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Abstract: We study a statistical data depth with respect to compact convex random sets, which
is consistent with the multivariate Tukey depth and the Tukey depth for fuzzy sets. In addition,
it provides a different perspective to the existing halfspace depth with respect to compact convex
random sets. In studying this depth function, we provide a series of properties for the statistical data
depth with respect to compact convex random sets. These properties are an adaptation of properties
that constitute the axiomatic notions of multivariate, functional, and fuzzy depth-functions and other
well-known properties of depth.
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1. Introduction

In some real cases, statistical data appear in the form of sets, for instance, in the form
of compact convex sets. Examples can be found in datasets related to health, such as the
range of blood pressure over a day [1], or related to sport measures, such as the range of
weights and heights of a soccer team [2]. Thanks to these phenomena having a convex
compact set nature, it is possible to use some good properties of convex compact sets,
for instance the existence of support functions. This type of statistical data is studied
by the theory of random sets, which, from a statistical point of view, models observed
phenomena that are sets rather than points in Rp, as in multivariate statistics, or functions,
as in functional data analysis. Thus, a random set is a generalization of a random variable:
it is a set-valued random variable. A random set can also be understood as a simplification
of a fuzzy random variable, as the α-levels of a fuzzy set are nested compact sets. The
literature about random sets contains well-established theoretical results [3], some of which
are generalizations to random sets of classical statistical results, for instance, the strong
law of large numbers [4]. Statistical methods are also part of the development of the area
of compact convex random sets, such as proposing linear regression methods [5] or the
median of a random interval [6]. Recent literature also includes theoretical results, such
as results about the intersection of random sets [7], and applications, such as underwater
sonar images [8].

Statistical depth functions have become a very useful tool in non-parametric statistics.
Nowadays, depth functions are applied in different fields of statistics, such as clustering
and classification [9] or real data analysis [10,11]. Given a distribution P in a space, a depth
function, D(·;P), orders the elements in the space with respect to P. Roughly speaking,
statistical depth functions measure how close an element is to a data cloud, in the sense
that, if we move the element to the center of the cloud, its depth increases, and, if we move
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it out of the center, its depth decreases. Assuming it is unique, this center is the center
of symmetry if the distribution is symmetric for a particular notion of symmetry. For
multivariate spaces, there are notions of symmetry widely used in the literature: central,
angular [12], and halfspace symmetry [13]. Notions of symmetry specific for functional [14]
and fuzzy spaces [15] are, however, quite recent.

Formally, an axiomatic definition of the depth function for the multivariate case was
proposed by Zuo and Serfling [13]. According to this definition, a depth function, D(·;P),
satisfies the following properties. To introduce them, let X be a random variable with
distribution P on Rn,Mn×n(R) be the space of n× n matrices with entries in R, and ‖ · ‖
be the Euclidean norm. Abusing the notation, we indistinctly write D(·; X) and D(·;P).
M1. Affine invariance. A depth function does not depend on the coordinate system, that is,

for any non-singular M ∈ Mn×n(R) and b ∈ Rn, D(x; X) = D(Mx + b; MX + b).
M2. Maximality at center. If the distribution P has a uniquely defined center of symmetry,

for a certain notion of symmetry D(·; X) is maximized at it.
M3. Monotonicity relative to the deepest point. Let x0 ∈ Rn be a point of maximal depth.

Then, for any x ∈ Rn, D((1− λ)x0 + λx; X) ≥ D(x; X) for all λ ∈ [0, 1].
M4. Vanishing at infinity. The limit of D(x; X) goes to 0, as the limit of ‖x‖ goes to infinity.

Formal axiomatic definitions of a depth function were later provided in the func-
tional [16] and fuzzy settings [15,17].

The first instance of a depth function was proposed prior to the axiomatic definitions.
It is the Tukey depth, an instance provided in 1975 by Tukey [18] for multivariate data,
which is still the most well-known depth function. It is also known as halfspace depth, as it
computes the infimum of the probabilities of closed halfspaces, which contain the point at
which the depth function is evaluated. That is:

HD(x;P) := inf{P(H) : H is a closed halfspace and x ∈ H}. (1)

Zuo and Serfling [13] proved that HD satisfies M1-M4, and, therefore, it is a statistical
depth function. We emphasize the satisfaction of the axioms, because it is customary in the
statistical depth community not to consider the axioms as cut-off, regarding a function as a
depth function, even when all the axioms are not satisfied in their entirety.

Since Tukey coined the term in 1975, many other instances of depth functions have
been proposed, and their use in statistics has grown considerably. Some commonly used
depth functions are the simplicial depth, proposed by Liu [12]; the spatial depth, proposed
by Serfling [19]; and the random Tukey depth, proposed by Cuesta-Albertos and Nieto-
Reyes [20], which, being based on random projections, is a computationally effective
approximation of the Tukey depth. The spatial and random Tukey depth functions can be
applied in both multivariate and functional spaces [21,22]. However, the random Tukey
depth does not satisfy the axiomatic definition of a functional depth [16], which only the
metric depth [14] has yet been proven to satisfy. It is worth noting that the spatial and
random Tukey depth functions were introduced before the functional axiomatic definition
in [16]. Furthermore, while the Tukey depth has not yet being defined in functional spaces,
it has being generalized to the fuzzy setting and proved to satisfy the axiomatic definitions
in that setting [15,23].

The aim of this paper is to propose some desirable properties of depth with respect
to compact convex random sets, which can be considered to be an axiomatic definition
for this setting. Some of these properties are an adaptation for compact convex sets of
those proposed in González-De La Fuente et al. [15] for fuzzy data. The properties are
also largely inspired by the multivariate definition [13] and, in addition, by the functional
one [16], because the set of compact convex sets can be considered to be a metric space by
using the Hausdorff distance, for instance. In order to test the viability of those properties,
with a generalization of halfspaces suitable for the space of compact convex sets, we
present an adaptation of Tukey depth and show that almost all of them are satisfied. These
definitions of halfspace and Tukey depth can be regarded as stemming naturally from
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their corresponding multivariate definitions and, in addition, are a particular case of their
fuzzy analogs [15]. Furthermore, we show that the definition of Tukey depth with respect
to compact convex random sets coincides with that derived recently in Cascos et al. [24],
which does not make an explicit use of halfspaces in its definition. The advantage of using
our proposal is that it helps in proving some desirable properties of the Tukey depth, for
instance the monotonicity relative to the deepest point (see proof of Proposition 3). In
addition, it is clear that our proposal is a natural generalization of the multivariate halfspace
depth, because it generalizes the concept of halfspace to the set of subsets of Rp. Moreover,
we also show that the Tukey depth, with respect to compact convex random sets, can be
rewritten in terms of the multivariate halfspace depth of the support function of compact
convex sets.

The paper is organized as follows. The background about compact convex random
sets is contained in Section 2. The definition of the Tukey depth with respect compact
convex random sets is in Section 3, together with its relationships with and equivalences
to other definitions. Section 4 presents and studies the properties of depth with respect
to compact convex random sets and their satisfaction by the Tukey depth with respect to
compact convex random sets. Section 5 includes a real-data analysis of compact convex
sets in R3. The paper concludes with some final remarks in Section 6.

2. Preliminaries on Compact Convex Random Sets

Let us denote using Kc(Rp) the set of non-empty compact convex sets of Rp. In the
case p = 1, the elements of Kc(R) are intervals of the form [a, b] with a ≤ b. For any
K ∈ Kc(Rp), its support function sK : Sp−1 → R is defined by

sK(u) := sup
k∈K
〈k, u〉,

where 〈·, ·〉 denotes the usual dot product, Sp−1 := {x ∈ Rp : ‖x‖ = 1} is the unit sphere,
and ‖ · ‖ is the Euclidean norm.

Let (Ω,A,P) be a probability space. A map

Γ : Ω→ Kc(Rp)

is called a compact convex random set if

{ω ∈ Ω : Γ(ω) ∩ K 6= ∅} ∈ A

for all K ∈ Kc(Rp) [25]. Himmelberg [26] proved the Fundamental Measurability Theorem,
which is useful to prove that sΓ(u) is a real random variable for all u ∈ Sp−1. As in the
Euclidean space, in Kc(Rp) there exists a predominant distance, the Hausdorff metric. The
Hausdorff distance between K ∈ Kc(Rp) and L ∈ Kc(Rp) is

dH(K, L) := max{sup
k∈K

inf
l∈L
‖k− l‖, sup

l∈L
inf
k∈K
‖k− l‖},

which can be expressed in terms of their support function (e.g., [27]) as

dH(K, L) = sup
u∈Sp−1

|sK(u)− sL(u)|. (2)

The Borel measurability with respect to dH is equivalent to the above-mentioned
definition of compact convex random sets.

Some properties of the support functions of the elements of Kc(Rp) can be deduced
from the properties of the supremum function. For instance, let K, L ∈ Kc(Rp), taking into
account that

K + L = {k + l : k ∈ K, l ∈ L} ∈ Kc(Rp),
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we can conclude that the support function of K + L can be expressed as the sum of the
support functions of K and L, that is,

sK+L(u) = sK(u) + sL(u)

for all u ∈ Sp−1. It is also possible to define the product of K by a scalar γ ∈ R+, as

γ · K = {γk : k ∈ K}.

Then, it is clear that
sγ·K(u) = γ · sK(u)

for all u ∈ Sp−1.

3. Halfspaces and Halfspace Depth in Kc(Rp)

As is observable from (1), the Tukey depth of a multivariate point x is the infimum of
the probability of halfspaces which contain x. However, Kc(Rp) is not a linear space. In
this section, we define generalized halfspaces (simply called halfspaces in the sequel) for
Kc(Rp) in a natural way from the multivariate case.

Let S be a halfspace of Rn. Then, v ∈ Rn and b ∈ R exist, such that

S = {y ∈ Rn : vTy ≤ b}.

Taking u = (1/‖v‖)v ∈ Sp−1 and c = b/‖v‖, it is clear that

S = {y ∈ Rn : uTy ≤ c}.

Thus, the halfspaces of Rn can be viewed as subsets Su,c ⊆ Rn, such that

Su,c = {y ∈ Rn : uTy ≤ c}

with u ∈ Sp−1 and c ∈ R. This generalizes naturally to Kc(Rp) by using the support
function of a set. Thus, we define halfspaces S−u,t, S+

u,t ⊆ Kc(Rp) as

S−u,t := {K ∈ Kc(Rp) : sK(u) ≤ t}, (3)

S+
u,t := {K ∈ Kc(Rp) : sK(u) ≥ t}, (4)

for all u ∈ Sp−1 and t ∈ R. We explicitly consider both halfspaces because

sK(−u) = − inf
k∈K
〈u, k〉 6= −sK(u)

with
S+

u,t ⊆ S−−u,−t,

S−u,t ⊆ S+
−u,−t,

for all u ∈ Sp−1 and t ∈ R.
Making use of both directions of the inequality that defines the halfspaces, the Tukey

depth with respect to a compact convex random set can be defined. Let Γ be a compact
convex random set. The Tukey depth of K ∈ Kc(Rp) with respect to Γ is defined by the function

DCT(·; Γ) : Kc(Rp)→ [0, 1]

given by

DCT(K; Γ) := min{ inf
u∈Sp−1,t∈R:

K∈S−u,t

P(Γ ∈ S−u,t), inf
u∈Sp−1,t∈R:

K∈S+u,t

P(Γ ∈ S+
u,t)}. (5)
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We indistinctively refer to it as the Tukey depth for compact convex random sets or
the Tukey depth with respect to compact convex random sets. It is worth noting that (5)
is a particularization for compact convex sets of the Tukey depth for fuzzy sets proposed
in [15]; (3) and (4) are of the fuzzy halfspaces proposed there.

In what follows, we operate on (5) to show it coincides with the definition of halfspace
depth with respect to compact convex random sets provided in Cascos et al. [24], which
does not explicitly use halfspaces. From (3), K ∈ S−u,t means that (u, t) is a pair such that
sK(u) ≤ t. Thus,

S−u,sK(u)
⊆ S−u,t

and, consequently,
P(Γ ∈ S−u,sK(u)

) ≤ P(Γ ∈ S−u,t).

Analogously, from (4),

P(Γ ∈ S+
u,sK(u)

) ≤ P(Γ ∈ S+
u,t).

Taking the infimum in (5), we can express DCT as

DCT(K; Γ) = min{ inf
u∈Sp−1

P(Γ ∈ S−u,sK(u)
), inf

u∈Sp−1
P(Γ ∈ S+

u,sK(u)
)}.

Making use of the definition of the halfspaces in (3) and (4), we have

DCT(K; Γ) = min{ inf
u∈Sp−1

P(sΓ(u) ≤ sK(u)), inf
u∈Sp−1

P(sΓ(u) ≥ sK(u))}, (6)

which coincides with the definition of the halfspace depth proposed by Cascos et al. [24].
Interchanging the minimum and infimum in (6),

DCT(K; Γ) = inf
u∈Sp−1

min{P(sΓ(u) ≤ sK(u)),P(sΓ(u) ≥ sK(u))}. (7)

Then, taking into account (1), we can express the Tukey depth for compact convex
random sets in terms of the multivariate halfspace depth in the following way

DCT(K; Γ) = inf
u∈Sp−1

HD(sK(u); sΓ(u)). (8)

Sample Halfspace Depth

We define the sample version DCT,n of the Tukey depth for compact convex sets. Let

Γ : Ω→ Kc(Rp)

be a compact convex random set associated with the probabilistic space (Ω,A,P) and
X1, . . . , Xn independent random sets distributed as Γ. We define the sample version of the
Tukey depth DCT,n as

DCT,n(K; Γ) := min{ inf
u∈Sp−1

Pu
n((−∞, sK(u)]), inf

u∈Sp−1
Pu

n([sK(u), ∞))}, (9)

for every K ∈ Kc(Rp), where

Pu
n((−∞, x]) =

1
n
·

n

∑
i=1

I(sXi (u) ∈ (−∞, x]),

Pu
n([x, ∞)) =

1
n
·

n

∑
i=1

I(sXi (u) ∈ [x, ∞)),
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for all u ∈ Sp−1 and x ∈ R. The function DCT,n coincides with the sample version of the
halfspace depth proposed by Cascos et al. [24]. Interchanging the minimum and infimum
in (9), we also have that

DCT,n(K; Γ) := inf
u∈Sp−1

min{Pu
n((−∞, sK(u)]),Pu

n([sK(u), ∞))}. (10)

4. Properties of Depth for Compact Convex Sets

In this section, we propose some desirable properties for the depth for compact convex
sets. They are mainly based on the properties that constitute the notion of the depth
function for multivariate spaces [13], for functional (metric) spaces [16], and for the fuzzy
setting [15]. Furthermore, we study whether DCT satisfies them.

Some of these properties parallel the ones considered in [15], and, in certain cases, they
follow for a random set Γ by applying the corresponding property in [15] to the indicator
function IΓ. However, this application is simplest for the properties whose direct proof
is already very simple, which does not support the cost-effectiveness of doing so. In the
longer proofs, additional arguments are needed, due, for instance, to the subtlety that
the deepest point in the (larger) space of fuzzy sets might conceivably be deeper than the
deepest non-fuzzy set. Therefore, the properties referring to deepest points are parallel in
wording but might potentially have different content. It can be proved that this does not
actually happen, but we also found that direct proofs make the paper more self-contained.
Thus we opted for proofs which do not require the reader to be familiar with the specifics
of fuzzy sets, by adapting the arguments in [15]. Still, some other properties in this section
were not considered in [15].

4.1. Property 1: Affine Invariance

We focus on the M1. property of the multivariate case reported in the introduction.
In the case of Kc(Rp), the product of M ∈ Mn×n(R) times K ∈ Kc(Rp) is defined as the
compact convex set

M · K = {M · k : k ∈ K}. (11)

The affine invariance property that we propose is the following.

(P1.) Let Γ be a compact convex random set, D(·; Γ) : Kc(Rp)→ [0, ∞) a function. Then,

D(M · K + L; M · Γ + L) = D(K; Γ),

for all M ∈ Mn×n(R) non-singular matrix and any K, L ∈ Kc(Rp).

Thus, this property is analogous to the multivariate case. The property in the fuzzy
case is different only in that we need the Zadeh’s extension principle [28–30] to apply a matrix
to a fuzzy set. The property for functional data also differs, since [16] demands isometry
invariance. However, note that, in this context, affine invariance actually implies isometry
invariance, since, as a result of Gruber and Lettl [31], all isometries of Kc(Rp) are of the
form K 7→ M · K + L with M orthogonal.

Proposition 1. The function DCT satisfies P1.

The following lemma (cf. [15], Proposition 8.2) is used to prove Proposition 1.

Lemma 1. Let K ∈ Kc(Rp) and M ∈ Mn×n(R) a non-singular matrix. Then,

sM·K(u) = ‖MT · u‖ · sK((1/(‖MT · u‖)) ·MT · u)

for all u ∈ Sp−1.
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Proof. Taking into account (11), it is clear that

sM·K(u) = sup
v∈M·K

〈u, v〉 = sup
k∈K
〈u, M · k〉 = sup

k∈K
〈MT · u, k〉,

for any u ∈ Sp−1. In general, MT · u does not belong to Sp−1. Thus, normalizing it, we
have that

sM·K(u) = sup
k∈K
〈‖MT · u‖ ·

1
‖MTu‖ ·M

T · u, k〉 =

‖MT · u‖ · sup
k∈K
〈

1
‖MT · u‖ ·M

T · u, k〉 = ‖MT · u‖ · sK(
1

‖MT · u‖ ·M
T · u).

It is clear that, if M ∈ Mn×n(R) is a non-singular matrix, the map

f : Sp−1 → Sp−1

defined by
f (u) = (1/‖MT · u‖) ·MT · u

is bijective. We make use of this to prove Proposition 1.

Proof of Proposition 1. Using the properties of the support function and Lemma 1, we
obtain

sM·K+L(u) = ‖MT · u‖ · sK(
1

‖MT · u‖ ·M
T · u) + sL(u),

for all u ∈ Sp−1. From (6), we have that

inf
u∈Sp−1

P(sM·Γ+L(u) ≤ sM·K+L(u)) = inf
u∈Sp−1

P(sM·Γ(u) ≤ sM·K(u)) =

inf
u∈Sp−1

P(sΓ(
1

‖MT · u‖ ·M
T · u) ≤ sA(

1
‖MT · u‖ ·M

T · u)) =

inf
u∈Sp−1

P(sΓ(u) ≤ sK(u))

where the last equality follows from the fact that f is bijective.

4.2. Property 2: Maximality at the Center of Symmetry

In this case, the property is the same for multivariate, functional, and fuzzy settings,
but for the fact that the notion of symmetry applied has to be defined in the corresponding
space. In the multivariate case, several notions of symmetry exist, for instance central,
angular, and halfspace symmetry [12,13]. In the functional case, one proved to be topo-
logically valid exists [10,14], while there have been two proposals in the fuzzy setting [15].
To propose a notion of symmetry in Kc(Rp), we make use of the central symmetry notion
and of the support function of compact convex random sets. A random variable X on
Rp is centrally symmetric (or C-symmetric) with respect to x ∈ Rp if X − x and x− X are
equally distributed.

Definition 1. Let Γ be a compact convex random set. We say that Γ is compact-symmetric with
respect to K if sΓ(u) is C-symmetric with respect to sK(u) for all u ∈ Sp−1.

We propose the following property.
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(P2.) Let Γ be a compact convex random set which is symmetric (for a certain notion of symmetry)
with respect to K ∈ Kc(Rp). Let D(·; Γ) : Kc(Rp)→ [0, ∞) be a function. Then

D(K; Γ) = sup
L∈Kc(Rp)

D(L; Γ).

Thus, this property is analogous in the multivariate, functional, and fuzzy cases. The
only difference is the notion of symmetry defined for each case. Note that the above defined
notion of symmetry for compact convex random sets, which makes use of C-symmetry, is
also an adaptation of the F-symmetry [15] of the fuzzy case, based on support functions. It
is possible to consider another notion of symmetry for random sets by identifying every set
with its support function and considering central symmetry in the function space. However,
our notion is more general, which makes it a natural choice.

With the above notion of compact-symmetry, we have the following result.

Proposition 2. The function DCT satisfies P2.

Proof. By hypothesis, let us suppose that Γ is compact-symmetric with respect to K. By
definition, we have that the real random variable sΓ(u) is C-symmetric with respect to
sK(u) for all u ∈ Sp−1. This means that

sK(u) ∈ Med(sΓ(u))

for all u ∈ Sp−1, where Med(·) denotes the univariate median. It implies that

P(sΓ(u) ≤ sK(u)) ≥ 1/2 and P(sΓ(u) ≥ sK(u)) ≥ 1/2.

Using the expression of DCT in Equation (6), we have that DCT(·; Γ) is maximized
in K.

4.3. Property 3: Monotonicity with Respect to the Center

In the multivariate case [13], this property is understood in an algebraic way, as
the convex combinations between the element of maximal depth and another point are
considered. As the operations of sum and product by a scalar are defined in Kc(Rp), we
can propose the same property.

(P3a.) Let Γ be a compact convex random set and let K ∈ Kc(Rp) maximize D(·; Γ). Then,

D((1− λ) · K + λ · L; Γ) ≥ D(L; Γ)

for all λ ∈ [0, 1] and L ∈ Kc(Rp).

Additionally, this property is analogous to property P3a. in the definition of semi-linear
depth in the fuzzy setting [15].

In the functional (metric) case, a different property was proposed by (Nieto-Reyes and
Battey [16], Property P-3.) which explicitly uses the metric in the space. We can see Kc(Rp)
as a metric space with the Hausdorff metric dH. Thus, another possible property is the
following.

(P3b.) Let Γ be a compact convex random set, d be a metric in Kc(Rp), and K, L, S ∈ Kc(Rp) be
three sets such that K maximizes D(·; Γ) and d(K, S) = d(K, L) + d(L, S). Then,

D(L; Γ) ≥ D(S; Γ).

This property is analogous to property P3b. in the definition of geometric depth in the
fuzzy setting [15].

For these two possible translations of the multivariate property, we have the following
two results.
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Proposition 3. The function DCT satisfies P3a.

Proof. Let Γ be a compact convex random set, and let K, L ∈ Kc(Rp) be two sets such that
K maximizes DCT(·; Γ). Using the properties of the support function of a set, we have that

s(1−λ)·K+λ·L(u) = (1− λ)sK(u) + λsL(u)

for all u ∈ Sp−1 and λ ∈ [0, 1].
We consider the set

K = {(u, t) ∈ Sp−1 ×R : (1− λ) · K + λ · L ∈ S−u,t}.

It can be expressed as K1 ∪K2 ∪K3, where

K1 = {(u, t) ∈ Sp−1 ×R : K, L ∈ S−u,t, L ∈ S−u,t},
K2 = {(u, t) ∈ Sp−1 ×R : K ∈ S−u,t, L 6∈ S−u,t, (1− λ) · K + λ · L ∈ S−u,t},
K3 = {(u, t) ∈ Sp−1 ×R : K 6∈ S−u,t, L ∈ S−u,t, (1− λ) · K + λ · L ∈ S−u,t}.

It is clear that they are disjoint sets. Thus, we have that

inf
u∈Sp−1,t∈R:

(1−λ)·K+λ·L∈S−u,t

P(Γ ∈ S−u,t) = inf
(u,t)∈K

P(Γ ∈ S−u,t) =

min{ inf
(u,t)∈K1

P(Γ ∈ S−u,t), inf
(u,t)∈K2

P(Γ ∈ S−u,t), inf
(u,t)∈K3

P(Γ ∈ S−u,t)}.
(12)

Taking into account that

K1,K2 ⊆ {(u, t) ∈ Sp−1 ×R : K ∈ S−u,t}

and
K3 ⊆ {(u, t) ∈ Sp−1 ×R : L ∈ S−u,t},

it is obtained that

inf
(u,t)∈K1

P(Γ ∈ S−u,t) ≥ inf
u∈Sp−1,t∈R:

K∈S−u,t

P(Γ ∈ S−u,t) ≥ DCT(K; Γ),

inf
(u,t)∈K2

P(Γ ∈ S−u,t) ≥ inf
u∈Sp−1,t∈R:

K∈S−u,t

P(Γ ∈ S−u,t) ≥ DCT(K; Γ),

inf
(u,t)∈K3

P(Γ ∈ S−u,t) ≥ inf
u∈Sp−1,t∈R:

L∈S−u,t

P(Γ ∈ S−u,t) ≥ DCT(L; Γ).

(13)

Using (12) and (13) and taking into account that K maximizes DCT , we have that

inf
u∈Sp−1,t∈R:

(1−λ)·K+λ·L∈S−u,t

P(Γ ∈ S−u,t) ≥ DCT(L; Γ).

Analogously, we obtain

inf
u∈Sp−1,t∈R:

(1−λ)·K+λ·L∈S+u,t

P(Γ ∈ S+
u,t) ≥ DCT(L; Γ).

Thus, DCT((1− λ) · K + λL; Γ) ≥ DCT(L; Γ), and DCT satisfies property P3a.

Proposition 4. The function DCT does not satisfy P3b with respect to the distance dH.
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Proof. The proof is by counterexample. Let ({ω1, ω2},P({ω1, ω2}),P) be a probabilistic
space such that

P(ω1) = 3/4 and P(ω2) = 1/4.

We consider the compact convex random set Γ : Ω→ Kc(R) defined by

Γ(ω1) = [1, 2] and Γ(ω2) = [2, 7].

It is clear that
DCT(Γ(ω1); Γ) = 3/4,

and it is the set which maximizes DCT . Let us consider L = [3, 5]. We have that

5 = dH(Γ(ω1), Γ(ω2)) = dH(Γ(ω1), L) + dH(Γ(ω2), L) = 3 + 2.

Moreover,

DCT(Γ(ω2); Γ) = 1/4 and DCT(L; Γ) = P(sΓ(−1) ≤ sC(−1)) = 0.

Thus, DCT violates property P3b.

Notice that the Tukey depth may satisfy Property P3b if the distances between the
sets are not measured with the Hausdorff metric, e.g., in the Lp-type metrics introduced by
Vitale [32].

4.4. Property 4: Vanishing at Infinity

The property in the multivariate case is understood in a geometrical way, considering
a sequence {xn}n such that ‖xn‖ → ∞ [13]. We can also consider a sequence {a + nb}n
with a, b ∈ Rp, such that b 6= 0, and suppose that the sequence of distances diverges. Thus,
in this setting, we also propose two possible properties, the first one from an algebraic
point of view and the second one taking into account that the set Kc(Rp) can be viewed as
a metric space using the Hausdorff distance.

(P4a.) Let Γ be a compact convex random set, and let K, L ∈ Kc(Rp) be two sets such that K
maximizes D(·; Γ) and L 6= {0}. Then,

lim
n

D(K + n · L; Γ) = 0.

(P4b.) Let Γ be a compact convex random set, d a metric in Kc(Rp), K ∈ Kc(Rp) a set that maxi-
mizes D(·; Γ) and {Kn}n a sequence of elements of Kc(Rp) such that limn d(K, Kn) = ∞.
Then,

lim
n

D(Kn; Γ) = 0.

Property P4a. parallels the fourth property of the semi-linear depth for fuzzy sets,
while P4b. parallels the fourth property of geometric depth for fuzzy sets.

Concerning those properties, we have the following results.

Proposition 5. The function DCT satisfies P4a. and P4b. with respect to the distance dH.

The following proposition is used in the proof of Proposition 5 for property P4b.

Proposition 6. Let {Kn}n be a sequence of elements of Kc(Rp) such that limn dH(Kn; {0}) = ∞.
Then, there exists u ∈ Sp−1 such that

lim
n

sKn(u) = ∞.
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Proof. It is a basic property of the Hausdorff distance that

dH(Kn, {0}) = sup{‖x‖ : x ∈ Kn}

for all n ∈ N. The function
fn : Kn → R

defined by
fn(x) = ‖x‖

is a continuous function defined over a compact convex set, thus it attains its maximum
on Kn, for all n ∈ N. Let us denote by xn the point of Kn where fn attains its maximum for
every n ∈ N. By hypothesis we have that

lim
n
‖xn‖ = ∞.

It implies that there exists u ∈ Sp−1 such that

lim
n
〈u, xn〉 = ∞.

By definition of the support function of a compact convex set, we have that

〈u, xn〉 ≤ sKn(u).

Thus, limn sKn(u) = ∞.

Proof of Proposition 5.
Property P4a. Let L 6= {0}. There exists u0 ∈ Sp−1 such that

sL(u0) 6= 0.

Without loss of generality, we assume sL(u0) > 0. Clearly, the sequence

{sK(u0) + n · sL(u0)}n

is such that
lim

n
sK(u0) + n · sL(u0) = ∞.

We have that

DCT(K + ·L; Γ) ≤ P(sΓ(u0) ≥ sK(u0) + n · sL(u0)).

If we take limits on both sides

lim
n→∞

DCT(K + n · L; Γ) ≤ lim
n→∞

P(sΓ(u0) ≥ sK(u0) + n · sL(u0)) = 0.

Using Sandwhich’s Rule, we have that limn DCT(K + n · L; Γ) = 0.

Property P4b. As the set K is fixed, the condition

lim
n

dH(K, Kn) = ∞

is equivalent to
lim

n
dH(Kn, {0}) = ∞.

From Proposition 6, we have that there exists u0 ∈ Sp−1 such that

lim
n

sKn(u) = ∞.
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The rest of the proof is analogous to that of Property P4a.

4.5. Property 5: Upper Semi-Continuity

This property regards a depth as an upper semi-continuous function at every point
of its domain. In the multivariate case it is not considered to be a canonical requirement,
but continuity properties are studied in different papers, for instance in [13]. This property
is considered in the definition of the depth function for functional (metric) spaces [16].
According to [16], a depth D, of a metric space (E, d) with respect to a distribution P in
the space, is upper semi-continuous if, for all x ∈ E and for all ε > 0, there exists δ > 0
such that

sup
y:d(x,y)<δ

D(y;P) ≤ D(x;P).

The property has not yet being considered in the fuzzy setting.

(P5.) Let Γ be a compact convex random set, and d be a metric defined over Kc(Rp). The function
D(·; Γ) is upper semi-continuous with respect to the distance d in the sense that

lim sup
n

D(Kn; Γ) ≤ D(K; Γ)

for every set K ∈ Kc(Rp) and every sequence of sets {Kn}n such that limnd(K, Kn) = 0.

Notice that upper semi-continuity implies that the contours of the depth function are
closed sets.

Proposition 7. The function DCT satisfies P5. with respect to the distance dH.

Proof. Let Γ be a compact convex random set and K ∈ Kc(Rp) be a set, and let {Kn}n be a
sequence of compact convex sets such that

lim
n→∞

dH(K, Kn) = 0.

We need to prove
lim sup

n
DCT(Kn; Γ) ≤ DCT(K; Γ).

From (2),
dH(K, Kn) = sup

u
|sK(u)− sKn(u)|

and then
lim

n→∞
|sK(u)− sKn(u)| = 0

for each u ∈ Sp−1. Thus
lim

n→∞
sKn(u) = sK(u)

for every u ∈ Sp−1. Without loss of generality (the other case is analogous), assume

DCT(K; Γ) = inf
u
P(sK(u) ≤ sΓ(u)).

Now, we prove that, for all u ∈ Sp−1,

U := {ω ∈ Ω : ∀k ∈ N, ∃n ≥ k : ω ∈ {sKn(u) ≤ sΓ(u)}} ⊆ {ω ∈ Ω : sK(u) ≤ sΓ(ω)(u)}.

Let ω ∈ U. There exists a sub-sequence {Kn′}n of {Kn}n such that

sKn′
(u) ≤ sΓ(ω)(u)



Mathematics 2022, 10, 2758 13 of 23

for all n′. Taking limits,
sK(u) = lim

n′→∞
sKn′

(u) ≤ sΓ(ω)(u),

therefore
ω ∈ {ω ∈ Ω : sK(u) ≤ sΓ(u)}.

By definition, U = lim supn{sKn(u) ≤ sΓ(u)}. Thus

DCT(K; Γ) = P(sK(u) ≤ sΓ(u)) ≥ P(lim sup
n
{sKn(u) ≤ sΓ(u)}) ≥

≥ lim sup
n→∞

P(sKn(u) ≤ sΓ(u))
(14)

where the second inequality is due to the Fatou’s lemma. Taking the infimum on both sides
yields

inf
u
P(sK(u) ≤ sΓ(u)) ≥ inf

u
lim sup

n→∞
P(sKn(u) ≤ sΓ(u)). (15)

Since
lim sup

n
P(sKn(u) ≤ sΓ(u)) = inf

n
sup
k≥n

P(sKk (u) ≤ sΓ(u)),

it is clear that

inf
u

inf
n

sup
k≥n

P(sKk (u) ≤ sΓ(u)) ≥ inf
n

sup
k≥n

inf
u
P(sKk (u) ≤ sΓ(u)) =

= lim sup
n→∞

inf
u
P(sK(u) ≤ sΓ(u)) ≥ lim sup

n→∞
DCT(Kn; Γ).

(16)

From (14)–(16), DCT(·; Γ) is upper semi-continuous.

4.6. Property 6: Consistency

Another desirable property for depth functions is that the sample version converges
to the population counterpart (consistency). This property is a particular case of the weak
continuity (as a function of the distribution P) property of the axiomatic functional (metric)
notion of depth [16], but it is not part of the axiomatic notions of multivariate and fuzzy
depth. However, it is generally studied when an instance of depth function is introduced.
To the best of our knowledge, the first time that appeared in the literature for depth
functions was in Liu [12].

We propose the following property.

(P6.) Let Γ be a compact convex random set, D(·; Γ) : Kc(Rp) → [0, ∞) a function, and
Dn(·; Γ)Kc(Rp)→ [0, ∞) its sample version. Then, D and Dn satsify

sup
K∈Kc(Rp)

|D(K; Γ)− Dn(K; Γ)| −→ 0, a.s. [P].

This is a uniform consistency requirement which is satisfied by the Tukey depth, but
the uniformity may eventually have to be dropped for other depth functions.

Theorem 2. The function DCT , with DCT,n in (9), satisfies P6.

Proof. In terms of measurability, we have that sX1(u), · · · , sXn(u) is a random sample of
the random variable sΓ(u) for all u ∈ Sp−1. Let us fix K ∈ Kc(Rp). To ease the notation, let
us denote

F(sK(u)) := {P(sΓ(u) ≤ sK(u)),P(sΓ(u) ≥ sK(u))},

Fn(sK(u)) := {Pu
n((−∞, sK(u)]),Pu

n([sK(u), ∞))}.
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From (7) and (10) and basic properties of the supremum and infimum functions, we
have that

|DCT(K; Γ)− DCT,n(K; Γ)| = | inf
u∈Sp−1

min F(sK(u))− inf
u∈Sp−1

min Fn(sK(u))|

≤ sup
u∈Sp−1

|min F(sK(u))−min Fn(sK(u))|.

Step 1. Setting
F+(t, u) := P(sΓ(u) ≤ t)

F−(t, u) := P(sΓ(u) ≥ t)

F+
n (t, u) := Pu

n((−∞, t])

F−n (t, u) := Pu
n([t, ∞))

and applying these again basic properties, we obtain

|DCT(K; Γ)− DCT,n(K; Γ)| ≤ sup
u∈Sp−1

max{|F+(sK(u), u)− F+
n (sK(u), u)|,

|F−(sK(u), u)− F−n (sK(u), u)|}.

Then

sup
K∈Kc(Rp)

|DCT(K; Γ)− DCT,n(K; Γ)| ≤

≤ sup
K∈Kc(Rp)

sup
u∈Sp−1

max{|F+(sK(u), u)− F+
n (sK(u), u)|,

|F−(sK(u), u)− F−n (sK(u), u)|}
≤ sup

u∈Sp−1
sup
t∈R

max{|F+(t, u)− F+
n (t, u)|, |F−(t, u)− F−n (t, u)|}.

The Dvoretzky–Kiefer–Wolfowitz inequality ([33], Corollary 1) gives, for each u ∈ Sp−1

and ε > 0,
P(sup

t∈R
|F+(t, u)− F+

n (t, u)| > ε) ≤ 2 exp{−2ε2n}

and there easily follows

P(sup
t∈R
|F−(t, u)− F−n (t, u)| > ε) ≤ 2 exp{−2ε2n}.

Since the bound is independent of u, that implies

P( sup
u∈Sp−1

sup
t∈R

max{|F+(t, u)− F+
n (t, u)|, |F−(t, u)− F−n (t, u)|} > ε) ≤ 4 exp{−2ε2n}

which, by the arbitrariness of ε, establishes

sup
u∈Sp−1

sup
t∈R

max{|F+(t, u)− F+
n (t, u)|, |F−(t, u)− F−n (t, u)|} → 0

in probability.
Step 2. To prove almost sure convergence, we rewrite the supremum in terms of an

empirical process. Taking

F = {φ+
t,u, φ−t,u | (t, u) ∈ R× Sp−1},

where φ+
t,u, φ−t,u : Ω→ R are given by

φ+
t,u(ω) = I(−∞,t](sΓ(ω))

, φ−t,u(ω) = I[t,∞)(sΓ(ω))
,
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we have

sup
u∈Sp−1

sup
t∈R

max{|F+(t, u)− F+
n (t, u)|, |F−(t, u)− F−n (t, u)|} = sup

φ∈F
|EPn(φ)− EP(φ)|,

where Pn is the empirical distribution. From ([34], Corollary 3.7.9), the above supremum
converges to 0 almost surely because it does so in probability (which was proved in Step 1),
and the family F has a P-integrable measurable envelope, which is obvious since all
functions in F take on values in [0, 1]. Accordingly, also

sup
K∈Kc(Rp)

|DCT(K; Γ)− DCT,n(K; Γ)| −→ 0, a.s. [P].

4.7. Property 7: Convexity of the Contours

This property is not part of any of the existing axiomatic notions of statistical depth.
However, it has been commonly studied in the literature since it first appeared in Donoho
and Gasko [35]. In addition, Serfling [36], which focuses on multivariate properties, lists it
as a desirable property.

The set Kc(Rp) is endowed with the operation’s sum and product by a scalar. Thus,
given U ⊆ Kc(Rp), we can say that U is a convex set if

(1− λ) · K + λ · L ∈ U

for every pair of sets K, L ∈ U and for all λ ∈ [0, 1]. We propose the following property.

(P7.) Let Γ be a compact convex random set and D(·; Γ) : Kc(Rp)→ [0, ∞) a function. Then, the
set

Dα := {K ∈ Kc(Rp) : D(K; Γ) ≥ α} ⊆ Kc(Rp)

is convex for every α ∈ [0, 1].

The next result states that the function DCT satisfies the above property, that is, the
α-contours of DCT are convex subsets of Kc(Rp).

Theorem 3. The function DCT satisfies P7.

Proof. Let us fix α ∈ [0, 1], K, L ∈ Dα, and λ ∈ [0, 1]. The aim is to prove

(1− λ) · K + λ · L ∈ Dα.

For that, we follow the same idea of the proof of Proposition 3. By the definition of
Tukey depth,

DCT((1− λ) · K + λ · L; Γ) = min{ inf
u∈Sp−1,t∈R:

(1−λ)·K+λ·L∈S−u,t

P(Γ ∈ S−u,t), inf
u∈Sp−1,t∈R:

(1−λ)·K+λ·L∈S+u,t

P(Γ ∈ S+
u,t)}.

We now prove that
inf

u∈Sp−1,t∈R:
(1−λ)·K+λ·L∈S−u,t

P(Γ ∈ S−u,t) ≥ α.
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As in the proof of Proposition 3, we define the following sets

K := {(u, t) ∈ Sp−1 ×R : (1− λ) · K + λ · K ∈ S−u,t},
K1 := {(u, t) ∈ Sp−1 ×R : K, L ∈ S−u,t, L ∈ S−u,t},
K2 := {(u, t) ∈ Sp−1 ×R : K ∈ S−u,t, L 6∈ S−u,t, (1− λ) · K + λ · L ∈ S−u,t},
K3 := {(u, t) ∈ Sp−1 ×R : K 6∈ S−u,t, L ∈ S−u,t, (1− λ) · K + λ · L ∈ S−u,t}.

It is clear that

inf
(u,t)∈K

P(Γ ∈ S−u,t) = min{ inf
(u,t)∈K1

P(Γ ∈ S−u,t), inf
(u,t)∈K2

P(Γ ∈ S−u,t), inf
(u,t)∈K3

P(Γ ∈ S−u,t)}.

Taking into account (13) and the fact that DCT(K; Γ), DCT(L; Γ) ≥ α, we have that

inf
(u,t)∈Ki

P(Γ ∈ S−u,t) ≥ α

for every i ∈ {1, 2, 3}. The case with S+
u,t is conducted analogously. Thus,

DCT((1− λ) · K + λ · L; Γ) ≥ α

and DCT(·; Γ)α is a convex set.

5. Real-Data Application

There are many examples of real interval-valued data. We comment here on some
examples that are present in different fields of science where the elements of the dataset
are in Kc(Rp) with p > 1. One of these examples is the Greek wines dataset [37], a real
dataset with elements in the space Kc(R24)×R7. There, measures of some properties of
Greek wines are studied. They include interval-valued variables, such as the mineral ion
concentration, the phenol concentrations, or the anthocyanin concentration, and numerical
values, such as astringency, sweetness, or acidity.

Another example of compact and convex random sets is about measures related to
some tree species [38]. In particular, the maximum and minimum values of the volume of
the trunk and of the height of the tree species are measured. Thus, the resulting data are
rectangles in R2. A third dataset is of compact convex square data related to unemployment
in Portugal [39]. It contains measurements of the unemployment period and the period of
activity before unemployment for some patients.

The rest of this section is dedicated to computing the Tukey depth of a real dataset made
of compact convex sets in R3, studying the elements of minimum and maximum depth, and
comparing this last one with the Aumann mean and the trimmed Aumann mean.

5.1. Dataset

The dataset studied in what follows is a cardiology dataset comprised of three-
dimensional cuboids with the ranges over a day of pulse rate, systolic blood pressure,
and diastolic blood pressure of 59 patients. It was collected in 1997 by the Nephrology
Unit of the Hospital Valle del Nalón in Langreo, Spain, and it has been applied before in
the literature, see, for instance, [40]. For the sake of illustration, the dataset is graphically
represented in Figure 1, and part of it is included in Table 1.
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Table 1. Cardiology three-dimensional cuboid dataset for some patients. Columns 2 and 6, named
Pulse, contain the range of blood pulse over a day for each patient, labelled by an identification
number (ID) in columns 1 and 5. Columns 3 and 7, named Systolic, provide the range of systolic
blood pressure over the same day per patient. Columns 4 and 8, named Diastolic, display the range
of diastolic blood pressure over the same day per patient.

ID Pulse Systolic Diastolic ID Pulse Systolic Diastolic

1 58–90 118–173 63–102 31 52–78 119–212 47–93
2 47–68 104–161 71–118 32 55–84 122–178 73–105

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

28 71–121 113–176 57–95 58 56–97 92–173 45–107
29 68–91 114–186 46–103 59 37–86 83–140 45–91
30 62–100 145–210 100–136

x

y

z

Figure 1. Representation of the cardiology three-dimensional cuboid dataset. The x-axes represent,
for each patient, the range of the blood pulse over a same day, the y-axes the range of the systolic
blood pressure over the same day, and the z-axes the range of the diastolic blood pressure over the
same day. There are a total of 59 patients, with one cuboid per patient.

From Table 1 we can observe that the dataset consists of 59 rectangular cuboids, in R3;
one per patient. We denote each cuboid by

Ci := [mPi, MPi]× [mSi, MSi]× [mDi, MDi]

for i = 1, . . . , 59. There,

• [mPi, MPi] denotes the range of blood pulse over a day of patient i, with mPi being the
minimal value and MPi the largest,

• [mSi, MSi] the range of systolic blood pressure over the same day of patient i and
• [mDi, MDi] the same but for diastolic blood pressure.

As observable from Table 1,

C1 = [58, 90]× [118, 173]× [63, 102] (17)
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for instance. Each cuboid Ci is also represented by its eight vertices, which are points in R3.
With the above notation, these vertices are

(mPi, mSi, mDi), (mPi, mSi, MDi), (mPi, MSi, mDi), (mPi, MSi, MDi),

(MPi, mSi, mDi), (MPi, mSi, MDi), (MPi, MSi, mDi) and (MPi, MSi, MDi).

5.2. Tukey Depth Computation

Let us denote by T the compact convex random set corresponding to the empirical dis-
tribution of {Ci}59

i=1; that is, each cuboid has the probability given by its relative frequency
in the dataset, in our case 1/59. Additionally, let us denote using

V1, . . . ,V8

the multivariate random variables corresponding to the empirical distribution associ-
ated with

{(mPi, mSi, mDi)}59
i=1, {(mPi, mSi, MDi)}59

i=1, {(mPi, MSi, mDi)}59
i=1,

{(mPi, MSi, MDi)}59
i=1, {(MPi, mSi, mDi)}59

i=1, {(MPi, mSi, MDi)}59
i=1,

{(MPi, MSi, mDi)}59
i=1 and {(MPi, MSi, MDi)}59

i=1, respectively.

To compute the Tukey depth of each cuboid in the dataset, it suffices to calculate the
minimum of the multivariate Tukey depth in R3 of each vertex of the cuboid. Thus, given a
cuboid Ci, its Tukey depth with respect to T is

DCT(Ci, T ) = min{HD((mPi, mSi, mDi);V1), HD((mPi, mSi, MDi);V2),

HD((mPi, MSi, mDi);V3), HD((mPi, MSi, MDi);V4)

HD((MPi, mSi, mDi);V5), HD((MPi, mSi, MDi);V6)

HD((MPi, MSi, mDi);V7), HD((MPi, MSi, MDi);V8)},

where HD(x;V) denotes the multivariate halfspace depth of x ∈ R3 with respect to V .
Table 2 provides the obtained depth values for each element in the dataset, that is, the

values {DCT(Ci; T )}59
i=1. Taking into account these values, we have that the element C1

in (17) has the maximum depth, it is the deepest one, and the elements in the following set
have minimum depths

{C2, C3, C4, C6, C9, C10, C12, C13, C15, C17, C19, C20, C23, C24, C25, C27, C28, C29,

C30, C31, C34, C35, C38, C39, C40, C41, C42, C44, C49, C50, C51, C53, C55, C56, C58, C59}.
(18)

To display this information, Figure 2 represents the sets of maximum and minimum
depth. In particular, the left panel of the Figure represents the five deeper cuboids, with the
sets of maximum depth colored in red. Meanwhile, the right panel of the Figure represents
the sets with minimum depth in color blue. That is, those in (18). In addition, the right
panel of the figure also displays C1, the cuboid with maximum depth, in red. This is
completed in order to visualize that the ordering given by the Tukey depth is natural, and
the element C1 is the deepest set with respect to the cloud of cuboids.
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Table 2. Tukey depth value of each element in the cardiology three-dimensional cuboid dataset.

ID Depth Value ID Depth Value

1 0.15254 31 0.01694
2 0.01694 32 0.06779
3 0.01694 33 0.05084
4 0.01694 34 0.01694
5 0.03389 35 0.01694
6 0.01694 36 0.03389
7 0.08474 37 0.03389
8 0.03389 38 0.01694
9 0.01694 39 0.01694
10 0.01694 40 0.01694
11 0.05084 41 0.01694
12 0.01694 42 0.01694
13 0.01694 43 0.03389
14 0.13559 44 0.01694
15 0.01694 45 0.08474
16 0.03389 46 0.10169
17 0.01694 47 0.10169
18 0.03389 48 0.08474
19 0.01694 49 0.01694
20 0.01694 50 0.01694
21 0.03389 51 0.01694
22 0.03389 52 0.10169
23 0.01694 53 0.01694
24 0.01694 54 0.03389
25 0.01694 55 0.01694
26 0.10169 56 0.01694
27 0.01694 57 0.03389
28 0.01694 58 0.01694
29 0.01694 59 0.01694
30 0.01694

x

y

z

x

y

z

Figure 2. Representation of the sets with maximum and minimum depths. The left panel represents
the five sets of maximum depth with the deepest one, C1, in red. The right panel represents the sets
with minimum depth, in (18), and again the set C1 in red.

One may think that it is possible to compute the Tukey depth of each cuboid by
considering the variables Pulse, Systolic, and Diastolic separately. Let P ,S , and D denote
the compact convex random sets corresponding to the empirical distribution associated
with

{[mPi, MPi]}59
i=1, {[mSi, MSi]}59

i=1 and {[mDi, MDi]}59
i=1,
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respectively. Additionally, let us denote by

mP, MP, mS, MS, mD and MD

the real random variables corresponding to the empirical distribution associated with

{mPi}59
i=1, {MPi}59

i=1, {mSi}59
i=1, {MSi}59

i=1, {mDi}59
i=1, and {MDi}59

i=1,

respectively. Given an index i ∈ {1, . . . , 59}, the Tukey depth of the i-th interval element
with respect to P ,S , and D are

DCT([mPi, MPi];P) = min{HD(mPi; mP), HD(MPi; MP)},

DCT([mSi, MSi];S) = min{HD(mSi; mS), HD(MSi; MS)}, and

DCT([mDi, MDi];D) = min{HD(mDi; mD), HD(MDi; MD)}.

The element with the maximum depth with respect to P is the 48-th element, which
has a depth value of 0.08474 with respect to T . The elements with maximum depths with
respect to S and D are the 28-th and 19-th element, respectively, which have minimum
depth values with respect to T . Thus, it is clear that we must consider all three variables
simultaneously.

The calculation of the Tukey depth breaks the dataset into an outer layer of 36 patients
with depth 1/59, which envelopes an inner core of 23 patients with higher depth. The
depth value 1/59 means that, taking the support function in a certain direction in R3, the
point is separated from the remainder of the data. Since each direction represents a linear
combination of all three variables, there is some combination of weights for the variables
which distinguishes that patient from all others. That suggests that many different patterns
of behavior between the three variables are within the ordinary.

5.3. Aumann Mean

We first compute the Aumann mean, µ̂A, for the complete dataset. The Aumann
mean is a generalization of the real-valued mean that works for compact convex sets. We
then compare it with the Aumann mean of the dataset after removing the cuboids with
minimum depth, µ̂tA. The Aumann mean of the complete dataset is

µ̂A =

[
1

59

59

∑
i=1

mPi ,
1
59

59

∑
i=1

MPi

]
×

[
1
59

59

∑
i=1

mSi ,
1

59

59

∑
i=1

MSi

]
×

[
1
59

59

∑
i=1

mDi ,
1
59

59

∑
i=1

MDi

]

= [53.97 , 95.07]× [111.83 , 181.58]× [58.64 , 108.25].

When we consider the inner core of the dataset by removing the set of cuboids with
minimal depth (set in Equation (18)), the Aumann mean becomes

µ̂tA = [54.34783 , 91.47826]× [112.2174 , 178.4348]× [59.82609 , 107.4783].

This is conceptually similar to a trimmed mean (but trims more than half of the sample).
The mean values are very similar, meaning that data in the outer layer have a similar average
behavior to those in the inner core, and their outlier nature exerts little influence. In that
situation, one would expect that the deepest point to be close to those means, and indeed
the maximal depth in the sample is reached at C1 = [58, 90]× [118, 173]× [63, 102], which
is also very similar albeit the intervals are a bit narrower.

We have that both means, µ̂A and µ̂tA, have similar values in every variable. This can
be explained by the fact that some linear combination between the elements with minimal
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depth exists that distinguishes them from the rest of the dataset, but this does not affect the
mean. Note that the set with maximal depth, C1 = [58, 90]× [118, 173]× [63, 102], is also
very similar to the above means.

6. Discussion

Considering the properties studied in the literature for depth functions, we propose
nine different properties for depth functions with respect to compact convex random sets.
They are:

• P1. Affine invariance,
• P2. Maximality at the center of symmetry,
• P3a. Monotonicity with respect to the center in an algebraic way,
• P3b. Monotonicity with respect to the center in relation to the associated distance (in a

geometric way),
• P4a. Vanishing at infinity in an algebraic way,
• P4b. Vanishing at infinity in a geometric way,
• P5. Upper semi-continuity,
• P6. Consistency, and
• P7. Convexity of the contours.

It is clear that all of them are desirable properties for a depth function of compact
convex sets. However, not all of them have to be part of an axiomatic definition. For
instance, it seems appropriate to have either P3a. and P4a. or P3b. and P4b. At the same
time, P7., although important, does not belong to any of the existing axiomatic definitions,
and P5. and a general case of P6. only belong to the functional (metric) axiomatic definition
of statistical depth.

Taking all of this into account, we propose to consider:

• the algebraic depth of compact convex sets, when properties P1., P2., P3a., and P4a. are
satisfied;

• the restricted algebraic depth of compact convex sets, when properties P1., P2., P3a.,
P4a., P5., P6., and P7. are satisfied;

• the geometric depth of compact convex sets, when properties P1., P2., P3b., and P4b.
are satisfied; and

• the restricted geometric depth of compact convex sets, when properties P1., P2., P3b.,
P4b., P5., P6., and P7. are satisfied.

Note that the algebraic depth can be considered to be an adaptation of the notions of
multivariate depth and of semi-linear fuzzy depth. Meanwhile, the geometric depth can be
seen as a conversion of the geometric fuzzy depth and the restricted geometric depth as a
modification of the functional (metric) depth.

We have studied the satisfaction of the above properties for the Tukey depth of compact
convex sets, which is an adaptation of this setting of the multivariate Tukey depth and a
simplification of the Tukey for fuzzy sets. It happens that this depth function satisfies all
of these properties but for P3b., for which we have provided a counterexample. Thus, the
Tukey depth of compact convex sets is a restricted algebraic depth and, in particular, an
algebraic depth. However, it is not a geometric depth, and, consequently, neither is it a
restricted geometric depth.

Cascos et al. [24] proposed a notion of depth for random closed sets. They require
properties P1, P5 (for the Fell topology instead of the Hausdorff metric), and the property
that a degenerate random set should assign depth 1 to its only value and 0 to any other
random set. Admitting unbounded sets as values leads to some defining properties of
depth being hard to adapt; a situation they solve by opting for a minimal list of properties.
It is worth mentioning that, in the case of compact convex values, convergence in the Fell
topology and in the Hausdorff metric are equivalent ([41], Corollary 3A). Hence, both
upper semi-continuity requirements are equivalent for the Tukey depth, and Proposition 7
provides a proof of upper semi-continuity with respect to the Fell topology. Such a proof is
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missing in [24] on the grounds of it being ‘easy’ (a direct proof without invoking extra facts
does not seem to be that easy).
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