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A B S T R A C T   

Fugitive emissions are those that are unplanned, i.e., they do not come out of a stack. These emissions are usually 
disperse and difficult to locate. By estimating the opacity of fugitive emissions they can be controlled or even 
prevented, helping to comply with environmental regulations. Most opacity estimation methods are based on 
stack emissions, which are straightforward, as they are always located in the same area. All methods in the 
literature for emission opacity estimation require a human operator to select the regions to be used as a refer
ence. In this work, deep learning networks are proposed to improve the quality and automation of this process by 
selecting the regions completely and automatically. Furthermore, a new fugitive emission opacity estimation 
method is proposed. This method, called SBPB, is compared with other relevant methods in the literature, of
fering a solution with an average F1-Score metric 5 % higher than other methods on two real datasets with over 
4000 images in total. This method provides a robust solution for fugitive emissions.   

1. Introduction 

A system capable of estimating the severity of an emission in real- 
time would be of great help in preserving the environment. Such a 
system could act in function of the severity of the emission, generating 
an alarm to solve the problem as quickly as possible. Moreover, it would 
comply with regulations that require industrial plants to monitor the 
severity of their emissions according to their size and opacity. To 
calculate the severity of an emission, one of the most important char
acteristics is opacity: the focus of this study. 

Initially, emission plume opacity was assessed by visual comparison 
of the plume with Ringelmann charts (Ringelmann and Kudlich, 1967). 
These have five density reference levels inferred from a grid of black 
lines on a white surface, corresponding to different opacity values 
(Randolph and Foster, 1993). Later, the Method 9 standard (Randolph 
and Foster, 1993) was created to train human observers. Method 9 is a 
standard that details a method designed by the Environmental Protec
tion Agency (EPA) of The United States to guide human observers in 
quantifying plume opacity in daylight conditions. Today, the most 
common way to obtain the opacity of a plume is still by human ob
servers, usually trained with Method 9. 

Standards and algorithms to determine the opacity of a plume do 

exist. ASTM D7520 () is a testing standard to determine the opacity of 
visible emissions using a digital camera and analysis software, known as 
Digital Camera Opacity Technique, or DCOT. ATSM D7520–09 was 
approved in 2009 by the U.S. Department of Defense (DOD). This 
standard aims to establish a minimum level of performance for products 
using DCOT to determine plume opacity outdoors. EPA Alternative 
Method 082 (ALT-082) is a standard (Dolan, 2017) approved in 2011 as 
an alternative to EPA Method 9 and adds limitations to the ASTM D7520 
specification. The objective of ALT-082 is to determine the accuracy and 
reliability of a visual opacity monitoring system consisting of a con
ventional digital camera and a stand-alone software application to 
determine plume opacity. This standard was designed for the opacity 
analysis software Digital Opacity Compliance System (DOCS) (McFar
land et al., 2004, 2007, 2010). There is also an updated version known as 
Digital Opacity Compliance System Second Generation (DOCS II) (Ras
mussen and Grieco, 2009). 

Some algorithms simulate the EPA Method 9 standard using two 
cameras. One of them is focused on the background taken as a reference 
and the other on the plume (Lighty et al., 2007). Other algorithms, such 
as the Digital Opacity Method (DOM) (Du et al., 2007), rely on a physical 
model of a reference background. In this case, DOM uses only one 
camera, so obtaining the reference is more complicated. If the reference 
is a contrasting background, it is called the Contrast model, while if the 
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reference background is the sky itself, it is called the Transmission 
model. Using the Transmission model, Yuen et al. (Yuen et al., 2017) and 
Yuen et al. (Yuen et al., 2018) add new references to the sky reference: a 
reference to the background where the emission is dark, usually because 
of a building; a reference where the emission is lighter, the sky in the 
background; and a reference to the darker part in the background, the 
building itself. 

In opacity estimation algorithms, a human operator usually selects 
the references by selecting boxes with the regions to be used. If these 
regions are obtained automatically, the whole process of opacity 
calculation can be automated. In (Prakasa, 2017), an algorithm for 
opacity calculation using regions obtained by k-nearest neighbors, and 
then revised by an operator, is proposed. 

Opacity estimation algorithms are usually applied to plumes but not 
to more diffuse emissions. Fugitive emissions are emissions that are not 
generated by a stack, i.e., emissions that are not planned. For this reason, 
characterizing the severity of these emissions by calculating the opacity 
is essential before taking proportional actions. Fugitive emissions are 
commonly caused in industrial plants by failures in the production, 
processing, transmission, storage, and use of fuels. These emissions can 
severely pollute the environment, endanger the lives of people and an
imals in the area, and contribute to the greenhouse effect (Laconde, 
2018). For example, carbon dioxide emissions have an impact approx
imately one order of magnitude less than methane emissions from the oil 
and gas industries (Solomon et al., 2007). 

There is very little work in the literature on opacity estimation of 
fugitive emissions. DOCS has an algorithm for fugitive emissions which 
obtains an image before the emission occurs and an image while the 
emission exists to compare the two. Nevertheless, it requires a human 
operator to establish the references. This approach is not viable for a 
fully automated system, as it is impossible to know how long a fugitive 
emission may last. This results in images that may have excessively 
different light or weather conditions. The ideal method would be able to 
calculate the opacity of fugitive emissions from a single static image 
without the intervention of a human operator. 

This paper compares different methods to estimate emission opacity 
and proposes a method, SBPB (Sky and Building Percentiles in the Blue 
channel), to determine fugitive emission opacity (Laconde, 2018). Un
like other methods, the proposed method is fully automated, so no 
human operator intervention is required. One of its major advantages is 
its robustness, enabling the use of uncalibrated cameras with 
self-adjusting exposure time. For input, a single image is needed, in 
which the opacity of each pixel is characterized separately. This 
approach provides more information about the emission than if only one 
numerical value were used to represent the opacity of the whole emis
sion, which is especially important for fugitive emissions due to their 
non-uniform nature. For this purpose, a semantic segmentation model 
capable of obtaining the regions of fugitive emissions, buildings, and the 
sky is first trained. Then, the sky and building regions are used as a 
reference to calculate the opacity of fugitive emissions so that a 

particular opacity value characterizes each emission pixel. A value for 
the total emission can be obtained by selecting a percentile. This value is 
used to make a numerical as well as a visual comparison with other 
methods in the literature. To make fair comparisons between the 
different methods, the same mask obtained from the semantic segmen
tation network is used as the basis for pixel selection in all the methods. 

2. Methods and materials 

2.1. Datasets 

The images used in this study were obtained from two different in
dustrial plants through surveillance cameras. The images were taken on 
sunny days, partially cloudy days, and very cloudy days. There are no 
images of heavy fog or rainy days. All of the images were taken in the 
summertime between dawn and dusk. Night-time images are not 
included because, as the area is not artificially lit, it is impossible to see 
the emission after dusk. The images of the datasets were provided by the 
owner of the industrial plants. In order to maintain their anonymity, the 
regions of the images belonging to the facilities have been censored 
using a Gaussian blur and a stripe mask. This censorship applies only to 
the images shown in this paper, not those for training or use. 

Experts from the companies’ industrial plants use on-site visual 
analysis to classify opacity. Datasets from two plants, totalling 4287 
images were classified into three levels of opacity: Low, Medium, and 
High. Of the 2150 images from the first plant, 1400 were Low, 597 
Medium, and 153 High. Of the 2137 images from the second plant, 1294 
were Low, 593 Medium, and 150 High. Example images can be seen in  
Fig. 1. 

The channels of these images consist of the red, green, and blue 
(RGB) bands and have a resolution of 2048 × 1536 pixels or 1024 × 768 
pixels. To meet the semantic segmentation network requirements, all 
images are scaled to a constant smaller size using one of the most 
common interpolation algorithms: Bicubic interpolation. This reduces 
their computational cost and required VRAM usage. The best size is 
512 × 384 because it maintains its aspect ratio and keeps the highest 
manageable resolution. 

The ground truth for semantic segmentation training has the 
following classes: building, vapour (water vapour from chimneys), 
cloud, fire, fugitive emission, and sky. 

2.2. Processing pipeline 

In this paper, a new processing pipeline is proposed to fully automate 
the opacity estimation process. In this pipeline the opacity estimation 
algorithm can be interchanged following a loosely coupled approach, so 
that the different opacity estimation methods can be easily compared. 

Fig. 2 shows a diagram of the processing pipeline. In this pipeline, the 
image is fed to a semantic segmentation convolutional neural network 
which outputs a prediction mask with the location of the emission. This 

Nomenclature 

ALT-082 EPA Alternative Method 082. 
ASPP Atrous Spatial Pyramid Pooling. 
ATSM American Society for Testing and Materials. 
CNN Convolutional Neural Network. 
DCOT Digital Camera Opacity Technique. 
DOCS Digital Opacity Compliance System. 
DOD Department of Defense. 
DOM Digital Optical Method. 
EPA Environmental Protection Agency. 
FN False Negative. 

FP False Positive. 
GPU Graphics Processing Unit. 
HSV Hue, Saturation, Value. 
IoU Intersection over Union. 
P Precision. 
PCA Principal Component Analysis. 
R Recall. 
RGB Red, Green, Blue. 
SBPB Sky and Building Percentiles in the Blue channel. 
SGDM Stochastic Gradient Descent with Momentum. 
TN True Negative. 
TP True Positive.  
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mask, along with the original image, is fed to the opacity estimation 
algorithm to calculate the opacity image, in which each pixel shows its 
opacity from 0 % to 100 %. Finally, this opacity image is used by a 
simple yet effective classification algorithm to determine the class of the 
emission opacity in order to calculate its metrics. 

2.3. Semantic segmentation 

Semantic segmentation networks are a type of convolutional neural 
network used for pixel classification. Pixel classification is useful to 
detect and localize objects or regions in images, which can be used to 
isolate the desired pixels. All convolutional neural networks must be 
trained before they can be used. To train a model, a groundtruth mask 
and the original image are needed. This groundtruth mask is necessary 
to calculate the errors made by the network and to correct them. Once 
the training process is completed, the prediction mask can be obtained 
when an image is fed to the network. 

Convolutional neural networks have hyper-parameters to control 
their behavior during the training process. For this reason, in order to 
obtain optimal results, it is necessary to study the performance of the 
hyper-parameters. Since each modification in the hyper-parameters re
quires new training, this process can be extremely tedious and time 

consuming. 

2.3.1. Network architecture 
DeepLab (Chen et al., 2014, 2017a; Chen et al) is a convolutional 

neural network for semantic segmentation developed by Google. The 
latest version is called DeepLabv3 + (Chen et al., 2018). The architec
ture of the network combines an Atrous Spatial Pyramid Pooling (ASPP) 
module with a common encoder-decoder structure. In this paper, the 
official Tensorflow implementation from Google’s Github1 is used. 

2.3.2. Metrics 
All metrics are based on the concepts of true positive (TP), false 

positive (FP), true negative (TN) and false negative (FN). TP are pixels 
correctly classified as the target class, TN are pixels correctly classified 
as belonging to other classes, FP are pixels wrongly classified as the 
target class, and FN are pixels wrongly classified as belonging to other 
classes. 

Precision is calculated as the percentage of correctly classified pixels 
from the total predicted pixels, as shown in Equation (1). Recall is 

Fig. 1. Examples from the datasets.  

Fig. 2. Processing pipeline.  

1 https://github.com/tensorflow/models/tree/master/research/deeplab 
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calculated as the percentage of pixels classified correctly from the pixels 
that correspond to that particular class in the ground truth, as shown in 
Equation (2). If Precision is low and Recall is high, the predictions will 
overclassify pixels from that particular class. If Recall is low and Preci
sion is high, only the pixels with high confidence will be classified as 
belonging to that particular class. 

P =
TP

TP + FP
(1)  

R =
TP

TP + FN
(2) 

F1-Score is one of the most common metrics in semantic segmenta
tion. It is calculated as a combination of Precision and Recall as shown in 
Equation (3), and is equivalent to the Dice Coefficient with two classes. 

F1 =
2 × P × R

P + R
(3) 

Intersection-over-Union or IoU is equivalent to the Jaccard Index. 
This metric measures the area of similarity of a segmentation and its 
ground truth. It is calculated as the proportion between True Positives 
and the sum of True Positives, False Negatives, and False Positives, as 
shown in Equation (4), 

IoU =
Area of Overlap
Area of Union

=
TP

TP + FN + FP
(4)  

2.3.3. Training 
Before using the network, it must be trained. To obtain the best 

possible results, its hyper-parameters must be configured. Each time a 

hyper-parameter is modified, the network must be completely retrained 
to observe its effects on the results of its new model. As a starting point, 
to accelerate the convergence of the model, the training uses a pre- 
trained model2 by Google on the Imagenet dataset (Deng et al., 2009) 

Each hyper-parameter was adjusted individually because testing all 
possible combinations of hyper-parameters with a single computer 
would have been excessively time consuming. The final configuration 
used in this paper can be seen in Table 1. The GPU used to train the 
model was an NVIDIA RTX 2080 TI GPU with 11 GB of VRAM. 

The following hyper-parameters were tuned: input sizes (2048 ×

1536, 1024 × 768, 512 × 384, and 256 × 192); batch sizes; learning 
rate; epochs; output strides of 8, 16, and 32; different backbone net
works (Resnet50, Xception45, Xception65, Xception71, MobileNetV2, 
MobileNetV3Small, MobileNetV3Large); L2 regularization; and solver 
algorithms (Adam or Stochastic Gradient Descent with Momentum 
(SGDM)). 

To prevent overfitting, the dataset was shuffled to each epoch and 
data augmentation was used to obtain more training data. The 
augmentation process consisted of zooms of images with varying zoom 
values ranging from 50 % to 200 % at intervals of 25 % increments. 

Pedrayes et al. (Pedrayes et al., 2022) provides additional informa
tion regarding the training process and its hyper-parameters for the 
datasets evaluated in this study. 

Results of the test for the best model with data not seen by the 
network can be seen in Table 2. The F1-Score for all classes is over 80 %, 
which gives high confidence in the prediction of the different regions. In 
particular, the Building, Vapour, and Sky classes are above 90 %. In  
Fig. 3 examples from all classes are shown. The first column shows the 
original image (with the building censored in red to maintain the ano
nymity of the company that provided the data), the second column 
shows the groundtruth, the third column shows the predictions, and the 
fourth and fifth columns show the groundtruth and the predictions 
overlaid on the original image. Almost all predictions are visually 
identical to the ground truth. 

2.3.4. Regions 
The sky pixels closest to the emission are used for those methods that 

require the sky reference to be obtained. For this purpose, the emission 
region is expanded and those pixels belonging to the sky class are 
selected. The number of sky pixels selected is equal to the number of 
emission pixels. Thus, emission and sky regions of the same size are 
obtained. For the process of selecting sky pixels, the pixels closest to the 
emission are discarded to avoid errors in the labeling of the regions. To 
do this, the fugitive emission mask is dilated once using a cross-shaped 
structure of 3×3 pixels. This value is used for both datasets, however, 
this gap can be increased depending on camera location, emission type 

Table 1 
Training parameters for DeepLabV3+.  

Training Parameters 

Input size 512 × 384 × 3 
Classes 6 
Backbone Xception65 
Output stride 16 
Padding Yes 
Solver Adam 
Epochs 80 
Batch size 6 
Learning rate 0.00005 
Class weighting Median Frequency Weighting 
Gradient clipping No 
L2 regularization 0.0004 
Data augmentation Scale 0.5–2.0 with 0.25 steps 
Shuffle Yes  

Table 2 
Metrics of the best model test.  

Class Precision Recall IoU F1 

Building  0.995  0.997  0.992  0.996 

Vapour  0.915  0.900  0.831  0.907 

Clouds  0.955  0.834  0.802  0.890 

Fire  0.794  0.837  0.688  0.815 

Emission  0.836  0.832  0.715  0.834 

Sky    0.926  0.951  0.884  0.938  

2 https://github.com/tensorflow/models/blob/master/research/deeplab 
/g3doc/model_zoo.md 
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or accuracy of the model. Intuitively, it is clear that selecting the near- 
sky pixels rather than all sky pixels gives better results because of the 
comparison with the sky behind the emission, improving on operators 
that select arbitrary square bounding boxes. 

A visual explanation can be seen in Fig. 4. The emission is shown in 
grey, the sky in dark blue, and the building in red. The white contour is 
the gap of the ignored sky pixels, and the light blue is the sky pixels used 
to calculate the opacity estimation. 

2.4. Opacity estimation methods 

This study evaluates all methods for opacity estimation in emissions 
published in the literature. The Ringelmann method is well-known in the 
literature, despite its age. The Prakasa et al. method is of little relevance 
in the literature but introduces an original approach. The DOM 
(Transmission Model), Yuen et al., and DOCS methods, on the other 
hand, are relatively recent and important in the literature. Finally, the 
Transmittance method is based on a well known equation. From the 
study of these methods, a new opacity estimation method called SBPB 
has been developed Table 3. 

All methods in the literature are manual or, at most, assisted pro
cesses. In this paper an approach which allows the automatic use of any 
method thanks to the use of semantic segmentation is proposed. In order 
to make a fair comparison of all the methods, the extraction of regions 
from all of them is automated by means of semantic segmentation. This 
is due to the large number of images in the datasets, which makes 
manual testing impossible. 

2.4.1. Method: ringelmann 
The Ringelmann chart method is a rough adaptation of the first 

methodology based on a visual comparison with a chart. In this case, 
instead of a visual evaluation, the intensity of the emission converted to 
grayscale using the BT.709 recommendation (Series, 2017) is compared 
with the intensity of each chart reference (see Fig. 5a). 

The pixel value 255 corresponds to 100 % luminous intensity, while 
0 corresponds to 0 %. Fig. 5b shows the intensity values of the 

Fig. 3. Predictions (Building censored). Original image (1st column), ground truth (2nd column), prediction (3rd column), ground truth overlay (4th column), and 
prediction overlay (5th column). 

Fig. 4. Selection of the sky region.  

Table 3 
Opacity estimation methods.  

Method Citation Type Per 
pixel 

Process 

Ringelmann (Ringelmann and 
Kudlich, 1967) 

Stack Yes Manual 

DOM 
(Transmission 
model) 

(Du et al., 2007) Stack No Manual 

Prakasa et al. (Prakasa, 2017) Stack Yes Manual/ 
Assisted 

Yuen et al. (Yuen et al., 2017) Stack No Manual 
DOCS (Rasmussen and 

Grieco, 2009) 
Stack Yes Manual 

Transmittance (Randolph and 
Foster, 1993) 

Stack Yes Manual 

SBPB Proposed Stack/ 
Fugitive 

Yes Automatic  
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Ringlemann scales. A major disadvantage of this method is that it is 
image-dependent, so two emissions with the same opacity level may 
differ depending on the scene lighting and camera calibration. This is 
because no reference is used to adjust the opacity calculation. 

2.4.2. Method: DOM (Transmission model) 
In the DOM (Transmission model) method, the opacity of the plume 

is determined by Equation (5). Np refers to the value of the emission 
pixels. To calculate this value the average of all “emission” pixels is 
taken. N is the value of the background pixels. To calculate this value the 
average of all “sky” pixels is taken. K is a coefficient that depends on the 
transmissivity of the particles and the environment. According to (Du 
et al., 2007) and the DOM patent (Kim et al., 2009), a K value of 0.16 is 
recommended for black plumes and 1.4 for white plumes. This method is 
designed for uniform backgrounds. The dataset used contains dark 
emissions, thus a value of 0.16 is set for all images Fig. 6. 

O =
1 −

Np
N

1 − K
(5)  

2.4.3. Method: Prakasa et al 
The method described by (Prakasa, 2017) first divides the image into 

several rows containing the plume, so that each row will use reference 
values contained in the same row. This is done because it is assumed that 
the higher the elevation from the plume, the lower the emission density 
is. For this reason, the sky intensity values for a given row are averaged.  
Fig. 7 shows an example of a separation in rows. 

Opacity is determined by comparing the color difference of the 
plume with the sky background and the maximum color difference. The 
maximum value is obtained by assuming that the color of the plume is 
pure black. Therefore, all values in the RGB channel will be zero to 
represent an all-black intensity. This maximum value can be considered 
as a reference to quantify the level of opacity. 

Opacity is calculated for each pixel in the region individually. The 
intensities of neighboring pixels do not influence the calculation of the 
opacity of an observed point. Eqs. (6–8) are used to obtain the opacity 
value. 

Ip is the value or intensity of the RGB band for the pixels belonging to 
the plume or emission. Is are the pixels belonging to the linear fit rep
resenting the sky for the RGB bands. 

dRGB =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Ip − Is)
2
R + (Ip − Is)

2
G + (Ip − Is)

2
B

√

(6)  

dRef =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

I2
p,R + I2

p,G + I2
p,B

√

(7)  

O =
dRGB

dRef
∗ 100% (8) 

Equation (8) divides the value of the difference between the intensity 
of the emission pixel (Ip) and the intensity of the sky on the vertical axis 
of the region (Is) by the intensity of the emission itself (Ip). This appears 
to be incorrect based on the physical equation for calculating opacity 
(Opacity = 1 − I∕I0, where I is the flux of light returning from the 
emission and I0 is the flux of incident light without passing through the 

Fig. 5. Ringelmann method.  

Fig. 6. DOM: Transmission model diagram.  

Fig. 7. Prakasa diagram.  
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emission), it should be divided by the intensity of the sky (Is). The dif
ference in intensities is normalized for each pixel separately. This 
normalization causes the opacity resulting from Ip values close to Is to be 
minimized, while using values with a larger difference between Ip and Is, 
the opacity value is maximized. It occurs because after dividing by Ip, 
when this is a very low intensity value, the value by which it is divided is 
also very low, and a division by 0 can occur if the Ip value is completely 
black. Similarly, when the two values are close, their difference, i.e. the 
numerator, will have a lower value. Also, in this case, the denominator 
will have a higher value, resulting in a much reduced opacity value. The 
major disadvantage of this method is that by visually representing a 
mask with opacity values, borders can be seen when dividing the image 
into regions. This method is not designed to create masks, but to obtain 
opacity plots along the vertical axis. However, masks are generated to 
provide a comparison with the rest of the methods. 

2.4.4. Method: Yuen et al 
The method described by (Yuen et al., 2017),(Yuen et al., 2018) 

splits the DOM (transmission model) method references according to the 
intensity of their background. The DOM (transmission model) uses only 
one reference for the sky and another for the emission. The Yuen et al. 
method uses two references for sky and two for emission. One of each 
pair of references is in a zone with higher intensity and the other in a 
zone with lower intensity. This method requires the BT.709 recom
mendation to convert RGB values to intensity values in a grayscale 
format. 

This is done using Equation (9) where O is the opacity of the plume. 
Ewp is the amount of exposure caused by the bright background with 
plume. Ew is the amount of exposure caused by the bright background 
without plume. Ebp is the amount of exposure caused by the dark 
background with plume, and Eb is the amount of exposure caused by the 
dark background without plume. It can be understood visually, as shown 
in Fig. 8a. 

O = 1 −
Ewp
Ew

−
Ebp
Ew

1 − Eb
Ew

= 1 −
Ewp − Ebp

Ew − Eb
(9)  

2.4.5. Method: DOCS 
For evaluation purposes, the DOCS method has been implemented in 

this work following its patent indications (Pfaff and Stretch, 2003). 
However, this version might not match the official implementation 
exactly because it leaves certain development aspects unexplained. In 
(Pfaff and Stretch, 2003; McFarland et al., 2004, 2010) it is explained 
that RGB is used for the whole process, although HSV can be used. 

The first step of the DOCS method is to smooth out the image to 
eliminate or reduce visual artifacts (see (Pfaff and Stretch, 2003). The 
second step is to apply the PCA algorithm to the region of interest of the 
smoothed RGB image. This reduces the dimensionality of the data from 
three channels to one channel. The values obtained after using the PCA 
method represent the color intensity variability of the R, G and B bands. 
For this process only the first component of the PCA is used. For 
simplicity it will be called PCA1. 

The third step is to calculate the opacity of the plume. The negative 
values of the PCA1 representation are directly related to the opacity 
through a linear relationship. In order to avoid images generating 
completely different results, this linear relationship is established on the 
complete dataset using a minimum and a maximum value. The mini
mum value is obtained by taking the 5th percentile of all the minima of 
each image in the dataset. The minima of each image is obtained using 
the 1st percentile to eliminate outliers. The maximum is obtained in the 
same way but using the 95th for the maxima and the 99th percentile to 
eliminate outliers. 

2.4.6. Method: Transmittance 
The Transmittance method is based on the transmittance formula 

(Randolph and Foster, 1993) shown in Eq. (10). As shown in Fig. 9, I is 
the intensity of the plume and I0 the intensity of the sky. It is common for 
algorithms to follow a variation of this equation. For example, the 
transmittance method is similar to the DOM (Transmission model) 
method, but without the K value in this case. The purpose of the 
Transmittance method is to follow the physical model equation as 
simply as possible. 

Intensity values are obtained using the BT.709 recommendation to 
transform the RGB image into intensity values in grayscale format. I0 is 
calculated as the median of the sky region. The median is stronger than 
the average against outliers caused by reflective surfaces or possible 
artifacts in the image. I is the value of a particular pixel of the emission. 

O = 1 −
I
I0

(10) 

Fig. 8. Yuen et al.  

Fig. 9. Transmittance method diagram.  

O.D. Pedrayes et al.                                                                                                                                                                                                                            



Process Safety and Environmental Protection 170 (2023) 479–490

486

2.4.7. Method: sky and building percentiles in the blue channel (SBPB) - 
proposed 

In the methods described above, the emission must be black. With 
this method, the emission can be of others colors such as brown or 
yellowish, except blue (see Fig. 10a). Thus, because the sky/clouds 
generally have a blue hue, it is assumed that the more blue a pixel value 
is, the less opaque it is. Conversely, the lower its blue value, the more 
opaque. After some testing with the RGB bands separately and the 
grayscale using the BT.709 algorithm, all of them had trouble when 
sunlight was shining directly on the building. However, as the B-band is 
robust against this, it was decided to use only the B-band of the RGB 
images for opacity calculation. 

This method establishes that the region segmented as Building has an 
opacity of 100 % and that the region segmented as Sky has an opacity of 
0 %. To use this method, the building used as a reference cannot be blue 
(see Fig. 10b). 

Based on this assumption, the 75th percentile value of the building 
region, and the 25th of the sky region is obtained. These percentiles 
provide robust reference values for the building and the sky, preventing 
outliers which may be caused by artifacts in the image or reflective 
surfaces (Vinutha et al., 2018). These intensity values can then be used 
to adjust the opacity calculation to the light conditions of the image. 
This enables the use of images obtained from dynamically self-adjusted 
or poorly calibrated cameras. 

Given that the building has an opacity of 100 %, emission values 
equal to or lower than that of the building represent an opacity of 100 %. 

Those equal to or higher than the the sky region, have an opacity of 0 %. 
The remaining pixels, i.e., those between the two limit values, are 
normalized between 0 % and 100 % using these limit values, so that all 
emission pixels have values between 0 % and 100 % (see Fig. 10c). 

3. Results and discussions 

This section presents the most relevant examples for the comparison 
of the different methods. Figs. 11, 12, and 13 show the original image 
with the fugitive emission, and the results of the opacity estimation of 
the different methods in visual form where black is maximum opacity 
and white no opacity. Images with the opacity estimation show the 
values in the range [0,1] for each of the pixels. 

Figure 11 shows that the proposed SBPB method is the only one 
which correctly classifies the opacity of the left central part of the 
emission. The Prakasa et al., DOCS, and Transmittance methods give 
that part of the emission an excessively low opacity level. 

In situations with low intensity opacity (see Fig. 12), a larger dif
ference between the methods is observed. This is caused by the higher 
complexity of the image due to lower contrast and higher confusion with 
the background clouds. The Ringelmann method values the pixels of the 
region by their intensity without taking into account the context of the 
image, causing these cases to estimate a higher opacity than expected. 
The DOM (Transmission model) method is not able to characterize the 
opacity of the emission. The Yuen et al. method overestimates the 
opacity in transition areas between emission and sky. The DOCS and 
Transmittance methods significantly improve the transition areas of the 

Fig. 10. SBPB method diagrams.  

Fig. 11. High opacity emission from the first dataset.  
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emission region, however, DOCS overestimates emission opacity. 
Finally, the proposed SBPB method further adjusts the emission region 
and provides opacity values closer to those expected. 

Figure 13 shows that the DOM (Transmission model), Prakasa et al., 
and Transmittance methods are not able to determine the opacity of the 
emission correctly. In all these methods the emission is characterized at 
a very low opacity level. This is due to the fact that this image has a high 
light intensity, giving the building a high intensity. For this reason, the 
auto-tuning of the camera causes the sky to darken so that the sky is even 
darker than the building. However, the proposed SBPB method is able to 
characterize the emission opacity correctly. This is because, even though 
the luminous intensity is incorrect due to the camera autotuning, the sky 
still has a higher blue hue than the building. In this case, the Ringelmann 
method is not affected by the sky and the building, so it obtains its usual 
results. As the DOCS method is based on the variance of the image itself, 
it has fewer problems in characterizing the emission. Finally, the Yuen 

et al. method values the complete emission at the same time but is able 
to characterize this emission in a more reasonable way, which may be 
due to the use of multiple building and sky references. 

Figure 14 shows the result of the opacity estimations of all methods 
for one of the images of the second dataset of another industrial plant. 
Here it can be seen that it performs similarly to the rest of the images of 
the first dataset. The main difference is that in this particular case the 
DOCS method seems to obtain similar results to the proposed SBPB 
method. These two methods are the ones that best estimate the opacity 
of the emission. 

Methods that obtain a value for the whole emission, as is the case for 
DOM (Transmission model), and Yuen et al., are notably affected when 
the emission has very differentiated parts. That is, if half of the emission 
has a low opacity and the other half has a high opacity, the result is 
affected by obtaining an average value. If an operator selected a 
bounding box, the result would be completely dependent on where the 

Fig. 12. Low opacity emission from the first dataset.  

Fig. 13. Intense luminosity opacity emission from the first dataset.  
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box were placed. For this reason, the automatic selection proposed in 
this work yields more reliable results despite the area weight of the 
different opacity levels. This is much more important for those methods 
in which the opacity is calculated for each pixel. 

If the building has a higher light intensity than the sky, the methods 
that use the sky and the building as references may behave erroneously, 
as is the case for the DOM (Transmission model) and Yuen et al. 
methods. This is usually due to luminance situations which cause the 
camera autotuning to become very aggressive. In these cases, the pro
posed SBPB method achieves satisfactory results because the sky still has 
higher luminous intensity than the building in the B-band. Thus, the 
proposed method is much more robust in situations where the illumi
nation is not perfect. 

In addition to the visual examples, Table 4 presents the information 
of the results of each method for the first dataset. Opacity images from 
the different opacity estimation algorithms are processed by a classifi
cation algorithm to obtain their categorical opacity level to be compared 
with the groundtruth generated by human operators. This classification 
algorithm discards opacity values lower than 5 % because they are the 
noisiest (Pfaff and Stretch, 2003), and calculates the 80th percentile of 
the remaining emission pixels to calculate a single opacity value for the 
whole emission. This is necessary because human visual perception of 
brightness is non-linear (McNamara et al., 2000). This single opacity 
value is used to determine its class (Low, Medium, or High) by using 
thresholds. These thresholds are calculated separately for each method 
in order to maximize the separation between classes for a fairer and 
more generalizable comparison. To calculate them, the midpoint be
tween the median values of the adjacent classes is calculated. In other 
words, the threshold between the Low class and the Medium class is 
calculated as the sum of the median of the Low class with half the dif
ference with respect to the Medium class. The threshold between the 
Medium and High class is calculated in the same way. The resulting 
classes are compared against a groundtruth to generate the F1-Score 
metric seen in Table 4. 

In view of the results shown in Table 4, it can be seen that the pro
posed SBPB method outperforms the other methods. This method has an 
average F1-Score about 5 % better than the second best. Medium and 
High classes of the SBPB method have a much higher F1-Score than the 
rest, however, the Prakasa et al. method outperforms the SBPB method 
in the Low opacity class. DOM (Transmission model) and Transmittance 
methods also produce a high Low opacity F1-Score. The Prakasa et al., 
Yuen et al., and DOCS method have difficulty distinguishing between 
Medium and High opacity. 

Table 5 shows the complete results of the second dataset. Here it can 
be seen that the results obtained are similar to those of the first dataset, 
maintaining the same conclusions. In this particular dataset, the Ring
elmann method also struggles with the Medium and High opacity levels. 
This second analysis helps to validate the methodology and the 
robustness of the method. 

3.1. Limitations 

The SBPB opacity estimation method has several limitations that 
should be considered when using it. For example, the method is unable 

Fig. 14. High opacity opacity emission from the second dataset.  

Table 4 
F1-Score of the methods for the first dataset.  

Method Class Average  

Low 
opacity 

Medium 
opacity 

High 
opacity  

Ringelmann  0.254  0.402  0.322  0.326 
DOM (Transmission 

model)  
0.663  0.336  0.415  0.471 

Prakasa et al.  0.804  0.071  0.208  0.361 
Yuen et al.  0.391  0.000  0.068  0.236 
DOCS  0.586  0.019  0.125  0.243 
Transmittance  0.747  0.413  0.478  0.546 
SBPB (Proposed)  0.775  0.456  0.540  0.590  

Table 5 
F1-Score of the methods for the second dataset.  

Method Class Average  

Low 
opacity 

Medium 
opacity 

High 
opacity  

Ringelmann  0.609  0.000  0.185  0.264 
DOM (Transmission 

model)  
0.769  0.333  0.361  0.488 

Prakasa et al.  0.792  0.224  0.000  0.339 
Yuen et al.  0.554  0.000  0.107  0.230 
DOCS  0.592  0.053  0.128  0.258 
Transmittance  0.720  0.274  0.309  0.434 
SBPB (Proposed)  0.753  0.342  0.407  0.500  
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to work at night, as it relies on the visibility of the emissions and the 
reference background. Other methods, such as DOM (Transmission 
model), can work at night, but they require the use of two cameras and 
two lights pointing towards the emission (Du et al., 2009). Additionally, 
the SBPB method is unable to work if the color of the building is blue or 
too bright, as this does not meet the requirement that the sky must have 
higher intensity in the blue band than the building. For this same reason, 
the emission intensity in the blue band must be darker than the sky and 
lighter than the building. 

While these limitations may seem strict, most methods in the liter
ature are based on the standard EPA Method 9, which has even stricter 
requirements. EPA Method 9 requires the observer to have a line of sight 
of about 18∘ when looking up to the emission, and the sun must be 
behind the observer, oriented in a 140∘ sector to the observer’s back. 
This means that observations using EPA Method 9 can only be made at a 
particular time of the day, when the sun is in the correct position. 

In contrast, the SBPB opacity estimation method allows for more 
flexibility in terms of the time of day and the conditions under which 
measurements can be taken. However, the method still requires a 
building and the sky as a reference in order to accurately compare the 
degree of opacity in the emissions. The accuracy of the method also 
depends on the accuracy of the semantic segmentation model used to 
identify and isolate the emissions. However, in the tested images, this 
accuracy was high, reaching about 90 % F1-Score. The method could be 
further improved with the use of better cameras, better lighting and 
weather conditions, and more spectral bands, such as infrared, to 
enhance the visibility and accuracy of the measurement. Overall, while 
the limitations of the SBPB opacity estimation method should be 
considered and more testing in different settings may be needed to fully 
validate the method, they are similar to those of other methods in the 
literature. 

4. Conclusion 

In this work, a method to estimate opacity of fugitive emissions 
capable of operating automatically without operator intervention is 
proposed. Existing methods for emission opacity estimation in images 
are not designed for fugitive emissions, and therefore have major limi
tations: these algorithms are always focused on black or white emis
sions, and they require an operator to select the regions to be used for the 
calculations. 

While it is true that a large dataset is needed to train the network, the 
proposed method, SBPB, is the most stable of the methods presented due 
to its closeness to human operator assessments and its performance in 
different weather and lighting conditions such as a sunny or cloudy day 
at different times. This method can estimate opacity individually for 
each pixel, providing more information. One of its great advantages is 
that, thanks to the reference system, it does not require a properly 
calibrated camera without autotuning of exposure. A common camera 
such as a surveillance camera can be used. The use of semantic seg
mentation makes the SBPB method fully automatic i.e., it does not 
require the intervention of an operator. Furthermore, because this 
approach classifies all pixels in the image, more pixels can be employed 
as needed rather than a small section chosen by an operator. However, 
the greatest advantage of the SBPB method is its usefulness in charac
terizing fugitive emissions, since this task would be very difficult and 
time-consuming for a human operator. SBPB is capable of estimating the 
opacity of emissions of any color with low intensity in the B-band. The 
evaluated datasets contain brown and black emissions. Most methods 
are designed for pure black or pure white plumes. However, SBPB does 
not rely on a physical model that can be affected by a myriad of factors 
such as reflectivity indices and other variables, which may be different 
for each camera. Instead, it is based on a simpler idea: the assumption 
that the sky is blue, and that the building and emission are not blue. This 
simplicity makes it possible to extrapolate the method to various 
situations. 

SBPB has an F1-Score 4–7 % better than the Transmittance method, 
the second best performing method for Medium opacity. Furthermore, it 
also performs 6–10 % better than the Transmittance method, the second 
best performing method for High opacity. For Low opacity emissions, 
the SBPB method is outperformed by Prakasa et al. by about 3 %. 
However, the Prakasa et al. method tends to underestimate opacity 
which can be seen in its Medium and High opacity scores. The DOM 
(Transmission model) and Transmittance methods also produce similar 
Low opacity scores. The SBPB method is the most robust of all the dis
cussed methods because it outperforms every other method for the 
Medium and High classes. This is confirmed when looking at the average 
of all three classes which surpass the second best method, Trans
mittance, by over 5–7 % for all classes. 

Metrics and visual results indicate that SBPB can help monitor stack 
and fugitive emissions from industrial plants in real time even when 
using uncalibrated, self-adjusting exposure time monitoring cameras 
such as the ones used in this study. In this way, emissions can be 
monitored in realtime as they are detected, as well as recording the 
severity of emissions during the day. This would make it possible to 
penalize those industrial plants that do not respect current regulations, 
thus endangering the environment. 
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