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A B S T R A C T   

Site form (SF), expressed as the dominant height of a stand at a reference dominant diameter, is used less often 
than site index (SI) to estimate forest site quality. However, it has the advantage that it is age-independent and 
can therefore be applied in a wider set of situations in forestry practice. Like SI, elaboration of SF has tradi
tionally required stem analysis or repeated measurements in permanent plots; however, Airborne Laser Scanning 
(ALS) can nowadays be used to generate site quality practical maps, thereby simplifying the method. The aims of 
this study were to fit a dynamic equation to stem analysis data in order estimate SF in natural beech forests in NW 
Spain, as well as to compare the performance of SF for site quality estimation and to analyze the possibility of 
using ALS data for site quality prediction in these forests. The Algebraic Difference Approach formulation of the 
Bertalanffy-Richards model provided the best results and defined four curves for dominant heights of 5, 10, 15 
and 20 m at a reference dominant diameter of 20 cm. A significant relationship between SF and SI was observed, 
and we therefore believe that SF is a good approach for site quality estimation. These results can be used directly 
at inventory plot level for establishing site quality classes without the need to know the stand age, either in terms 
of SF or translated into SI. On the other hand, ALS data allowed estimation of both dominant height and 
dominant diameter, although better results were obtained with the former. Applying the SF dynamic model to 
both data sets enabled prediction of SF at 25x25 m/pixel (and SI using the SI-SF relationship). The overall ac
curacy of the relationship between the observed SI and that predicted from ALS metrics yielded a coefficient of 
determination of 0.456 without bias, heteroscedasticity or absence of normality. The results of this unbiased 
raster model were considered rather good, as predictions were obtained for a pixel size of 25x25 m (0.0625 ha). 
Prediction of mean SI value for one hectare would thus be necessary to average the values obtained in 16 pixels 
with an expected error compensation. Use of the raster model based on ALS metrics will enable site quality 
estimation for current beech stands at high spatial resolution without the need for fieldwork, providing very 
valuable information for forest managers and researchers.   

1. Introduction 

Efficient yield forecasting and sustainable forest management 
require reliable measures of site productivity. Forest site productivity 
refers to a quantitative estimate of the potential of a site (usually by 
designating and summarizing the local biophysical characteristics of a 
forest environment) to produce plant biomass (Bontemps and Bouriaud, 
2014). The terms ‘site productivity’ and ‘site quality’ can be considered 

equivalent when only biophysical site variables drive tree growth (i.e. 
absence of vegetation control, irrigation, drainage…) (Skovsgaard and 
Vanclay, 2008) as, for instance, in unmanaged forests. 

Site index (SI), defined as the average height of the dominant trees of 
the stand at a specific reference age (Carmean, 1975), is by far the most 
frequently used indicator of site productivity. It is derived from the fact 
that height growth is closely correlated with stand volume productivity 
and that dominant height is not greatly affected by stand density or 
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thinning treatments (assuming thinning from below) (Burkhart and 
Tomé, 2012). However, the method is limited to evaluating the site 
productivity potential of individual species or mixed stands of known 
age (Sharma, 2013). Hence, to evaluate the site productivity of natural 
(i.e. unplanted) and mixed stands when information on tree age is not 
known, SI cannot produce the desired result (Vanclay, 1994) unless 
permanent plots are established or dominant trees are drilled for core 
extraction or felled and dated. This is a slow, costly process and not 
always possible. Likewise, the use of SI is questionable for uneven-aged 
stands, in which the trees have irregular or polymorphic growth patterns 
(e.g. Huang and Titus, 1993) that are not necessarily proportionally 
related to age. 

As an alternative to SI, some authors have proposed the height- 
diameter relationship as an appropriate measure of site productivity 
for these stands (e.g. Trorey, 1932; Meyer, 1940). In particular, 
McLintock and Bickford (1957) found that the height-diameter rela
tionship of dominant trees, expressed by the monomolecular function 
suggested by Meyer (1940), is a sensitive and reliable site productivity 
measure, as confirmed in other studies (e.g. Stout and Shumway, 1982; 
Vanclay and Henry, 1988; Beltran et al., 2016). Vanclay (1983) pro
posed the term site form (SF) for this concept and defined it as the 
dominant height of the stand at a reference dominant diameter. Unlike 
SI, SF is claimed to be unaffected by species composition and age-class 
structure, and it is assumed that i) a decreasing tree taper (diameter/ 
height ratio) is associated with increased site productivity, and ii) stand 
density does not affect the height-diameter relationship of dominant and 
codominant trees in these stands (Huang and Titus, 1993). 

Both SF and SI can be estimated by direct and indirect methods. 
Direct methods are based on the relationship between the height and 
diameter (in the case of SF) and between the height and age (in the case 
of SI) of dominant trees. These relationships can be obtained directly 
from single measurements (e.g. Aguirre et al., 2022), repeated mea
surements collected in traditional forest inventories on permanent plots 
(e.g. Molina-Valero et al., 2019) or by stem analysis (e.g. Lappi, 1997). 
By contrast, indirect methods allow estimation of SF or SI from site 
environmental variables (soil, climate and terrain parameters or the 
presence or abundance of ground vegetation) and can thus be used even 
when trees are absent (e.g. Álvarez-Álvarez et al., 2013; Castaño-San
tamaría et al., 2019). 

Remote sensing techniques such as Airborne Laser Scanning (ALS) 
have emerged in the past decades providing alternative approaches to 
forest inventories without the need for traditional field sampling (e.g. 
Hyyppä et al., 2008). This active remote sensing technique, also referred 
to as Light Detection and Ranging (LiDAR), allows distance ranges to be 
determined from the product of the speed of light and the time required 
for an emitted laser to travel to a target object (Lim et al., 2003), 
providing three-dimensional data. Processing LiDAR data provides in
formation on forest measurements (e.g. Nilsson, 1996; Næsset, 2002), 
for analysing habitats (e.g. Hyde et al., 2005), predicting fire risk (e.g. 
González-Olabarria et al., 2012) and determining canopy structure (e.g. 
Zimble et al., 2003), amongst other applications. Thus, ALS has been 
successfully used to estimate dominant tree height and evaluate SI in 
stands of known age, with data obtained in one flight (e.g. Packalén 
et al., 2011) or two flights separated by several years (Socha et al., 
2017). In fact, the latter method is the most similar to the traditional SI 
repeated observations method, which demonstrates the potential value 
of this technique in SI determination. ALS could possibly also be used for 
determining SF. In terms of stand metrics and tree-level statistics, 
several studies have been successful in obtaining values for dominant 
heights (e.g. Lovell et al., 2005) and dominant diameters (e.g. Heurich 
and Thoma, 2008) from ALS. Thus, it may be possible a priori to deter
mine site quality from SF values calculated using these data (at least 
with successive flights). Nevertheless, most such studies have been 
conducted in boreal forests (dominated by coniferous species and with a 
relatively homogenous structure), and it must be taken into account that 
the metrics calculated from laser scanning data are heavily dependent 

on the tree species involved (Heurich and Thoma, 2008). 
Fagus sylvatica L. (hereinafter “beech”) is a climax species in the 

Cantabrian Range (NW Spain), considered the boundary between the 
Euro-Siberian and Mediterranean regions, where it is restricted to slopes 
of elevation higher than 600 m above sea level. The crown distribution 
and spatial arrangement of leaves in beech trees (e.g. Collet et al., 2001) 
hamper the use of ALS data in these forests. This has favoured replace
ment of ALS with terrestrial laser scanning (TLS) in beech forest in
ventories (e.g. Barbeito et al., 2017). However, Heurich and Thoma 
(2008) obtained relatively accurate stand and tree-level metrics in beech 
forests by using ALS. To the best of our knowledge, no previous studies 
have elaborated site quality maps using both SF values and LiDAR data. 
Thus, the overall aim of this study was to develop a method for pre
dicting and mapping site quality in beech forests in the Cantabrian 
Range, from SF, without the need to know the stand age. The specific 
objectives were as follows: i) to develop a dynamic equation for esti
mating SF; ii) to estimate SI from SF; and iii) to develop a model for 
predicting and mapping site quality by using ALS public data. 

2. Materials and methods 

2.1. Data 

Four different types of data were used in this study for different 
purposes: i) longitudinal tree height-diameter data, obtained by stem 
analysis, were used to develop a site form system; ii) dominant heights 
and dominant diameters from sample plots were used to calculate the 
respective site form values; iii) site index values, expressed as the 
dominant height at a reference age of 80 years (see Castaño-Santamaría 
et al., 2019), were used to develop a site index-site form relationship; 
and iv) ALS data were used to estimate both dominant height and 
dominant diameter and to map the site index on the basis of site form. 

2.1.1. Research plot measurements 
A total of 112 sample plots were established in 2010 and 2011 in 

natural beech-dominated stands (≥90 % of standing basal area) 
throughout the northwestern Cantabrian Range (in the regions of 
Asturias and León, NW Spain), to cover the existing range of stand 
structures, densities and site qualities in the area. After this inventory, 
the dominant height of each plot was calculated as the arithmetic mean 
of the 100 thickest trees per hectare (Assmann, 1970), and the number of 
target trees was adapted to the plot size to maintain the ratio of the 100 
thickest trees per hectare. In 50 of these plots, destructive sampling of 
dominant trees was planned. However, the measurements had to be 
made in a maximum sample of 30 plots due to forest/environmental 
policy restrictions. These beech forests form part of the habitats of en
dangered and emblematic species such as the Cantabrian capercaillie 
and the brown bear, leading to their inclusion in protected areas rela
tively unaffected by human influence. Finally, 30 plots of area between 
400 and 900 m2 were selected to represent all site qualities (Fig. 1), and 
two dominant trees were felled and destructively sampled in each plot in 
2012. The felled trees were the first two dominant trees found outside 
the plots, but in the same stands, within ± 5 % of the mean diameter at 
1.3 m above ground level and mean height of the dominant trees 
(considered as the 100 largest-diameter trees per hectare). All of these 
trees (n = 60) were cross-sectioned at stump height, at 0.50 m above 
ground, at breast height, and 1 m intervals thereafter along the stem. 
Each cross section was processed by electric brushing and sanding until 
the tree rings were clearly visible. The treated cross sections were 
scanned at 900 dpi (in an Epson Expression STD 1680 PLUS flatbed 
scanner) and the resulting images were analyzed using WinDENDRO® 
tree-ring increment measurement software (Regent Instruments Canada 
Inc.) to count and measure the tree rings (Fig. 2). 

In this study, stem analysis was applied to dominant trees, to 
determine the diameter at breast height and total height at each age, as 
these variables are required for development of SF systems. As in SI 
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studies, Carmean’s algorithm, with the modification proposed by 
Newberry (1991), was used to reduce the bias when determining the 
height of each cross section at a given age. However, the practical dif
ference from SI stem analysis was that instead of counting the number of 
rings (i.e. age), the diameter corresponding to that number of rings was 
measured. Therefore, dominant diameter was calculated as the mean of 
the sum of the annual diametric increments for that age in two fixed 
directions, on each stem disk obtained at 1.3 m above ground section, 
without bark. Height and diameter were plotted against age for each tree 
to detect any abnormal growth patterns. As a result, one tree was 
rejected. 

We used the dynamic equation (Eq. (1)) previously developed by 
Castaño-Santamaría et al. (2019), with the same destructively sampled 
trees and the same fitting methodology, to calculate the SI in each plot: 

SI =
23.8753 + X0

1 + 20526.03/X0 • 80− 1.51  

X0 =
1
2

(

H0 − 23.8753+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(H0 − 23.8753)2
+ 4 • 20526.03 • H0 • t− 1.51

√ )

(1) 

where SI = site index (m) (dominant height at a reference age of 80 
years), H0 = dominant height (m) and t = age of dominant trees (years). 

In addition to the information obtained from dominant trees 
destructively sampled in 30 plots, the stand-related variables dominant 
height and dominant diameter were also recorded, as these are the most 
appropriate variables for relating to the ALS data. Summary statistics, 
including mean, maximum, minimum and standard deviation values for 

the main tree and stand variables, are shown in Table 1. 

2.1.2. Airborne laser scanning data 
The Airborne Laser Scanning (ALS) survey took place in the period 

May-October 2012 as part of the Spanish PNOA-LiDAR project. The ALS 
data set corresponds to the first round of countrywide ALS measure
ments, which are publicly available in Spain through the National Plan 
for Aerial Orthophotography (hereafter referred to as PNOA-LiDAR). 
Square ALS tiles of area 2 km side in LASer (LAS) binary files were ob
tained from the National Geographic Information Centre (CNIG, 2022) 
computer server (http://centrodedescargas.cnig.es/CentroDescargas/ 
index.jsp). The scanning sensor used to collect the ALS data was a RIEGL 
LMS-Q680i. The point cloud was captured with up to four returns 
measured per pulse and a mean density of 0.5 points/m2 and vertical 
RMSE ≤ 0.20 m. The ALS data sets were processed using several pro
cessing programmes implemented in the FUSION/LDV software 
(McGaughey, 2014). A detailed description of the software parametri
zation and all the processing workflow of ALS point cloud is given by 
Novo-Fernández et al. (2019). Briefly, all ALS echoes classified as 
ground were used to create a digital elevation model (DEM) considering 
a spatial resolution of 5 m, and a predefined threshold of between 2 and 
50 m above ground level was used to compute canopy cover metrics 
using a buffer of 25 m of radius from the coordinates of the sample plots. 
In total, 36 ALS metrics widely used as effective variables for height and 
diameter estimations (e.g. Næsset, 2002, 2004) were computed as in
dependent variables (Table 2, Fig. 2). 

Fig. 1. Location of the study area.  
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2.2. Developing a dynamic site form equation 

The hierarchical structure of the data sets used in dominant 
height–diameter models (i.e. repeated measurement data from domi
nant or codominant trees in different stands) usually leads to a lack of 
independence among the observations (West et al., 1984). In order to 
solve this problem, the algebraic difference approach (ADA; Bailey and 
Clutter, 1974) and its generalization (GADA; Cieszewski and Bailey, 
2000), which includes an autoregressive error structure model, were 
used to develop the site form system. We tested three well-known base 
models traditionally used in the development of site quality models: Korf 
(cited in Lundqvist, 1957), Hossfeld IV (Hossfeld, 1882) modified by 
Molina-Valero et al. (2019), and Bertalanffy-Richards (Bertalanffy, 
1949; 1957; Richards, 1959) (Table 3). In all models, an additional 

constant of 1.3 was added to the right-hand side of the equation to force 
the curves to pass through the point (D0 = 0, H0 = 1.3) (Moreno- 
Fernández et al., 2018; Molina-Valero et al., 2019). 

The dummy variables method (Cieszewski et al., 2000), in which a 
second-order continuous-time autoregressive error structure (CAR2) is 
included to account for auto-correlation, was used to estimate the model 
parameters (see Diéguez-Aranda et al., 2005, for more details). The 
dummy variables method and the CAR2 error structure were pro
grammed using the SAS/ETS® MODEL procedure (SAS Institute Inc., 
2004), which allows dynamic updating of the residuals. We carried out a 
cross-validation, estimating the residuals in dominant height estimation 
for both trees from one plot by fitting the model without these two trees 
from that plot. The root mean square error (RMSE), which assesses the 
precision of the estimates, and the adjusted pseudo-coefficient of 

Fig. 2. Workflow adopted for modelling and mapping the site quality throughout ALS metrics in this study.  

Table 1 
Summary statistics for individual tree and stand variables.  

Statistic Tree variable (59 dominant trees)  Stand variable (30 plots)  

Diameter at 1.3 m (cm) Height (m) Age (years) Site index (m at 80 yr) Number of trees (ha− 1) Basal area (m2/ha) Dominant height (m) 

Minimum  12.90  9.77 43  7.62 300  22.51  10.37 
Maximum  69.60  38.63 215  26.76 2445  94.95  35.90 
Mean  39.10  20.21 109.17  15.81 1073.70  44.04  19.25 
Standard deviation  14.20  6.50 41.88  4.81 575.40  13.46  6.02  
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determination (Ryan, 1997) for nonlinear regression (R2), which in
dicates the proportion of the variance of the dependent variable 
explained by the model, were calculated from the residuals obtained 
from cross-validation. In addition, graphical analysis of the residuals 
and of the appearance of the fitted curves overlaid on the trajectories of 
the dominant height of the plots was also conducted. 

Finally, we used the method proposed by Molina-Valero et al. (2019) 
to select the reference dominant diameter. This consists of using 
different base diameters and their corresponding observed heights to 
estimate heights at other diameters (both forward and backward) for 
each tree; it also involves comparing the results with the values obtained 
from stem analysis by using the relative error in predictions. 

2.3. Comparative performance of site form as a site quality estimator and 
development of an SI-SF relationship 

Vanclay and Henry (1988) indicated the four characteristics that an 
index (SF in this case) should have in order to be considered a good 
measure of site quality: i) it must be reproducible and consistent over 
time, ii) it must be indicative of the site and not influenced by the stand 
conditions or management history, iii) it must be correlated with the 
productive potential of the site, and iv) it must be at least as good as any 
other available measures of productivity. 

To analyze the consistency of the index over time and its capacity to 
estimate productivity, we considered that SI is the most widely used and 
recognized indicator of site quality, and we then compared similarities 
in the prediction uncertainties of SI and SF. For this purpose, we first 
searched for a relationship between SI and SF, conducting a SI-SF cor
relation analysis at two different levels: i) at individual tree level for 
measurement values and ii) at plot level for values obtained with SI and 
SF equations. For the first analysis, we had available 46 dominant trees 
of age (t) and diameter under bark (D0_ub) greater than 80 years and 20 
cm (the reference age and diameter required to determine SI and SF 
respectively) for the stem analysis. On the individual trajectories H0- 
D0_ub and H0-t of each tree, we interpolated the height values corre
sponding to 80 years and 20 cm to obtain the true values of SI and SF of 
each tree and then conduct correlation analysis. For the second analysis, 
we had available 30 plots in which dominant height, dominant diameter 
and age (mean of the age of two dominant trees) were known. These 
data were used to calculate SI (with Eq.1) and SF (with Eq.3). 

The second characteristic states that stand density does not affect the 
height-diameter relationship of dominant and codominant trees in these 
stands (Huang and Titus, 1993). To assess this criterion, we computed 
the Pearson correlation coefficient (r) of the predicted SI and SF against 
Relative Spacing index (RS) (Hart, 1928; Becking, 1953), as proposed by 
Molina-Valero et al. (2019). The RS index is used to characterize the 
growing stock level and is calculated by dividing the average distance 
between trees by the dominant height and expressing this as a per
centage. The RS index is a useful parameter in stand density manage
ment because it is generally independent of site quality and stand age, 
and because dominant height growth is one of the best criteria, from a 
biological point of view, for establishing thinning intervals (Barrio-Anta 
and Álvarez-González, 2005). As the beech forests under study are 
natural forests, we assumed triangular spacing between trees, so that RS 
can be expressed as follows: 

RS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
20000/

N
̅̅̅
3

√
√

H0
× 100 (2) 

where RS is the relative spacing index (%), N is the number of stems 
per hectare, and H0 is the dominant height (m). 

On the other hand, as indicated in the introduction, SF is usually used 
as a site quality index under the assumption that the tree taper (diam
eter/height ratio) decreases with increasing site productivity. Therefore, 

Table 2 
Summary of Airborne Laser Scanning (ALS) metrics for each plot.   

ALS Metrics  Description 

Height 
metrics 

Metrics expressing the 
central trend in ALS 
height distribution 

hmean mean 
hmode mode 

Metrics expressing the 
dispersion of ALS 
height distribution 

hSD Standard deviation 
hVAR variance 
hAAD absolute average deviation 
hIQ interquartile range 
hCV coefficient of variation 
hmax, hmin maximum and minimum 

Metrics expressing the 
shape of ALS height 
distribution 

hSKW Skewness 
hKurt Kurtosis 
CRR canopy relief ratio ((mean 

height – min height)/(max 
height – min height) 

Percentiles of the ALS 
height distribution 

h01, h05, 
… h99 

1st, 5th, 10th, 20th, 25th, 
30th, 40th, 50th, 60th, 70th, 
75th, 80th, 90th, 95th, 99th 
percentiles 

Canopy 
cover 
metrics 

Fixed height break 
threshold (HBT) 

CC percentage of first returns 
above 2.00 m/total all 
returns 

PARA2 percentage of all returns 
above 2.00 m/total all 
returns 

ARA2/ 
TFR 

ratio between all returns 
above 2.00 m and total of 
first returns 

Variable HBT PFRAM percentage of first returns 
above mean/total all returns 

PARAM percentage of all returns 
above mean/total all returns 

PARAMO percentage of all returns 
above mode/total all returns 

PFRAMO percentage of first returns 
above mode/total all returns 

ARAM/ 
TFR 

ratio between all returns 
above mean and total first 
returns 

ARAMO/ 
TFR 

ratio between all returns 
above mode and total first 
returns  

Table 3 
Dynamic equations used for fitting SF curves.  

Base equation Site-related parameters Solution for X with initial values (D0, H0) Dynamic equation 

Korf:  
H = a1exp(− a2D− a3 )

a2 = X 
X0 = − ln

(
H0 − 1.3

a1

)

D0
a3 

H = 1.3 + b1

(
H0 − 1.3

b1

)

(
D0

D

)b3 

Hossfeld IV: 

H =
a1

1 + a2D− a3 

a1 = Xa2 =
b2

X X0 =
1
2

[

(H0 − 1.3)+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(H0 − 1.3)2
− 4b2D0

− b3 (1.3 − H0)

√ ]

H = 1.3 +
X0

1 +
b2

X0
D0

− b3 

Bertalanffy-Richards: 
H = a1(1 − exp(− a2D) )a3 

a2 = X 

X0 =

− ln
(

1 −

(
H0 − 1.3

b1

) 1
b3
)

D0 

H = 1.3 + b1

⎛

⎜
⎜
⎝1 −

⎛

⎝1 −

(
H0 − 1.3

b1

)

(
1
b3

)
⎞

⎠

(
D
D0

)
⎞

⎟
⎟
⎠

b3 

; where H is the dominant height (m), D is the dominant diameter (cm) and ax and bx are model parameters to be estimated. 
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to evaluate the third characteristic we used the Pearson correlation co
efficient (r) between tree taper and predicted SF for each tree. 

Conversion of SF to SI values may become necessary on some occa
sions, such as in growth and yield studies because most growth and yield 
models require SI as an input variable (e.g. for yield tables). For this 
purpose, the pairs of SF-SI values were plotted and a model relating the 
two variables was fitted after visual inspection of the scatter plot. 

2.4. Model development for predicting and mapping site quality from ALS 
data 

As numerous PNOA-LiDAR flights were not available in this case, the 
ALS public data had to be combined with data from the inventory and 
dominant tree felling phases. To predict site quality by means of SF from 
ALS data, the following steps must be carried out: i) development of a 
dynamic SF equation and a relationship between SI and SF, ii) devel
opment of a relationship between D0 over and under bark, and iii) pre
diction of H0 and D0 over bark in the ALS data. 

At this point we have already developed a dynamic SF equation and 
the relationship between SI and SF is available. As we used stem anal
ysis, the dominant diameters are under bark, and the dynamic equation 
developed refers to the dominant height at a reference dominant 
diameter under bark. The ALS point cloud hits the external surface of the 
trees, and thus estimates heights and diameters over bark (e.g. Næsset, 
2002). Therefore, the relationship between D0 over bark (D0_ob) and D0 
under bark (D0_ub) must be established. 

For predicting H0 and D0 over bark through ALS metrics, ideally 
there should be temporal coincidence between the research plot mea
surements (H0 and D0) and the PNOA-LiDAR data acquisitions. In this 
case, the research plots were measured in 2010 and 2011 and the ALS 
data were acquired in 2012. Harmonization procedures would be 
necessary if the models were intended to be run with data from new 
available PNOA-LiDAR flights, e.g. as ALS-based-models for yield esti
mation (e.g. Novo-Fernández et al., 2019). This small temporary 
discrepancy does not represent a methodological problem as beech is a 
slow growing forest species and also because our model will not run with 
new ALS data, so dependent variables (H0 and D0) can be used with 
predictor variables that are not exactly temporally coincident. There
fore, we predicted H0 and D0 from the 36 ALS metrics indicated in 
Table 2, by using the Random Forest (RF) non-parametric ensemble 
learning method (Breiman, 2001). 

RF is a widely used non-parametric classification and regression 
approach that consists of building an ensemble of decision trees 
(Gislason et al., 2006). The success of this technique is based on the use 
of numerous trees and different independent variables that are randomly 
selected from the complete original set of features (e.g. Deschamps et al., 
2012). For this purpose, WEKA open-source software (Hall et al., 2009) 
was used to fit the RF algorithm by implementing a wrapper method
ology to select the subsample of variables that usually produces the best 
results (Zhiwei and Xinghua, 2010). This method selects the subsample 
of variables by using a learning algorithm as part of the evaluation 
function. The final fitted models were applied to ALS data, to generate a 
spatially continuous map of H0 and D0 at a resolution of 25 m/pixel. 

The 10-fold cross-validation approach was used to test the accuracy 
of the algorithm. This process consists of the following four steps: i) 
splitting the data set into 10 random subsets of roughly the same size; ii) 
fitting the model 10 times, sequentially omitting one subset each time; 
iii) repeating step i 10 times, and iv) using each of the fitted models to 
produce pseudo-independent predictions on the omitted subset, as an 
indicator of how well the classifier will perform on unseen data. The 
pseudo-coefficient of determination (R2) (Ryan, 1997) and the root 
mean squared error (RMSE) were used to assess the model performance. 
For implementation of machine learning algorithms, WEKA has an 
embedded feature-ranking technique called the variable importance 
measure (VIM), which was used to guide selection of predictors for the 
final model. To ensure that values of variable importance were 

expressed on comparable scales, the VIM values were normalized so that 
they summed to a unit value (normalized importance) and were also 
expressed in relative values (relative importance). 

Finally, considering the predictive algorithms for H0 and D0, the 
dynamic SF equation, the D0_ub-D0_ob relationship and the SI-SF rela
tionship, it was possible to generate a raster map of resolution 25 m/ 
pixel for both SF and SI for the area currently occupied by beech forests, 
obtained from the most recent Spanish Forest Map (scale 1:25000) 
(MITECO, 2012). We graphically summarize the main methodological 
steps of the approach used in the present study in Fig. 2. 

3. Results 

3.1. Dynamic site form equation 

All of the models tested achieved convergence in the Marquardt 
iterative fitting process, but one parameter from the derived Korf-based 
model was not significant, and therefore this model was discarded. The 
GADA formulation of the Hossfeld IV equation modified by Molina- 
Valero et al. (2019) and the ADA formulation of the Bertalanffy-Richards 
equation yielded good fits and were considered for further analysis as all 
of their parameter estimates were significant at the 5 % level (Table 4). 
Visual comparison of the fitted curves overlaid on the trajectories of the 
observed dominant heights from stem analysis revealed the good per
formance of both models. However, the Bertalanffy-Richards’ curves 
fitted better to the real trajectories, while the Hossfeld IV model was less 
realistic in terms of growth. Together with slightly better fitting statistics 
and higher RMSE value (Fig. S1), this led us to choose the Bertalanffy- 
Richards’ model (Fig. 3). The plot of residuals against estimated values 
showed a random pattern of residuals around zero, with homogeneous 
variance and no detectable significant trends, after modelling the error 
structure following Diéguez-Aranda et al. (2005) (Fig. S2). The auto
correlation parameters were all significant, but are not included in 
Table 4 because the sole purpose of correction for autocorrelation was to 
obtain unbiased and efficient estimates of the parameters (Parresol and 
Vissage, 1998), and it would have no use in practical applications unless 
the same individual was being measured repeatedly. 

In selecting the reference dominant diameter, a diameter of 20 cm 
was superior for predicting height at other diameters (Fig. S3), because 
it presents a good compromise between a low relative error (RE%) and 
the number of observations. Therefore, the dynamic equation for 
determining the site form (SF) is as follows: 

SF = 1.3+ 46.00879

⎛

⎜
⎜
⎝1 −

(

1 −

(
H0 − 1.3
46.00879

)

(

1
1.00830

)
)

(

20
D0 ub

)⎞

⎟
⎟
⎠

1.00830

(3) 

where SF = site form (m) (dominant height at a reference dominant 
diameter under bark of 20 cm), H0 = dominant height (m) and D0_ub =

dominant diameter under bark (cm). 
As practical use of dynamic SF equations requires knowledge of 

dominant diameter under bark, a model is required for predicting this 
parameter from the usual determined dominant diameter over bark. The 

Table 4 
Parameter estimates and goodness-of-fit statistics for the three models tested.  

Model Parameter p-value R2adj RMSE (m) 

Korf b1 = 8095.32  0.3843  0.9851  0.8217  
b2 = 0.127237  <0.0001   

Hossfeld IV GADA b1 = 0  –  0.9854  0.8148  
b2 = 10182.15  <0.0001    
b3 = 1.001685  <0.0001   

Bertalanffy-Richards ADA b1 = 46.00879  <0.0001  0.9857  0.8070  
b3 = 1.00830  <0.0001    
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model developed for this purpose was fitted using the data pairs of the 
60 felled trees, yielding a strongly linear relationship (R2 = 0.9999; p <
0.0001), expressed as follows: 

D0 ub = 0.980972 • D0 ob (4) 

where D0_ub = dominant diameter under bark and D0_ob = dominant 
diameter over bark. 

3.2. Consistency of SF as a site quality indicator 

Analysis of the standardized true values of SI and SF, obtained 
directly by stem analysis of the 46 dominant trees, revealed a positive 
correlation (r = 0.6669; p < 0.0001). On the other hand, analysis of the 
standardized values of SI and SF at plot level (obtained from the 
respective equations) again revealed a strong positive correlation be
tween both variables (r = 0.783; p < 0.0001). 

Regarding the influence of stand density, as expected, the RS index 
was not significantly correlated with either SI (r = − 0.331; p = 0.079) 
or SF (r = − 0.361; p = 0.063). These results indicate that SF can be 
considered a consistent indicator of site quality in beech forests across 
different management regimes. 

On the other hand, the diameter/height ratio was strongly negatively 
correlated with SF (r = − 0.664; p < 0.0001). This result can be ex
pected a priori because like SF, tree taper is calculated by an allometric 
relationship between diameter and height. 

Finally, and as a result of the SI-SF relationship at plot level, we 
propose the model shown in Fig. 4 for conversion of SF into SI values. 
This model performs well (R2 = 0.6524, p < 0.0001) with absence of 

bias. 

3.3. Predicting and mapping site form and site index from ALS data 

As a result of the ALS variable selection process, dominant height 
was only able to be estimated from height-related metrics (specifically, 
95th, 99th and 90th percentiles and hCV of height distribution), and the 
model performed very well after 10-fold cross-validation (R2 = 0.92; 
RMSE = 1.57 m). The variable that contributed most to the model was 
the 95th percentile, which contributed 36.5 % of the VIMR (Table 5). 
The next most important variables, with an VIMR of 30.3 %, were the 
99th and 90th percentiles; the tree variables together accounted for 
97.2 % of the VIMR. 

D0_ob was related to an optimal subset size of 8 of the 36 variables, 
and the model performance was poorer (R2 = 0.48; RMSE = 10.13 cm) 
(Table 5). The features that contribute most to estimating D0_ob are 
height-related metrics, which accumulated 85.9 % of the VIMR. The 
contribution of the canopy cover metrics was rather lower, with 14.1 % 
of accumulated VIMR. The variable that contributed most to the model 
was the standard deviation of ALS heights (hSD), which contributed 21.2 
% of VIMR. The ALS height 99th, 75th and 70th percentiles were the next 
most important variables, with an accumulated VIMR of 49.5 %. 

Fig. 3. Dominant height-dominant diameter growth curves for SF values of 5, 
10, 15 and 20 m at a reference dominant diameter of 20 cm overlaid on the 
trajectories of the observed values. 

Fig. 4. Relationships between SI and SF (left) and model residuals (right). SI and SF were calculated at plot level using Eq.1 and Eq.3 respectively.  

Table 5 
Variables included in the H0 and D0 models developed from ALS data, including 
their variable importance. To ensure values of variable importance are expressed 
on a comparable scale for each of the response variables, the scores of all the 
predictors selected were normalized or are expressed as relative values. 
Normalized importance (VIMN) = (VIM-VIMmin)/(VIMmax-VIMmin), Relative 
importance (VIMR) = (VIM/ΣVIM)⋅100. R2 and RMSE are the goodness-of-fit 
statistics obtained from 10-fold cross validation with 10 repetitions.  

Model Variable VIM VIMN VIMR (%) R2 RMSE 

H0 h95 654  0.92  36.5 0.9168 1.5719 
h90 543  0.75  30.3 
h99 543  0.75  30.3 
hCV 51  0.00  2.8 

D0 hSD 4124  1.00  21.2 0.4849 10.1257 
h99 4028  0.97  20.7 
h75 2988  0.63  15.4 
h70 2604  0.50  13.4 
ARA2/TFR 1682  0.20  8.7 
h20 1539  0.16  7.9 
hmin 1388  0.11  7.1 
ARAMO/TFR 1064  0.00  5.5 

where h99, h95, h90, h75, h70 and h20 are the corresponding percentiles of ALS 
height distribution, hCV is the coefficient of variation of ALS heights, hSD is the 
standard deviation of ALS heights, ARA2/TFR is the ratio between all returns 
above 2.00 m and total of first returns, hmin is the minimum of height distri
bution and ARAMO/TFR is the ratio between all returns above mode and total 
first returns. 
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Together, these four most important variables accumulated a VIMR of 
70.8 % (Table 5). Finally, the D0_ob obtained through ALS metrics must 
be converted into D0_ub by means of Eq. 4 to be used to determine SF. 

After prediction of SF (by applying Eq. 3 with predictor variables H0 
and D0_ub derived from ALS metrics), SI was subsequently obtained for 
each pixel by using the previously obtained SI-SF relationship (Fig. 4). At 
this point and considering that several equations were used to estimate 
the SI estimation at the pixel level, it would be very useful to estimate 
the overall accuracy of SI. For this purpose, we carried out graphical 
analysis of estimated against predicted values of SI for each of the 30 
experimental plots (Fig. 5). In these plots, estimated site index (SI) 
values were obtained using Eq. (1) (dominant height and stand age 
known) and SI was predicted from ALS site form, as explained above. 
The linear model fitted to the scatter plot did not reveal any important 
problems related to bias, heteroscedasticity or lack of normality, 
yielding a coefficient of determination of 0.45, which can be considered 
quite good, as predictions are made for a resolution of 25x25 m/pixel. 
Finally, Fig. 6 shows the raster map of SI from SF for the current beech 
forests. 

4. Discussion 

4.1. Dynamic site form equation 

In this study, a reference dominant diameter was used instead of the 
reference age for constructing site quality models. An adaptation of the 
Bertalanffy-Richards’ model was chosen to describe SF relationships for 
beech, fulfilling most of the desirable properties that a site quality 
equation should possess (Diéguez-Aranda et al., 2006). There is no 
consensus in the literature regarding which particular function form is 
most appropriate for developing SF models. However, the Bertalanffy- 
Richards’ equation has traditionally been used with good results both in 
SI (e.g. Monserud, 1984; Nord-Larsen, 2006) and in SF studies (e.g. 
Beltran et al., 2016; Ahmadi et al., 2017), as its biological behaviour is as 
important as its goodness of fit metrics (Ivancich et al., 2011). Statisti
cally, our model performed well (R2 = 0.9857 and RMSE = 0.8070 m), 
yielding more accurate values than those obtained in other SF studies 
using the Bertalanffy-Richards’ equation (none for beech) (e.g. Beltran 
et al., 2016; Ahmadi et al., 2017). 

Although beech is a widespread forest tree in Europe, very few SF 
curves have been developed for the species. However, in Spain two 
studies have elaborated SF models at a national scale for beech (among 
many other species) based on National Forest Inventory (NFI) data 
(Moreno-Fernández et al., 2018; Aguirre et al., 2022). Both studies used 
a single observation of D0 and H0 for each plot and developed the model 

by using the guide-curve method. Our SF model fitted well to the 
observed values of the stem analysis and distinguished four site qualities 
defined by heights of 5, 10, 15 and 20 m at a reference dominant 
diameter of 20 cm. Moreno-Fernández et al. (2018) did not indicate the 
reference diameter, and therefore comparison with our results was not 
possible. However, Aguirre et al. (2022) used the same equation as 
Moreno-Fernández et al. (2018) (Hossfeld II) but with a different 
parameter estimate and a reference dominant diameter of 30 cm. Both 
mathematical and visual comparison of the curve with the model 
developed by Aguirre et al. (2022) shows that intermediate qualities 
have heights around 6–7 m higher at a dominant diameter of 80 cm. This 
difference was reduced to around 4 m in the worst quality and was 
reversed in the best quality (height around 2 m lower) (see Fig. S4). The 
differences (and magnitude of these) can mainly be attributed to two 
factors: i) the different methods of site index curve construction (guide 
curve vs stem analysis) and ii) differences in the study area. From our 
point of view, the first factor is the most important as the guide curve 
method only fits height-diameter pairs on temporary plots and does not 
adequately capture trend of the data. This generally leads to underes
timation of dominant height, and therefore of SF, for diameters larger 
than the reference diameter (see Figure S4) as demonstrated in 
numerous studies (e.g. Monserud, 1985; Thrower and Goudie, 1992). 
Considering the second factor, our study is restricted to the Cantabrian 
Range in NW Spain, while the two aforementioned studies consider the 
beech forests of the whole country, including rather different environ
mental conditions and higher and lower site qualities (see Sánchez- 
Palomares et al., 2004). 

4.2. Using site form as a site quality indicator 

Our results fulfil the four criteria suggested by Vanclay and Henry 
(1988) for considering SF a good measure of site quality. First of all, the 
trees used in the study were aged between 43 and 215 years, and thus SF 
can be used over the entire rotation of the species in Spain, between 100 
and 150 years (Madrigal et al., 2008). Moreover, analysis of the standard 
deviations in SI and SF estimates for each plot showed that the un
certainties associated with both methods were usually similar, which 
indicates similar uncertainty in both indices when predicting site quality 
for different stand development stages of the same plot. Secondly, the 
correlations indicate that stand density does not affect the height- 
diameter relationship of dominant and codominant trees in these 
beech stands, thus corroborating the results obtained in other studies (e. 
g. Duan et al., 2018; Fu et al., 2018; Molina-Valero et al., 2019). Thirdly, 
the assumption that the tree taper decreases as site quality increases was 
also fulfilled by SF (r = − 0.664; p < 0.0001). This correlation was 
expected because, by definition, higher values of SF represent higher 
values of dominant height at equal dominant diameter. This is a com
mon result (e.g. Larson, 1963; Molina-Valero et al., 2019), although not 
obvious, as positive correlations (e.g. Buda and Wang, 2006) and even 
no correlation (Wang, 1998) have also been reported. Finally, the sig
nificant relationship between SF and SI are shown by Fig. 4 and the 
correlation results. Duan et al. (2018) added a fifth criterion: height 
growth over time is asymptotic, whereas diameter is not. The selected 
model (see Fig. 3) also fulfils this criterion. 

Some studies have analyzed the relationship between SI and SF for a 
given species (e.g. Huang and Titus, 1993; Wang, 1998; Beltran et al., 
2016; Duan et al. 2018 or Molina-Valero et al., 2019 among others). 
Relative to SI, the number of site quality studies using SF is much lower, 
and among these, studies using stem analysis are scarce (e.g. Wang, 
1998; Buda and Wang, 2006; Beltran et al., 2016). From an academic 
point of view, the two methodologies do not share the same target forest 
stand. SI refers essentially to even-aged stands (Skovsgaard and Vanclay, 
2008), while SF was originally proposed for uneven-aged or mixed- 
species stands (Huang and Titus, 1993). However, several studies have 
shown the usefulness of SF as a reliable estimator of site quality in pure 
even-aged stands (e.g. Beltran et al., 2016; Moreno-Fernández et al., 

Fig. 5. SI observed in each plot (calculated by applying Eq.1) vs SI predicted or 
estimated from ALS metrics (right). 
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2018; Molina-Valero et al., 2019). In fact, our results are very similar to 
those obtained for the SI model developed by Castaño-Santamaría et al. 
(2019) (R2 = 0.9882 and RMSE = 0.74 for SI model vs R2 = 0.9857 and 
RMSE = 0.807 for SF model). 

The main advantage of SF over SI is that it does not require infor
mation about age, measurement of which is very difficult and costly in 
natural forests. Only dominant height and dominant diameter values are 
needed, and these are easily obtained in traditional field inventories. 
This makes SF suitable for estimating site quality from existing NFI data 
in most countries, where stand age is not generally recorded (Molina- 
Valero et al., 2019). Therefore, SF model and SI-SF relationship may 
have two important practical applications: i) SF can be used directly to 
establish site class classification in the field (Eq. 3), converting previ
ously known D0_ob into D0_ub (Eq. 4) and ii) users can also convert SF to SI 
by using this relationship (Fig. 4). The first application may be sufficient 
for researchers who only require establishing site quality classes for use 
as independent variables to carry out further ecological studies. The 
second application is necessary for users who are also interested in 
predicting growth and yield variables (i.e. volume, average annual 
volume increment, biomass, carbon content, etc.) as growth models 
including the SF index have not yet been developed. 

4.3. Predicting and mapping site quality from ALS data 

In this study, SI (pixel level) was predicted in four stages: i) H0 and 
D0_ob estimation from ALS data, ii) conversion of D0_ob into D0_ub (Eq. 4), 
iii) SF calculation (Eq. 3), and iv) SI prediction (Fig. 4). According to the 
results, dominant height estimation is the most accurate, showing a 
strong correlation with the 90, 95 and 99th height distribution percen
tiles. This has already been reported for different species and is based on 
the dominant height concept (e.g. Holopainen et al., 2010; Packalén 
et al., 2011; González-Ferreiro et al., 2012; Socha et al., 2017). On the 
other hand, dominant diameter estimation also yielded acceptable re
sults, although not as accurate as the dominant height estimation. Ac
cording to Vauhkonen et al. (2014), prediction of tree diameter using 
ALS metrics is a challenging task due to several uncertainties (e.g. ac
curacy in the measurement of ground height, and its effect on breast 
height determination), as well as the limited detection rates of trees 
below the dominant tree layer. This is evident in beech forests due to 
their closed canopies and spatial positioning of the leaves after leaf 
emergence (e.g. Collet et al., 2001), as in this case. Several studies use 
low density ALS data to estimate diameter at breast height (e.g. Næsset, 
2002; Fu et al., 2020) or diameter distributions (e.g. Packalén and 
Maltamo, 2008; Räty et al., 2020). However, the number of studies that 

calculate the dominant diameter using ALS metrics is much smaller. For 
example, Heurich and Thoma (2008) estimated dominant diameter as a 
function of height measurements, as we did, although the variables are 
not identical. These researchers reported a strong correlation between 
dominant diameter and 90th, 40th and 20th height distribution per
centiles for German beech forests, with R2 = 0.67 for a laser point 
density of 5 points m− 2. We obtained lower values for model precision. 
As our laser point density was lower (0.5 points m− 2), the difference in 
model precision may be due to this difference in point density, although 
numerous studies have shown that the influence of point density on the 
estimates is negligible (e.g. Strunk et al., 2012; Jakubowski et al., 2013). 

In addition to the low ALS point density, the discrepancy between the 
pixel size used to obtain ALS metrics (25x25 m) and the field plots (range 
between 20x20 m and 30x30 m) could also lead to some inconsistencies 
in the results. We choose this pixel size (25 m × 25 m) because we found 
it was the best compromise for dealing with the range of plot size. 

The overall accuracy of our SI estimation approach (R2 = 0.456) 
would be considered rather low if we were dealing with traditional 
growth and yield models (not spatially explicit). However, our SI model, 
which uses ALS metrics as predictors, is an unbiased raster model and 
predictions are obtained by applying the model over the territory 
(spatially explicit model). Considering that predictions are applied for a 
pixel size of 25x25 m (0.0625 ha), prediction of SI in one hectare would 
require averaging the values obtained in 16 pixels. This average result 
(in one hectare) can be considered a rather good estimation taking into 
account the compensation of errors that occur in unbiased models. 

This methodology therefore provides the site quality estimation with 
an adequate resolution at the forest scale. 

Castaño-Santamaría et al. (2019) developed a SI raster model as a 
function of environmental variables for the same study area with a 
resolution of 250x250 m/pixel (i.e. 6.25 ha), which is an adequate 
resolution at landscape level but not at forest scale. There are advan
tages and disadvantages to both the previous and the present ap
proaches. Thus, the environmental-variables-based methodology allows 
site quality estimates to be obtained without the need for the species to 
be present, although with low spatial resolution, providing very useful 
information for expanding beech forest through reforestation. By 
contrast, the present methodology enables site quality estimation at high 
spatial resolution but only for current beech stands, providing very 
valuable information for carrying out forest management plans or for 
further research purposes. 

Socha et al. (2017) showed that the use of multi-temporal ALS data 
allows site index to be modelled, although it yielded slightly poorer 
results than those obtained by the stem analysis method that they also 

Fig. 6. SI predictions for current beech forests in the study area.  
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developed for the same Norway spruce stands in Poland. If the stand age 
and the time elapsed between the two flights are known, pairs of 
dominant height-age values can be obtained, in the same way as if 
permanent sample plots were measured twice. However, stand age is 
essential data. Several flights in successive years would allow us to 
obtain pairs of H0-D0 values and thus to estimate site quality in terms of 
site form, but without the need to know the stand age. As to date we only 
have the coverage used in this study, testing this approach will be the 
subject of a future study. 

5. Conclusions 

The present study showed that SF model is a reliable site quality 
estimator for natural beech forests in north-western Spain. Our findings 
can be used directly to establish site quality classes at inventory plot 
level without the need to know the stand age (in terms of SF), or by 
translating it into the more widely used SI, by applying the SI-SF rela
tionship. The advantage of the SF model is that it is age-independent and 
can be used in a wide range of situations where age is unknown or/and 
costly to obtain. The findings also showed that dominant height and 
dominant diameter can be correctly estimated using ALS metrics 
computed from the first coverage of the Spanish PNOA-LiDAR project. 
Despite the low point density of ALS, we were able to use these data to 
develop an unbiased site form raster model with a resolution of 25x25 
m/pixel, allowing estimation of site quality in beech forest stands in the 
study area without the need for fieldwork. The approach developed thus 
allow users to obtain good site quality estimates for beech forests at two 
levels: i) at inventory plot level by using the SF equation (and eventually 
the SI-SF relationship), ii) at forest scale using the SF and/or SI raster 
map at a resolution of 25x25 m/pixel. Remeasurement of new experi
mental plots combined with new ALS data, such as the recent 2021 s 
coverage (data not yet available) with a higher laser density point (2 
points m− 2), will enable exploration of improvements in this type of site 
quality model. 
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Pérez-Cruzado, C., 2019. Assessing site form as an indicator of site quality in even- 
aged Pinus radiata D. Don stands in north-western Spain. Ann. For. Sci. 76, 113. 
https://doi.org/10.1007/s13595-019-0904-1. 

Monserud, R.A., 1984. Height growth and site-index curves for inland Douglas-fir based 
on stem analysis data and forest habitat type. For. Sci. 30, 943–965. https://doi.org/ 
10.1093/forestscience/30.4.943. 

Monserud, R.A., 1985. Comparison of Douglas-fir site index and height growth curves in 
the Pacific Northwest. Can. J. For. Res. 15, 673–679. https://doi.org/10.1139/x85- 
110. 
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