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We introduce a pure–stress formulation of the elasticity eigenvalue problem with mixed boundary conditions. 
We propose an H(div)-based discontinuous Galerkin method that imposes strongly the symmetry of the stress for 
the discretization of the eigenproblem. Under appropriate assumptions on the mesh and the degree of polynomial 
approximation, we prove the spectral correctness of the discrete scheme and derive optimal rates of convergence 
for eigenvalues and eigenfunctions. Finally, we provide numerical examples in two and three dimensions.
1. Introduction

The finite element determination of the vibration characteristics 
(natural frequencies and mode shapes) of elastic bodies is of great inter-
est in structural mechanics. For example, the knowledge of the eigenfre-
quencies keeps the forced oscillations safe from resonance regimes, and 
the eigenmodes can be used to expand the solution of transient elas-
todynamic problems in a Fourier series. We approach this topic from 
the perspective of the mixed formulation derived from the Hellinger-
Reissner variational principle. Namely, we are interested in variational 
formulations in which the Cauchy stress tensor prevails as the main un-
known. In addition to the fact that accurate approximations of the stress 
are of paramount importance in many applications, it is well known that 
mixed formulations are immune to locking in the case of nearly incom-
pressible materials.

In recent years, the theory of Descloux–Nassif–Rappaz [11,12] for 
non-compact operators has been successfully applied to the mixed fi-
nite element analysis of eigenvalue problems in elasticity [26,23,25]. 
The same approach allowed to deal with mixed formulations of the 
Stokes eigenproblem formulated in terms of a pseudo-stress [27,22] or 
the Cauchy stress tensor [25]. The symmetry requirement for the stress 
tensor, which reflects the conservation of angular momentum, is a spe-
cific feature of the Hellinger-Reissner variational principle. The imposi-
tion of this restriction in association with H(div)-conformity gives rise 
to conforming Galerkin methods with a very large number of degrees 
of freedom, and which are difficult to implement [2,20]. A common 
practice to overcome this drawback consists in enforcing the symme-
try constraint variationally through a Lagrange multiplier. In this con-
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text, [26,25] validated the use of the weakly symmetric mixed finite 
elements [5,4,9,18] for the stress formulation of the elasticity eigen-
problem.

Motivated by the ability of DG methods to handle efficiently ℎ𝑝-
adaptive strategies and to facilitate the implementation of high order 
methods, an H(div)-based interior penalty version of [26] (that re-
tains the weak imposition of the symmetry) has been introduced in 
[23]. Nevertheless, on account of [3,19,33], it is known that relax-
ing H(div)-conformity by using non-conforming or DG approximations 
for the elasticity source problem allows the incorporation of the sym-
metry constraint in the energy space at a reasonable computational 
cost. To our knowledge, the eigenvalue numerical analysis of such non-
conforming/DG mixed methods is not yet available. In this work, we 
investigate whether the symmetry restriction can be strongly imposed 
in a pure–stress DG-formulation of the elasticity eigenvalue problem. 
The motivation for such an approach is the exact compliance of the con-
servation of angular momentum at the discrete level and a reduction of 
the number of degrees of freedom compared to mixed finite element 
methods [26,23] which enforce weakly the symmetry.

We propose a symmetric interior penalty Galerkin method that ap-
proximates the stress by symmetric tensors with piecewise polynomial 
entries of degree 𝑘 ≥ 1, in 2D and 3D. We note that, the stress/dis-
placement DG formulation introduced in [33] for the elasticity source 
problem relies on the same discrete space for the stress. However, the 
displacement field is not present as an independent variable in our DG 
formulation because it is eliminated via the momentum balance equa-
tion. The same equation can be used to post-process the displacement 
at the discrete level. The numerical results show that this DG-scheme 
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(whose stress/displacement version [33] is stable and optimally con-
vergent for the source problem) does not generally provide a correct 
spectral approximation of the elasticity eigenproblem.

The main contribution of this work is the proof that inf-sup sta-
bility of the Scott-Vogelius element [31] for the Stokes problem (see 
Assumption 2 below) is a sufficient condition for the spectral correct-
ness of the pure–stress DG formulation of the elasticity eigenproblem. 
The main challenge in the convergence analysis is the verification of the 
well-known Descloux–Nassif–Rappaz [11] condition, see (5.1) below. 
The proof of this condition requires a careful construction of quasi-
interpolation operators and the use of Assumption 2 to ensure sym-
metry preservation. Furthermore, we establish optimal error estimates 
for eigenvalues and eigenfunctions in the natural DG energy norm.

We finally highlight that, a further novelty with respect to previous 
works [26,23] on the elasticity eigenvalue problem with reduced sym-
metry is that the present analysis does not rely on any extra Sobolev 
regularity of an auxiliary elasticity source problem. This allows for a 
wide range of applicability, our approach can be applied to eigenprob-
lems posed in general domains, regardless of the boundary conditions 
and with minimal requirements on material coefficients.

Outline. The contents of this paper have been organized in the follow-
ing manner. The remainder of this section contains notational conven-
tions and definitions of Sobolev spaces. Section 2 presents the pure–
stress formulation of the elasticity eigenproblem and provides a char-
acterization of its spectrum. Preliminary definitions and auxiliary tools 
related with H(div)-based discontinuous Galerkin methods are collected 
in Section 3. The definition of the DG method (with strong symmetry 
of the stress) is detailed in Section 4, where we also introduce a cou-
ple of operators that are useful in our analysis. The spectral correctness 
of the DG scheme is treated in Section 5, together with the deduction 
of optimal error estimates for eigenvalues and eigenspaces. Several nu-
merical results are presented in Section 6, confirming the expected rates 
of convergence for different parameter sets including the nearly incom-
pressible regime.

Notations and Sobolev spaces. We denote the space of real matrices 
of order 𝑑 × 𝑑 by 𝕄 and let 𝕊 ∶= {𝝉 ∈ 𝕄; 𝝉 = 𝝉𝚝} be the subspace of 
symmetric matrices, where 𝝉𝚝 ∶= (𝜏𝑗𝑖) stands for the transpose of 𝝉 =
(𝜏𝑖𝑗 ). The component-wise inner product of two matrices 𝝈, 𝝉 ∈ 𝕄 is 
defined by 𝝈 ∶ 𝝉 ∶=

∑
𝑖,𝑗 𝜎𝑖𝑗𝜏𝑖𝑗 . We also introduce tr 𝝉 ∶=

∑𝑑
𝑖=1 𝜏𝑖𝑖 and 

denote by 𝐼 the identity in 𝕄. Along this paper we convene to apply 
all differential operators row-wise. Hence, given a tensorial function 
𝝈 ∶ Ω →𝕄 and a vector field 𝒖 ∶ Ω → ℝ𝑑 , we set the divergence 𝐝𝐢𝐯𝝈 ∶
Ω →ℝ𝑑 , the gradient ∇𝒖 ∶ Ω →𝕄, and the linearized strain tensor 𝜺(𝒖) ∶
Ω → 𝕊 as

(𝐝𝐢𝐯𝝈)𝑖 ∶=
∑
𝑗

𝜕𝑗𝜎𝑖𝑗 , (∇𝒖)𝑖𝑗 ∶= 𝜕𝑗𝑢𝑖 , and 𝜺(𝒖) ∶= 1
2

(
∇𝒖+ (∇𝒖)𝚝

)
.

Let Ω be a polyhedral Lipschitz domain of ℝ𝑑 (𝑑 = 2, 3), with bound-
ary 𝜕Ω. For 𝑠 ∈ ℝ, 𝐻𝑠(Ω, 𝐸) stands for the usual Hilbertian Sobolev 
space of functions with domain Ω and values in E, where 𝐸 is either 
ℝ, ℝ𝑑 or 𝕄. In the case 𝐸 = ℝ we simply write 𝐻𝑠(Ω). The norm of 
𝐻𝑠(Ω, 𝐸) is denoted ‖⋅‖𝑠,Ω and the corresponding semi-norm | ⋅ |𝑠,Ω, in-
distinctly for 𝐸 =ℝ, ℝ𝑑 , 𝕄. We use the convention 𝐻0(Ω, 𝐸) ∶= 𝐿2(Ω, 𝐸)
and let (⋅, ⋅) be the inner product in 𝐿2(Ω, 𝐸), for 𝐸 =ℝ, ℝ𝑑 , 𝕄, namely,

(𝒖,𝒗) ∶= ∫
Ω

𝒖 ⋅ 𝒗 ∀𝒖,𝒗 ∈𝐿2(Ω,ℝ𝑑 ),

(𝝈,𝝉) ∶= ∫
Ω

𝝈 ∶ 𝝉 ∀𝝈,𝝉 ∈ 𝐿2(Ω,𝕄).

We consider the space 𝐻(𝐝𝐢𝐯, Ω, 𝐸) of tensors 𝝉 ∈ 𝐿2(Ω, 𝐸) satisfy-
ing 𝐝𝐢𝐯𝝉 ∈ 𝐿2(Ω, ℝ𝑑 ), and denote the corresponding norm ‖𝝉‖2

𝐻(𝐝𝐢𝐯,Ω) ∶=‖𝝉‖20,Ω + ‖𝐝𝐢𝐯𝝉‖20,Ω, where 𝐸 is either 𝕄 or 𝕊. Let 𝒏 be the outward unit 
normal vector to 𝜕Ω. Let 𝝉 be a sufficiently regular symmetric tensor, 
Green’s formula
20
(𝝉 ,𝜺(𝒗)) + (𝐝𝐢𝐯 𝝉 ,𝒗) = ∫
𝜕Ω

𝝉𝒏 ⋅ 𝒗 𝒗 ∈ 𝐻1(Ω,ℝ𝑑 ), (1.1)

can be used to extend the normal trace operator 𝝉 → (𝝉|𝜕Ω)𝒏 to a lin-

ear continuous mapping (⋅|𝜕Ω)𝒏 ∶ 𝐻(𝐝𝐢𝐯, Ω, 𝕊) → 𝐻− 1
2 (𝜕Ω, ℝ𝑑 ), where 

𝐻− 1
2 (𝜕Ω, ℝ𝑑 ) is the dual of 𝐻

1
2 (𝜕Ω, ℝ𝑑 ).

Throughout this paper, we shall use the letter 𝐶 to denote a generic 
positive constant independent of the mesh size ℎ, that may stand for 
different values at its different occurrences. Moreover, given any posi-
tive expressions 𝑋 and 𝑌 depending on ℎ, the notation 𝑋 ≲ 𝑌 means 
that 𝑋 ≤ 𝐶 𝑌 .

2. A stress formulation of the elasticity eigenproblem

Our aim is to determine the natural frequencies 𝜔 ∈ ℝ of an elas-
tic structure with mass density 𝜚 and occupying a polyhedral Lipschitz 
domain Ω ⊂ ℝ𝑑 (𝑑 = 2, 3). This amounts to solve the eigenproblem

𝐝𝐢𝐯𝝈 +𝜔2𝜚(𝒙)𝒖 = 0 in Ω, (2.1)

(𝒙)𝝈 = 𝜺(𝒖) in Ω, (2.2)

where 𝒖 ∶ Ω → ℝ𝑑 is the displacement field and 𝝈 ∶ Ω → 𝕊 is the 
Cauchy stress tensor. The symmetric and positive-definite 4𝑡ℎ-order ten-
sor (𝒙) ∶ 𝕊 → 𝕊 involved in the linear material law (2.2) is known as 
the compliance tensor. We assume that there exist constants 𝑎+ > 𝑎− > 0
such that

𝑎−𝜻 ∶ 𝜻 ≤(𝒙)𝜻 ∶ 𝜻 ≤ 𝑎+ 𝜻 ∶ 𝜻 ∀𝜻 ∈ 𝕊, a.e. in Ω.

We also suppose that there exists a polygonal/polyhedral partition {
Ω̄𝑗 , 𝑗 = 1, … , 𝐽

}
of Ω̄ and constants 𝜚𝑗 > 0 such that 𝜚|Ω𝑗

∶= 𝜚𝑗 > 0
for all 𝑗 = 1, … , 𝐽 . We let 𝜚+ ∶= max𝑗 𝜚𝑗 and 𝜚− ∶= min𝑗 𝜚𝑗 .

We impose the boundary condition 𝒖 = 𝟎 on a subset Γ𝐷 ⊂ Γ ∶= 𝜕Ω
of positive surface measure and let the structure free of stress on 
Γ𝑁 ∶= Γ ⧵Γ𝐷 . Here, we opt for combining the equilibrium equation (2.1)
with the constitutive law (2.2) to eliminate the displacement field 𝒖 and 
impose 𝝈 as a primary variable. This procedure leads to the following 
eigensystem: find eigenmodes 0 ≠ 𝝈 ∶ Ω → 𝕊 and eigenfrequencies 𝜔 ∈ℝ
such that

−𝜺
(
1
𝜚
𝐝𝐢𝐯𝝈

)
= 𝜔2𝝈 in Ω,

1
𝜚
𝐝𝐢𝐯𝝈 = 0 on Γ𝐷,

𝝈𝒏 = 𝟎 on Γ𝑁,

(2.3)

where 𝒏 stands for the exterior unit normal vector on Γ.
In the following, we write 𝐻 for the space 𝐿2(Ω, 𝕊) endowed with 

the -weighted inner product (𝝈,𝝉) ∶= (𝝈,𝝉) and denote the corre-
sponding norm ‖𝝉‖2 ∶= (𝝉 ,𝝉). The eigenfunctions 𝝈 will be sought in 
the closed subspace 𝑋 of 𝐻(𝐝𝐢𝐯, Ω, 𝕊) defined by

𝑋 ∶=
{
𝝉 ∈ 𝐻(𝐝𝐢𝐯,Ω,𝕊); ⟨𝝉𝒏,𝝓⟩Γ = 0 ∀𝝓 ∈ 𝐻1∕2(Γ,ℝ𝑑 ), 𝝓|Γ𝐷

= 𝟎
}

,

where ⟨⋅, ⋅⟩Γ holds for the duality pairing between 𝐻
1
2 (Γ, ℝ𝑑 ) and 

𝐻− 1
2 (Γ, ℝ𝑑 ). We introduce the symmetric and positive semidefinite bi-

linear form 𝑐 ∶ 𝑋 ×𝑋 →ℝ given by

𝑐(𝝈,𝝉) ∶=
(
1
𝜚
𝐝𝐢𝐯𝝈,𝐝𝐢𝐯𝝉

)
and endow 𝑋 with the Hilbertian inner product 𝑎(𝝈,𝝉) ∶= (𝝈,𝝉) +
𝑐(𝝈, 𝝉). We denote the corresponding norm ‖𝝉‖2𝑋 ∶= 𝑎(𝝉 , 𝝉).

Testing the first equation of (2.3) with 𝝉 ∈ 𝑋 and applying Green’s 
formula (1.1) we deduce, after a shift argument, the following pure–
stress variational formulation of the eigenproblem, find 0 ≠ 𝝈 ∈ 𝑋 and 
𝜅 = 1 +𝜔2 ∈ℝ such that

𝑎(𝝈,𝝉) = 𝜅(𝝈,𝝉) ∀𝝉 ∈𝑋. (2.4)
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We introduce the source operator 𝑇̃ ∶ 𝐿2(Ω, 𝕊) → 𝑋 correspond-
ing to the variational eigenproblem (2.4), which is defined for any 
𝒇 ∈𝐿2(Ω, 𝕊) by

𝑎
(
𝑇̃𝒇 ,𝝉

)
= (𝒇 ,𝝉) ∀𝝉 ∈𝑋. (2.5)

Obviously, 𝑇̃ is linear and bounded, actually it holds true that,

‖‖𝑇̃𝒇‖‖𝑋 ≤ ‖𝒇‖ ∀𝒇 ∈ 𝐻. (2.6)

We denote the 𝐻1-Sobolev space with incorporated Dirichlet boundary 
conditions on either Γ𝐷 or Γ𝑁 by

𝐻1
⋆(Ω,ℝ𝑑 ) ∶=

{
𝒗 ∈ 𝐻1(Ω,ℝ𝑑 ); 𝑣|Γ⋆

= 𝟎
}

, ⋆ ∈ {𝐷,𝑁}.

It is important to notice that testing (2.5) with a tensor 𝝉 ∶ Ω → 𝕊
whose entries are indefinitely differentiable and compactly supported 
in Ω proves that 𝜺( 1

𝜚
𝐝𝐢𝐯(𝑇̃𝒇 )) =(𝑇̃ − 𝐼)𝒇 ∈ 𝐿2(Ω, 𝕊). Hence, by virtue 

of Korn’s inequality, 1
𝜚
𝐝𝐢𝐯(𝑇̃𝒇 ) ∈ 𝐻1(Ω, ℝ𝑑 ) and it follows readily from 

Green’s formula (1.1) that 1
𝜚
𝐝𝐢𝐯(𝑇̃𝒇 ) vanishes on Γ𝐷. In other words, 

1
𝜚
𝐝𝐢𝐯(𝑇̃𝒇 ) ∈ 𝐻1

𝐷
(Ω, ℝ𝑑 ) and there exists 𝐶 > 0 such that‖‖‖ 1

𝜚
𝐝𝐢𝐯(𝑇̃𝒇 )‖‖‖1,Ω ≤ 𝐶‖𝒇‖ ∀𝒇 ∈𝐻. (2.7)

The operator 𝑇 ∶= 𝑇̃ |𝑋 ∶ 𝑋 → 𝑋 is relevant in our analysis because its 
eigenvalues and those of problem (2.4) are reciprocal to each other and 
the corresponding eigenfunctions are the same. A full description of the 
spectrum of 𝑇 will then solve problem (2.4).

We consider the direct sum decomposition 𝑋 = 𝐾 ⊕ 𝐾⊥ into closed 
subspaces

𝐾 ∶= {𝝉 ∈𝑋; 𝐝𝐢𝐯𝝉 = 0 in Ω} and

𝐾⊥ ∶= {𝝈 ∈ 𝑋; 𝑎(𝝈,𝝉) = 0, ∀𝝉 ∈𝐾},

which are orthogonal with respect to both (⋅, ⋅) and 𝑎(⋅, ⋅). It is clear 
that 𝜅 = 1 is an eigenvalue of (2.4) with associated eigenspace 𝐾 . Con-
sequently, as 𝐾 is not a finite-dimensional subspace of 𝑋, 𝑇 is not a 
compact operator.

Lemma 2.1. The orthogonal projection 𝑃 in 𝑋 onto 𝐾⊥ with respect to 
the inner product 𝑎(⋅, ⋅) is characterized, for any 𝝈 ∈ 𝑋, by 𝑃𝝈 ∶= 𝝈 where 
𝝈 =−1𝜺(𝒖̃) and ̃𝒖 ∈ 𝐻1

𝐷
(Ω, ℝ𝑑 ) is the unique solution of(−1𝜺(𝒖̃),𝜺(𝒗)

)
= −(𝐝𝐢𝐯𝝈,𝒗) ∀𝒗 ∈𝐻1

𝐷(Ω,ℝ𝑑 ). (2.8)

Proof. We first point out that Korn’s inequality provides the stability 
estimate

‖𝒖̃‖1,Ω ≤ 𝐶‖𝐝𝐢𝐯𝝈‖0,Ω. (2.9)

By definition, (2.9) also ensures that ‖𝑃𝝈‖0,Ω ≤ 𝐶1‖𝐝𝐢𝐯𝝈‖0,Ω. More-
over, 𝐝𝐢𝐯𝑃𝝈 = 𝐝𝐢𝐯𝝈 by construction, which ensures that 𝑃 ∶ 𝑋 → 𝑋 is 
bounded. Moreover, it is clear that 𝑃◦𝑃 = 𝑃 and ker 𝑃 = 𝐾 . It remains 
to show that the range of 𝑃 coincides with 𝐾⊥. To this end, we notice 
that, for any 𝝈 ∈ 𝑋,

(𝑃𝝈,𝝉) =
(
𝜺(𝒖̃),𝝉

)
= (∇𝒖̃,𝝉) = 0 ∀𝝉 ∈𝐾,

which proves that 𝑃 (𝑋) ⊂ 𝐾⊥. The reciprocal inclusion is a consequence 
of 𝐾⊥ = 𝑃 (𝐾⊥) + (𝐼 − 𝑃 )𝐾⊥ = 𝑃 (𝐾⊥) ⊂ 𝑃 (𝑋), where we used that (𝐼 −
𝑃 )𝑋 ⊂ 𝐾 , and the result follows. □

Lemma 2.2. The inclusions 𝑃 (𝑋) ↪ 𝐻 and 𝑃 (𝑋) ∩𝑇 (𝑋) ↪ 𝑋 are compact.

Proof. Let 
{
𝝈𝑛

}
𝑛

be a weakly convergent sequence in 𝑋. The con-
tinuity of 𝑃 ∶ 𝑋 → 𝑋 implies that the sequence 

{
𝝈𝑛

}
𝑛
∶=

{
𝑃𝝈𝑛

}
𝑛

is 
also weakly convergent in 𝑋. By definition, 𝝈𝑛 = −1𝜺(𝒖̃𝑛), where 
𝒖̃𝑛 ∈ 𝐻1 (Ω, ℝ𝑑 ) solves (2.8) with right-hand side − 𝐝𝐢𝐯𝝈𝑛. It follows 
𝐷

21
from (2.9) that 𝒖̃𝑛 is bounded in 𝐻1
𝐷
(Ω, ℝ𝑑 ) and the compactness of 

the embedding 𝐻1(Ω, ℝ𝑑 ) ↪ 𝐿2(Ω, ℝ𝑑 ) implies that 
{
𝒖̃𝑛

}
𝑛

admits a sub-
sequence (denoted again 

{
𝒖̃𝑛

}
𝑛
) that converges strongly in 𝐿2(Ω, ℝ𝑑 ). 

Next, we deduce from Green’s identity(
𝝈𝑝 − 𝝈𝑞 ,𝝈𝑝 − 𝝈𝑞

)
 =

(
𝜺(𝒖̃𝑝 − 𝒖̃𝑞),𝝈𝑝 − 𝝈𝑞

)
= −

(
𝒖̃𝑝 − 𝒖̃𝑞 ,𝐝𝐢𝐯(𝝈𝑝 − 𝝈𝑞)

)
,

that 
{
𝝈𝑛

}
𝑛

is a Cauchy sequence in 𝐻 , which implies that the embed-
ding 𝑃 (𝑋) ↪ 𝐻 is compact.

Finally, it follows from (2.7) that

𝑇 (𝑋) ∩ 𝑃 (𝑋) ⊂
{
𝝈 ∈ 𝑃 (𝑋); 1

𝜚
𝐝𝐢𝐯𝝈 ∈ 𝐻1(Ω,ℝ𝑑 )

}
,

and the compactness of the embedding 𝑇 (𝑋) ∩ 𝑃 (𝑋) ↪ 𝑋 is a conse-

quence of the fact that the inclusion 
{
𝝈 ∈ 𝑃 (𝑋); 1

𝜚
𝐝𝐢𝐯𝝈 ∈ 𝐻1(Ω,ℝ𝑑 )

}
⊂

𝑋 is compact. □

We point out that 𝑇̃ is symmetric with respect to (⋅, ⋅), which im-
plies that 𝑃 (𝑋) = 𝐾⊥ is 𝑇 -invariant. Consequently, it holds true that 
𝑇 (𝑃 (𝑋)) ⊂ 𝑃 (𝑋) ∩𝑇 (𝑋) and Lemma 2.2 implies that the 𝑎(⋅, ⋅)-symmetric 
and positive definite operator 𝑇 ∶ 𝐾⊥ → 𝐾⊥ is compact. Therefore, we 
have the following characterization of the spectrum of 𝑇 .

Theorem 2.1. The spectrum sp(𝑇 ) of 𝑇 is given by sp(𝑇 ) = {0, 1}∪{𝜂𝑘}𝑘∈ℕ, 
where {𝜂𝑘}𝑘 ⊂ (0, 1) is a sequence of finite-multiplicity eigenvalues of 𝑇
that converges to 0. The ascent of each of these eigenvalues is 1 and the 
corresponding eigenfunctions lie in 𝑃 (𝑋). Moreover, 𝜂 = 1 is an infinite-

multiplicity eigenvalue of 𝑇 with associated eigenspace 𝐾 and 𝜂 = 0 is not 
an eigenvalue.

3. Definitions and auxiliary results

We consider a sequence {ℎ}ℎ of shape-regular simplicial meshes 
that subdivide the domain Ω̄ into simplices 𝐾 of diameter ℎ𝐾 . The 
parameter ℎ ∶= max𝐾∈ℎ

{ℎ𝐾} represents the mesh size of ℎ. We as-
sume that ℎ is aligned with the partition Ω̄ = ∪𝐽

𝑗=1Ω̄𝑗 and that ℎ(Ω𝑗 ) ∶={
𝐾 ∈ ℎ; 𝐾 ⊂Ω𝑗

}
is a shape-regular mesh of Ω̄𝑗 for all 𝑗 = 1, ⋯ , 𝐽 and 

all ℎ.
For all 𝑠 ≥ 0, we consider the broken Sobolev space

𝐻𝑠(∪𝑗Ω𝑗 ) ∶=
{

𝑣 ∈ 𝐿2(Ω); 𝑣|Ω𝑗
∈ 𝐻𝑠(Ω𝑗 ), ∀𝑗 = 1,… , 𝐽

}
corresponding to the partition Ω̄ = ∪𝐽

𝑗=1Ω̄𝑗 . Its vectorial and tensorial 
versions are denoted 𝐻𝑠(∪𝑗Ω𝑗 , ℝ𝑑 ) and 𝐻𝑠(∪𝑗Ω𝑗 , 𝕄), respectively. Like-
wise, the broken Sobolev space with respect to the subdivision of Ω̄ into 
ℎ is

𝐻𝑠(ℎ,𝐸) ∶=
{
𝒗 ∈𝐿2(Ω,𝐸) ∶ 𝒗|𝐾 ∈ 𝐻𝑠(𝐾,𝐸) ∀𝐾 ∈ ℎ

}
,

for 𝐸 ∈ {ℝ,ℝ𝑑 ,𝕄}.

For each 𝒗 ∶= {𝒗𝐾} ∈ 𝐻𝑠(ℎ, ℝ𝑑 ) and 𝝉 ∶= {𝝉𝐾} ∈ 𝐻𝑠(ℎ, 𝕄) the com-
ponents 𝒗𝐾 and 𝝉𝐾 represent the restrictions 𝒗|𝐾 and 𝝉|𝐾 . When no 
confusion arises, the restrictions of these functions will be written with-
out any subscript.

Hereafter, given an integer 𝑚 ≥ 0 and a domain 𝐷 ⊂ ℝ𝑑 , 𝑚(𝐷) de-
notes the space of polynomials of degree at most 𝑚 on 𝐷. We introduce 
the space

𝑚(ℎ) ∶= {𝑣 ∈ 𝐿2(Ω) ∶ 𝑣|𝐾 ∈ 𝑚(𝐾), ∀𝐾 ∈ ℎ}

of piecewise polynomial functions relatively to ℎ. We also consider the 
space 𝑚(ℎ, 𝐸) of functions with values in 𝐸 and entries in 𝑚(ℎ), 
where 𝐸 is either ℝ𝑑 , 𝕄 or 𝕊.

Let us introduce now notations related to DG approximations of 
𝐻(div)-type spaces. We say that a closed subset 𝐹 ⊂ Ω is an interior 
edge/face if 𝐹 has a positive (𝑑 − 1)-dimensional measure and if there 
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are distinct elements 𝐾 and 𝐾 ′ such that 𝐹 = 𝐾̄ ∩ 𝐾̄ ′. A closed sub-
set 𝐹 ⊂ Ω is a boundary edge/face if there exists 𝐾 ∈ ℎ such that 𝐹
is an edge/face of 𝐾 and 𝐹 = 𝐾̄ ∩ Γ. We consider the set 0

ℎ
of inte-

rior edges/faces, the set 𝜕
ℎ

of boundary edges/faces and let  (𝐾) ∶=
{𝐹 ∈ ℎ; 𝐹 ⊂ 𝜕𝐾} be the set of edges/faces composing the boundary 
of 𝐾 . We assume that the boundary mesh 𝜕

ℎ
is compatible with the par-

tition 𝜕Ω = Γ𝐷 ∪ Γ𝑁 in the sense that, if 𝐷
ℎ

=
{
𝐹 ∈ 𝜕

ℎ
∶ 𝐹 ⊂ Γ𝐷

}
and 

𝑁
ℎ

=
{
𝐹 ∈ 𝜕

ℎ
∶ 𝐹 ⊂ Γ𝑁

}
, then Γ𝐷 = ∪𝐹∈𝐷

ℎ
𝐹 and Γ𝑁 = ∪𝐹∈𝑁

ℎ
𝐹 . We 

denote

ℎ ∶= 0
ℎ
∪𝜕

ℎ
and ∗

ℎ ∶= 0
ℎ
∪𝑁

ℎ .

Obviously, in the case Γ𝐷 = Γ we have that ∗
ℎ
= 0

ℎ
.

We will need the space given on the skeletons of the triangulations 
ℎ by 𝐿2(∗

ℎ
) ∶= ⨁

𝐹∈∗
ℎ

𝐿2(𝐹 ). Its vector valued version is denoted 
𝐿2(∗

ℎ
, ℝ𝑑 ). Here again, the components 𝒗𝐹 of 𝒗 ∶= {𝒗𝐹 } ∈ 𝐿2(∗

ℎ
, ℝ𝑑 )

coincide with the restrictions 𝒗|𝐹 . We endow 𝐿2(∗
ℎ
, ℝ𝑑 ) with the inner 

product

(𝒖,𝒗)∗
ℎ
∶=

∑
𝐹∈∗

ℎ

∫
𝐹

𝒖𝐹 ⋅ 𝒗𝐹 ∀𝒖,𝒗 ∈ 𝐿2(∗
ℎ ,ℝ𝑑 ),

and denote the corresponding norm ‖𝒗‖20,∗
ℎ

∶= (𝒗, 𝒗)∗
ℎ
. From now on, 

ℎ ∈ 𝐿2(∗
ℎ
) is the piecewise constant function defined by ℎ |𝐹 ∶= ℎ𝐹

for all 𝐹 ∈ ∗
ℎ

with ℎ𝐹 denoting the diameter of edge/face 𝐹 . By virtue 
of our hypotheses on 𝜚 and on the triangulation ℎ, we may consider 
that 𝜚 is an element of 0(ℎ) and denote 𝜚𝐾 ∶= 𝜚|𝐾 for all 𝐾 ∈ ℎ. We 
introduce 𝜚 ∈ 𝐿2(∗

ℎ
) defined by 𝜚𝐹 ∶= min{𝜚𝐾 , 𝜚𝐾′ } if 𝐾 ∩𝐾 ′ = 𝐹 and 

𝜚𝐹 ∶= 𝜚𝐾 if 𝐹 ∩𝐾 ∈ 𝑁
ℎ

.

Given 𝒗 ∈ 𝐻𝑠(ℎ, ℝ𝑑 ) and 𝝉 ∈ 𝐻𝑠(ℎ, 𝕄), with 𝑠 > 1
2 , we define aver-

ages {𝒗} ∈ 𝐿2(∗
ℎ
, ℝ𝑑 ) and jumps [ [𝝉] ] ∈ 𝐿2(∗

ℎ
, ℝ𝑑 ) by

{𝒗}𝐹 ∶= (𝒗𝐾 + 𝒗𝐾′ )∕2 and [[𝝉]]𝐹 ∶= 𝝉𝐾𝒏𝐾 + 𝝉𝐾′𝒏𝐾′

∀𝐹 ∈  (𝐾) ∩ (𝐾 ′),

with the conventions

{𝒗}𝐹 ∶= 𝒗𝐾 and [[𝝉]]𝐹 ∶= 𝝉𝐾𝒏𝐾 ∀𝐹 ∈  (𝐾), 𝐹 ∈ 𝑁
ℎ ,

where 𝒏𝐾 is the outward unit normal vector to 𝜕𝐾 .
For any 𝑘 ≥ 1, we let 𝑋𝐷𝐺(ℎ) ∶= 𝑋 + 𝑋𝐷𝐺

ℎ
, with 𝑋𝐷𝐺

ℎ
∶= 𝑘(ℎ, 𝕊). 

Given 𝝉 ∈ 𝑋𝐷𝐺
ℎ

, we define 𝐝𝐢𝐯ℎ 𝝉 ∈ 𝐿2(Ω, ℝ𝑑 ) by 𝐝𝐢𝐯ℎ 𝝉|𝐾 ∶= 𝐝𝐢𝐯 𝝉𝐾 for 
all 𝐾 ∈ ℎ and endow 𝑋𝐷𝐺(ℎ) with the norm

|||𝝉|||2 ∶= ‖𝝉‖2 +
‖‖‖‖ 1√

𝜚
𝐝𝐢𝐯ℎ 𝝉

‖‖‖‖20,Ω +
‖‖‖‖‖𝜚−

1
2 ℎ

− 1
2 [[𝝉]]

‖‖‖‖‖
2

0,∗
ℎ

.

If it happens that 𝐝𝐢𝐯ℎ 𝝉 ∈ 𝐻𝑠(ℎ, ℝ𝑑 ) with 𝑠 > 1
2 , we also introduce

|||𝝉|||2∗ ∶= |||𝝉|||2 + ‖‖‖‖‖𝜚
1
2 ℎ

1
2
𝐹
{ 1

𝜚
𝐝𝐢𝐯ℎ 𝝉}

‖‖‖‖‖
2

0,∗
ℎ

.

It is important to notice that |||𝝉||| = ‖𝝉‖𝑋 for all 𝝉 ∈ 𝑋.
The following discrete trace inequality is useful in our analysis.

Lemma 3.1. There exists a constant 𝐶tr > 0 independent of ℎ and 𝜚 such 
that‖‖‖‖‖𝜚

1
2 ℎ

1
2 {

1√
𝜚
𝒗}

‖‖‖‖‖0,∗
ℎ

≤ 𝐶tr
‖‖‖‖ 1√

𝜚
𝒗
‖‖‖‖0,Ω ∀𝒗 ∈ 𝑘(ℎ,ℝ𝑑 ). (3.1)

Proof. By definition of 𝜚 , for any 𝒗 ∈ 𝑘(ℎ, ℝ𝑑 ), it holds true that‖‖‖‖‖𝜚
1
2 ℎ

1
2 {

1
𝜚
𝒗}

‖‖‖‖‖
2

0,∗
ℎ

=
∑

𝐹∈∗
ℎ

ℎ𝐹

‖‖‖‖‖𝜚
1
2
𝐹
{ 1

𝜚
𝒗}𝐹

‖‖‖‖‖
2

0,𝐹
≤ ∑

𝐹∈∗
ℎ

ℎ𝐹

‖‖‖‖{ 1√
𝜚
𝒗}𝐹

‖‖‖‖20,𝐹
≲

∑
𝐾∈

ℎ𝐾

‖‖‖‖ 1√
𝜚
𝒗𝐾

‖‖‖‖20,𝜕𝐾
.

ℎ

22
Applying in the last inequality the well-known estimate (see for example 
[13])

ℎ
1
2
𝐾
‖𝜙‖0,𝜕𝐾 ≤ 𝐶‖𝜙‖0,𝐾 ∀𝜙 ∈ 𝑘(𝐾), (3.2)

where 𝐶 > 0 is independent of ℎ, we obtain the result. □

For all 𝝈, 𝝉 ∈ 𝑋𝐷𝐺(ℎ) and for a large enough given parameter 𝚊 > 0, 
we consider the symmetric bilinear form

𝑐ℎ(𝝈,𝝉) ∶=
(
1
𝜚
𝐝𝐢𝐯ℎ 𝝈,𝐝𝐢𝐯ℎ 𝝉

)
+ 𝚊

(
𝜚−1 ℎ−1 [[𝝈]], [[𝝉]]

)
∗

ℎ

−
(
{ 1

𝜚
𝐝𝐢𝐯ℎ 𝝈}, [[𝝉]]

)
∗

ℎ

−
(
{ 1

𝜚
𝐝𝐢𝐯ℎ 𝝉}, [[𝝈]]

)
∗

ℎ

and let

𝑎ℎ(𝝈,𝝉) ∶= (𝝈,𝝉) + 𝑐ℎ(𝝈,𝝉).

For all 𝝈, 𝝉 ∈ 𝑋𝐷𝐺(ℎ) satisfying 𝐝𝐢𝐯ℎ 𝝈, 𝐝𝐢𝐯ℎ 𝝉 ∈ 𝐻𝑠(ℎ, ℝ𝑑 ) with 𝑠 > 1∕2, 
a straightforward application of the Cauchy-Schwarz inequality gives

||𝑎ℎ(𝝈,𝝉)|| ≤ 2|||𝝈|||∗ |||𝝉|||∗.
Moreover, if we take in the last estimate 𝝉 = 𝝉ℎ ∈ 𝑋𝐷𝐺

ℎ
, we deduce from 

Lemma 3.1 that,

||𝑎ℎ(𝝈,𝝉ℎ)|| ≤𝑀 |||𝝈|||∗ ||||||𝝉ℎ
||||||, (3.3)

with 𝑀 ∶= 2
√

1 +𝐶2
tr.

The bilinear form 𝑐ℎ(⋅, ⋅) and the DG-norm |||⋅||| are designed in such 
a way that the coercivity of the bilinear form 𝑎ℎ(⋅, ⋅) on 𝑋𝐷𝐺

ℎ
can be 

achieved with a stability parameter 𝚊 that is independent of the material 
coefficients, as shown in the following result.

Proposition 3.1. There exists a constant 𝚊∗ > 0, independent of 𝜚 and , 
such that if 𝚊 ≥ 𝚊∗, then

𝑐ℎ(𝝉 ,𝝉) ≥ 1
2

⎛⎜⎜⎝
‖‖‖‖𝜚− 1

2 𝐝𝐢𝐯ℎ 𝝉
‖‖‖‖20,Ω +

‖‖‖‖‖𝛿−
1
2 ℎ

− 1
2 [[𝝉]]

‖‖‖‖‖
2

0,∗
ℎ

⎞⎟⎟⎠ ∀𝝉 ∈ 𝑋𝐷𝐺
ℎ

. (3.4)

Proof. By definition, we have

𝑐ℎ(𝝉 ,𝝉) =
‖‖‖‖𝜚− 1

2 𝐝𝐢𝐯ℎ 𝝉
‖‖‖‖20,Ω + 𝚊

‖‖‖‖‖𝜚−
1
2 ℎ

− 1
2 [[𝝉]]

‖‖‖‖‖
2

0,∗
ℎ

− 2
(
{𝜚−1 𝐝𝐢𝐯ℎ 𝝉}, [[𝝉]]

)
∗

ℎ

(3.5)

Using the Cauchy-Schwarz inequality, Young’s inequality together with 
the discrete trace inequality (3.1) we obtain the estimate

2
||||({𝜚−1 𝐝𝐢𝐯ℎ 𝝉}, [[𝝉]]

)
0

ℎ

|||| ≤ 2
‖‖‖‖‖𝛾

1
2 ℎ

1
2 {𝜚−1 𝐝𝐢𝐯ℎ 𝝉}

‖‖‖‖‖0,∗
ℎ

‖‖‖‖‖𝛾−
1
2 ℎ

− 1
2 [[𝝉]]

‖‖‖‖‖0,∗
ℎ

≤ 2𝐶tr
‖‖‖‖𝜚− 1

2 𝐝𝐢𝐯𝝉
‖‖‖‖0,Ω‖‖‖‖‖𝛾−

1
2 ℎ

− 1
2 [[𝝉]]

‖‖‖‖‖0,∗
ℎ

≤ 1
2
‖‖‖‖𝜚− 1

2 𝐝𝐢𝐯𝝉
‖‖‖‖20,Ω + 2𝐶2

tr

‖‖‖‖‖𝛾−
1
2 ℎ

− 1
2 [[𝝉]]

‖‖‖‖‖
2

0,∗
ℎ

.

(3.6)

Combining (3.6) and (3.5) gives the result with 𝚊∗ ∶= 2𝐶2
tr +

1
2 . □

4. The pure–stress DG scheme

We are now in a position to introduce the following mixed DG dis-
cretization of (2.4): Find 0 ≠ 𝝈ℎ ∈𝑋𝐷𝐺

ℎ
and 𝜅ℎ ∈ℝ such that

𝑎ℎ

(
𝝈ℎ,𝝉

)
= 𝜅ℎ

(
𝝈ℎ,𝝉

)
∀𝝉 ∈ 𝑋𝐷𝐺

ℎ
. (4.1)

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Remark 4.1. We are only considering via (4.1) the symmetric inte-
rior penalty DG method (SIP) because the non-symmetric DG versions, 
known in the literature as NIP and IIP, have sub-optimal rates of con-
vergence for the eigenvalues [1,22].

In all what follows, we make the following stability assumption.

Assumption 1. The parameter 𝚊 is greater than or equal to 𝚊∗: 𝚊 ≥ 𝚊∗ ∶=
2𝐶2

tr +
1
2 .

Under this assumption, Proposition 3.1 permits us to guarantee the 
well–posedness of the discrete source operator 𝑇̃ℎ ∶𝐻 → 𝑋𝐷𝐺

ℎ
given, for 

any 𝒇 ∈ 𝐻 , by

𝑎ℎ(𝑇̃ℎ𝒇 ,𝝉ℎ) =
(
𝒇 ,𝝉ℎ

)
 ∀𝝉ℎ ∈ 𝑋𝐷𝐺

ℎ
. (4.2)

Actually, 𝑇̃ℎ is uniformly bounded, namely,

||||||𝑇̃ℎ𝒇
|||||| ≤ 2‖𝒇‖ ∀𝒇 ∈𝐻. (4.3)

Similarly to the continuous case, we observe that (1 ≠ 𝜅ℎ, 𝝈ℎ) ∈ℝ ×𝑋𝐷𝐺
ℎ

is a solution of problem (4.1) if and only if ( 1
𝜅ℎ

, 𝝈ℎ) is an eigenpair of 
𝑇ℎ ∶= 𝑇̃ℎ|𝑋𝐷𝐺

ℎ
, i.e., 𝑇ℎ𝝈ℎ = 1

𝜅ℎ
𝝈ℎ. Moreover, it is clear that 𝜅ℎ = 1 is an 

eigenvalue common to (4.1) and 𝑇ℎ with corresponding eigenspace

𝐾ℎ ∶=
{
𝝉ℎ ∈ 𝑋𝐷𝐺

ℎ
; 𝑐ℎ(𝝉ℎ,𝝉ℎ) = 0

}
. (4.4)

The following result establishes a Céa estimate for the DG approxi-
mation (4.2) of (2.5).

Theorem 4.1. Under Assumption 1, for all 𝒇 ∈ 𝐻 , it holds true that

||||||(𝑇̃ − 𝑇̃ℎ)𝒇 |||||| ≤ (1 + 2𝑀) inf
𝝉ℎ∈𝑋𝐷𝐺

ℎ

||||||𝑇̃𝒇 − 𝝉ℎ
||||||∗, (4.5)

with 𝑀 as in (3.3).

Proof. We already know from (2.7) that 𝒖 ∶= 1
𝜚
𝐝𝐢𝐯(𝑇̃𝒇 ) ∈ 𝐻1

𝐷
(Ω, ℝ𝑑 ). 

Hence, using the integration by parts (1.1) elementwise in

𝑎(𝑇̃𝒇 ,𝝉) = (𝒇 ,𝝉) ∀𝝉 ∈ 𝑋

gives(
𝑇̃𝒇 − 𝒇 ,𝝉

)
 = (𝜺(𝒖),𝝉) = −

(
𝒖,𝐝𝐢𝐯ℎ 𝝉

)
+ ({𝒖}, [[𝝉]])∗

ℎ
∀𝝉 ∈𝑋𝐷𝐺

ℎ
.

Substituting back 𝒖 = 1
𝜚
𝐝𝐢𝐯(𝑇̃𝒇 ) into the last expression we get(

𝑇̃𝒇 ,𝝉
)
 +

(
1
𝜚
𝐝𝐢𝐯(𝑇̃𝒇 ),𝐝𝐢𝐯ℎ 𝝉

)
−
(
{ 1

𝜚
𝐝𝐢𝐯(𝑇̃𝒇 )}, [[𝝉]]

)
∗

ℎ

= (𝒇 ,𝝉)

∀𝝉 ∈ 𝑋𝐷𝐺
ℎ

.

Combining the last identity with (4.2) yields the following consistency 
property

𝑎ℎ((𝑇̃ − 𝑇̃ℎ)𝒇 ,𝝉ℎ) = 0 ∀𝝉ℎ ∈𝑋𝐷𝐺
ℎ

∀𝒇 ∈ 𝐻. (4.6)

Now, by virtue of (3.3), (3.4) and (4.6), it holds true that

1
2
||||||𝑇̃ℎ𝒇 − 𝝉ℎ

||||||2 ≤ 𝑎ℎ(𝑇̃ℎ𝒇 − 𝝉ℎ, 𝑇̃ℎ𝒇 − 𝝉ℎ) = 𝑎ℎ(𝑇̃𝒇 − 𝝉ℎ, 𝑇̃ℎ𝒇 − 𝝉ℎ)

≤𝑀 ||||||𝑇̃𝒇 − 𝝉ℎ
||||||∗||||||𝑇̃ℎ𝒇 − 𝝉ℎ

|||||| ∀𝝉ℎ ∈𝑋𝐷𝐺
ℎ

,

and the result follows from the triangle inequality. □

4.1. The operator  𝑠
ℎ

For technical reasons, we want to consider here the 𝐻(𝐝𝐢𝐯, Ω, 𝕊)-
conforming finite element space given by 𝑋𝑐 ∶= ℎ(ℎ, 𝕊) ∩𝑋. The goal 
ℎ
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of this section is to prove that, under certain conditions on the mesh 
and on the polynomial degree 𝑘, it holds true that

inf
𝝉ℎ∈𝑋𝑐

ℎ

‖‖𝝈 − 𝝉ℎ
‖‖𝑋 ⟶ 0, when ℎ → 0, ∀𝝈 ∈ 𝑋. (4.7)

The main obstacle in performing this task is the symmetry con-
straint. Let us ignore this constraint and discuss, in a first step, ap-
proximation properties of the Brezzi-Douglas-Marini (BDM) mixed finite 
element discretization of

𝐻𝑁 (𝐝𝐢𝐯,Ω,𝕄)

∶=
{
𝝉 ∈𝐻(𝐝𝐢𝐯,Ω,𝕄); ⟨𝝉𝒏,𝝓⟩Γ = 0 ∀𝝓 ∈𝐻1∕2(Γ,ℝ𝑑 ), 𝝓|Γ𝐷

= 𝟎
}

.

Given 𝑠 > 1∕2 the tensorial version of the canonical BDM finite element 
interpolant

ΠBDM
ℎ ∶ 𝐻𝑁 (div,Ω,𝕄) ∩𝐻𝑠(∪𝑗Ω𝑗 ,𝕄)→ 𝐻𝑁 (div,Ω,𝕄) ∩𝑘(ℎ,𝕄)

satisfies the following classical error estimate, [7, Proposition 2.5.4],

‖‖‖𝝉 −ΠBDM
ℎ 𝝉

‖‖‖0,Ω ≤ 𝐶ℎmin{𝑠,𝑘+1}
𝐽∑

𝑗=1
‖𝝉‖𝑠,Ω𝑗

∀𝝉 ∈ 𝐻𝑁 (div,Ω,𝕄) ∩𝐻𝑠(∪𝑗Ω𝑗 ,𝕄), 𝑠 > 1∕2,

(4.8)

Moreover, we have the well-known commutativity property,

𝐝𝐢𝐯ΠBDM
ℎ 𝝉 =𝑄𝑘−1

ℎ
𝐝𝐢𝐯𝝉 ∀𝝉 ∈ 𝐻𝑁 (div,Ω,𝕄) ∩𝐻𝑠(∪𝑗Ω𝑗 ,𝕄), 𝑠 > 1∕2,

(4.9)

where 𝑄𝑘−1
ℎ

stands for the 𝐿2(Ω, ℝ𝑑 )-orthogonal projection onto
𝑘−1(ℎ, ℝ𝑑 ). Therefore, if 𝐝𝐢𝐯 𝝉 ∈𝐻𝑠(∪𝑗Ω𝑗 , ℝ𝑑 ), we obtain

‖𝐝𝐢𝐯(𝝉 −ΠBDM
ℎ

𝝉)‖0,Ω = ‖𝐝𝐢𝐯𝝉 −𝑄𝑘−1
ℎ

𝐝𝐢𝐯𝝉‖0,Ω ≤ 𝐶ℎmin{𝑠,𝑘}
𝐽∑

𝑗=1
‖𝐝𝐢𝐯𝝉‖𝑠,Ω𝑗

.

(4.10)

We point out that one can actually extend the domain of the canon-
ical interpolation operator ΠBDM

ℎ
to 𝐻𝑁 (𝐝𝐢𝐯, Ω, 𝕄) ∩ 𝐻𝑠(Ω, 𝕄), for any 

𝑠 > 0. In the case of a constant function 𝜚 and a constant tensor , clas-
sical regularity results [10,17] ensure the existence of 𝑠̂ ∈ (0, 1] (depend-
ing on Ω on the boundary conditions and on the Lamé coefficients) such 
that the solution ̃𝒖 of problem (2.8) belongs to 𝐻1+𝑠(Ω, ℝ𝑑 ) ∩𝐻1

𝐷
(Ω, ℝ𝑑 )

for all 𝑠 ∈ (0, ̂𝑠). However, our aim here is to avoid relying on regularity 
results that may be difficult to establish for the elasticity system in the 
case of general domains, boundary conditions and material properties. 
For this reason, we resort to the following smoothed projector recently 
introduced by Licht [21, Theorem 6.3].

Theorem 4.2. There exists a bounded and linear operator ℎ ∶ 𝐿2(Ω, 𝕄) →
𝐻𝑁 (𝐝𝐢𝐯, Ω, 𝕄) ∩𝑘(ℎ, 𝕄) such that

i) There exists 𝐶 > 0 independent of ℎ such that

‖‖𝝈 − ℎ𝝈
‖‖0,Ω ≤ 𝐶 inf

𝝉ℎ∈𝐻𝑁 (𝐝𝐢𝐯,Ω,𝕄)∩𝑘(ℎ,𝕄)
‖‖𝝈 − 𝝉ℎ

‖‖0,Ω ∀𝝈 ∈ 𝐿2(Ω,𝕄)

ii) 𝐝𝐢𝐯ℎ𝝈 =𝑄𝑘−1
ℎ

𝐝𝐢𝐯𝝈 for all 𝝈 ∈ 𝐻𝑁 (𝐝𝐢𝐯, Ω, 𝕄).

The operator ℎ doesn’t preserve symmetry. To remedy this draw-
back, we follow [15,18,32] and use a symmetrization procedure that 
requires the stability the Scott-Vogelius element [31] for the Stokes 
problem. We refer to [14, Section 55.3] for a detailed account on the 
conditions (on the mesh ℎ and 𝑘) under which this stability property 
is guaranteed in 2D and 3D. The analysis that follows from now on is 
based on the following assumption.
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Assumption 2. The pair 
{𝑘+1(ℎ,ℝ𝑑 ) ∩𝐻1

𝑁
(Ω,ℝ𝑑 ),𝑘(ℎ)

}
is stable 

for the Stokes problem on the mesh ℎ: there exists 𝛽 > 0 independent 
of ℎ such that

sup
𝒗ℎ∈𝑘+1(ℎ,ℝ𝑑 )∩𝐻1

𝑁
(Ω,ℝ𝑑 )

(div𝒗ℎ,𝜙ℎ)‖𝒗ℎ‖1,Ω ≥ 𝛽‖𝜙ℎ‖0,Ω ∀𝜙ℎ ∈ 𝑘(ℎ). (4.11)

Lemma 4.1. Under Assumption 2, there exists a linear operator

ℎ ∶ 𝑘(ℎ,𝕄) ∩𝐻𝑁 (𝐝𝐢𝐯,Ω,𝕄)→ 𝑘(ℎ,𝕊) ∩𝑋

such that, for all 𝝉ℎ ∈ 𝑘(ℎ, 𝕄) ∩𝐻𝑁 (𝐝𝐢𝐯, Ω, 𝕄),

i) 𝐝𝐢𝐯(𝝉ℎ − ℎ𝝉ℎ) = 𝟎 in Ω,

ii) and ‖‖𝝉ℎ − ℎ𝝉ℎ
‖‖0,Ω ≤ 𝐶

‖‖‖𝝉ℎ − 𝝉𝚝
ℎ

‖‖‖0,Ω, with 𝐶 > 0 independent of ℎ.

Proof. We only sketch the proof given in [32, Lemma 5.2] and adapt 
it to our boundary conditions, see also [15,18]. In the case 𝑑 = 2, given 
𝝉ℎ ∈ 𝑘(ℎ, 𝕄) ∩𝐻𝑁 (𝐝𝐢𝐯, Ω, 𝕄), it follows from Assumption 2 that there 
exists 𝒘ℎ ∈ 𝐻1

𝑁
(Ω, ℝ𝑑 ) ∩𝑘+1(ℎ, ℝ𝑑 ) satisfying div𝒘ℎ = 𝜏ℎ,21 − 𝜏ℎ,12 and

‖𝒘ℎ‖1,Ω ≲ ‖𝜏ℎ,12 − 𝜏ℎ,21‖0,Ω ≲ ‖𝝉ℎ − 𝝉𝚝
ℎ
‖0,Ω. (4.12)

We recall that all differential operators are applied row-wise and let 
ℎ𝝉ℎ ∶= 𝝉ℎ + ∇⊥ 𝒘ℎ, where ∇⊥ ∶= (−𝜕2, 𝜕1)𝚝 is the rotated gradient. By 
construction, 𝐝𝐢𝐯(𝝉ℎ − ℎ𝝉ℎ) = 𝟎 and thanks to (4.12) it holds true that ‖𝝉ℎ −ℎ𝝉ℎ‖0,Ω ≲ ‖𝝉ℎ − 𝝉𝚝

ℎ
‖0,Ω. Moreover, it is easy to check that ℎ𝝉ℎ =

(ℎ𝝉ℎ)𝚝. It remains to show that ℎ preserves the boundary condition 
on Γ𝑁 . This follows from the fact that ∇⊥𝒘ℎ𝒏 = (𝜕𝜏𝑤ℎ,1, 𝜕𝜏𝑤ℎ,2)𝚝 and 
the tangential derivatives 𝜕𝜏𝑤ℎ,𝑗 ∶= 𝜕1𝑤ℎ,𝑗𝑛2 − 𝜕2𝑤ℎ,𝑗𝑛1, 𝑗 = 1, 2, vanish 
on Γ𝑁 since 𝒘ℎ ∈ 𝐻1

𝑁
(Ω, ℝ𝑑 ). This finishes the proof of the result in the 

two dimensional case.
In the case 𝑑 = 3, we let ℎ𝝉ℎ ∶= 𝝉ℎ +∇ ×𝒘ℎ, with 𝒘ℎ = 𝐳𝚝

ℎ
− (tr 𝐳𝐡)𝐼 , 

where the tensor 𝐳ℎ ∈ 𝐻1
𝑁
(Ω, 𝕄) ∩ 𝑘+1(ℎ, 𝕄) satisfies 𝐝𝐢𝐯 𝐳ℎ = (𝝉ℎ,23 −

𝝉ℎ,32, 𝝉ℎ,31 −𝝉ℎ,13, 𝝉ℎ,12 −𝝉ℎ,21)𝚝 and ‖𝐳ℎ‖1,Ω ≲ ‖𝝉ℎ−𝝉𝚝
ℎ
‖0,Ω. The existence 

of 𝐳ℎ is ensured by Assumption 2. In this way, we also have 𝐝𝐢𝐯(𝝉ℎ −
ℎ𝝉ℎ) = 𝟎 and ‖𝝉ℎ −ℎ𝝉ℎ‖0,Ω ≲ ‖𝝉ℎ − 𝝉𝚝

ℎ
‖0,Ω. The proof of the symmetry 

property ℎ𝝉ℎ = (ℎ𝝉ℎ)𝚝 is a little more involved in this case, as shown 
in [32, Lemma 5.2]. Finally, we point out that (∇ ×𝒘ℎ)𝒏 = (divΓ(𝒘1

ℎ
×

𝒏), divΓ(𝒘2
ℎ
× 𝒏), divΓ(𝒘3

ℎ
× 𝒏))𝚝 on Γ, where 𝒘𝑗

ℎ
, 𝑗 = 1, 2, 3 stand for the 

rows of 𝒘ℎ and divΓ represents the divergence operator on the surface 
Γ. Taking into account that, 𝒘ℎ|Γ𝑁

= 𝟎, we deduce that ℎ𝝉ℎ belongs to 
𝑘(ℎ, 𝕊) ∩ 𝑋 for all 𝝉ℎ ∈ 𝑘(ℎ, 𝕄) ∩ 𝐻𝑁 (𝐝𝐢𝐯, Ω, 𝕄), which finishes the 
proof of the result in the tree-dimensional case. □

We are able to state now the counterpart of Theorem 4.2 for  𝑠
ℎ
∶=

ℎ◦ℎ ∶ 𝐿2(Ω, 𝕄) → 𝑋𝑐
ℎ
.

Corollary 4.1. Under Assumption 2,  𝑠
ℎ
∶ 𝐿2(Ω, 𝕊) → 𝑋𝑐

ℎ
satisfies

i)
‖‖‖𝝈 −  𝑠

ℎ
𝝈
‖‖‖0,Ω ≤ 𝐶 inf

𝝉ℎ∈𝐻𝑁 (𝐝𝐢𝐯,Ω,𝕄)∩𝑘(ℎ,𝕄)
‖‖𝝈 − 𝝉ℎ

‖‖0,Ω ∀𝝈 ∈ 𝐿2(Ω, 𝕊)

with 𝐶 independent of ℎ,

ii) and 𝐝𝐢𝐯 𝑠
ℎ
𝝈 = 𝑄𝑘−1

ℎ
𝐝𝐢𝐯𝝈 for all 𝝈 ∈𝑋.

Proof. The commuting property for  𝑠
ℎ

follows from the corresponding 
property for ℎ and from the fact that ℎ preserves the divergence of 
tensors, as stated in Lemma 4.1 i). In addition, as a consequence the 
property given by Lemma 4.1 ii), for any 𝝈 ∈𝐿2(Ω, 𝕊), it holds true that‖‖‖𝝈 −  𝑠

ℎ
𝝈
‖‖‖0,Ω ≤ ‖‖𝝈 − ℎ𝝈

‖‖0,Ω + ‖‖ℎ𝝈 − ℎ(ℎ𝝈)‖‖0,Ω
≲ ‖‖𝝈 − ℎ𝝈

‖‖0,Ω + ‖‖𝝈 − ℎ𝝈 − (𝝈 − ℎ𝝈)𝚝‖‖0,Ω
≲ ‖‖𝝈 − ℎ𝝈

‖‖0,Ω,

(4.13)

and the first statement of the Corollary follows from Theorem 4.2 i). □
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Using the density of smooth functions in 𝐻𝑁 (𝐝𝐢𝐯, Ω, 𝕄) [21, Lemma 
1.2] and the interpolation error estimates satisfied by the BDM projec-
tor, we deduce from Corollary 4.1 that, for all 𝝈 ∈ 𝑋,

inf
𝝉ℎ∈𝑋𝑐

ℎ

‖‖𝝈 − 𝝉ℎ
‖‖𝑋 ≤ ‖‖‖𝝈 −  𝑠

ℎ
𝝈
‖‖‖𝑋

≲ inf
𝝉ℎ∈𝐻𝑁 (𝐝𝐢𝐯,Ω,𝕄)∩𝑘(ℎ,𝕄)

‖‖𝝈 − 𝝉ℎ
‖‖0,Ω + ‖𝐝𝐢𝐯𝝈 −𝑄𝑘−1

ℎ
𝐝𝐢𝐯𝝈‖0,Ω → 0

when ℎ goes to zero, which proves (4.7).

4.2. The operator 𝑃ℎ

In what follows, the norm of a linear and continuous operator 𝐿 ∶
𝑉1 → 𝑉2 between two Hilbert spaces 𝑉1 and 𝑉2 is denoted ‖𝐿‖(𝑉1 ,𝑉2) ∶=
sup𝑣∈𝑉1 ,‖𝑣‖𝑉1 =1

‖𝐿𝑣‖𝑉2
.

Under Assumption 1, it follows from (4.4) and Proposition 3.1 that

‖‖‖‖𝜚− 1
2 𝐝𝐢𝐯ℎ 𝝉ℎ

‖‖‖‖20,Ω +
‖‖‖‖‖𝛿−

1
2 ℎ

− 1
2 [[𝝉ℎ]]

‖‖‖‖‖
2

0,∗
ℎ

= 0 ∀𝝉ℎ ∈ 𝐾ℎ.

This means that the elements of 𝐾ℎ have continuous normal compo-
nents across the internal edges/faces, have a vanishing normal compo-
nent on Γ𝑁 and are globally divergence free. It follows that

𝐾ℎ =
{
𝝉ℎ ∈𝑋𝑐

ℎ
; 𝐝𝐢𝐯𝝉ℎ = 0 in Ω

}
⊂ 𝐾.

This inclusion is crucial in our analysis. It is important to notice that the 
𝑎(⋅, ⋅)-orthogonal complement 𝐾⊥

ℎ
∶=

{
𝝈ℎ ∈𝑋𝑐

ℎ
; 𝑎(𝝈ℎ,𝝉ℎ) = 0, ∀𝝉ℎ ∈𝐾ℎ

}
is not a subset of 𝐾⊥ = 𝑃 (𝑋). Let 𝑃ℎ ∶ 𝑋𝑐

ℎ
→ 𝐾⊥

ℎ
be the 𝑋-orthogonal 

projection in 𝑋𝑐
ℎ

onto 𝐾⊥
ℎ

. The following result provides an estimate for 
the operator (𝑃 − 𝑃ℎ)|𝑋𝑐

ℎ
.

Lemma 4.2. Under Assumptions 1 and 2, it holds true that

‖‖𝑃 − 𝑃ℎ
‖‖(𝑋𝑐

ℎ
,𝑋) ≤ 2‖‖‖(𝐼 −  𝑠

ℎ
)𝑃‖‖‖(𝑋,𝐻)

.

Proof. Let us first notice that, by definition of 𝑃 and  𝑠
ℎ

, for any 𝝉ℎ ∈
𝑋𝑐

ℎ
,

𝐝𝐢𝐯(𝝉ℎ −  𝑠
ℎ
𝑃 𝝉ℎ) = 𝐝𝐢𝐯 𝝉ℎ − 𝐝𝐢𝐯ℎ𝑃 𝝉ℎ = 𝐝𝐢𝐯𝝉ℎ −𝑄𝑘−1

ℎ
𝐝𝐢𝐯𝑃 𝝉ℎ

= 𝐝𝐢𝐯 𝝉ℎ −𝑄𝑘−1
ℎ

𝐝𝐢𝐯𝝉ℎ = 𝟎,

which proves that (𝐼 − 𝑠
ℎ
𝑃 )𝑋𝑐

ℎ
⊂ 𝐾ℎ. Hence, it follows from the triangle 

inequality that‖‖(𝑃 − 𝑃ℎ)𝝉ℎ
‖‖𝑋 ≤ ‖‖‖𝑃ℎ𝝉ℎ −  𝑠

ℎ
𝑃 𝝉ℎ

‖‖‖𝑋
+ ‖‖‖(𝐼 −  𝑠

ℎ
)𝑃 𝝉ℎ

‖‖‖𝑋

= ‖‖‖𝑃ℎ𝝉ℎ −  𝑠
ℎ
𝑃 𝝉ℎ

‖‖‖ + ‖‖‖(𝐼 −  𝑠
ℎ
)𝑃 𝝉ℎ

‖‖‖, ∀𝝉ℎ ∈ 𝑋𝑐
ℎ
,

(4.14)

where we took into account that 𝑃ℎ𝝉ℎ −  𝑠
ℎ
𝑃 𝝉ℎ = 𝝉ℎ −  𝑠

ℎ
𝑃 𝝉ℎ − (𝝉ℎ −

𝑃ℎ𝝉ℎ) ∈ 𝐾ℎ and

𝑃 𝝉ℎ −  𝑠
ℎ
𝑃 𝝉ℎ = 𝝉ℎ −  𝑠

ℎ
𝑃 𝝉ℎ − (𝝉ℎ − 𝑃 𝝉ℎ) ∈𝐾.

To estimate the first term in the right-hand side of (4.14), we take ad-
vantage of the inclusion 𝐾ℎ ⊂ 𝐾 to write(
𝑃ℎ𝝉ℎ −  𝑠

ℎ
𝑃 𝝉ℎ,𝑃ℎ𝝉ℎ −  𝑠

ℎ
𝑃 𝝉ℎ

)
 =

(
𝑃 𝝉ℎ −  𝑠

ℎ
𝑃 𝝉ℎ,𝑃ℎ𝝉ℎ −  𝑠

ℎ
𝑃 𝝉ℎ

)


and we deduce from the Cauchy-Schwarz inequality that‖‖‖𝑃ℎ𝝉ℎ −  𝑠
ℎ
𝑃 𝝉ℎ

‖‖‖ ≤ ‖‖‖(𝐼 −  𝑠
ℎ
)𝑃 𝝉ℎ

‖‖‖.

Plugging the last estimate in (4.14) gives the result. □

Remark 4.2. A conforming approximation of problem (2.4) based on 
𝑋𝑐

ℎ
is not useful in practice since it is not straightforward to construct 

an explicit basis of this finite element space.
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5. Spectral correctness of the DG scheme and error estimates

5.1. The main result

Even in the case of conforming Galerkin approximations of eigen-
problems, it is well-known [6] that when the source operator is not 
compact, a convergent discrete scheme for the source problem doesn’t 
necessarily provide a correct approximation of the spectrum. A fortiori, 
in our case, Theorem 4.1 is not enough to prevent (4.1) from producing 
spurious eigenvalues. The procedure introduced in [11,12] to analyze
the spectral approximation of non compact operators has been recently 
adapted in [23, Section 5] to a DG context (cf. also [8]). It is shown that 
the main ingredient to prove the spectral correctness of the method 
is the uniform convergence of 𝑇̃ℎ to 𝑇̃ with respect to the following 
ℎ–dependent norm,

‖𝑇̃ − 𝑇̃ℎ‖ℎ ∶= sup
𝝉ℎ∈𝑘(ℎ,𝕊)

||||||(𝑇̃ − 𝑇̃ℎ)𝝉ℎ
||||||||||||𝝉ℎ

|||||| ⟶ 0, when ℎ → 0. (5.1)

We need the following technical result to prove (5.1).

Lemma 5.1. Under Assumption 2, there exists a projector 𝑠
ℎ
∶ 𝑋𝐷𝐺

ℎ
→ 𝑋𝑐

ℎ
such that

ℎ
‖‖‖𝐝𝐢𝐯ℎ(𝝉ℎ −𝑠

ℎ
𝝉ℎ)

‖‖‖0,Ω + ‖‖‖𝝉ℎ −𝑠
ℎ
𝝉ℎ

‖‖‖0,Ω ≤ 𝐶ℎ
‖‖‖ℎ−1∕2

 [[𝝉ℎ]]
‖‖‖0,∗

ℎ

∀𝝉ℎ ∈ 𝑋𝐷𝐺
ℎ

,

(5.2)

with 𝐶 > 0 independent of ℎ.

Proof. It is proved in [24, Proposition 5.2] that there exists a projector 
ℎ ∶ 𝑋𝐷𝐺

ℎ
→ 𝐻𝑁 (𝐝𝐢𝐯, Ω, 𝕄) ∩𝑘(ℎ, 𝕄) such that

ℎ‖‖𝐝𝐢𝐯ℎ(𝝉ℎ −ℎ𝝉ℎ)‖‖0,Ω + ‖‖𝝉ℎ −ℎ𝝉ℎ
‖‖0,Ω ≤ 𝐶ℎ

‖‖‖ℎ−1∕2
 [[𝝉ℎ]]

‖‖‖0,∗
ℎ

∀𝝉ℎ ∈ 𝑋𝐷𝐺
ℎ

.

(5.3)

By construction of ℎ, the operator 𝑠
ℎ
∶= ℎ◦ℎ satisfies 𝐝𝐢𝐯𝑠

ℎ
𝝉ℎ =

𝐝𝐢𝐯ℎ𝝉ℎ. Moreover, using property ii) of Lemma 4.1 and reasoning as 
for estimate (4.13) yield‖‖‖𝝉ℎ −𝑠

ℎ
𝝉ℎ

‖‖‖0,Ω ≲ ‖‖𝝉ℎ −ℎ𝝉ℎ
‖‖0,Ω.

It follows that (5.2) is a direct consequence of (5.3). □

We point out that the stability of 𝑠
ℎ
∶ 𝑋𝐷𝐺

ℎ
→ 𝑋𝑐

ℎ
follows directly 

from the triangle inequality and (5.2), namely,‖‖‖𝑠
ℎ
𝝉ℎ

‖‖‖𝑋
≤ 𝐶||||||𝝉ℎ

|||||| ∀𝝉ℎ ∈ 𝑋𝐷𝐺
ℎ

, (5.4)

with 𝐶 > 0 independent of ℎ.
We are now in a position to prove the main result of this article.

Theorem 5.1. Under Assumptions 1 and 2, it holds true that

‖‖𝑇̃ − 𝑇̃ℎ
‖‖ℎ ≤ 𝐶

(
ℎ+ ‖‖‖(𝐼 −  𝑠

ℎ
)𝑃‖‖‖(𝑋,𝐻)

+ ‖(𝐼 −  𝑠
ℎ
)𝑇𝑃‖(𝑋,𝑋)

)
,

with 𝐶 independent of ℎ.

Proof. For any 𝝉ℎ ∈ 𝑋𝐷𝐺
ℎ

, we consider the splitting 𝝉ℎ = (𝐼 − 𝑠
ℎ
)𝝉ℎ +

𝑃ℎ𝑠
ℎ
𝝉ℎ + (𝐼 − 𝑃ℎ)𝑠

ℎ
𝝉ℎ and exploit the fact that (𝐼 − 𝑃ℎ)𝑠

ℎ
𝝉ℎ ∈ 𝐾ℎ ⊂ 𝐾

is in the kernel of (𝑇 − 𝑇̃ℎ) to obtain

(𝑇̃ − 𝑇̃ℎ)𝝉ℎ = (𝑇̃ − 𝑇̃ℎ)( −𝑠
ℎ
)𝝉ℎ + (𝑇̃ − 𝑇̃ℎ)𝑃ℎ𝑠

ℎ
𝝉ℎ

= (𝑇̃ − 𝑇̃ℎ)(𝐼 −𝑠
ℎ
)𝝉ℎ + (𝑇̃ − 𝑇̃ℎ)(𝑃ℎ − 𝑃 )𝑠

ℎ
𝝉ℎ

+ (𝑇̃ − 𝑇̃ℎ)𝑃𝑠
ℎ
𝝉ℎ.

It follows from the triangle inequality, (2.6) and (4.3) that
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||||||(𝑇̃ − 𝑇̃ℎ)𝝉ℎ
|||||| ≤ 3‖‖‖( −𝑠

ℎ
)𝝉ℎ

‖‖‖ + 3‖(𝑃 − 𝑃ℎ)𝑠
ℎ
𝝉ℎ‖

+ |||||||||(𝑇̃ − 𝑇̃ℎ)𝑃𝑠
ℎ
𝝉ℎ

|||||||||. (5.5)

Using (5.2), we can bound the first term in the right-hand side of (5.5)
as follows,

‖‖‖(𝐼 −𝑠
ℎ
)𝝉ℎ

‖‖‖ ≤ 𝑎+‖(𝐼 −𝑠
ℎ
)𝝉ℎ‖0,Ω ≤ 𝐶ℎ||||||𝝉ℎ

||||||. (5.6)

For the second term, (5.4) and Lemma 4.2 yield

‖‖‖(𝑃 − 𝑃ℎ)𝑠
ℎ
𝝉ℎ

‖‖‖ ≤ ‖‖𝑃 − 𝑃ℎ
‖‖(𝑋𝑐

ℎ
,𝑋)

‖‖‖𝑠
ℎ
𝝉ℎ

‖‖‖𝑋
≲
‖‖‖(𝐼 −  𝑠

ℎ
)𝑃‖‖‖(𝑋,𝐻)

||||||𝝉ℎ
||||||.

(5.7)

To bound the third term in the right-hand side of (5.5), we begin by 
applying Céa estimate (4.5) to obtain

|||||||||(𝑇̃ − 𝑇̃ℎ)𝑃𝑠
ℎ
𝝉ℎ

||||||||| ≤ (1 + 2𝑀)|||||||||(𝐼 −  𝑠
ℎ
)𝑇𝑃𝑠

ℎ
𝝉ℎ

|||||||||∗. (5.8)

Let us introduce the notation 𝒖 ∶= 1
𝜚
𝐝𝐢𝐯(𝑇𝑃𝑠

ℎ
𝝉ℎ) ∈ 𝐻1

𝐷
(Ω, ℝ𝑑 ) and no-

tice that, by virtue of (2.7) and (5.4),

‖𝒖‖1,Ω ≤ 𝐶
‖‖‖𝑃𝑠

ℎ
𝝉ℎ

‖‖‖ ≤ 𝐶
‖‖‖𝑠

ℎ
𝝉ℎ

‖‖‖𝑋
≤ 𝐶1||||||𝝉ℎ

||||||. (5.9)

Moreover, taking into account that 𝜚 is piecewise constant and 
using Corollary 4.1 ii) we can write 1

𝜚
𝐝𝐢𝐯(𝐼 −  𝑠

ℎ
)𝑇𝑃𝑠

ℎ
𝝉ℎ = 𝒖 −

1
𝜚
𝑄𝑘−1

ℎ
(𝐝𝐢𝐯𝑇𝑃𝑠

ℎ
𝝉ℎ) = (𝐼 −𝑄𝑘−1

ℎ
)𝒖 and it follows that

|||||||||(𝐼 −  𝑠
ℎ
)𝑇𝑃𝑠

ℎ
𝝉ℎ

|||||||||2∗ = ‖‖‖(𝐼 −  𝑠
ℎ
)𝑇𝑃𝑠

ℎ
𝝉ℎ

‖‖‖2𝑋
+ ‖‖‖√𝜚ℎ{(𝐼 −𝑄𝑘−1

ℎ
)𝒖}‖‖‖20,∗

ℎ

.
(5.10)

Now, from the one hand,‖‖‖(𝐼 −  𝑠
ℎ
)𝑇𝑃𝑠

ℎ
𝝉ℎ

‖‖‖𝑋
≤ ‖(𝐼 −  𝑠

ℎ
)𝑇𝑃‖(𝑋,𝑋)

‖‖‖𝑠
ℎ
𝝉ℎ

‖‖‖𝑋

≲ ‖(𝐼 −  𝑠
ℎ
)𝑇𝑃‖(𝑋,𝑋)||||||𝝉ℎ

|||||| (5.11)

and from the other hand, a classical scaling argument combined with 
(5.9) yields

‖‖‖√ℎ (𝒖−𝑄𝑘−1
ℎ

𝒖)‖‖‖0,∗
ℎ

≲ ℎ|𝒖|1,Ω ≤ 𝐶ℎ||||||𝝉ℎ
||||||. (5.12)

Using (5.11) and (5.12) in (5.8) gives the estimate

|||||||||(𝐼 −  𝑠
ℎ
)𝑇𝑃𝑠

ℎ
𝝉ℎ

|||||||||∗ ≤ 𝐶
(
ℎ+ ‖(𝐼 −  𝑠

ℎ
)𝑇𝑃‖(𝑋,𝑋)

) ||||||𝝉ℎ
||||||. (5.13)

Finally, plugging (5.6), (5.7), and (5.13) in (5.5) gives the result. □

Corollary 5.1. Under Assumptions 1 and 2, it holds true that

lim
ℎ→0

‖‖𝑇̃ − 𝑇̃ℎ
‖‖ℎ = 0.

Proof. The pointwise convergence of 𝐼 −  𝑠
ℎ
∶ 𝑋 → 𝑋 to zero (ensured 

by Corollary 4.1) and the compactness of 𝑃 ∶ 𝑋 → 𝐻 and 𝑇𝑃 ∶ 𝑋 → 𝑋

imply that the operators (𝐼 −  𝑠
ℎ
)𝑃 ∶ 𝑋 → 𝐻 and (𝐼 −  𝑠

ℎ
)𝑇𝑃 ∶ 𝑋 → 𝑋

are uniformly convergent to zero; namely,

lim
ℎ→0

‖‖‖(𝐼 −  𝑠
ℎ
)𝑃‖‖‖(𝑋,𝐻)

= 0, and lim
ℎ→0

‖‖‖(𝐼 −  𝑠
ℎ
)𝑇𝑃

‖‖‖(𝑋,𝑋)
= 0,

and the result follows directly from Theorem 5.1. □

5.2. Spectral correctness and convergence

For the sake of completeness, in the remainder of this section we 
show (by applying a number of results from [23, Section 5]) how to 
exploit property (5.1) to derive the correct spectral convergence of 
(4.1). Let us first introduce some notations. For 𝝈 ∈ 𝑋𝐷𝐺(ℎ) and 𝐸

and 𝐹 closed subspaces of 𝑋𝐷𝐺(ℎ), we set 𝛿(𝝈, 𝐸) ∶= inf𝝉∈𝐸 |||𝝈 − 𝝉|||, 
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𝛿(𝐸, 𝐹 ) ∶= sup𝝈∈𝐸∶ |||𝝈|||=1 𝛿(𝝈, 𝐹 ), and 𝛿(𝐸, 𝐹 ) ∶= max{𝛿(𝐸, 𝐹 ), 𝛿(𝐹 , 𝐸)}, 
the latter being the so called gap between subspaces 𝐸 and 𝐹 .

Let Λ ⊂ ℂ ⧵ {0, 1} be an arbitrary compact set with smooth boundary 
𝜕Λ satisfying 𝜕Λ ∩ sp(𝑇 ) = ∅. We assume that there are 𝑚 eigenvalues 
𝜂Λ1 , … , 𝜂Λ𝑚 of 𝑇 (repeated according to their algebraic multiplicities) 
inside 𝜕Λ. The following result shows that the resolvent 

(
𝑧𝐼 − 𝑇̃

)−1 ∶
𝑋𝐷𝐺(ℎ) ⟶ 𝑋𝐷𝐺(ℎ) is uniformly bounded with respect to ℎ and 𝑧 ∈ 𝜕Λ.

Lemma 5.2. There exists a constant 𝐶 > 0 independent of ℎ such that

||||||(𝑧𝐼 − 𝑇̃ )𝝉|||||| ≥ 𝐶 |||𝝉||| ∀𝝉 ∈𝑋𝐷𝐺(ℎ),

for all 𝑧 ∈ 𝜕Λ.

Proof. See [23, Lemma 3.2] □

We deduce from Lemma 5.2 that the operator  ∶=
1
2𝜋𝑖 ∫

𝜕Λ

(
𝑧𝐼 − 𝑇̃

)−1
𝑑𝑧 ∶ 𝑋𝐷𝐺(ℎ) ⟶ 𝑋𝐷𝐺(ℎ) is well-defined and bounded 

uniformly in ℎ. Moreover, |𝑋 ∶ 𝑋 → 𝑋 is a projector onto the finite 
dimensional space (𝑋) spanned by the generalized eigenfunctions as-
sociated with the finite set of eigenvalues of 𝑇 contained in Λ. Actually, 
it is easy to check that 𝑇̃ ∶ 𝑋𝐷𝐺(ℎ) → 𝑋𝐷𝐺(ℎ) and 𝑇 ∶ 𝑋 → 𝑋 have the 
same eigenvalues in Λ and that (𝑋𝐷𝐺(ℎ)) = (𝑋).

The next step consists in combining Lemma 5.2 and Theorem 5.1 to 
deduce that the discrete resolvent 

(
𝑧𝐼 − 𝑇̃ℎ

)−1 ∶ 𝑋𝐷𝐺(ℎ) ⟶ 𝑋𝐷𝐺(ℎ) is 
also uniformly bounded, provided ℎ is small enough, cf. [23, Lemma 
5.1] for more details.

Lemma 5.3. Under Assumptions 1 and 2, there exists ℎ0 > 0 such that for 
all ℎ ≤ ℎ0,||||||(𝑧𝐼 − 𝑇̃ℎ)𝝉|||||| ≥ 𝐶 |||𝝉||| for all 𝝉 ∈ 𝑋𝐷𝐺(ℎ) and 𝑧 ∈ 𝜕Λ

with 𝐶 > 0 independent of ℎ.

Here again, it follows from Lemma 5.3 that, for ℎ small enough, the 
linear operator

ℎ ∶= 1
2𝜋𝑖 ∫

Λ

(
𝑧𝐼 − 𝑇̃ℎ

)−1
𝑑𝑧 ∶𝑋𝐷𝐺(ℎ)⟶ 𝑋𝐷𝐺(ℎ)

is uniformly bounded in ℎ. Likewise, ℎ|𝑋𝐷𝐺
ℎ

∶ 𝑋𝐷𝐺
ℎ

→ 𝑋𝐷𝐺
ℎ

is a projec-

tor onto the 𝑇̃ℎ-invariant subspace ℎ(𝑋𝐷𝐺(ℎ)) = ℎ(𝑋𝐷𝐺
ℎ

) correspond-
ing to the eigenvalues of 𝑇ℎ ∶ 𝑋𝐷𝐺

ℎ
→ 𝑋𝐷𝐺

ℎ
contained in Λ.

The approximation properties of the eigenfunctions of problem (2.4)
by means of those of problem (4.1) are obtained as a consequence of the 
following estimate of the distance between ℎ(𝑋𝐷𝐺

ℎ
) and (𝑋), mea-

sured in terms of the gap 𝛿.

Theorem 5.2. Under Assumptions 1 and 2, there exists ℎ0 > 0 such that for 
all ℎ ≤ ℎ0,

𝛿((𝑋),ℎ(𝑋𝐷𝐺
ℎ

)) ≤ 𝐶
(‖𝑇̃ − 𝑇ℎ‖ℎ + 𝛿((𝑋),𝑋𝐷𝐺

ℎ
)
)
, (5.14)

with 𝐶 > 0 independent of ℎ.

Proof. See [23, Theorem 5.1]. □

We point out that since (𝑋) is a finite dimensional subspace of 
𝑋, (4.7) and Theorem 5.1 ensure the convergence of 𝛿((𝑋), ℎ(𝑋𝐷𝐺

ℎ
))

to zero when ℎ → 0. This is the main ingredient in the proof of the 
following Theorem, cf. [23, Theorem 5.2] for more details.

Theorem 5.3. Assume that Assumptions 1 and 2 are satisfied. Let Λ ⊂
ℂ ⧵ {0, 1} be an arbitrary compact set with smooth boundary 𝜕Λ satisfying 
26
𝜕Λ ∩ sp(𝑇 ) = ∅. We assume that there are 𝑚 eigenvalues 𝜂Λ1 , … , 𝜂Λ𝑚 of 𝑇
(repeated according to their algebraic multiplicities) contained in Λ. We also 
consider the eigenvalues 𝜂Λ1,ℎ, … , 𝜂Λ

𝑚(ℎ),ℎ of 𝑇ℎ ∶ 𝑋𝐷𝐺
ℎ

→ 𝑋𝐷𝐺
ℎ

lying in Λ and 
repeated according to their algebraic multiplicities. Then, there exists ℎ0 > 0
such that 𝑚(ℎ) = 𝑚 for all ℎ ≤ ℎ0 and

lim
ℎ→0

max
1≤𝑖≤𝑚

|𝜂Λ𝑖 − 𝜂Λ
𝑖,ℎ
| = 0.

Moreover, if (𝑋) is the 𝑇 -invariant subspace of 𝑋 spanned by the gen-

eralized eigenfunctions corresponding to the set of eigenvalues {𝜂Λ
𝑖
, 𝑖 =

1, … , 𝑚} and ℎ(𝑋𝐷𝐺
ℎ

) is the 𝑇ℎ-invariant subspace of 𝑋𝐷𝐺
ℎ

spanned by the 
eigenspaces corresponding to {𝜂Λ

𝑖,ℎ
, 𝑖 = 1, … , 𝑚} then 𝛿((𝑋), ℎ(𝑋𝐷𝐺

ℎ
)) → 0

as ℎ → 0.

5.3. Error estimates for eigenvalues and eigenfunctions

Theorem 5.3 guaranties that the discontinuous Galerkin scheme 
(4.1) does not pollute the spectrum of 𝑇 with spurious modes. More-
over, it proves the convergence of eigenvalues and eigenfunctions with 
correct multiplicity. However, in practice the space 𝜂(𝑋) of generalized 
eigenfunctions corresponding to a given isolated eigenvalue 𝜂 ≠ 1 enjoys 
individual smoothness properties and the term ‖𝑇̃ − 𝑇ℎ‖ℎ in (5.14) pre-
vents from taking advantage of this specific regularity. For this reason, 
we are going to show now that the gap between the continuous and dis-
crete eigenspaces corresponding to a particular eigenvalue 𝜂 ≠ 1 can be 
bounded only in terms of

𝛿∗((𝑋),𝑋𝐷𝐺
ℎ

) ∶= sup
𝝈∈(𝑋),‖𝝈‖𝑋=1

inf
𝝉ℎ∈𝑋𝐷𝐺

ℎ

||||||𝝈 − 𝝉ℎ
||||||∗.

Hence, hereafter we focus on a particular isolated eigenvalue 𝜂 ≠ 1
of 𝑇 of algebraic multiplicity 𝑚 and let 𝐷𝜂 ⊂ ℂ be a closed disk 
centered at 𝜂 with boundary 𝛾 such that 𝐷𝜂 ∩ sp(𝑇 ) = {𝜂}. We de-

note by 𝜂 ∶= 1
2𝜋𝑖 ∫

𝛾

(
𝑧𝐼 − 𝑇̃

)−1
𝑑𝑧 ∶ 𝑋 → 𝑋 the projector onto the 

eigenspace 𝜂(𝑋) of 𝜂 and we define, for ℎ small enough, the projec-

tor by 𝜂,ℎ ∶= 1
2𝜋𝑖 ∫

𝛾

(
𝑧𝐼 − 𝑇̃ℎ

)−1
𝑑𝑧 ∶𝑋𝐷𝐺

ℎ
→ 𝑋𝐷𝐺

ℎ
onto the 𝑇ℎ-invariant 

subspace 𝜂,ℎ(𝑋𝐷𝐺
ℎ

) corresponding to the 𝑚 eigenvalues of 𝑇ℎ ∶ 𝑋𝐷𝐺
ℎ

→

𝑋𝐷𝐺
ℎ

contained in 𝛾 . A straightforward adaptation of [23, Theorem 6.1]
gives the following result.

Theorem 5.4. Assume that Assumptions 1 and 2 are satisfied. For ℎ small 
enough, there exists a constant 𝐶 independent of ℎ such that

𝛿
(𝜂(𝑋),𝜂,ℎ(𝑋𝐷𝐺

ℎ
)
) ≤ 𝐶𝛿∗(𝜂(𝑋),𝑋𝐷𝐺

ℎ
). (5.15)

We conclude with the following rates of convergence for eigenfunc-
tions and eigenvalues.

Theorem 5.5. Assume that Assumptions 1 and 2 are satisfied. Let 𝑟 > 0 be 
such that 𝜂(𝑋) ⊂

{
𝝉 ∈ 𝐻𝑟(∪𝑗Ω𝑗 ,𝕄); 𝐝𝐢𝐯𝝉 ∈𝐻1+𝑟(∪𝑗Ω𝑗 ,ℝ𝑑 )

}
. Then, there 

exists 𝐶 > 0 independent of ℎ such that, for ℎ small enough,

𝛿
(𝜂(𝑋),𝜂,ℎ(𝑋𝐷𝐺

ℎ
)
) ≤ 𝐶ℎmin{𝑟,𝑘}. (5.16)

Moreover, there exists 𝐶 ′ > 0 independent of ℎ such that

max
1≤𝑖≤𝑚

|𝜅 − 𝜅𝑖,ℎ| ≤ 𝐶 ′ ℎ2min{𝑟,𝑘}, (5.17)

where 𝜅 ∶= 1∕𝜂 and 𝜅𝑖,ℎ ∶= 1∕𝜂𝑖,ℎ, 𝑖 = 1, … , 𝑚.

Proof. For any 𝝈 ∈ 𝜂(𝑋), taking into account (4.9), it holds true that

inf
𝝉 ∈𝑋𝐷𝐺

||||||𝝈 − 𝝉ℎ
||||||∗ ≤ |||||||||𝝈 −ΠBDM

ℎ
𝝈
|||||||||∗
ℎ ℎ
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Fig. 6.1. An unstructured shape-regular mesh ℎ of mesh size ℎ = 1∕4 (left) and the corresponding barycentric refinement  𝚋𝚊𝚛𝚢
ℎ

(right).
=
(‖‖‖(𝐼 −ΠBDM

ℎ
)𝝈‖‖‖2 +

‖‖‖‖ 1√
𝜚
(𝐼 −𝑄𝑘−1

ℎ
)𝐝𝐢𝐯𝝈

‖‖‖‖20,Ω
+
‖‖‖‖‖𝜚

1
2 ℎ

1
2 {

1
𝜚
(𝐼 −𝑄𝑘−1

ℎ
)𝐝𝐢𝐯𝝈}

‖‖‖‖‖
2

∗
ℎ

)1∕2
.

Using (4.8), (4.10) for the first and second terms of the last identity, 
respectively, and employing classical scaling arguments for the last one 
we deduce that

inf
𝝉ℎ∈𝑋𝐷𝐺

ℎ

||||||𝝈 − 𝝉ℎ
||||||∗ ≲ ℎmin{𝑟,𝑘}

(
𝐽∑

𝑗=1
‖𝝈‖2

𝑟,Ω𝑗
+ ‖𝐝𝐢𝐯𝝈‖2

𝑟,Ω𝑗

)1∕2

,

and (5.16) follows from the fact that 𝜂(𝑋) is a finite dimensional sub-
space of 𝑋.

The deduction of (5.17) from (5.16) is obtained in the classical way, 
see [23, Theorem 6.2] for more details. □

Remark 5.1. The displacement field corresponding to a given 𝝈 ∈ 𝜂(𝑋)
is 𝒖 = − 1

𝜚(𝜅−1) 𝐝𝐢𝐯𝝈. Let us associate to 𝒖 the discrete displacement 
𝒖ℎ ∶= − 1

𝜚(𝜅ℎ−1)
𝐝𝐢𝐯ℎ 𝝈ℎ, where 𝜅ℎ ∶= (

∑𝑚
𝑖=1 𝜅𝑖,ℎ)∕𝑚. By virtue of the tri-

angle inequality and Theorem 5.5, for ℎ small enough, we have the 
error estimate

‖‖𝒖− 𝒖ℎ
‖‖0,Ω ≤ 1

𝜚−

( 1
𝜅 − 1

‖‖𝐝𝐢𝐯ℎ(𝝈 − 𝝈ℎ)‖‖0,Ω
+
|||| 1
𝜅 − 1

− 1
𝜅ℎ − 1

|||| ‖‖𝐝𝐢𝐯ℎ 𝝈ℎ
‖‖0,Ω) ≲ ℎmin{𝑟,𝑘}.

6. Numerical results

We point out that the inf-sup condition (4.11) corresponding to 
the Scott–Vogelius element is only known to be satisfied under cer-
tain conditions on the mesh and the polynomial degree 𝑘. Namely, in 
two dimensions, Assumption 2 holds true on shape-regular triangula-
tions with no singular vertices for 𝑘 ≥ 3, cf. [31] and in dimension
three, it is satisfied on uniform simplicial meshes for 𝑘 ≥ 5 [36]. For 
lower values 1 ≤ 𝑘 < 2𝑑 − 1 of the polynomial degree, we can ensure 
Assumption 2 by considering shape-regular meshes with barycentric re-
finements (Alfeld splits), see [30,34]. Similar results have been proved 
for meshes of Powell–Sabin type [35,37], which will not be employed 
here.

To our knowledge, the stability results mentioned so far for the 
Scott–Vogelius element have only been obtained for homogeneous 
Dirichlet or Neumann boundary conditions on Γ. However, there is nu-
merical evidence that the stability and optimal accuracy of this finite 
element method also occur on barycentric refinements of shape-regular 
meshes when mixed boundary conditions are imposed [29,16].
27
Table 6.1

Lowest natural frequencies on an unstructured shape-regular triangulation ℎ

of mesh size ℎ = 1∕64.

𝑘 = 1

𝚊0 = 4 𝚊0 = 8 𝚊0 = 16

0.678702 0.679772 0.680201
1.695659 1.697598 1.698374
1.816904 1.819964 1.821196
2.639076 2.940891 2.944729
2.837896 3.014975 3.016507
2.931343 3.401037 3.442011
3.011368 3.440911 4.138696
3.108155 3.651704 4.157343

3.417512 4.007783 4.453139

3.441640 4.134962 4.628728

In what follows, we say that  𝚋𝚊𝚛𝚢
ℎ

is a simplicial barycentric (𝑑+1)-

sected mesh of size ℎ if  𝚋𝚊𝚛𝚢
ℎ

is obtained after refinement of a shape-
regular simplicial mesh ℎ of size ℎ by subdividing each simplex in ℎ

into 𝑑 + 1 sub-simplices by connecting the barycenter with the 𝑑 + 1
vertices, see Fig. 6.1.

The numerical results presented in this section have been imple-
mented using the finite element library Netgen/NGSolve [28]. In 
examples 1 and 2 below, we solve the classical displacement-based 
elasticity eigenproblem corresponding to each case in order to obtain 
reference values for the eigenfrequencies.

Example 1: Spectral correctness of the DG scheme in two dimen-

sions. We assume that problem (2.3) is posed in the unit square 
Ω = (0, 1)2 and let the compliance tensor  be given by Hooke’s law

𝝉 = 1
2𝜇

𝝉 − 𝜆

2𝜇(𝑑𝜆+ 2𝜇)
tr 𝝉𝐼, (6.1)

where 𝜆 and 𝜇 are the Lamé coefficients. We select in this example 
constant values for the mass density 𝜚 = 1, Young’s modulus 𝐸 = 1 and 
Poisson’s ratio 𝜈 = 0.35. We recall that the Lamé coefficients are related 
to 𝐸 and 𝜈 by

𝜆 ∶= 𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
and 𝜇 ∶= 𝐸

2(1 + 𝜈)
.

We assume that the solid is fixed at the bottom side Γ𝐷 = (0, 1) × {0} of 
the square and free of stress on the remaining three sides Γ𝑁 = Γ ⧵ Γ𝐷 .

We report in Table 6.1 the 10 smallest vibration frequencies 𝜔ℎ𝑖 ∶=√
𝜅ℎ𝑖 − 1 obtained by solving the DG scheme (4.1) on an unstructured 

shape-regular triangulation ℎ of mesh size ℎ = 1∕64 at the lowest or-
der 𝑘 = 1 and for stability parameters 𝚊 = 𝚊0𝑘2, with a0 ∶= 4, 8, 16. We 
observe that spurious eigenvalues (the numbers in bold font) emerge 
at random positions, which indicates that the approximation is not 
spectrally correct. To ensure Assumption 2, we solve now (4.1) on 
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Table 6.2

Lowest natural frequencies on a barycentric refinement of a shape-regular tri-
angulation  𝚋𝚊𝚛𝚢

ℎ
of mesh size ℎ = 1∕16.

𝑘 = 1

𝚊0 = 2 𝚊0 = 4 𝚊0 = 8

0.677490 0.677848 0.679280
1.693684 1.694236 1.696863
1.811491 1.814970 1.819734
2.910592 2.925604 2.940824
3.002259 3.008271 3.014647
3.425010 3.432744 3.440763
4.091722 4.118359 4.137677
4.587870 4.609321 4.626700
4.745053 4.769440 4.786882
4.717068 4.740651 4.758608

Table 6.3

Lowest natural frequencies on an unstructured shape-regular triangulation ℎ

of mesh size ℎ = 1∕16.

𝑘 = 2

𝚊0 = 2 𝚊0 = 4 𝚊0 = 8

0.676422 0.678614 0.679493
1.691646 1.695661 1.697263
1.811504 1.817566 1.820003
2.915251 2.933614 2.941019
3.004017 3.011501 3.014480
3.428332 3.436800 3.440173
4.111159 4.128585 4.135536
4.561698 4.618693 4.625052
4.603006 4.749476 4.755874
4.733581 4.777890 4.783112

Table 6.4

Lowest natural frequencies on a barycentric refinement of a shape-regular tri-
angulation  𝚋𝚊𝚛𝚢

ℎ
of mesh size ℎ = 1∕16.

𝑘 = 2

𝚊0 = 2 𝚊0 = 4 𝚊0 = 8

0.679380 0.680102 0.680389
1.696791 1.698115 1.698640
1.818694 1.820700 1.821497
2.937186 2.943178 2.945560
3.013475 3.015922 3.016894
3.438312 3.441135 3.442255
4.131920 4.137557 4.139793
4.621689 4.627024 4.629140
4.752329 4.757616 4.759720
4.780796 4.785130 4.786851

a barycentric trisected mesh  𝚋𝚊𝚛𝚢
ℎ

of size ℎ = 1∕16. The results dis-
played in Table 6.2 (for 𝑘 = 1 and for stabilization parameters 𝚊 = 𝚊0𝑘2, 
a0 ∶= 2, 4, 8) provide correct eigenfrequencies.

We repeat the same experiment by solving (4.1) with quadratic poly-
nomial order. We employ an unstructured shape-regular triangulation 
ℎ of size ℎ = 1∕16 in Table 6.3 and a barycentric trisected mesh  𝚋𝚊𝚛𝚢

ℎ

of size ℎ = 1∕16 in Table 6.4. Only one spurious eigenfrequency shows 
up in Table 6.3 among the first 10 eigenvalues in the case a0 = 2. The 
DG method seems to provide a spectrally correct quadratic approxima-
tion on ℎ for 𝚊0 sufficiently large, even though Assumption 2 is not 
known to be satisfied on ℎ for 𝑘 = 2.

We finish this series of tests by reporting in Table 6.5 and Table 6.6
the eigenfrequencies obtain by solving (4.1) for 𝑘 = 3 and 𝑘 = 4, re-
spectively. For these values of the polynomial order 𝑘, Assumption 2
is satisfied on unstructured shape-regular meshes ℎ. We take ℎ = 1∕16
and let 𝚊 = 𝚊0𝑘2 for a0 ∶= 2, 4, 8 in each case. As expected, all the com-
puted eigenfrequencies are correct.
28
Table 6.5

Lowest natural frequencies on an unstructured shape-regular triangulation ℎ

of mesh size ℎ = 1∕16.

𝑘 = 3

𝚊0 = 2 𝚊0 = 4 𝚊0 = 8

0.676520 0.678355 0.679133
1.692090 1.695468 1.696897
1.812994 1.818054 1.820203
2.919900 2.935216 2.941725
3.004835 3.011233 3.013935
3.430379 3.437405 3.440382
4.115109 4.129772 4.135970
4.605120 4.619032 4.624917

Table 6.6

Lowest natural frequencies on an unstructured shape-regular triangulation ℎ

of mesh size ℎ = 1∕16.

𝑘 = 4

𝚊0 = 2 𝚊0 = 4 𝚊0 = 8

0.678431 0.679425 0.679859
1.695330 1.697156 1.697950
1.817152 1.819895 1.821092
2.932397 2.940705 2.944336
3.010780 3.014227 3.015725
3.436205 3.440011 3.441666
4.127128 4.135079 4.138538
4.616777 4.624336 4.627618

Table 6.7

Lowest natural frequencies on a barycentric refinement of a shape-regular tri-
angulation of mesh size ℎ = 1∕4.

𝑘 = 2

𝚊0 = 4 𝚊0 = 8 𝚊0 = 16

4.459599 4.462669 4.463426
4.459644 4.462324 4.463592
4.459717 4.462452 4.463901
4.735649 4.783271 4.787701
4.856537 4.784776 4.789726
4.774039 4.785016 4.790044
4.772765 5.820485 5.831800
4.772953 5.834638 5.829005
5.188265 6.027316 6.030225
5.288405 6.015911 6.034207

Table 6.8

Lowest natural frequencies on a barycentric re-
finement of a shape-regular triangulation of 
mesh size ℎ = 1∕4.

𝚊0 = 8

𝑘 = 3 𝑘 = 4

4.460305 4.460220
4.460295 4.460222
4.460286 4.460221
4.770938 4.770735
4.770963 4.770734
4.770972 4.770732
5.805414 5.804214
5.881658 5.804351
6.014326 6.013368
6.014811 6.017531

Example 2: Spectral correctness of the DG scheme in three dimen-

sions. We consider a solid represented by the unit cube Ω = (0, 1)3 and 
impose a Dirichlet boundary condition on the whole boundary Γ𝐷 = Γ. 
We maintain the same expression (6.1) for the compliance tensor 
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Table 6.9

Computed lowest eigenvalues 𝜁𝑗ℎ , 𝑗 = 1, … , 5, of problem (6.2) and averaged rates of convergence for a set of unstructured shape-regular curved meshes ̃ℎ with 
decreasing mesh sizes ℎ and for polynomial degrees of approximation 𝑘 = 3, 4. The exact eigenvalues are given by (6.3).

𝑘 ℎ 3𝜁1ℎ 3𝜁2ℎ 3𝜁3ℎ 3𝜁4ℎ 3𝜁5ℎ

3

1/2 14.685386398526 26.399150575171 26.399686773148 40.827777930236 40.828051578839
1/4 14.682071040481 26.375381383674 26.375576473616 40.710758108868 40.711302839983
1/8 14.681971611106 26.374624687636 26.374624985835 40.706510271654 40.706514798709
1/16 14.681970657338 26.374616530921 26.374616534235 40.706466349720 40.706466354220

avg(𝒓𝑖
ℎ,3) 5.92 5.94 5.94 5.93 5.93

4

1/2 14.682036415561 26.375811477238 26.375817494769 40.715004945300 40.715041953610
1/4 14.681971020753 26.374623059451 26.374625770791 40.706530102238 40.706538022701
1/8 14.681970642864 26.374616440514 26.374616441501 40.706465931297 40.706465952803
1/16 14.681970642114 26.374616427187 26.374616427190 40.706465818502 40.706465821494

avg(𝒓𝑖
ℎ,4) 7.55 8.52 8.47 8.25 7.10
and the same constant coefficients 𝜌 = 1, 𝐸 = 1 and 𝜈 = 0.35 used in the 
previous example.

Only spurious eigenvalues appeared when solving problem (4.1) on 
unstructured shape-regular simplicial partitions ℎ for 𝑘 = 2, 3, 4, for a 
wide range of parameters 𝚊 = 𝚊0𝑘2, and for the largest number of de-
grees of freedom allowed by our computational capacity in each case. 
To guarantee Assumption 2, we solved (4.1) on a quadrisected barycen-
tric mesh  𝚋𝚊𝚛𝚢

ℎ
of size ℎ = 1∕4 and reported the results in Tables 6.7

and 6.8. The results displayed in Table 6.7 indicate the spectral correct-
ness of the DG scheme of quadratic order for 𝚊 large enough. Finally, we 
list in Table 6.8 the first natural frequencies obtained by solving (4.1)
at cubic and quartic order with 𝚊 = 8𝑘2.

Example 3: Accuracy verification and stability in the nearly incom-

pressible limit. We have seen through Example 1 and Example 2 that, 
if Assumption 1 and Assumption 2 are met, the DG scheme (4.1) does 
not pollute the spectrum of 𝑇 with spurious modes. The aim now is to 
confirm that the eigenvalues converge at the expected rate and with 
correct multiplicity.

We take 𝜚 = 1, 𝐸 = 1 and  given by (6.1) and we let Γ𝐷 = Γ. We 
observe that in the limit 𝜆 → ∞ (or 𝜈 → 0.5), the eigenvalues of (2.4)
converge to the eigenvalues of the following perfectly incompressible 
elasticity eigenproblem (see [23, Appendix 9]): find eigenmodes 0 ≠
𝝈∞ ∶ Ω → 𝕊 and eigenvalues 𝜁 ∈ℝ such that,

−𝜺 (𝐝𝐢𝐯𝝈∞) = 3𝜁
2
(𝝈∞)𝙳 in Ω,

𝐝𝐢𝐯𝝈∞ = 0 on Γ,

(tr 𝝈∞,1) = 0,

(6.2)

where 𝝉𝙳 ∶= 𝝉 − 1
𝑑
(tr 𝝉)𝐼 is the deviatoric part of a tensor 𝝉 . Actually, 

(6.2) is the stress formulation of the Stokes eigenproblem [25, Section 
6.2] with formal velocity and pressure fields given by 𝒖∞ = −2𝜇

𝜁
𝐝𝐢𝐯𝝈∞

and 𝑝∞ ∶= − 1
𝑑
tr 𝝈∞, respectively.

It turns out that, on the unit disk, the eigenvalues of the Stokes 
eigenproblem (6.2) are given by the sequence 

{
1
2 𝚥2

𝑛𝓁

}
𝑛≥1,𝓁≥1, where 𝚥𝑛𝑘

is the 𝓁-𝑡ℎ positive zero of the Bessel function 𝐽𝑛 of the first kind of 
order 𝑛. Accurate approximations of the first five eigenvalues are given 
by

3𝜁1 = 𝚥211 ≃ 14.681970642124

3𝜁2 = 3𝜁3 = 𝚥221 ≃ 26.374616427163

3𝜁4 = 3𝜁5 = 𝚥231 ≃ 40.706465818200.

(6.3)

To deal with the completely incompressible case 𝜈 = 0.5, one can 
adapt the DG method (4.1) for problem (6.2) by changing the bilin-
ear form (𝝈,𝝉) in (2.4) to 1

2𝜇

(
𝝈𝙳,𝝉𝙳

)
and incorporating the constraint 

(tr 𝝈∞,1) = 0 into 𝑋, see [25, Section 6.2] for more details. Here, with 
the aim to test the performance of the scheme in the nearly incompress-
29
ible case, we instead approximate the eigenvalues of (6.2) by solving 
the original DG method (4.1) with a Poisson’s ratio 𝜈 = 0.5 − 10−13.

We denote by 𝜁𝑖ℎ =
√
3(𝜅𝑖ℎ − 1) the approximation of 𝜁𝑖 computed by 

solving problem (4.1) on a series of exact meshes ̃ℎ of Ω̄ with decreas-
ing mesh sizes ℎ, and for polynomial degrees 𝑘 = 3, 4. The assembling 
of the generalized eigenproblems corresponding to (4.1) is performed 
thanks to the support of Netgen/NGSolve [28] for curved finite ele-
ments of arbitrary order. We present in Table 6.9 the first five computed 
eigenvalues and report the arithmetic mean avg(𝒓𝑖

ℎ,𝑘
) of the three exper-

imental rates of convergence, which are obtained for each eigenvalue 
by mean of the formula

𝒓𝑖
ℎ,𝑘

∶=
log

(|𝜁𝑖 −𝜔2
𝑖ℎ
|∕|𝜁𝑗 −𝜔2

𝑖ℎ̂
|)

log(ℎ∕ℎ̂)
, 𝑖 = 1,… ,4, 𝑘 = 3,4, (6.4)

where ℎ and ℎ̂ are two consecutive mesh sizes.
We observe that a convergence of order 2𝑘 is attained for each eigen-

value, as predicted by the error estimate (5.17). At the same time, this 
test shows that the DG-scheme (4.1) is inmune to locking in the nearly 
incompressible limit.

Data availability

Data will be made available on request.
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