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The kidney plays a fundamental role in acid-base homeostasis by reabsorbing the
filtered bicarbonate and by generating new bicarbonate, to replace that
consumed in the buffering of non-volatile acids, a process that leads to the
acidification of urine and the excretion of ammonium (NH4

+). Therefore, urine
pH (UpH) and urinary NH4

+ (UNH4
+) are valuable parameters to assess urinary

acidification. The adaptation of automated plasma NH4
+ quantification

methods to measure UNH4
+ has proven to be an accurate and feasible

technique, with diverse potential indications in clinical practice. Recently,
reference values for spot urine NH4

+/creatinine ratio in children have been
published. UpH and UNH4

+, aside from their classical application in the study of
metabolic acidosis, have shown to be useful in the identification of incomplete
distal renal tubular acidosis (dRTA), an acidification disorder, without overt
metabolic acidosis, extensively described in adults, and barely known in
children, in whom it has been found to be associated to hypocitraturia,
congenital kidney abnormalities and growth impairment. In addition, a low
UNH4

+ in chronic kidney disease (CKD) is a risk factor for glomerular filtration
decay and mortality in adults, even in the absence of overt metabolic acidosis.
We here emphasize on the need of measuring UpH and UNH4

+ in pediatric
population, establishing reference values, as well as exploring their application
in metabolic acidosis, CKD and disorders associated with incomplete dRTA,
including growth retardation of unknown cause.
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urinary acidification, urine pH, urinary ammonium, spot urine sample, hyperchloremic

metabolic acidosis, incomplete distal renal tubular acidosis

Introduction: physiology and technical aspects

The role of urinary acidification in maintaining
acid-base balance

The kidney plays a fundamental role in acid-base homeostasis by regulating plasma

bicarbonate (HCO3
−) concentration, which constitutes the metabolic component of

acid-base balance. This process is made up of two parts: the reabsorption of filtered

HCO3
− and the generation of new HCO3

−, to replace that consumed by endogenous
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or exogenous acids (1). HCO3
− is freely filtered at the

glomerulus and then almost completely reabsorbed, making

urine virtually free of HCO3
− under normal conditions. This

reabsorption takes place mostly (approximately 80%) in the

proximal tubule, the distal segments of the nephron also

playing a significant role in this process (1).

The production of new HCO3
− occurs by excreting acids into

urine (urinary acidification), since the addition of an alkali and the

loss of acid are essentially equivalent in physiologic systems. The

capacity of the nephron to excrete acids as free protons (H+) is

limited (urinary H+ concentration is <0.1 mmol/L even at a

urine pH of 4.5) (1). Instead, acid excretion occurs in the distal

nephron by two means: excretion of titratable acids and

excretion of ammonium (NH4
+), so net acid excretion (NAE) in

the urine is calculated as the sum of those components minus

urinary HCO3
− (which is negligible in fasting normal conditions).

Titratable acids refer to the excretion of H+ bound to urinary

buffers (mainly dibasic/monobasic phosphate) (2) and, in normal

conditions, it represents one-third to one-half of NAE. The rest of

NAE corresponds to NH4
+ generation and excretion. NH4

+ is

synthesized in the proximal tubule by the catabolism of

glutamine, generating HCO3
− in the process (1). In order to

have a net gain of HCO3
−, the NH4

+ produced in the kidney

must be excreted in the urine, allowing for the reabsorption of

HCO3
− into the bloodstream. If the NH4

+ is not excreted, it

returns to the liver, where it is metabolized to urea, consuming

an equimolar quantity of HCO3
− (1, 3). NH4

+ excretion has a

greater ability to increase under acid load conditions than

titratable acid excretion −for example, the amount of phosphate

in the urine is not significantly increased in chronic metabolic

acidosis, whereas urinary NH4
+ (UNH4

+) increases several fold−
(4) and, therefore, constitutes the most important mechanism of

urinary acidification in response to a noxa or stressing condition.

Due to the importance of urinary acidification in maintaining

acid-base balance, its evaluation is mandatory in some clinical

situations. Although urine pH (UpH) is the simplest, most

available parameter to assess urinary acidification, it does not

always faithfully reflect NAE, since it merely indicates the

maximum concentration of H+ that can be achieved in concrete

circumstances. For instance, in cases of chronic metabolic

acidosis, when renal ammoniagenesis is increased several fold

and H+ ions are buffered by NH3, a relatively high UpH can be

observed even when the urinary acidification capacity is

preserved (3, 5, 6). Conversely, an appropriately low urine pH

(<5.5) can occur when NH4
+ excretion is compromised in cases

such as hypoaldosteronism (6, 7). For these reasons, in order to

perform a correct evaluation of urinary acidification, UpH

should be taken in consideration simultaneously with UNH4
+.

Nevertheless, due to historical technical difficulties, direct

UNH4
+ measurement is not usually performed in clinical

laboratories as a routine test, and it is estimated by indirect

methods, such as the urinary anion gap and the urinary

osmolal gap (8, 9), which do not always correlate reliably with
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UNH4
+ (10–15). To solve this problem, automated plasma

NH4
+ quantification methods, available in most laboratories,

have been adapted and evaluated to analyze UNH4
+, proving

to be an accurate and simple technique for direct UNH4
+

measurement (11, 16–18), also avoiding the inaccuracies

resulting from urinary anion and osmolal gaps. These

methods allow the use of direct UNH4
+ quantification in

clinical practice as a routine test to assess urinary

acidification, reducing the number of tests, analysis time and

sample volume, an issue of particular importance in children.
UpH measurement

A potentiometric pH meter is the gold standard method for

UpH measurement. In clinical practice, dipsticks are often used,

which are much more available but less accurate, providing a

value only up to the nearest 0.5 unit interval and being prone

to perception bias when electronic readers are not used.

Although dipsticks are useful in most situations, differences

between dipstick and pH-meter readings can be as high as

0.4–0.5 units (19–21), even with electronic readers (22, 23).

These differences might be clinically significant and thus lead

to wrong clinical decisions in specific contexts (22).

UpHmay be analyzed in freshly collected urine, or in a sample

collected under mineral oil to minimize CO2 diffusion when

measurement is delayed (especially when pH values ≥6.0 are

expected) (24). However, collection under mineral oil can be

omitted if the sample is stored at 4 °C in a regular disposable

plastic syringe (capping the drawing needle and avoiding air

bubbles) and themeasurement is performed within 24 hours (25).

As UpH is a measure of H+ concentration, its value is

dependent on urine concentration status. An extremely diluted

urine may provide a falsely elevated UpH reading even when H+

excretion is normal, so an overnight thirst period is

recommended before collecting the sample. It should also be

taken in consideration that UpH follows a circadian rhythm,

decreasing during the night, reaching its minimum before dawn

and rising after common western meals (26–28). A low

spontaneous UpH measured in a fasting spot morning urine is

considered to rule out an acidification disorder without the need

for more specific tests. In fact, fasting morning UpH has shown a

better correlation with nadir UpH after an ammonium chloride

(NH4Cl) load −the gold standard for the evaluation of urinary

acidification− than 24-hour UpH (29). There is no consensus on

the type of sample: the first vs. the second (usually after a period

of 1–2 h after awakening) fasting morning urine sample. Chafe

and Gault (30) reported that the first morning urine pH might be

a better predictor of urinary acidification after an NH4Cl load

than the second fasting urine. The morning rise of UpH, even in

the absence of food or drink, has been well reported as a part of

its circadian rhythm (26, 31, 32) and might account for this

result. Consequently, the first morning urine, which is easier to
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collect and avoids the problems of a prolonged fasting period, could

be the best option to evaluate UpH in continent children. Special

considerations should be taken into account in cases of nocturnal

enuresis and in infants who feed at night.
UNH4
+ measurement

In the absence ofmetabolic acidosis and, outside the context of

functional tests, UNH4
+ is usually measured in 24-hour urine. A

review on the available data on daily NH4
+ excretion in adults

under normal and various pathological conditions has recently

been published (15). In children, there are very few data. Manz

et al. (33) measured daily NAE in healthy children between 3

and 18 years old, but UNH4
+ values were not reported.

24-hour urine collection is difficult to perform, requiring

preservatives to avoid increases in UNH4
+ until the time of

analysis and bladder catheterization in young children and

infants. Some studies have used spot urine samples in adults (34,

35), which are easier to collect, but UNH4
+ concentration may

not represent faithfully NH4
+ excretion. To minimize the effect of

variations in urine flow and concentration, a better parameter is

the urine NH4
+/creatinine ratio measured in the same sample.

Renal NH4
+ excretion shows also a circadian rhythm (36)

and increases following protein intake (37), so the best time

for sample collection may be the first fasting morning urine.

In fact, our group recently published urine NH4
+/creatinine

ratio reference values for children over 5 years old in spot

morning urine, ranging between 776 and 8217 µmol/mmol

(38). This may clear the path for applying direct spot UNH4
+

measurement in daily clinical practice in children.

Traditionally, individual samples for UNH4
+ quantification

were collected in paraffin and shipped to the laboratory on ice

(39), but we showed no significant differences between

samples collected with or without paraffin (17), so samples

can be collected in tubes without additives and sent to the

laboratory without further preparation. UNH4
+ concentrations

have proven also to be stable up to 48 h at room temperature,

up to 9 days at 4 °C and −20 °C, and for at least 2 years

when stored at −80 °C (18). However, in order to avoid

contamination and bacterial growth, they should be

centrifuged, separated and then analyzed as soon as possible

or frozen if the analysis is delayed.

Taking all the above into consideration, the first fasting

morning urine, in our opinion, is the best sample to evaluate

UpH and UNH4
+/creatinine ratio simultaneously.
Uph and UNH4
+ measurements in

metabolic acidosis

The main indication for evaluating urinary acidification in

children is during the assessment and diagnosis of normal anion
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gap (hyperchloremic) metabolic acidosis, which can result,

among other causes, from the loss of HCO3
− from the

gastrointestinal tract or kidney (proximal renal tubular acidosis

–pRTA–), the addition of hydrochloric acid (HCl) or substances

metabolized to HCl, or an impaired net renal acid excretion, as

happens in distal renal tubular acidosis –dRTA– or in chronic

kidney disease (CKD), when glomerular filtration rate (GFR) is

significantly reduced (usually <20–25 ml/min/1.73 m2) (40).

The extrarenal (digestive) causes of hyperchloremic

metabolic acidosis are the most common. In this context, when

kidney function is preserved, UpH should be low and UNH4
+

should rise. The increase in UNH4
+ excretion is modest

initially, but is maximized after 3–5 days if the stimulus persists

(1, 3, 6). When more frequent extrarenal causes and CKD are

excluded, an assessment of urinary acidification is indicated

(40, 41). In these situations, an inappropriately high UpH with

low UNH4
+, coexisting with metabolic acidosis, indicate an

impaired distal urinary acidification (42). If distal acidification

is preserved, efforts should be directed to evaluate renal HCO3
−

wasting (40). Usually, it is not necessary to measure UpH and

UNH4
+ in most cases, since the underlying disorder is usually

identifiable with a comprehensive history, physical examination

and basic laboratory tests. However, the determination of UpH

and UNH4
+ in single spot urine can be a useful and simple

tool in the assessment of normal anion gap metabolic acidosis,

especially when the cause is not clear or an underlying kidney

pathology is suspected (40, 41).

Another less frequent indication for UpH and UNH4
+

measurement in pediatrics is during the realization of

functional urinary acidification tests for the confirmatory

diagnosis of dRTA, such as the oral NH4Cl load (43) and the

furosemide + fludrocortisone test (29, 44, 45). In healthy

subjects, UpH should decrease below 5.3 in both tests

(although this precise value is disputed) and UNH4
+ should

rise up to 57 ± 14 (mean ± SD) µEq/min/1.73 m2 in infants

aged 1–16 months and 80 ± 12 µEq/min/1.73 m2 in children

aged 7–12 years (45) in the oral NH4Cl load.

However, dRTA in children is mostly primary, caused by

genetic alterations (41, 42, 46, 47) and the increasing

availability of genetic testing has partly relegated functional

tests in this context.
Incomplete distal renal tubular
acidosis (dRTA)

Incomplete dRTA is a disorder defined by an inability to

maximally acidify urine in the absence of spontaneous

metabolic acidosis (47). It is a condition that has been

reported mostly in adults, since its first description in 1959

(48). In these patients, the acidification defect is milder and

NH4
+ excretion is greater than in those with complete dRTA

(49), a fact that may account for the absence of overt
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metabolic acidosis. The underlying mechanism that causes the

impairment in urinary acidification is not well understood

and may be dependent on the associated disorders (47).

Incomplete dRTA has been associated to recurrent calcium

kidney stones in adults (50), nephrocalcinosis (50, 51), as well as

to osteopenia or osteoporosis (52–54). In these cases, alkali

therapy has shown to reduce stone formation and increase

bone mass (54, 55). It has also been reported in sickle-cell

disease (56), interstitial nephropathies (57) and autoimmune

diseases [especially, Sjögren disease (58)].

The diagnosis of incomplete dRTA can be difficult to perform,

since, by definition, serum acid-base balance parameters

(including HCO3
−) are normal. Incomplete dRTA can be

suspected in case of a persistently high UpH, but its

confirmation requires the measurement of UpH and UNH4
+ in

the same functional tests used to identify complete dRTA (42,

46, 47, 50). However, a low spontaneous UpH is usually

considered to rule out an acidification defect without the need

for functional tests (41, 47). Although, classically, the threshold

value is 5.3 (48), cut-off points between 5.25 and 6.10 have been

proposed and used. A list of publications on incomplete dRTA

screening, along with the threshold values is provided in Table 1.

Incomplete dRTA in children has scarcely been reported and its

manifestations are not well established. Nevertheless, and, unlike in
TABLE 1 Studies that analyze single spot urine pH (UpH) in the context of in

Reference (First author. Journal. Year) Number of patients

Tannen. Nephron. 1975 (51) 101 H
R
N

Norman. J Pediatr. 1978 (59) 22a H
C
I

Konnak. J Urol. 1982 (60) 5 R

Mateos Anton. Eur Urol. 1984 (61) 50 R

Osther. Scand J Urol Nephrol Suppl. 1988 (62) 40 F

Osther. Br J Urol. 1989 (63) 110 R

Gault. Medicine (Baltimore). 1991 (64) 69 C
C
H

Chafe. Clin Nephrol. 1994 (30) 110 R
H

Weger. Osteoporos Int. 1999 (52) 48 P

Pongchaiyakul Nephrol Dial Transplant. 2004 (65) 361 H

Stitchantrakul. J Med Assoc Thai. 2007 (66) 120 R
H

Arampatzis. Urol Res. 2012 (67) 150 M

Shavit. Nephrol Dial Transplant. 2016 (45) 124 R

Dhayat. CJASN. 2017 (29) 170 R

Sromicki. Urolithiasis. 2017 (54) 183 O

Original publications evaluating single spot UpH as a screening tool for incomplete dR

the suspicion of incomplete dRTA), as well as the threshold UpH values (the cut-off po

specified, all subjects were adults. In all studies, a confirmatory test of incomplete dR
a16 children and 6 adults.
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adults, it has been associated to congenital abnormalities in the

kidney and urinary tract (68, 69), asymptomatic hypocitraturia

(59), active nutritional rickets (70) and it also has been reported

in heterozygous carriers of gene mutations responsible for

primary dRTA (71) who did not present spontaneous metabolic

acidosis. Furthermore, whether it is also a cause of growth

retardation in patients with vesicoureteral reflux and posterior

ureteral valves (68, 69) without other growth impairment causes,

remains an open question. Interestingly, sustained bicarbonate

therapy has resulted in growth improvement in some of these

cases (72). Therefore, incomplete dRTA evaluation could have

important implications in clinical practice for diagnosing causes

of growth failure in children, when the cause cannot be identified

with routine testing (47, 73).

In addition to the very limited number of published studies

on incomplete dRTA in pediatric age, data on UpH values in

children are scarce and mostly limited to timed urine samples

(74–76). Skinner et al. analyzed in 1996 the first morning

UpH in 322 healthy children and found that only one child

out of eight had a UpH≤ 5.4, the median value being 6.0

(77). These results suggest that the utility of fasting UpH in

detecting acidification defects is limited, at least when

considered in isolation, and point out to the need for more

data on pediatric reference UpH values and their relationship
complete dRTA assessment.

Clinical characteristics Threshold UpH

ealthy subjects (75.3%)
ecurrent calcium kidney stone formers (16.8%)
ephrocalcinosis (7.9%)

6.0

ealthy subjects (40.9%)
omplete dRTA (45.5%)
ncomplete dRTA (13.6%)

6.0

ecurrent kidney stone formers and/or nephrocalcinosis 5.8

ecurrent kidney stone formers 6.0

irst kidney stone episode 5.8

ecurrent kidney stone formers 6.0

alcium phosphate stones (34.8%)
alcium oxalate stones (43.5%)
ealthy subjects (21.7%)

5.25

ecurrent kidney stone formers (87.3%)
ealthy subjects (12.7%)

6.10

rimary osteoporosis 5.5

ealthy subjects in an area of endemic osteoporosis 5.5

ecurrent kidney stone formers (71.7%)
ealthy subjects (28.3%)

5.5

ale recurrent kidney stone formers 5.8

ecurrent kidney stone formers and/or nephrocalcinosis 6.0

ecurrent kidney stone formers 5.3

steopenia 5.8

TA. The number of patients, its clinical characteristics (conditions that motivate

ints above which an acidification disorder is suspected) are listed. Except when

TA was performed (oral NH4Cl load and/or furosemide + fludrocortisone test).
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with other associated urinary acidification parameters, such as

osmolality, electrolytes and, especially, UNH4
+.
Chronic kidney disease (CKD)

Recent studies have emphasized the importance of measuring

UNH4
+ inCKD.An impaired net acid excretion (and, accordingly,

low NH4
+ secretion), with the consequent acid accumulation,

contributes both to kidney injury (78) and to the pathogenesis

of metabolic acidosis, which is a risk factor for progression of

renal function deterioration and mortality (79, 80). Indeed, a

low 24-hour UNH4
+ level (<20 mmol/day) has been found to be

a marker of poor outcome in adult CKD patients without overt

metabolic acidosis (80).

Acid accumulation is a well-known risk factor for progression

of renal failure and mortality in CKD (80, 81), even when it is

insufficient to cause clinically apparent metabolic acidosis, the

so-called “eubicarbonatemic” acidosis (78). Acid accumulation

in CKD depends, among other factors, on the reduction of GFR,

the dietary acid and the integrity of distal acidification

mechanisms. Acid-related kidney injury is not limited to

patients with reduced GFR and is favored by high-acid diets,

such as rich in protein Western diets (78). The identification of

eubicarbonatemic acidosis, in order to prescribe dietary

interventions or alkali therapy, even in early CKD stages, could

decrease acid accumulation and slow CKD progress in these

patients (78). Although acid accumulation can be estimated by

serum HCO3
− levels after an oral HCO3

− load (82), more

practical and easier surrogate parameters are needed. In this

context, reduced urinary NH4
+ excretion might indicate risk for

acid accumulation (78).

These data from adult CKD patients and the clinical

implications of eubicarbonatemic acidosis need to be evaluated

in children. Congenital kidney and urinary tract abnormalities,

which are usually associated to tubulointerstitial injury,

constitute a frequent cause of CKD in pediatric patients,

especially in younger children (83). In these cases, where tubular

function may be impaired already in early CKD stages, there

might be a higher proportion of eubicarbonatemic acidosis than

in adults, even when GFR is normal. This possibility and the

potential clinical utility of UNH4
+ quantification in pediatric

CKD patients, need to be explored.
Final remarks

The identification of a urinary acidification disorder needs a

high degree of suspicion and can be difficult, especially when

there is not a coexisting metabolic acidosis and serum HCO3
−

is within range, as in incomplete dRTA or eubicarbonatemic

acidosis in CKD. Thus, there might be an important number

of undiagnosed cases of acidification defects, both in adults
Frontiers in Pediatrics 05
and children, which can benefit from early identification and

treatment. Since a confirmatory diagnosis requires a

functional test, an accurate screening method is necessary.

Ideally, this test should be non-invasive and easy to perform,

such as the collection of a spot urine sample.

UpH is easy to measure but it cannot be used alone as a

screening tool. UNH4
+ represents the most important part of

net acid excretion and can provide more information on urinary

acidification. Although traditionally not measured in clinical

practice due to historical technical difficulties, which have been

largely overcome, direct UNH4
+ quantification has gained in

importance in the past few years in different conditions.

In fact, UpH and UNH4
+ measurement has shown to be

feasible in clinical laboratories nowadays and its applications

in clinical practice are starting to be discovered. The

assessment of UpH and UNH4
+ should become a part of the

evaluation of metabolic acidosis as a simple but informative

diagnostic tool. Furthermore, evidence in adult patients also

points out to their utility in cases of eubicarbonatemic

acidosis and in order to identify incomplete dRTA.

However, there are very few data on UpH and UNH4
+ in

pediatric population, so further research is needed to establish

reference values in children, either in fasting conditions or in

acidosis of nonrenal origin, and to explore the clinical applications

of these measurements in metabolic acidosis, in CKD with a

reduction of GFR and in incomplete dRTA associated disorders,

including growth retardation of unknown cause. The recent

availability of morning spot UNH4
+/creatinine ratio reference

values in children (38) may clear the path for future studies.
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