result follows from the (piecewise) 
continuity of f(t) = 1

a(ρ0)+2b(ρ0) cos(t) on [0, 2π]. �
Bear in mind that the order of the limits is important, since the distance between the 

nodes associated with two of the variables must be smaller than the order of the cycle 
graph. More specifically, it is not possible to consider the limit limd→∞ ρd(n, ρ0) since 
ρd(n, ρ0) is only defined for d ≤ dmax, where dmax is the maximum distance between two 
nodes on a cycle graph, i.e., dmax = n

2 if n is even and dmax = n−1
2 if n is odd.

The next proposition provides a value for the limits of both sequences. As a result, 
we conclude that, aside of the choice of the marginal distributions, the conditional dis-
tribution of any finite path of a GMRF with uniform correlation over a cycle graph 
is asymptotically equivalent to that of a GMRF with uniform correlation over a path 
graph.

Proposition 5.6. Let (α(κ(n), ρ0))n∈N and (β(κ(n), ρ0))n∈N be two convergent subse-
quences of (α(n, ρ0))n∈N and (β(n, ρ0))n∈N . It holds that

lim
n→∞

α(κ(n), ρ0) = 1 + ρ0
2

1 − ρ02 and lim
n→∞

β(κ(n), ρ0) = − ρ0

1 − ρ02 .

Proof. Let �X(κ(n)) be a GMRF with uniform correlation ρ0 over Cκ(n). Without loss 
of generality consider the variances of the variables to be equal to 1. The conditional 
distribution given the value of one of the variables is a GMRF over a path graph of 
length κ(n) − 1. Let C be a path of length k + 2 (for a certain k < κ(n) − 2) and v a 
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node that is at distance at least d > 0 to any node of C. The conditional distribution of 
�XC given �Xv has the following covariance matrix [35] (see Example 2.1):

Σ(κ(n), ρ0)C|v = S(κ(n), ρ0)C − S(κ(n), ρ0)Cv ρvv S(κ(n), ρ0)vC .

From Proposition 5.5, it follows that

lim
d→∞

lim
n→∞

S(κ(n), ρ0)C|v = lim
d→∞

lim
n→∞

S(κ(n), ρ0)C ,

since the elements of S(κ(n), ρ0)Cv and S(κ(n), ρ0)vC tend to zero as n increases (see 
Proposition 5.5).

In other words, �XC tends to be independent of �Xv, therefore the conditional distribu-
tion of �XC given �Xv tends to be the same as the distribution of �XC . In addition, since the 
conditional distribution is a GMRF over the path graph, the marginal distribution tends 
to be a GMRF over the path graph. In particular, the marginal distribution tends to be 
a GMRF with uniform correlation over the path graph because the whole distribution 
has uniform correlation.

Let c be the path formed by the nodes of C with incidence equal to 2. From the 
equivalence of the pairwise and global Markov property, it follows that

lim
n→∞

S(κ(n), ρ0)c|(C\c)∪{v} = lim
n→∞

S(κ(n), ρ0)c|−c.

From the expression of the inverse of the correlation matrix of a GMRF over the path 
graph described in Proposition 5.1, and since �XC|v tends to be a GMRF with uniform 
correlation over the path graph:

• limn→∞(S(κ(n), ρ0)c|−c)−1
i,i = 1+ρ0

2

1−ρ02

• limn→∞ , (S(κ(n), ρ0)c|−c)−1
i,i+1 = (S(κ(n), ρ0)c|(V \c))−1

i+1,i = −ρ0
1−ρ02 .

Bearing in mind that Σc|−c = ((Σ−1)c)−1, it holds that (S(κ(n), ρ0)−1)i,i =
α(κ(n), ρ0) and (S(κ(n), ρ0))−1

i,i+1 = (S(κ(n), ρ0))−1
i+1,i for any n ∈ N. It is concluded:

lim
n→∞

α(κ(n), ρ0) = a(ρ0) = 1 + ρ0
2

1 − ρ02 and lim
n→∞

β(κ(n), ρ0) = b(ρ0) = −ρ0

1 − ρ02 . �
It has been proved that any convergent subsequence of (α(n, ρ0))n∈N converges to the 

same limit and any convergent subsequence of (β(n, ρ0))n∈N converges to the same limit. 
In addition, it can be seen that these limits are continuous as a function of ρ0 in (−1, 1). 
Finally, we only have to prove that the sequences (α(n, ρ0))n∈N and (β(n, ρ0))n∈N con-
verge to the aforementioned limits. The result follows from the fact that the sequences 
are bounded.
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Theorem 5.1. Let S(n, ρ0) be the correlation matrix of a GMRF with uniform correlation 
ρ0 over the cycle graph Cn. It holds that S(n, ρ0)−1 = α(n, ρ0)In + β(n, ρ0)ACn

with:

lim
n→∞

α(n, ρ0) = 1 + ρ0
2

1 − ρ02 and lim
n→∞

β(n, ρ0) = −ρ0

1 − ρ02 .

Proof. From Proposition 5.6, it follows that any convergent subsequence of (α(n, ρ0))n∈N
converges to the same limit and that this limit is 1+ρ0

2

1−ρ02 . From Proposition 5.2, it follows 
that (α(n, ρ0))n∈N is bounded, therefore, it is concluded that the limit of (α(n, ρ0))n∈N
is 1+ρ0

2

1−ρ02 . Analogously, it is concluded that the limit of (β(n, ρ0))n∈N is −ρ0
1−ρ02 . �

As a corollary, the expression of the limit of Pearson’s correlation coefficient between 
two variables is provided.

Corollary 5.1. Let S(n, ρ0) be the correlation matrix of a GMRF with uniform correlation 
ρ0 over the cycle graph Cn. Pearson’s correlation coefficient between two variables that 
are at distance d in the graph satisfies that:

ρd = lim
n→∞

ρd(κ(n), ρ0) = ρ0
d .

5.2. Asymptotic behavior of ϕ

The bottom right chart in Fig. 2 hints that, as n increases, ϕ seems to behave as a 
linear function of n with a slope only dependent on the value of ρ0. Therefore, we will 
study the convergence of the quantity ϕ defined as ϕ = ϕ

n as n increases. Formally, we 
define the following sequence.

Definition 5.2. Consider ρ0 ∈ (0, 1). The sequence (ϕ(n, ρ0))n∈N is the sequence of posi-
tive terms that satisfy:

cosh
[( 2π

n − π
)
ϕ(n, ρ0)n

]
cosh [πϕ(n, ρ0)n] = ρ0 ,

for any n ∈ N.

We note that the previous sequence is well-defined (see Proposition 4.2). The next 
result determines the limit of the sequence and completes the study of the asymptotic 
behavior of GMRFs over cycle graphs.

Proposition 5.7. The sequence (ϕ(n, ρ0))n∈N converges to − log (ρ0)
2π .

Proof. We recall that the following equation holds for any n ∈ N:

cosh
[( 2π

n − π
)
ϕ(n, ρ0)n

]
= e

( 2π
n −π

)
ϕ(n,ρ0)n + e−

( 2π
n −π

)
ϕ(n,ρ0)n

πϕ(n,ρ0)n −πϕ(n,ρ0)n
cosh [πϕ(n, ρ0)n] e + e
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= e( 2π
n −2π)ϕ(n,ρ0)n + e−2πϕ(n,ρ0)

1 + e−2πϕ(n,ρ0)n
= ρ0 ,

thus the limit equals ρ0 too. It also holds that ϕ(n, ρ0) > 0 for any n ∈ N.
Firstly, we will prove that (ϕ(n, ρ0))n∈N is bounded. Suppose that it is not bounded. 

Therefore, there exists a subsequence (ϕ(κ(n), ρ0))n∈N such that limn→∞ ϕ(κ(n), ρ0) =
∞. This implies that

lim
n→∞

e( 2π
κ(n)−2π)ϕ(κ(n),ρ0)n + e−2πϕ(n,ρ0)

1 + e−2πϕ(κ(n),ρ0)κ(n) = 0 �= ρ0 ,

which leads to a contradiction.
Consider a convergent subsequence (ϕ(κ(n), ρ0))n∈N that converges to the limit 

limn→∞ ϕ(κ(n), ρ0) = s(ρ0). Since (ϕ(κ(n), ρ0))n∈N is convergent, there are two pos-
sibilities regarding the convergence of (ϕ(κ(n), ρ0)κ(n))n∈N . Note that the latter se-
quence correspond to the values of ϕ for a fixed ρ0. It either converges to a limit 
limn→∞ ϕ(κ(n), ρ0)κ(n) = d(ρ0) ∈ R or it holds that limn→∞ ϕ(κ(n), ρ0)κ(n) = ∞.

If limn→∞ ϕ(κ(n), ρ0)κ(n) = d(ρ0), then s(ρ0) = 0 and consequently

lim
n→∞

e( 2π
κ(n)−2π)ϕ(κ(n),ρ0)κ(n) + e−2πϕ(n,ρ0)

1 + e−2πϕ(κ(n),ρ0)κ(n) = e−2πd(ρ0) + e2πs(ρ0)

1 + e−2πd(ρ0)
= 1 �= ρ0 ,

which leads to a contradiction.
We conclude that limn→∞ ϕ(κ(n), ρ0)κ(n) = ∞. We compute the latter limit for this 

case:

lim
n→∞

e( 2π
κ(n)−2π)ϕ(κ(n),ρ0)κ(n) + e−2πϕ(n,ρ0)

1 + e−2πϕ(κ(n),ρ0)κ(n) = e−2πs(ρ0) .

It follows that e−2πs(ρ0) = ρ0, therefore s(ρ0) = − log(ρ0)
2π regardless of the chosen 

convergent subsequence. Since (ϕ(n, ρ0))n∈N is bounded and any convergent subse-
quence converges to the same limit − log(ρ0)

2π , it holds that (ϕ(n, ρ0))n∈N converges to 

− log(ρ0)
2π . �

We conclude that, for large values of n, ϕ behaves as − log(ρ0)n
2π . This result coincides 

with the results illustrated in the bottom right side of Fig. 2, where the slope of the line 
seems to increase as ρ0 is closer to 0.

As a corollary of Proposition 5.7, the asymptotic value of Pearson’s correlation coef-
ficient between two variables at distance d can be computed when ρ0 ≥ 0. This result is 
equivalent to that of Corollary 5.1 for the case of positive correlation.

Corollary 5.2. Let S(n, ρ0) be the correlation matrix of a GMRF with uniform correlation 
ρ0 ≥ 0 over the cycle graph Cn. Pearson’s correlation coefficient between two variables 
that are at distance d in the graph satisfies that:
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ρd = lim
n→∞

ρd(κ(n), ρ0) = ρ0
d .

6. Conclusions

A characterization of the correlation matrix of a GMRF with uniform correlation over 
a cycle graph by using circulant matrices is provided. Based on this characterization, a 
method to compute the correlation matrix of a GMRF with uniform correlation over a 
cycle graph is also provided. Special interest is devoted to the study of the asymptotic 
behavior of the non-null values of the inverse of the correlation matrix, α and β, which 
are only dependent on ρ0. The obtained expressions provide a reasonable approximation 
of α and β for not-too-large values of n. The convergence speed depends on the value of 
ρ0 as can be seen in Fig. 2. In particular, the closer ρ0 is to 0, the faster the convergence 
seems to be. All these results point out that a GMRF over a cycle graph asymptotically 
behaves like a GMRF over a path graph as the order of the graph increases.

In addition, a study of the relationship between a GMRF with positive uniform cor-
relation over a cycle graph and the stationary GMP over the circle has been addressed. 
As a result of this relationship, an alternative method to compute the correlation matrix 
is proposed. This second method seems to be faster than the first one, even though it 
cannot be applied if ρ0 < 0 and n is odd. The asymptotic behavior has also been studied.

From the results of this paper the following question arises: Is the structure of a 
GMRF with uniform correlation over a cycle graph useful to determine the structure 
of a GMRF with uniform correlation over some families of graphs containing cycles? 
For instance, the structure of graphs constructed such that any connected component is 
a cycle follows trivially from the results of this paper. In addition, the complementary 
of cycle graphs, which share the same automorphism group, can be characterized by 
using similar methods than those developed in this paper. On the contrary, the case 
of the Cartesian product of cycle graphs is not immediate since the correlation matrix 
will then be block circulant rather than circulant. Still, we believe that most results 
of this paper can be adapted to such case by studying the automorphism group and 
considering the properties of block circulant matrices. However, the study of GMRFs 
over the Cartesian product of cycle graphs and possibly over some other cycle-based 
graphs is left as a future study subject.
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