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Abstract
Capacities are a common tool in decision making. Each capacity determines a core, which is
a polytope formed by additive measures. The problem of eliciting a single probability from
the core is interesting in a number of fields: in coalitional game theory for selecting a fair way
of splitting the wealth between the players, in the transferable belief model from evidence
theory or for transforming a second order into a first order model. In this paper, we study this
problem when the goal is to determine the centroid of the core of a capacity, and we compare
four approaches: the Shapley value, the average of the extreme points, the incenter with
respect to the total variation distance and the limit of a procedure of uniform contraction. We
show that these four centroids do not coincide in general, we give some sufficient conditions
for their equality, and we analyse their axiomatic properties. We also discuss how to define a
notion of centrality measure indicating the degree of centrality of an additive measure in the
core. Finally, we also analyse these four centroids in the more general context of imprecise
probabilities.

Keywords Capacities · Game solutions · Cores · Supermodularity · Imprecise probabilities

1 Introduction

A problem that naturally arises in many branches of operations research, such as decision
making (Huntley & Troffaes, 2012; Keith & Ahner, 2021; Troffaes, 2007) or expected utility
theory (Gilboa & Schmeidler, 1989; Klibanoff et al., 2005; Sarin &Wakker, 1992), is that of
determining the probability measure modelling the underlying uncertainty. Due to a number
of factors (missing data, conflicting sources of information, etc.), it is sometimes difficult,
or even impossible, to elicit such probability measure with minimal guarantees. A possible
approach in those cases is to consider instead a capacity (Grabisch, 2016), that in turns deter-
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mines a polytope of associated additive measures: its core. When the capacity is normalised,
the core is formed by probability measures.

Capacites appear in many different contexts and with different interpretations: (i) in deci-
sion making, the values of the capacity measure the beliefs supporting the occurrence of each
event; (ii) in coalitional game theory, each event represents a coalition of players, the value
of the capacity is interpreted as the minimum reward guaranteed by the coalition, and the
core contains the distributions of the rewards compatible with these constraints; and (iii) in
imprecise probability theory (Augustin et al., 2014), a capacity gives lower bounds for the real
but unknown values of the probability measure underlying the experiment.1 The core, also
called credal set (Levi, 1980), is formed then by the probability measures that are candidates
for being the unknown probability measure. Among the many applications of capacities,
we refer for instance to Grabisch (2013) and Shapley (1953) for some applications in game
theory, and to Angilella et al. (2016) and Destercke (2017) in ordinal classification.

In any of these contexts, the problemof selecting a probabilitymeasure from the core of the
normalised capacity is quite common. For instance, within coalitional game theory we may
consider the solution of a game as a way to fairly divide the wealth it represents among the
players; within imprecise probability theory, we may also consider transformations between
imprecise and precise probability models (Klir & Parviz, 1992; Smets, 2005); in addition,
we may also look for the element of the core maximising the entropy (Abellán & Moral,
2003; Jaffray, 1995) or establish procedures for assigning relevance degrees to the different
features in machine learning problems (Kumar et al., 2020; Lundberg & Lee, 2017).

Our goal here is also to select a probabilitymeasure from the core of a normalised capacity,
but the interpretation of the output of the process is different to the cases mentioned above:
we seek to determine the center of the core of the capacity, similarly to the point with greatest
data depth (Cascos, 2009; Tukey, 1975) in a data cloud; thus, our final result should be an
element in the interior of the core, whenever the latter is non-empty. This already rules out
methods based on maximising the entropy or minimising the Kullback Leibler divergence.
Pursuing this objective, in this paper we analyse four centers: (i) the Shapley value, that first
appeared in coalitional game theory (Shapley, 1953); (ii) the average of the extreme points of
the core; (iii) the incenter with respect to a distance (in our case, the total variation distance,
due to its good properties within the imprecise probability framework (Montes et al., 2020b));
and a center that is obtained following a procedure of uniform contraction of the core.

The investigation of the notion of center of a core leads naturally to that of a measure
of centrality with respect to a given set of probability measures. We propose an axiomatic
definition and analyse several examples, both based on a choice of a centroid or not.

The remainder of the paper is organised as follows. After introducing some preliminary
notions in Sect. 2, in Sect. 3 we discuss the four possible notions of centroids mentioned
above and study the relationships between them. In Sect. 4, we make a further comparison in
terms of the axiomatic properties they satisfy and in Sect. 5 we discuss the notion of centrality
measure. Finally, in Sect. 6 we show that the centroids can be defined in the more general
context of coherent lower previsions. Some additional comments are given in Sect. 7. To ease
the reading, proofs have been relegated to the Appendix.

A preliminary version of this paper was presented at ECSQARU 2021 Conference
(Miranda & Montes, 2021). This extended version contains a deeper discussion of the four
centroids, additional results, proofs and other comments stemming from the discussions
carried out at the conference.

1 For this reason, capacites are called lower probabilities in that framework.
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2 Preliminary concepts

Let us introduce the main concepts we shall use in this paper. We refer to Grabisch (2016)
for more details.

Consider a finite possibility space X = {x1, . . . , xn}, let P(X ) be the set of all the prob-
ability measures on X and let P

∗(X ) be the probability measures assigning strictly positive
probabilities to all the non-empty events.

A capacity is a function μ : P(X ) → R that is monotone: A ⊆ B implies μ(A) ≤ μ(B)

and satisfies μ(∅) = 0. A capacity is normalised when in addition μ(X ) = 1. Throughout
this paper, we will always consider normalised capacities. The conjugate of a capacity μ,
denoted by μ̄, is defined by μ̄(A) = 1−μ(Ac) for any A ⊆ X . Also, a capacityμ determines
the core, defined by:

core(μ) = {P ∈ P(X ) | P(A) ≥ μ(A) ∀A ⊆ X }.
When the core is non-empty, the capacity is called balanced and it holds that μ ≤ μ̄. A
balanced capacity is called exact when μ(A) = minP∈core(μ) P(A) for every A ⊆ X .

As wementioned in the introduction, capacities can be interpreted in many different ways.
In this paper, we will focus mostly on the decision making or game theoretic interpretations
(cases (i) and (ii) from Sect. 1). The interpretation as imprecise probability models (case (iii))
will be explored in more detail in Sect. 6.

The core of a capacity is a closed and convex subset of P(X ), and since it is determined by
a finite number of restrictions, it is a polytope that can be characterised by a finite number of
extreme points. Recall that P ∈ core(μ) is an extreme point of the core if P = λP1+(1−λ)P2

for some λ ∈ (0, 1) and P1, P2 ∈ core(μ), then P1 = P2 = P . The set of extreme points
shall be denoted by ext

(
core(μ)

)
.

A property that an exact capacity may satisfy is that of supermodularity, also called
convexity in coalitional game theory, which means that:

μ(A ∪ B) + μ(A ∩ B) ≥ μ(A) + μ(B) ∀A, B ⊆ X .

When the capacity is supermodular, the set of extreme points of the core is given by {Pσ |
σ ∈ Sn} (Shapley, 1971), where Sn denotes the set of permutations of {1, . . . , n}, and given
σ ∈ Sn , Pσ is determined by:

Pσ

({xσ(1), . . . , xσ(i)}
) = μ

({xσ(1), . . . , xσ(i)}
) ∀i = 1, . . . , n. (1)

A capacity can be equivalently represented in terms of its Möbius inverse, which is the
function m : P(X ) → R given by:

m(A) =
∑

B⊆A

(−1)|A\B|μ(B) ∀A ⊆ X .

From the Möbius inverse we can retrieve the capacity by means of:

μ(A) =
∑

B⊆A

m(B) ∀A ⊆ X .

TheMöbius inversem takes values inR. When it is non-negative for every event, the capacity
μ is called belief function and its conjugate μ̄ is called plausibility function, creating a bridge
with Evidence Theory (Shafer, 1976). Any belief function is a supermodular capacity.
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3 Center points of an exact capacity

Next, we introduce the different notions of centroid of the core of a capacity we shall compare
in this paper.We shall consider four possibilities: the Shapley value, the average of the extreme
points, the incenter with respect to the total variation distance and the contraction centroid.
In general, we shall use the notation �μ to denote a centroid of a capacity μ. Moreover, we
shall assume throughout that the capacity μ is exact.

3.1 The Shapley value

One of the most popular notions of centroid of a capacity is the Shapley value. It was
introduced by Shapley (1953, 1971) in the framework of coalitional game theory, as a “fair”
procedure to distribute some wealth between the players. Later on, it was rediscovered in the
context of non-additive measures (Dubois & Prade, 1980) and popularised by Smets as the
pignistic transformation of a belief function (Smets & Kennes, 1994).

Definition 1 Given an exact capacityμ, its Shapley value is defined as the probabilitymeasure
associated with the following distribution:

�
μ
1 ({x}) =

∑

A|x /∈A

| A |!(n− | A | −1)!
n!

(
μ(A ∪ {x}) − μ(A)

) ∀x ∈ X . (2)

When μ is a belief function with Möbius inverse m, it was proven in Smets (2005) that
�

μ
1 can be equivalently computed as

�
μ
1 ({x}) =

∑

A|x∈A

m(A)

| A | ∀x ∈ X . (3)

More generally, when μ is supermodular (and in particular when it is a belief function), the
extreme points of core(μ) are given by Eq. (1), and the Shapley value can be computed as

�
μ
1 ({x}) = 1

n!
∑

σ∈Sn

Pσ ({x}) ∀x ∈ X . (4)

Even if the expressions in Eqs. (3) and (4) were only established for belief functions and
supermodular capacities, respectively, it follows from basic combinatorial analysis that they
can be extended to arbitrary capacities:2

Proposition 1 Let μ be an exact capacity with Möbius inverse m, and let �
μ
1 be given by

Eq. (2). Then

�
μ
1 ({x}) =

∑

A|x∈A

m(A)

| A | =
∑

σ∈Sn

Pσ ({x})
n! ∀x ∈ X , (5)

where Pσ is given by Eq. (1).

It is worth remarking that, even if m(A) may be negative in some events A, Proposition 1
implies that the aggregation by means of Eq. (5) always produces a non-negative value.

While the Shapley value seems like a reasonable choice as a central point, it has one
important drawback: it is only guaranteed to belong to the core of μ (i.e., we can only assure

2 See also (Grabisch 2016, Ex.3.6.1) for some comments in this respect using interaction indexes from game
theory.
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that �
μ
1 ≥ μ) when the capacity μ is supermodular. In those cases, it follows immediately

from Eq. (4) and the fact that Pσ dominates μ for every permutation σ ∈ Sn .
More generally, when the exact capacity μ is not supermodular, we can only assure that

�
μ
1 dominates μ for small cardinalities, as showed by Baroni and Vicig (2005, Prop.5). We

refer to Miranda and Montes (2018) for a study of the connection between the Shapley value
and the core of the capacity.

3.2 Average of the extreme points

The second possibility we consider in this paper is the average of the extreme points of the
core of the capacity:

Definition 2 Let μ be an exact capacity, and denote by P1, …, Pk the extreme points of its
core. The average of the extreme points, also called vertex centroid (Elbassioni & Tiway,
2012), is defined as

�
μ
2 ({x}) = 1

k

k∑

i=1

Pi ({x}) ∀x ∈ X . (6)

It follows fromDefinition 2 that�μ
2 always belongs to core(μ); considering the comments

in the previous section, this implies that it need not coincide with the Shapley value when
supermodularity is not satisfied. As we shall see later on, they need not coincide either even
if the capacity is supermodular: while the set of extreme points of the core is {Pσ | σ ∈ Sn},
a key difference is that in the computation of Shapley value in Eq. (4) we are allowing for
repetitions of the same extreme point, while in Definition 2 we do not.

It is also important to clarify that the average of the extreme points does not generally
coincide with the center of gravity of the core, defined as the expectation of the set over a
uniform probability distribution.

Example 1 Consider a 3-element possibility space and the exact capacity μ given by:

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3} X
μ(A) 0 0 0 0 0 0.5 1

This capacity is supermodular3 and the extreme points of core(μ) are given by:

x1 x2 x3
P1 0 0 1
P2 0 1 0

x1 x2 x3
P3 1/2 1/2 0
P4 1/2 0 1/2

The average of the extreme points is given by:

�
μ
2 ({x1}) = 0.25, �

μ
2 ({x2}) = �

μ
2 ({x3}) = 0.375,

while the expectation over the core with respect to the uniform distribution E is:

E({x1}) = 2/9, E({x2}) = E({x3}) = 7/18.

Therefore, both concepts do not coincide in general. Intuitively, if we assume that the mass
is uniformly distributed over core(μ), we can see in Fig. 1 that there is more mass for values
of x1 closer to 0 than closer to 1/2, whence E({x1}) must be smaller than �

μ
2 ({x1}) = 1/4.

3 It is known that any exact capacity in a 3-element possibility space is supermodular too.
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Fig. 1 Graphical representation
of the core of μ in Example 1 (in
gray) together with �

μ
2 (in blue)

and the center of gravity E (in
red)

In fact, this example also shows that the center of gravity does not coincide with the
Shapley value either, even in this case where μ is supermodular, because:

�
μ
1 ({x1}) = 1/6, �

μ
1 ({x2}) = �

μ
1 ({x3}) = 5/12. �

While the center of gravity has the advantage of being applicable over any closed and
convex set in P(X ), and not only on polytopes, it also has the drawback of being computa-
tionally more expensive (see for example (Elbassioni & Tiway, 2012)). For this reason, we
have left this approach out of our study.

3.3 Incenter

Next we consider the incenter, that corresponds to the center (or centers) of the largest
balls included in the interior of the core of the capacity.4 To make this notion precise, we
must specify the distance under which the balls are defined. In this respect, there are several
possibilities, such as the Euclidean or the L1 distances for example, or even the Kullback-
Leibler divergence. We have considered in this paper the total variation distance (Levin et
al., 2009), which is the one associated with the supremum norm:

dT V (P, Q) = max
A⊆X

| P(A) − Q(A) | ∀P, Q ∈ P(X ).

Our choice of this distance is due to the fact that the closed balls it induces are always
polytopes, unlike the case of the Euclidean distance or the Kullback-Leibler divergence, and
those closed balls correspond to exact capacities satisfying supermodularity (Montes et al.
2020b, Sec.2). Although the L1 distance also induces a polytope, it does not correspond to
the core of an exact capacity and our analysis in Destercke et al. (2022), Montes et al. (2020b)
shows that its use is rather complex. In what follows, for the sake of notational simplicity,
the total variation distance will be simply denoted by d . Moreover, we shall denote

Bα
c (P0) = {P ∈ P(X ) | d(P, P0) ≤ α}, Bα

o (P0) = {P ∈ P(X ) | d(P, P0) < α}
the closed and open balls centered on P0 and with radius α, respectively.

4 Here we are identifying any element of the core with its associated probability mass function; then P(X ) can
be regarded as a subset of the |X |-dimensional Euclidean space R

|X | and the interior of core(μ) is understood
with respect to the restriction of the usual topology to P(X ).
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This leads us to the following definition:

Definition 3 Let μ be an exact capacity. The incenter radius of core(μ) is defined as

αI = sup
{
α > 0 | ∃P0 ∈ core(μ) such that Bα

o (P0) ⊆ core(μ) ∩ P
∗(X )

}
. (7)

Any P0 ∈ core(μ) such that BαI
o (P0) ⊆ core(μ) is called an incenter of μ.

It may be surprising to see that in Eq. (7) we are requiring the inclusion of the open
ball Bα

o (P0) into the intersection core(μ) ∩ P
∗(X ). The reason is that if we simply require

Bα
o (P0) ⊆ core(μ) thenwemay obtain centers that are in the boundary of the core, something

in our view counterintuitive. This is illustrated in the following example.

Example 2 Let X = {x1, x2, x3} and consider the exact capacity μ given by:

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3} X
μ(A) 0.5 0.1 0 0.75 0.5 0.1 1

The value αI determined by Eq. (7) is αI = 0.125, and any convex combination of the
probability measures Q1 and Q2 given by:

Q1({x1}) = 0.65, Q1({x2}) = 0.225, Q1({x3}) = 0.125,

Q2({x1}) = 0.625, Q2({x2}) = 0.25, Q2({x3}) = 0.125.

is an incenter of core(μ).
Besides, if we do not require the open ball to be included in P

∗(X ), we obtain:

sup{α > 0 | ∃P0 ∈ core(μ) such that Bα
o (P0) ⊆ core(μ)} = 0.2,

and the only P0 ∈ core(μ) satisfying B0.2
o (P0) ⊆ core(μ) is given by:

P0({x1}) = 0.7, P0({x2}) = 0.3, P0({x3}) = 0.

This probability measure belongs to the boundary of core(μ), which leads us to believe that
it does not adequately represent the idea underlying the notion of incenter.

This example also shows the necessity of taking the open ball rather than the closed in the
definition of the incenter radius in Eq. (7). The graphical representation of P0, Q1 and Q2

can be seen in Fig. 2. �

On the other hand, when the core of the capacity is included in the interior of the simplex,
then we immediately have that Bα

o (P) ⊆ core(μ) ∩ P
∗(X ) if and only if Bα

c (P) ⊆ core(μ),
whence Eq. (7) can be rewritten as

αI = sup
{
α > 0 | ∃P0 ∈ core(μ) such that Bα

c (P0) ⊆ core(μ)
}
. (8)

A first question arising naturally from the definition of incenter is whether it always exists.
Our next result shows that this is indeed the case.

Proposition 2 Consider an exact capacity μ such that core(μ) has a non-empty interior.
Then the value αI given by Eq. (7) is a maximum. As a consequence, the incenter of μ always
exists.

On the other hand, a capacity may have more than one incenter; while this was already
showed by Example 2, we next give another example where the core of the capacity is
included in P

∗(X ):
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Fig. 2 Graphical representation
of the core of core(μ) in
Example 2, the incenters Q1 and
Q2 (in blue) and the probability
P0 (in red)

Fig. 3 Graphical representation of the core of μ, the incenters Q1 and Q2 with the ball they induce (left
hand-side figure) and the incenter Qβ for β = 0.5 with the ball it induces (right hand-side figure)

Example 3 Let X = {x1, x2, x3}, and consider the capacity μ given by:

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3} X
μ(A) 0.5 0.1 0.1 0.65 0.75 0.2 1

The value αI determined in Eq. (7) is given by:

αI = max
{
α | ∃P0 ∈ core(μ) such that Bα

o (P0) ⊆ core(μ) ∩ P
∗(X )

} = 0.075.

To see that there is more than one P0 ∈ core(μ) such that BαI
o (P0) ⊆ core(μ)∩P

∗(X ), note
that the set of such P0 is given by the probability measures Q1, Q2 defined below as well as
any convex combination Qβ = βQ1 + (1 − β)Q2 for β ∈ [0, 1]:

Q1({x1}) = 0.575, Q1({x2}) = 0.175, Q1({x3}) = 0.25.

Q2({x1}) = 0.65, Q2({x2}) = 0.175, Q2({x3}) = 0.175.

Figure 3 gives the graphical representation of the core of μ as well as the balls BαI
c (Q1),

BαI
c (Q2) and BαI

c (Qβ) for β = 0.5. �

Due to the lack of uniqueness, we shall denote by �
μ
3 the non-empty set of incenters of

the capacity μ.
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Fig. 4 Graphical representation
of the core of core(μ) (in gray) in
Example 4, as well as the ball

B
α′

C
c (P0)

A dual approach to the one above is to consider the circumcenter of the capacity, which is
the center (or centers) of the smallest balls that include the core. Formally, we may consider

αC = inf
{
α > 0 | ∃P0 ∈ P(X ) such that Bα

c (P0) ⊇ core(μ)
}
,

and then consider the set of those P such that BαC
c (P) ⊇ core(μ). However, this approach

has the two drawbacks we have discussed so far: not only it need not lead to a unique solution,
but also it may produce values outside the core, as showed in Bader et al. (2012); this last
issue may be overcome by considering instead

α′
C = inf

{
α > 0 | ∃P0 ∈ core(μ) such that Bα

c (P0) ⊇ core(μ)
}
,

and by calling circumcenter those probabilities P ∈ core(μ) such that B
α′

C
d (P) ⊇ core(μ).

However, this second approach does not prevent us from obtaining circumcenters that lie
in the boundary of the core, leading to the same counterintuitive situation we discussed in
Example 2.

Example 4 Consider X = {x1, x2, x3} and the capacity μ given by:

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3} X
μ(A) 0.3 0.2 0.2 0.7 0.6 0.5 1

This capacity is exact and the extreme points of its core are given by:

x1 x2 x3
P1 0.3 0.4 0.3
P2 0.5 0.2 0.3

x1 x2 x3
P3 0.4 0.4 0.2
P4 0.5 0.3 0.2

It follows that α′
C = 0.1 and that the only circumcenter is P0 given by P0({x1}) = 0.4,

P0({x2}) = P0({x3}) = 0.3. The graphical representation of the core of μ and the ball

B
α′

C
c (P0) can be seen in Fig. 4. �

3.4 Contraction centroid

Our fourth and last approach is motivated by the lack of uniqueness that has been illustrated
in the case of the incenter.
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Given an exact capacity μ with conjugate μ̄, we can split the events in X into L= and L>

such that:
μ(A) = μ̄(A) ∀A ∈ L= and μ(A) < μ̄(A) ∀A ∈ L>.

Using this notation, the core of μ can be expressed as:

core(μ) = {
P ∈ P(X ) | P(A) = μ(A) ∀A ∈ L=, P(A) ≥ μ(A) ∀A ∈ L>

}
. (9)

Note that when L> is empty we obtain that μ(A) = μ̄(A) for any A ⊆ X , meaning that μ

is additive and that its core contains one single element.
The idea in this approach is to contract the core in a uniform manner as long as we can,

and then proceed in the same way by reducing the number of constraints. More specifically,
we increase the value of the capacity in a constant amount α in all the events A ∈ L>. In
this respect, we wonder whether there is some value α small enough such that this approach
gives rise to a non-empty core, and also which is the maximum/supremum we can consider.
Our next result gives the answer to both questions.

Proposition 3 Consider an exact capacity μ, and let us express its core as in Eq. (9) using
the sets L= and L>. For a given α > 0, let us define:

core(μ)α = {
P ∈ P(X ) | P(A) = μ(A) ∀A ∈ L=, P(A) ≥ μ(A) + α ∀A ∈ L>

}
,

and let � = {α > 0 | core(μ)α �= ∅}. It holds that:

(a) � �= ∅.
(b) The set � has a maximum αS.
(c) There exists some A ∈ L> such that P(A) is constant for any P ∈ core(μ)αS .

This result assures that we can uniformly increase the capacity in the events whose value
is imprecise (i.e., such that μ(A) < μ̄(A)) and that when the process stops the size of L>

has decreased in the sense that, given the exact capacity μαS that is the lower envelope of the
set

core(μ)αS = {
P ∈ P(X ) | P(A) ≥ μ(A) + αS ∀A ∈ L>

}

and its conjugate μ̄αS , then {A | μαS (A) < μ̄αS (A)} � L>.
This means that we may apply the same procedure to the capacity μαS , and after

iterating it a finite number of times, we obtain a set formed by a single element that
we shall call the contraction centroid. In other words, the procedure leads to the values
αS1 = max�1, . . . , αSl = max�l and the chain of nested sets5

core(μ) ⊃ core(μ)αS1
⊃ . . . ⊃ core(μ)αSl

= {
�

μ
4

}
. (10)

�
μ
4 is the contraction centroid of the capacity μ.
Let us illustrate this procedure with an example.

Example 5 Consider again the exact capacity fromExample 3. There, the setL= only contains
the trivial events ∅ and X , while L> contains the six non-trivial events:

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3} X
μ(A) 0.5 0.1 0.1 0.65 0.75 0.2 1
μ̄(A) 0.8 0.25 0.35 0.9 0.9 0.5 1

5 This is an abuse of notation, since to be correct we should write core(μαS1
)αS2

instead of core(μ)αS2
, and

similarly for the subsequent iterations of the procedure; we are using the one in Eq. (10) so as to alleviate the
notation.
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Fig. 5 Graphical representation of the core of μ, as well as the sets core(μ)αS1
(in blue) and core(μ)αS2

(in
red)

Let us see that αS1 = max� = 0.075. On the one hand, core(μ)αS1
is non-empty because it

includes for instance the probability measure P given by:

P({x1}) = 0.625, P({x2}) = 0.175, P({x3}) = 0.2.

To see on the other hand that this is the maximum value of �, note that if we increase μ in
α > 0, to keep exactness it should be that:

1 ≥ (
μ({x2}) + α

) + (
μ({x1, x3}) + α

) = 0.85 + 2α,

whence α ≤ 0.075. Therefore, αS1 = 0.075, and this gives rise to the following core:

core(μ)αS1
= {

P ∈ P(X ) | P(A) ≥ μ(A) + αS1 ∀A �= ∅,X}
.

The exact capacity μ1 determined as the lower envelope of core(μ)αS1
and its conjugate μ1

are given by:

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3} X
μ1(A) 0.575 0.175 0.175 0.75 0.825 0.35 1
μ1(A) 0.65 0.175 0.25 0.825 0.825 0.425 1

Let us apply now the procedure to this capacity. The sets L>
1 and L=

1 are given by:

L=
1 = {{x2}, {x1, x3},∅,X}

, and L>
1 = {{x1}, {x3}, {x1, x2}, {x2, x3}

}
,

i.e., there are two non trivial events whose value is now fixed, {x2} and {x1, x3}.
Repeating the same steps, we obtain αS2 = 0.0375, and in this case core(μ)αS2

is formed

by a single probability measure, that is therefore the contraction centroid �
μ
4 . It is given by:

�
μ
4 ({x1}) = 0.6125, �

μ
4 ({x2}) = 0.175, �

μ
4 ({x1}) = 0.2125. (11)

In Fig. 5 we have depicted the sets core(μ)αS1
(in blue) and core(μ)αS2

(in red), as well
as the initial core of μ. �
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In the above procedure, it is worth mentioning that the lower envelope of the set core(μ)α
does not necessarily coincide with the capacity μ′ given by

μ′(A) =
{

μ(A) + α if A ∈ L>

μ(A) otherwise.

While by construction it dominates this capacity, they may not agree on some events
because μ′ need not be exact. This can be seen in Example 5, where given A = {x1, x2}, it
holds that μ′(A) = μ(A) + αS1 = 0.65 + 0.075 < 0.75 = μ1(A).

Proposition 3 assures that there exists a maximum value αS = max� giving rise to a non-
empty set. This naturally leads us to the problem of computing more efficiently the value of
αS . Our next result gives an explicit formula for αS for a particular case of exact capacities
which only coincide with their conjugate for the trivial cases of ∅,X .

Definition 4 Letμbe an exact capacitywith conjugate μ̄.We shall callμmaximally imprecise
when μ(A) < μ̄(A) for every A �= ∅,X .

Let us define

A(X ) =
{
A = (

Ai
)

i=1,...,k | ∃βA ∈ N such that
k∑

i=1

IAi = βA
}
.

In other words, A(X ) is the class of all finite families of subsets of X such that every
x ∈ X belongs to the same number of elements in the family. Note that in each of these
families A there may be repeated elements, i.e., we may consider for instance the family
A = ({x1}, {x1}, {x2}, {x2, x3}, {x3}

)
on X = {x1, x2, x3}. We consider on A(X ) the partial

order determined by the inclusion, i.e., we say thatA1 ⊆ A2 when each element in the family
A1 also belongs to the family A2.

Theorem 4 Let μ be a maximally imprecise exact capacity. Then

αS = min
A∈A(X )

hA, where hA := 1

| A |

(

βA −
∑

A∈A
μ(A)

)

. (12)

Let us return to the running Example 5. In that case, αS satisfies Eq. (12) for A =({x2}, {x1, x3}
)
and βA = 1, giving that

1

| A |
(
βA − μ({x2}) − μ({x1, x3})

) = 1

2
(1 − 0.1 − 0.75) = 0.075,

which is indeed the value we obtained in Example 5.
The computation of αS in Eq. (12) requires the computation of the value hA for all

the families A. Our next result shows a more tractable expression when the capacity is
supermodular. For this aim,wedenote byA

∗(X ) the subclass ofA(X ) formedby thepartitions
of X .

Theorem 5 Let μ be a maximally imprecise supermodular capacity with conjugate μ̄. Then:

αS = min
A∈A∗(X )

{
1 − ∑

A∈A μ(A)

| A | ,

∑
A∈A μ̄(A) − 1

| A |
}

. (13)

This means that, under supermodularity, it suffices to focus on partitions of X , which
simplifies considerably the computation of Eq. (12).
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Example 6 Consider again our running Example 3. The capacity in that example is super-
modular because any exact capacity in a 3-element space is, so Theorem 5 is applicable. Next
table summarises the values associated with each partition in Eq. (13):

A ∈ A
∗(X ) | A | (1−∑

A∈A μ(A))/|A| (
∑

A∈A μ̄(A)−1)/|A|
{x1}, {x2}, {x3} 3 (1−(0.5+0.1+0.1))/3 = 0.1 (0.8+0.25+0.35−1)/3 = 0.13

{x1, x2}, {x3} 2 (1−(0.65+0.1))/2 = 0.125 ((0.9+0.35)−1)/2 = 0.125
{x1, x3}, {x2} 2 (1−(0.75+0.1))/2 = 0.075 ((0.9+0.25)−1)/2 = 0.075
{x2, x3}, {x1} 2 (1−(0.2+0.5))/2 = 0.15 ((0.5+0.8)−1)/2 = 0.15

The minimum of these values is αS = 0.075 and it is attained in the partition A formed by
{x1, x3} and {x2}, both for the capacity and its conjugate. This is in line with our comments
in Example 5. �

Let us show that the result in Theorem 5 does not generalise to the case where μ is an
exact capacity but not supermodular:

Example 7 Consider X = {x1, x2, x3, x4} and the capacity μ, with conjugate μ̄, given by:

A μ(A) μ̄(A)

{x1} 0 0.1
{x2} 0.1 0.2
{x3} 0.5 0.6
{x4} 0.2 0.3

{x1, x2} 0.2 0.3
{x1, x3} 0.5 0.6
{x1, x4} 0.2 0.4

A μ(A) μ̄(A)

{x2, x3} 0.6 0.8
{x2, x4} 0.4 0.5
{x3, x4} 0.7 0.8

{x1, x2, x3} 0.7 0.8
{x1, x2, x4} 0.4 0.5
{x1, x3, x4} 0.8 0.9
{x2, x3, x4} 0.9 1

The extreme points of its core are given by:

x1 x2 x3 x4
P1 0.1 0.2 0.5 0.2
P2 0 0.2 0.6 0.2

x1 x2 x3 x4
P3 0.1 0.1 0.5 0.3
P4 0 0.2 0.5 0.3

It follows that μ is an exact capacity, and that it is maximally imprecise too. Note that μ
is not supermodular, since

0.6 = μ({x1, x2}) + μ({x2, x4}) � μ({x1, x2, x4}) + μ({x2}) = 0.5.

The value of αS is attained with A = ({x3}, {x2, x4}, {x1, x2}, {x1, x3, x4}
)
, that produces:

αS = 1

4

(
2 − μ({x3}) − μ({x2, x4}) − μ({x1, x2}) − μ({x1, x3, x4})

) = 0.025.

To see this, note any P ∈ core(μ)0.025 satisfies:

2 = βA ≥ (
μ({x3}) + 0.025

) + (
μ({x2, x4}) + 0.025

)

+(
μ({x1, x2}) + 0.025

) + (
μ({x1, x3, x4}) + 0.025

) = 2,

which implies that P(A) = μ(A) + 0.025 for every A ∈ A, and also that core(μ)α = ∅ for
every α > 0.025. Moreover, the above restrictions imply that

P({x3}) = 0.525.

P({x2, x4}) = 0.425 ⇒ P({x1, x3}) = 0.575, whence P({x1}) = 0.05.

P({x1, x2}) = 0.225 ⇒ P({x2}) = 0.175.
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P({x2, x4}) = 0.425 ⇒ P({x4}) = 0.25.

Thus, core(μ)0.025 only includes the probability mass function (0.05, 0.175, 0.525, 0.25).
It is easy now to verify that this probability measure satisfies P(A) ≥ μ(A) + 0.025 for any
non-trivial event A.

Moreover, the bounds determined by the partitions in A
∗(X ) are the following:

Partition A | A | (1−∑
A∈A μ(A))/|A| (

∑
A∈A μ̄(A)−1)/|A|

{x1}, {x2}, {x3}, {x4} 4 (1−0.8)/4 (1.2−1)/4

{x1, x2}, {x3}, {x4} 3 (1−0.9)/3 (1.2−1)/3

{x1, x3}, {x2}, {x4} 3 (1−0.8)/3 (1.1−1)/3

{x1, x4}, {x2}, {x3} 3 (1−0.8)/3 (1.2−1)/3

{x2, x3}, {x1}, {x4} 3 (1−0.8)/3 (1.2−1)/3

{x2, x4}, {x1}, {x3} 3 (1−0.9)/3 (1.2−1)/3

{x3, x4}, {x1}, {x2} 3 (1−0.8)/3 (1.1−1)/3

{x1, x2}, {x3, x4} 2 (1−0.9)/2 (1.1−1)/2

{x1, x3}, {x2, x4} 2 (1−0.9)/2 (1.1−1)/2

{x1, x4}, {x2, x3} 2 (1−0.8)/2 (1.2−1)/2

{x1}, {x2, x3, x4} 2 (1−0.9)/2 (1.1−1)/2

{x2}, {x1, x3, x4} 2 (1−0.9)/2 (1.1−1)/2

{x3}, {x1, x2, x4} 2 (1−0.9)/2 (1.1−1)/2

{x4}, {x1, x2, x3} 2 (1−0.9)/2 (1.1−1)/2

We obtain the minimum value 0.1
3 = 0.03, strictly greater than αS = 0.025. We conclude

that Theorem 5 does not hold without the hypothesis of supermodularity. �

3.5 Relationships between the centroids

So far, we have introduced four different notions of the center of an exact capacity. Let us
begin by showing that these four notions are indeed different:

Example 8 Consider the capacity defined in Example 3; there, we gave the set of incenters
�

μ
3 , while the contraction centroid �

μ
4 was given in Example 5. The extreme points of the

core of μ are given by:

x1 x2 x3
P1 0.55 0.1 0.35
P2 0.5 0.15 0.35
P3 0.5 0.25 0.25

x1 x2 x3
P4 0.65 0.25 0.1
P5 0.8 0.1 0.1

From this, we conclude that the average of the extreme points of core(μ) is the probability
measure with mass function

�
μ
2 ({x1}) = 0.6, �

μ
2 ({x2}) = 0.17, �

μ
2 ({x3}) = 0.23. (14)

On the other hand, the Shapley value is given by

�
μ
1 ({x1}) = 0.63, �

μ
1 ({x2}) = 0.1583, �

μ
1 ({x3}) = 0.2083.
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Fig. 6 Graphical representation of the centroids of the exact capacity in Example 3: the average of the extreme
points (in blue), the Shapley value (in brown), the set of incenters (in red) and the contraction centroid (in
black)

This can be derived also using Proposition 1, noting that the permutations lead to the following
extreme points:

x1 x2 x3
σ1 = (1, 2, 3) Pσ1 0.5 0.15 0.35
σ2 = (1, 3, 2) Pσ2 0.5 0.25 0.25
σ3 = (2, 1, 3) Pσ3 0.55 0.1 0.35
σ4 = (2, 3, 1) Pσ4 0.8 0.1 0.1
σ5 = (3, 1, 2) Pσ5 0.65 0.25 0.1
σ6 = (3, 2, 1) Pσ6 0.8 0.1 0.1

Here, Pσ4 = Pσ6 , so this extreme point gets twice the weight of the others in the computation
of Shapley value, hence the difference with �

μ
2 . These centroids are represented in Fig. 6. �

Even if the four approaches do not lead to the same solution in general, in Examples 5
and 8 we have seen an example where the contraction centroid �

μ
4 belongs to the set of

incenters �
μ
3 . This leads us to investigate whether there is a connection between these two

approaches. Our next result shows that, under some conditions, the set we obtain in the first
step of the contraction approach coincides with the set of incenters.

Proposition 6 Let μ be a maximally imprecise exact capacity with conjugate μ̄ satisfying
μ(A) > 0 for every A �= ∅, and let αS be the coefficient defined in Proposition 3. Given
P0 ∈ core(μ) and α ≤ αS,

P0 ∈ core(μ)α ⇔ Bα
c (P0) ⊆ core(μ).

As a consequence, core(μ)αS = �
μ
3 .

On the other hand, an advantage of using the contraction procedure is that the existence
of �

μ
4 is guaranteed even if the interior of core(μ) is empty.

4 Properties of the centroids

Next we compare the different centroids in terms of the axiomatic properties they satisfy.
There exist several axiomatic characterisations of Shapley value in the context of coalitional
game theory; arguably the most important one is that as the unique additive measure �μ

satisfying the following axioms:

123



424 Annals of Operations Research (2023) 321:409–449

Efficiency
∑n

i=1 �μ({xi }) = μ(X ).
Symmetry μ

(
A ∪ {xi }

) = μ
(

A ∪ {x j }
)
for any A ⊆ X \ {xi , x j } implies that �μ({xi }) =

�μ({x j }).
Linearity �λ1μ1+λ2μ2 = λ1�

μ1 + λ2�
μ2 for any λ1, λ2 ∈ R and every μ1, μ2.

Null player μ
(

A ∪ {xi }
) = μ(A) for any A ⊆ X \ {xi } implies �μ({xi }) = 0.

Throughout this paper, we are restricting ourselves to normalised capacities, which implies
that (i) the efficiency axiom simplifies to

∑n
i=1 �μ({xi }) = 1; and (ii) in order to guarantee

that λ1μ1 + λ2μ2 is again a normalised capacity, we must have λ2 = 1 − λ1, and therefore
the linearity axiom implies that �λμ1+(1−λ)μ2 = λ�μ1 + (1− λ)�μ2 for any λ ∈ R and any
normalised capacities μ1, μ2 whenever λμ1 + (1 − λ)μ2 is a normalised capacity too.

Next we investigate to which extent these properties are satisfied by the other centroids
proposed in this paper. In this respect, note that in the framework of this paper, any center of
a capacity shall be a probability measure, whence the efficiency property is trivially satisfied.
Note also that when analysing the behaviour of the set of incenters, we shall say that it satisfies
a property if and only if any of its elements does.

Aswehave alreadymentioned, theShapley centroid does not necessarily satisfy feasibility,
meaning that �μ

1 may not belong to the core of μ. By construction, the vertex, incenter and
contraction centroids do satisfy feasibility. With respect to the other properties, it is not
difficult to establish the following:

Proposition 7 �
μ
2 , any �

μ
3 ∈ �

μ
3 and �

μ
4 satisfy the symmetry and null-player properties.

To see that they do not satisfy linearity in general, whence their difference with Shapley
value, consider the following example:

Example 9 Consider X = {x1, x2, x3}, the exact capacities μ1, μ2 and their average μ :=
0.5μ1 + 0.5μ2, given in the following table:

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3} X
μ1(A) 0.1 0.2 0.3 0.35 0.55 0.75 1
μ1(A) 0.3 0.2 0.1 0.75 0.55 0.35 1
μ(A) 0.2 0.2 0.2 0.55 0.55 0.55 1

Because of the symmetry property, it is easy to see that for μ we obtain that

�
μ
2 = �

μ
3 = �

μ
4 = (1/3, 1/3, 1/3) .

On the other hand, �
μ1
2 = (0.17, 0.31, 0.52) and �

μ2
2 = (0.52, 0.31, 0.17), whence 0.5 ·

�
μ1
2 + 0.5 · �

μ2
2 = (0.345, 0.31, 0.345).

With respect to the contraction centroid, in this case �
μ1
4 = (0.175, 0.325, 0.5) and

�
μ2
4 = (0.5, 0.325, 0.175), whence

0.5�μ1
4 + 0.5�μ2

4 = (0.3375, 0.325, 0.3375).

Finally, with respect to the incenters,�μ1
3 is the set of convex combinations of {(0.175, 0.375,

0.45), (0.175, 0.275, 0.55)} and�
μ2
3 is the set of convex combinations of {(0.45, 0.375, 0.175),

(0.55, 0.275, 0.175)}. Thus, �
μ
3 does not coincide with the set

{
0.5Q1 + 0.5Q2 | Q1 ∈

�
μ1
3 , Q2 ∈ �

μ2
3

}
, because this latter set includes for instance (0.3375, 0.325, 0.3375). As a

consequence, none of three centroids satisfies linearity. �

Next we consider other desirable properties of a centroid.

Definition 5 Let �μ be a centroid of an exact capacity μ. We say that it satisfies:
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• Continuity if for any ε > 0, there exists δ > 0 such that d(μ1, μ2) := maxA⊆X |
μ1(A) − μ2(A) |< δ implies d

(
�μ1 ,�μ2

)
< ε.

• Ignorance preservation if core(μ) = P(X ), then �μ is the uniform distribution.

When dealing with the incenter, the previous properties should be slightly rewritten due
to its lack of uniqueness: the incenter satisfies ignorance preservation if core(μ) = P(X )

implies that �
μ
3 only contains the uniform distribution; and it satisfies continuity when for

any ε > 0 there exists some δ > 0 such that d(μ1, μ2) < δ implies that d(ν1, ν2) < ε,
where ν1 and ν2 are the lower envelopes of �

μ1
3 and �

μ2
3 .

Proposition 8 (a) �
μ
1 satisfies continuity and ignorance preservation.

(b) �
μ
2 satisfies ignorance preservation.

(c) �
μ
3 ,�

μ
4 satisfy continuity and ignorance preservation.

To see that the average of the extreme points does not satisfy continuity, consider the
following example:

Example 10 Consider X = {x1, x2, x3}, ε ∈ (0, 0.05) and the exact capacity μ given by

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3} X
μ(A) 0.1 0.2 0.3 0.35 0.55 − 2ε 0.75 + ε 1

Then μ is supermodular, and the extreme points of core(μ) are given by:

x1 x2 x3
σ1 = (1, 2, 3) Pσ1 0.1 0.25 0.65
σ2 = (1, 3, 2) Pσ2 0.1 0.45 + 2ε 0.45 − 2ε
σ3 = (2, 1, 3) Pσ3 0.15 0.2 0.65
σ4 = (2, 3, 1) Pσ4 0.25 − ε 0.2 0.55 + ε

σ5 = (3, 1, 2) Pσ5 0.25 − 2ε 0.45 + 2ε 0.3
σ6 = (3, 2, 1) Pσ6 0.25 − ε 0.45 + ε 0.3

All these extreme points are different, and their average is given by

�
μ
2 =

(
1.1 − 4ε

6
,
2 + 5ε

6
,
2.9 − ε

6

)
.

On the other hand, when ε = 0 we obtain that Pσ5 = Pσ6 , and, as we have seen
in Example 9, the average of the extreme points becomes �

μ
2 = (0.17, 0.31, 0.52) �=

limε→0(
1.1−4ε

6 , 2+5ε
6 , 2.9−ε

6 ). �

Another desirable property would be that the centroid preserves the same preferences as
μ, in the sense that μ(A) ≥ μ(B) ⇒ �μ(A) ≥ �μ(B). Since �μ is an additive model, we
shall only require this property on the singletons: otherwise the capacity should satisfy

μ(A) ≥ μ(B) ⇒ μ(A ∪ C) ≥ μ(B ∪ C) ∀C ⊆ (A ∪ B)c,

which need not hold. Unfortunately, none of the centroids considered in this paper satisfies
the above property, as the following example shows:

Example 11 Consider X = {x1, x2, x3} and let μ be the exact capacity, with associated
Möbius inverse m, given by

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3} X
μ(A) 0.18 0.2 0.22 0.54 0.45 0.6 1
m(A) 0.18 0.2 0.22 0.16 0.05 0.18 0.01
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Fig. 7 Graphical representation
of the core of μ in Example 3

that satisfies μ({x3}) > μ({x2}) > μ({x1}). Using Eq. (3), we obtain that �
μ
1 =

(0.2883, 0.373, 0.3383), for which �
μ
1 ({x2}) > �

μ
1 ({x3}) > �

μ
1 ({x1}). Moreover, in this

case all permutations of X produce a different extreme point, whence �
μ
2 = �

μ
1 .

With respect to the incenter, it can be checked that the largest value α such that core(μ)α �=
∅ is α = 0.11, from which we deduce that �

μ
3 is given by all the convex combinations of

(0.29, 0.36, 0.35) and (0.29, 0.38, 0.33), all of which produce the same order between x1, x2
and x3 as �

μ
1 . This also implies that �μ

4 = (0.29, 0.37, 0.34). Hence, none of the centroids
keeps the same preferences as the original capacity. �

5 Centrality measures

More generally, instead of determiningwhich element of the core can be considered its center,
we may define a centrality measure, that allows us to quantify how far inside the core an
element is.

Consider for instance the same capacity as in Example 3, whose core is depicted in Fig. 7.
Intuitively, given the probability measures Q1 and Q2 defined as:

Q1({x1}) = 0.75, Q1({x2}) = Q1({x3}) = 0.125,

Q2({x1}) = 0.65, Q2({x2}) = 0.15, Q3({x3}) = 0.2, (15)

and emphasised in red in Fig. 7, Q2 should have a greater centrality degree than Q1.
This simple example suggests the following definition of centrality measure.

Definition 6 Given an exact capacity μ whose core satisfies | core(μ) |> 1, a centrality
measure is a function ϕ : P(X ) → [0, 1] satisfying the following properties:

CM1 ϕ(P) = 0 for every P /∈ core(μ).
CM2 If P ∈ ext

(
core(μ)

)
, then ϕ(P) = 0.

CM3 There exists a unique P0 ∈ core(μ) satisfying ϕ(P0) = 1. Such P0 is called central
point in core(μ) with respect to ϕ.

CM4 Consider P ∈ ext
(
core(μ)

)
, P0 the probability given in the previous item and λ, β ∈

[0, 1] such that λ ≥ β. Given P1 = λP + (1 − λ)P0 and P2 = β P + (1 − β)P0, it
holds that ϕ(P1) ≤ ϕ(P2).
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The idea underlying these properties is the following:CM1 tells us that an element outside
the core should have degree of centrality zero; from CM2, the same should hold for the
extreme points of the core; CM3 means that there is a unique probability P0 with degree of
centrality 1; finally, property CM4 represents the idea that the closer a probability is to P0,
the greater its degree of centrality is. We should mention that in Definition 6, and also in
the remainder of this section, we are not considering the case where the core is a singleton,
core(μ) = {P0}, because in that case we can trivially assign a centrality degree 1 to P0 and
0 to any other probability measure.

We next discuss two possible strategies for defining a centrality measure. The first one
consists in considering a centroid in the interior of the core, and to measure the distance
with respect to it. It requires to specify both the centroid and the distance. Out of the options
considered in the previous section, we would reject�μ

1 because it may not belong to the core
and �

μ
3 because of non-uniqueness. With respect to the distance, we consider here the total

variation, although as argued before it would also be possible to consider other options such
as the L1 or the Euclidean distances, or even the Kullback Leibler divergence.

In this sense, if we let �μ be our centroid of choice and take6

β = min
{

d
(
�μ, Pi

) | Pi ∈ ext
(
core(μ)

)}
, (16)

then we can define

ϕ1(P) = 1 − min

{
d(P,�μ)

β
, 1

}
∀P ∈ core(μ) (17)

and ϕ1(P) = 0 otherwise.
A second approach would consist in defining directly a chain {core(μ)α}α∈[0,1] of sets

such that core(μ)0 = core(μ), core(μ)1 is a singleton determining the centroid� and where
core(μ)α is included in the interior of core(μ) for any α > 0, and letting

ϕ2(P) = sup
{
α ∈ [0, 1] | P ∈ core(μ)α

}
. (18)

The chain {core(μ)α}α∈[0,1] of sets could be defined, for example, as:

core(μ)α = C H
({

(1 − α)P + α�μ | P ∈ ext(core(μ))
}) ∀α ∈ [0, 1], (19)

where C H denotes the convex hull. Let us show that both approaches lead to a centrality
measure.

Proposition 9 Let μ be an exact capacity, and let ϕ1, ϕ2 be given by Eqs. (17) and (18). Then
ϕ1, ϕ2 satisfy conditions (CM1)–(CM4).

Example 12 Consider again our running Example 3. The extreme points of core(μ) were
given in Example 8. Taking as centroid the average of the extreme points �

μ
2 , given in

Eq. (14), we obtain the following distances:

P1 P2 P3 P4 P5

d
(
Pi ,�

μ
2

)
0.12 0.12 0.1 0.13 0.2

6 Recall that we are dealing with exact capacities and therefore the core has a finite number of extreme points.
This guarantees that the value β in Eq. (16) is a minimum and also that β > 0, since �μ does not coincide
with any extreme point of core(μ).
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Fig. 8 Centrality measure ϕ1 defined by Eq. (17) using �
μ
2 (left hand side) and �

μ
4 (right hand side) as

centroids, with the curves with centrality degree 0, 0.2, 0.5 and 0.8

Eq. (16) gives β = 0.1, whence ϕ1(P) = 1−min
{
10d

(
P, ϕ

μ
2

)
, 1

}
. Considering the proba-

bilities Q1 and Q2 in Eqs. (15), (17) produces the following centrality degrees:

ϕ1(Q1) = 1 − min
{
10d

(
Q1, ϕ

μ
2

)
, 1

}
= 1 − 1 = 0,

ϕ1(Q2) = 1 − min
{
10d

(
Q2, ϕ

μ
2

)
, 1

}
= 1 − 0.5 = 0.5,

using that d
(
Q1, ϕ

μ
2

) = 0.15 and d
(
Q2, ϕ

μ
2

) = 0.05.
If we choose instead as centroid �

μ
4 , given in Eq. (11), we obtain the following distances

to the extreme points:

P1 P2 P3 P4 P5

d
(
Pi ,�

μ
4

)
0.1375 0.1375 0.1125 0.1125 0.1875

Thus, in this case β = 0.1125 and ϕ1(P) = 1 − min
{

d(P,ϕ
μ
4 )

0.1125 , 1
}
. Considering again the

probability measures Q1 and Q2 from Eq. (15) we obtain:

ϕ1(Q1) = 1 − min

{
d
(
Q1, ϕ

μ
4

)

0.1125
, 1

}

= 1 − 1 = 0.

ϕ1(Q2) = 1 − min

{
d
(
Q2, ϕ

μ
4

)

0.1125
, 1

}

= 1 − 0.0375

0.1125
= 2

3
.

We can see that the centrality degree of Q1 is zero in both cases (for the centroids �
μ
2 and

�
μ
4 ) but for Q2, the centrality degree is slightly greater when considering the contraction

centroid �
μ
4 .

Figure 8 shows the curveswith centrality degree 0, 0.2, 0.5 and 0.8 forϕ1 when considering
as centroid ϕ

μ
2 (left hand side figure) and ϕ

μ
4 (right hand side figure). We can also consider

the centrality measure ϕ2 defined using the chain of sets in Eq. (19) defined using the extreme
points. In that case, taking the average of the extreme points �

μ
2 as centroid, the centrality

degrees of the probability measures Q1 and Q2 are ϕ2(Q1) ≈ 0.1923 and ϕ2(Q2) ≈ 0.7142.
In contrast, if we use the contraction centroid, we obtain ϕ2(Q1) = 2/9 and ϕ2(Q2) = 2/3.

It is worth mentioning here that for this second approach, any P ∈ int
(
core(μ)

)
has a

strictly positive centrality degree. This is in contrast with the centrality measure ϕ1, that
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Fig. 9 Centrality measure ϕ2 from Eq. (19) using �
μ
2 (left hand side) and �

μ
4 (right hand side) as centroids,

with the curves with centrality degree 0, 0.2, 0.5 and 0.8

assigns zero centrality degree for some probability measures in the interior of the core of μ,
as for example for Q1.

Figure 9 shows the curves of centrality degree 0.2, 0.5 and 0.8 for ϕ2 when considering
as centroid �

μ
2 (left hand side) and �

μ
4 (right hand side). �

It is also possible to define a centrality measure by considering the chain of sets from
Eq. (10). For this, note that for each P ∈ core(μ) there is j ∈ {1, . . . , l} such that P ∈
core(μ)αS j−1

\ core(μ)αS j
, where core(μ)α0 = core(μ). Also, there is α ∈ � j−1 such that

P ∈ (
core(μ) j−1

)
α
, but P /∈ (

core(μ) j−1
)
α+ε

for any ε > 0. Then we let:

ϕ3(P) = αS1 + · · · + αS j−1 + α

αS1 + · · · + αSl

if P ∈ core(μ), (20)

and ϕ3(P) = 0 if P /∈ core(μ).

Proposition 10 The function ϕ3 defined in Eq. (20) satisfies conditions (CM1)–(CM4).

Example 13 In our running Example 3, and in particular in Example 5, we have seen that
αS1 = 0.075 and αS2 = 0.0375, so in this case we have core(μ)αS1

and core(μ)αS2
, where

the latter is a singleton formed by �
μ
4 . It holds that Q1 ∈ (

core(μ)αS0

)
0.025 and Q1 /∈(

core(μ)αS0

)
0.025+ε

, whence:

ϕ3(Q1) = 0.025

αS1 + αS2
= 0.025

0.075 + 0.0375
= 2

9
.

On the other hand, Q2 ∈ (
core(μ)αS0

)
0.05 but Q2 /∈ (

core(μ)αS0

)
0.05+ε

, whence:

ϕ3(Q2) = 0.05

αS1 + αS2
= 0.05

0.075 + 0.0375
= 4

9
.

Figure 10 depicts the curves of centrality degree 0.2, 0.5 and 0.8 for ϕ3. �

6 Centroids from the perspective of imprecise probabilities

We conclude this paper by considering the centroid problem within the framework of impre-
cise probabilities, that include capacities as a particular case and that are capable ofmodelling
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Fig. 10 Centrality measure ϕ3
from Eq. (20) with the curves
with centrality degree 0, 0.2, 0.5
and 0.8

Table 1 Summary of the connection between the terminologies employed in coalitional game theory, decision
making and imprecise probability theory

Coalitional game theory Decision making Imprecise probabilities

Normalised game (μ) Normalised capacity (μ) Lower probability (P)

Conjugate (μ̄) Conjugate (μ̄) Conjugate upper probability (P)

Balanced game Balanced capacity Lower probability avoiding sure loss

Exact game Exact capacity Coherent lower probability

Convex game Supermodular capacity 2-monotone lower probability

Core (core(μ)) Core (core(μ)) Credal set (M(P))

more general scenarios. Before we do this, we make a number of clarifications about the ter-
minology.

Within imprecise probability theory, a (exact) capacity μ is usually denoted by P , and it
is called (coherent) lower probability while its conjugate function, called (coherent) upper
probability, is denoted by P . P and P may be understood as functions giving lower and
upper bounds to a real but unknown probability P0, meaning that all we know about P0 is
that P(A) ≤ P0(A) ≤ P(A) for any event A ⊆ X . Following this interpretation, the core of
a lower probability P is called credal set (Levi, 1980) and it is denoted byM(P); it may be
interpreted as the set of probability measures that are compatible with the information given
by the lower probability. Finally, in this context the property of supermodularity is usually
called 2-monotonicity.

The correspondence7 between the terminology used in decision making, game theory and
imprecise probabilities can be seen in Table 1.

In this section, we shall recall the basics from the more general theory of (coherent) lower
previsions, and show that the four centroids analysed before can be also considered in this
context.

7 We refer to Miranda and Montes (2018) and also Grabisch (2016) for some comments on the connections
between game theory and imprecise probabilities.
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6.1 (Coherent) lower previsions

In the theory of imprecise probabilities fromWalley (1991), rather than giving lower bounds
for the values taken by some unknown probability measure on events, we give lower bounds
for the values taken by its expectation operator. This is done by means of a lower prevision,
a function P : L(X ) → R, where L(X ) denotes the set of random variables, or gambles,
defined on X . Its conjugate upper prevision is defined by P( f ) = −P(− f ) for any f ∈
L(X ). One underlying interpretation is that there exists a probability measure P0 modeling
our uncertainty, and all we know about it is that P( f ) ≤ EP0( f ) ≤ P( f ) for any f ∈ L(X ).
Associated with a lower prevision we can define a credal set by:

M(P) = {P ∈ P(X ) | P( f ) ≥ P( f ) ∀ f ∈ L(X )}, (21)

using for simplicity the same symbol P to denote a probability measure and its associ-
ated expectation operator: P( f ) = EP ( f ). The lower prevision P is called coherent when
P( f ) = minP∈M(P) P( f ) for any f ∈ L(X ). The credal set associated with a coherent
lower prevision is a closed and convex subset of P(X ) but it may not be a polytope. In fact,
there is a one-to-one correspondence between coherent lower previsions and closed and con-
vex subsets of P(X ). This allows us to understand the extent of the generality of this theory:
while coherent lower probabilities (or exact capacities) give rise to credal sets (or cores) that
are polytopes, coherent lower previsions induce closed and convex sets of probabilities that
need not be a polytope.

One particular situation where the credal set in Eq. (21) is a polytope is when the coherent
lower prevision P satisfies 2-monotonicity (Walley, 1981):

P( f ∨ g) + P( f ∧ g) ≥ P( f ) + P(g) ∀ f , g ∈ L(X ),

where∨ and∧ denote the pointwisemaximum andminimum.When this property is satisfied,
the 2-monotone lower prevision determines the same credal set as its restriction to events,
which is a 2-monotone lower probability P ′ defined by P ′(A) := P(IA); and the latter
determines the values of the coherent lower prevision P by means of the Choquet integral
(Choquet, 1953).

6.2 Centroids for coherent lower previsions

Let us discuss how the different notions of centroids we have analysed in this paper may be
applied on arbitrary credal sets or, equivalently, on coherent lower previsions.

Shapley value
The Shapley value can be straightforwardly defined by considering the coherent lower prob-
ability associated to the lower prevision (its restriction to indicators of events) and applying
any of the equivalent representations of the Shapley value given in Sect. 3.1.

Nevertheless, an important drawback here is that two different coherent lower previsions
with the same restriction to events will have the same Shapley value, and so will be indistin-
guishable in this respect. This is illustrated in our next example:
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Example 14 Consider X = {x1, x2, x3} and the coherent lower previsions P1 and P2 induc-
ing the following credal sets:8

M(P1) = {
P ∈ P(X ) | 0.5 ≥ P({x2}) ≥ P({x3})

}
.

M(P2) = {
P ∈ P(X ) | 0.5 ≥ P({x3}) ≥ P({x2})

}
.

By taking lower envelopes, we obtain that both induce the same coherent lower probability
P:

A {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3} X
P(A) 0 0 0 0.5 0.5 0 1

Hence, the Shapley value is the same for both P1 and P2, and it is given by �
P1
1 = �

P2
1 =

(0.5, 0.25, 0.25). Note that the Shapley value does not belong to the interior of the credal
sets for neither P1 nor P2. �

Average of the extreme points
Whenever the credal setM(P) is a polytope (i.e., it has a finite number of extreme points), the
average of the extreme points can be computed using Eq. (6). While this definition imposes
a restriction on the credal set, it is applicable for those associated with a lower probability P
that is coherent (Wallner, 2007), and therefore also in the particular cases of 2-monotonicity,
belief functions or p-boxes (Montes & Destercke, 2017). In addition, it is also applicable
to some models of coherent lower previsions that are not determined by their restrictions
to events, such as those associated with comparative probabilities (Miranda & Destercke,
2015).9

Incenter
Aswe did in Sect. 3.3, we can find the (set of) incenters. In this case, the definition of incenter
can be straightforwardly given: the incenter radius of M(P) is given by

αI = sup
{
α > 0 | ∃P0 ∈ M(P) such that Bα

o (P0) ⊆ M(P) ∩ P
∗(X )

}
,

and any P0 ∈ M(P) such that BαI
0 (P0) ⊆ M(P) is called incenter of P .

Proposition 11 Let P be a coherent lower prevision whose credal set has non-empty interior.
Then the value αI is a maximum. As a consequence, the incenter of P always exists.

Contraction centroid
The only centroid whose extension to coherent lower previsions is not straightforward

is the contraction centroid. Assuming again that M(P) is a polytope, we know that it is
determined by a finite number of constraints. This means that there are two (disjoint) set of
gambles L> and L= such that the coherent lower prevision P and its conjugate P satisfy:

P( f ) = P( f ) ∀ f ∈ L= and P( f ) < P( f ) ∀ f ∈ L>,

and that the credal set can be expressed as:

M(P) = {
P ∈ P(X ) | P( f ) = P( f ) ∀ f ∈ L=, P( f ) ≥ P( f ) ∀ f ∈ L>

}
. (22)

8 As we have explained, any coherent lower prevision is in one-to-one correspondence with a closed and
convex subset of P(X ).
9 One possibility for credal sets that are not polytopes would be to consider the average with respect to a
uniform distribution over the infinite family of extreme points; this uniform distribution might be defined
letting go of countable additivity, considering the comments in Walley (1991, Sec.4 2.9). A deeper study of
this matter is left as future work.
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Note thatwemay assumewithout loss of generality that these constraints include the indicator
functions of the proper events: {IA | ∅ �= A ⊂ X } ⊆ L> ∪ L=. In that case, when L> is
empty we obtain that P(IA) = P(IA) for any A ⊆ X (or P(A) = P(A), if we use this abuse
of notation), meaning that M(P) contains one single probability measure. Moreover, using
the properties of coherent lower and upper previsions, we can also assume without loss of
generality that 0 ≤ min f < max f = 1 for every f ∈ L> ∪ L=.

The idea in this approach is the same explained in Sect. 3.4: we contract the credal set in a
uniform manner as long as possible, increasing the value of the lower prevision in a constant
amount α in all the gambles f ∈ L>, and then proceed in the same way by reducing the
number of constraints. As we showed in Proposition 3, there exists a value α small enough
such that this approach produces a non-empty credal set and there is a maximum value
satisfying this property.

Proposition 12 Let P be a coherent lower prevision whose credal set is a polytope that can
be expressed as in Eq. (22). For a given α > 0, let:

M(P)α = {
P ∈ P(X ) | P( f ) = P( f ) ∀ f ∈ L=, P( f ) ≥ P( f ) + α ∀ f ∈ L>

}
. (23)

Consider also the set � = {α > 0 | M(P)α �= ∅}. It holds that:

(a) � �= ∅.
(b) The set � has a maximum αS.
(c) Given the set M(P)αS , there exists some f ∈ L> such that P( f ) is constant for any

P ∈ M(P)αS .

Moreover, as we explained before, when the coherent lower prevision satisfies 2-
monotoninicty, it is determined by its restriction to events. Hence, Theorem 4 also applies
in this context, where we simply need to understand P(A) and P(A) as the lower and upper
previsions of the indicator IA.

Finally, the connection between the set of incenters and the first step of the process
determining the contraction centroid also holds for coherent lower previsions.

Proposition 13 Let P be a coherent lower prevision whose associated credal set M(P) is
included in P

∗(X ) and such thatL= = ∅. If αS is the incenter radius, then for any P0 ∈ M(P)

and any α ≤ αS:

P0 ∈ Mα(P) ⇔ Bα
c (P0) ⊆ M(P).

6.3 Particular cases

We have seen that the four centroids can be defined to coherent lower previsions. In this
subsection we analyse them for some particular families of imprecise models. We start with
probability intervals.

A probability interval (de Campos et al., 1994) is an uncertainty model I that gives lower
and upper bounds to the probability of the singletons:

I = {[li , ui ] | li ≤ ui ∀i = 1, . . . , n
}
.

It determines a credal set given by:

M(I) = {
P ∈ P(X ) | li ≤ P({xi }) ≤ ui ∀i = 1, . . . , n

}
.
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This credal set is non-empty if and only if
∑n

i=1 li ≤ 1 ≤ ∑n
i=1 ui , and we say that the

probability interval avoids sure loss. Then, taking lower and upper envelopes of M(I) we
obtain a lower and an upper probability, and we say that the probability interval is coherent
when P({xi }) = li and P({xi }) = ui for every i = 1, . . . , n. In that case, P is 2-monotone
and the values of P and P for any event A ⊆ X can be computed as de Campos et al. (1994):

P(A) = max

{ ∑

xi ∈A

li , 1 −
∑

xi /∈A

ui

}
, P(A) = min

{ ∑

xi ∈A

ui , 1 −
∑

xi /∈A

li

}
.

For the particular case of coherent probability intervals, we can give an explicit formula
for the value αS in the contraction method.

Proposition 14 Let P and P be the coherent lower and upper probability determined by a
coherent probability interval I = {[li , ui ] | ∀i = 1, . . . , n}. Consider:

I> = {
i ∈ {1, . . . , n} | li < ui

}
, I= = {

i ∈ {1, . . . , n} | li = ui
}
.

Then:

(a) The value αS = max� is given by:

αS = min

{
1

| I> |

(

1 −
n∑

i=1

li

)

,
1

| I> |

(
n∑

i=1

ui − 1

)

,
1

2
min
i∈I>

(ui − li )

}

. (24)

(b) The credal setM(P)αS determined by means of Eq. (23) is a probability interval avoiding
sure loss.

(c) If αS = 1
|I>|

(
1−∑

i=1,...,n li
)

or αS = 1
|I>|

( ∑
i=1,...,n ui − 1

)
, then M(P)αS = {

�
P
4

}
.

The value αS obtained in Eq. (24) is consistent with that from Theorem 5 for the particular
case of maximally imprecise probability intervals. This shows also that in that case Eq. (13)
can be simplified, in the sense that we do not need to consider all partitions of X , but only
the partitions {x1}, . . . , {xn} and {xi },X \ {xi } for every i = 1, . . . , n.

From Proposition 14we can also deduce an explicit formula for the value αS for the Linear
Vacuous (LV) and the Pari Mutuel Model (PMM), which constitute particular instances of
distortion models (Montes et al., 2020a, b) or nearly linear models (Corsato et al., 2019).
The PMM (Montes et al., 2019; Pelessoni et al., 2010; Walley, 1991) is determined by the
coherent lower probability:

P P M M (A) = max
{
(1 + δ)P0(A) − δ, 0

} ∀A ⊆ X ,

where P0 ∈ P(X ) is a given probability measure and δ > 0. Similarly, the LV (Walley, 1991)
is defined by the coherent lower probability

P LV (A) = (1 − δ)P0(A) ∀A ⊂ X and P LV (X ) = 1,

where P0 ∈ P(X ) and δ ∈ (0, 1).
Both the PMM and the LV are instances of probability intervals, where:

IP M M =
{[

max{(1 + δ)P0({x}) − δ, 0},min{(1 + δ)P0({x}), 1}] | x ∈ X
}
,

ILV =
{[

(1 − δ)P0({x}),min{(1 − δ)P0({x}) + δ, 1}] | x ∈ X
}
.

This means that we can apply Proposition 14 for computing the value αS = max�. In
fact, when both P0 and the lower probability only take the values 0 and 1 for trivial events
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(the impossible and sure events), the formula for αS = max� can be simplified and the
procedure of contracting the credal set finishes in only one step.

Corollary 15 Consider a PMM P P M M or a LV P LV determined by a probability measure
P0 ∈ P(X ) and a distortion parameter δ. Assume that P P M M (A) and P LV (A) belong to
(0, 1) for every A �= ∅,X . Then:

(a) For the PMM, αS = max� = δ
n and Mα = {

�
P P M M
4

}
where �

P P M M
4 ({xi }) = (1 +

δ)P0({xi }) − δ
n for any i = 1, . . . , n.

(b) For the LV,αS = max� = δ
n andMα = {

�
P LV
4

}
where�

P LV
4 ({xi }) = (1−δ)P0({xi })+

δ
n for any i = 1, . . . , n.

(c) For both the PMM and LV there is a unique incenter and �1 = �2 = �3 = �4.

In this respect, it is worth remarking that (i) the good behaviour of these two distortion
models is in line of other desirable properties they possess, as discussed in Destercke et al.
(2022), Montes et al. (2020a) and Montes et al. (2020b); and (ii) the centroid of a distortion
model originated by a probability measure P0 does not coincide with P0, because the dis-
tortion is not done uniformly in all directions of the simplex. This was already observed in
Miranda and Montes (2018 for the particular case of the Shapley value.

6.4 Properties

We consider now the properties of the centroids considered in Sect. 4.

Proposition 16 Let P be a coherent lower prevision. Then, the properties in Proposition 7
and 8 still hold.

We have already mentioned that two different lower previsions may have the same restric-
tion to events. For this reason, in addition to the aforementioned properties, it would be
desirable that the center of a coherent lower prevision P does not necessarily coincide with
the center of its restriction to events. In this respect, it is not difficult to show that �

P
3 ,�

P
4

are capable of distinguishing between lower previsions and lower probabilities, and so does
�

P
2 (when M(P) is a polytope). On the other hand, Shapley value is only defined via the

lower probability, so it does not distinguish between lower probabilities and lower previsions
as we showed in Example 14.

6.5 Centrality measures

Finally, we may try to define centrality measures for the credal set determined by a coherent
lower prevision. For this aim, we can consider exactly the definition of centrality measure as
in Definition 6, and the centrality measures ϕ1, ϕ2 and ϕ3 defined in Eqs. (17), (18) and (20),
respectively. Note that in the case of ϕ1 and ϕ3 we need to restrict ourselves to coherent lower
previsions whose credal set is a polytope to assure that the minimum in Eq. (16) is strictly
positive and that the contraction approach finishes in a finite number of steps, respectively.

Proposition 17 Given a coherent lower prevision P, the function ϕ2 is a centrality measure.
Moreover, if M(P) is a polytope, ϕ1 and ϕ3 are centrality measures too.
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Table 2 Summary of the properties satisfied by the four centroids

Property Shapley value Average of extremes Incenter (dT V ) Contraction center

Efficiency Yes Yes Yes Yes

Symmetry Yes Yes Yes Yes

Linearity Yes No No No

Null player Yes Yes Yes Yes

Feasibility No Yes Yes Yes

Continuity Yes No Yes Yes

Ignorance preservation Yes Yes Yes Yes

Preference preservation No No No No

Distinguish lower
probabilities and previsions

No Yes Yes Yes

7 Conclusions

We have performed a comparative analysis of four alternatives for defining a center of an
exact capacity: the Shapley value, the average of the extreme points, the incenter for the total
variation distance and the limit of uniform contractions. Our results show that these four
approaches may lead to different results, and also illustrate some of the properties each of
them satisfies: a summary can be seen in Table 2. Note that our goal with this paper is not to
take the stance that one of them is better than the others. Instead, we intend to provide some
assistance to the practitioner in her choice of a centroid: if for instance she considers that
linearity is an essential property, she must pick the Shapley value; if she wants to ensure that
the center belongs to the interior of the core of the capacity, she must select one of the others;
and so on. Also, we have seen that these centroids can also be applied in the more general
framework of coherent lower previsions. Since coherent lower previsions are in one-to-one
correspondence with closed and convex set of probabilities, they include the particular case
of polytopes. We have seen that the results we have proved for exact capacities can also be
extended to coherent lower previsions.

Let us recall that the center in this paper is understood as a probability measure that is in
the interior of the core of the capacity and that can play the role of its representative. For this
reason, we have left out of our study other approaches based, for example, on maximising
the entropy or minimising the Kullback Leibler divergence, that in our context may produce
counterintuitive results.

In addition to the comparison performed between the four centroids, some comments
regarding their computation in practice must be done:

• First of all, the computation of the Shapley value is known to be a hard problem that
exponentially increases with | X |, since it requires the computation of μ(A) for the
2n − 1 non-trivial events.

• Secondly, the average of the extremepoints is simple as long as these are known.Under the
assumption of supermodularity, the extremepoints coincidewith the probabilitymeasures
Pσ defined in Eq. (1). Even more, there are particular situations where their computation
is even simpler: for example, when μ is minitive there are at most 2n−1 (Miranda et al.,
2003) and when μ corresponds to a p-box the maximal number of extreme points is at
most the n-th Pell number (Montes &Destercke, 2017). The problem is more challenging
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when the capacity is not supermodular: even if the number of extreme points is at most
n! (Wallner, 2007), there is no simple procedure for their computation.

• Thirdly, computing the contraction centroid may be an extremely complicated problem.
Even if Theorem 4 gives a formula for computing the value αS under fairly general
conditions, it requires the computation of all the families A in A(X ), whose number is
extremely large. The complexity is significantly reduced for supermodular capacities,
because Theorem 5 gives a simpler expression for αS that depends on the partitions of
X . Still, the problem is rather complex because the number of partitions in a n element
possibility space coincides with the n-th Bell number. Nevertheless, we have seen that
for particular models that may arise in practice such as probability intervals or some
distortion models, the computation of the four centroids is much simpler.

• Finally, under fairly general conditions the set of incenters coincide with the first step of
the contraction approach (Proposition 6), hence both approaches are equivalent from the
computational viewpoint.

While our results give some overview of the properties of the centroids of a capacity,
there is still much work to be done in order to have a full picture of this problem. First
and foremost, it would be interesting to extend our approaches to infinite possibility spaces.
While this seems immediate in the case of the incenter or the vertex centroid (see also
footnote 4), in the case of the Shapley value we should consider the generalisations carried
out in Neyman (2002), and in the case of the contraction centroid we should verify that the
process stabilises in a finite number of steps. In addition, we could consider other possibilities
in the context of game solutions, such as the Banzhaf value (Banzhaf, 1965) ormore generally
probabilistic solutions (Weber, 1988), or other alternatives to the total variation distance, such
as the Euclidean distance or the L1 distance. It would also be interesting to obtain further
conditions for the equality between some of these centroids. And finally, a deeper study of
centrality measures and their axiomatic properties would be of interest.
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Appendix A: Proofs

Proof of Proposition 1 From Eq. (2), using the definition of the Möbius inverse, we obtain
that

�
μ
1 ({x}) =

∑

A|x /∈A

| A |!(n− | A | −1)!
n!

(
μ(A ∪ {x}) − μ(A)

)

=
∑

A|x /∈A

| A |!(n− | A | −1)!
n!

⎛

⎝
∑

B⊆A∪{x}
m(B) −

∑

B⊆A

m(B)

⎞

⎠

=
∑

A|x /∈A

| A |!(n− | A | −1)!
n!

( ∑

x∈B⊆A∪{x}
m(B)

)
.

Now, in the sum above any event B that includes x appears associated with sets A that include
B \ {x} and do not include x , and which are thus of the form (B \ {x})∪C for some C ⊆ Bc.
This means that in the sum above m(B) is multiplied by

⎛

⎝
n−|B|∑

k=0

(| B | −1 + k)!(n − (| B | −1 + k) − 1)!
n!

⎞

⎠
(

n− | B |
k

)

= (n− | B |)!
n!

n−|B|∑

k=0

(| B | −1 + k)!
k! = (n− | B |)!(| B | −1)!

n!
n−|B|∑

k=0

(| B | −1 + k

k

)

= (n− | B |)!(| B | −1)!
n!

(
n− | B | + | B | −1 + 1

n− | B |
)

= (n− | B |)!(| B | −1)!
n!

(
n

n− | B |
)

= 1

| B | ,

where the third equality follows from the hockey-stick identity. This shows that the Shapley
value coincides with the pignistic transformation.

To see the equality with the average of the Pσ , note that for a fixed permutation,

Pσ ({xσ(i)}) = μ({xσ(1), . . . , xσ(i)}) − μ({xσ(1), . . . , xσ(i−1)})
=

∑

xσ(i)∈B⊆{xσ(1),...,xσ(i)}
m(B),

whence m(B) is included in the sum that determines the probability of xσ(i) only in those
permutations when B is a subset of {xσ(1), . . . , xσ(i)} that includes xσ(i). Reasoning as above,
the proportion of such permutations is 1

|B| . Thus, the average of the Pσ coincides with the
pignistic transformation, and as a consequence also with the Shapley value. ��

Proof of Propositions 2 and 11 Since capacities are particular cases of coherent lower pre-
visions, we prove the statement in Proposition 11, from which we immediately deduce
Proposition 2.

Consider a coherent lower prevision P . If the topological interior ofM(P) is non-empty,
we consider the set

�1 = {
α ∈ [0, 1] | ∃P ∈ M(P) such that Bα

o (P) ⊆ M(P) ∩ P
∗(X )

}
.
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This set is non-empty because

int
(M(P)

) �= ∅ ⇔ int
(M(P)

) ∩ P
∗(X ) �= ∅

and given P ∈ int
(M(P)

) ∩ P
∗(X ) there exists some α > 0 such that Bα

o (P) ⊆ M(P) ∩
P

∗(X ). Besides being non-empty, the set �1 is directed (α ∈ �1 ⇒ α′ ∈ �1 ∀α′ ∈
[0, α]). Let α1 := sup�1. This means that for every n ∈ N there exists some Pn ∈ M(P)

such that Bα1−1/n
o (Pn) ⊆ M(P) ∩ P

∗(X ). The sequence (Pn)n is included in the compact
set M(P), that is as a consequence also sequentially compact. Therefore, there exists a
subsequence (Pn′)n′ that converges to some P . Note that for this subsequence we also have
that Bα1−1/n′

o (Pn′) ⊆ M(P)∩P
∗(X ). SinceM(P) is closed, P ∈ M(P). Moreover, for any

ε > 0 there is some nε such that d(Pn′ , P) < ε for every n′ ≥ nε . Take ε = 1
n for a fixed n.

Then for any Q ∈ Bα1−2/n
o (P) and any m ≥ nε it holds that

d(Q, Pm′) ≤ d(Q, P) + d(P, Pm′) < α1 − 1

n
.

Since we can take m arbitrarily large, we deduce that

Bα1−2/n
o (P) ⊆ Bα1−1/n

o (Pm′) ⊆ Bα1−1/m′
o (Pm′) ⊆ M(P) ∩ P

∗(X ).

Since this holds for every n, we deduce that Bα1
o (P) = ∪n B

α1− 1
n′

o (P) ⊆ M(P) ∩ P
∗(X ).

Therefore, α1 belongs to �1. ��
Proof of Propositions 3 and 12 Again, we prove Proposition 12 and, since exact capacities are
particular cases of coherent lower previsions, Proposition 3 immediately follows.

(a) Let us denote L> = { f1, . . . , fk}. For each i = 1, . . . , k, it follows by coherence
that there is some Pi ∈ M(P) such that Pi ( fi ) = P( fi ) > P( fi ). If we now let
P := P1+···+Pk

k , it belongs to the convex set M(P) and by construction it satisfies
P( fi ) > P( fi ) for all i = 1, . . . , k. Given α = mini=1,...,k

(
P( fi ) − P( fi )

)
> 0, we

conclude that P ∈ M(P)αi and therefore � is non-empty.
(b) Since X is finite, the topology ofM(P) is equivalent to the topology associated with the

Euclidean distance. The definition ofM(P)α implies then that, for every α ∈ �, the set
M(P)α is a closed subset ofM(P), and it is therefore compact. Thus, (M(P)α)α∈� is a
decreasing sequence of compact subsets ofM(P), and as a consequence their intersection
M∗ is non-empty. But this intersectionM∗ must coincide withM(P)αS for αS = sup�,
and this implies that this supremum is a maximum.

(c) Let PαS
, PαS denote the lower and upper envelopes of M(P)αS . Assume ex-absurdo

that PαS
( fi ) < PαS ( fi ) for every fi ∈ L>. Then reasoning as in the first statement we

can find some P ∈ M(P)αS such that P( fi ) > PαS
( fi ), and this contradicts that αS is

the maximum value of �.

��
Proof of Theorem 4 We are looking for the maximum α such that the set:

core(μ)α = {
P ∈ P(X ) | P(A) ≥ μ(A) + α ∀A �= ∅,X}

is non-empty. This is equivalent to requiring that the capacity ν given by:

ν(A) =

⎧
⎪⎨

⎪⎩

0, for A = ∅
μ(A) + α, for A �= ∅,X
1, for A = X
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is balanced. Since the possibility space X is finite, this means (Walley 1991, Lemma 2.4.4)
that for any l ∈ N and A1, . . . , Al , we should have

max
x∈X

l∑

i=1

(
IAi (x) − ν(Ai )

) ≥ 0. (A1)

Note that we can assume that the events A1, . . . , Al are proper subsets of X , given that
IX − ν(X ) = 1 − 1 = 0 and I∅ − ν(∅) = 0 − 0 = 0. This allows us to rewrite Eq. (A1) as

max
x∈X

l∑

i=1

(
IAi (x) − μ(Ai ) − α

) ≥ 0

for any l ∈ N and any proper subsets A1, . . . , Al of X .
Now, given such sets A1, . . . , Al , the gamble f := IA1 + . . . + IAl can be rewritten as

f := a1 IB1 + . . . + am IBm for non-negative integers a1 > . . . > am−1 > am ≥ 0 and where

{B1, . . . , Bm} is a partition of X . Let us define the sets C j
i := Bi for i = 2, . . . , m and for

j = 1, . . . , a1 − ai . It holds that

A = (
A1, . . . , Al , C1

2 , . . . , Ca1−a2
2 , . . . , C1

m, . . . , Ca1−am
m

)

belongs to the class A(X ) and βA = a1. Then:

max
x∈X

l∑

i=1

(
IAi (x) − μ(Ai ) − α

) = max
x∈X

( l∑

i=1

(
IAi (x) − μ(Ai )

)

+
m∑

i=2

a1−ai∑

j=1

(
I
C j

i
(x) − μ(C j

i )
) −

m∑

i=2

a1−ai∑

j=1

(
I
C j

i
(x) − μ(C j

i )
) − lα

)

= βA −
l∑

i=1

μ(Ai ) −
m∑

i=2

a1−ai∑

j=1

μ(C j
i ) − min

x∈X

( m∑

i=2

a1−ai∑

j=1

(
I
C j

i
(x) − μ(C j

i )
)) − lα.

This means that

max
x∈X

l∑

i=1

(
IAi (x) − μ(Ai ) − α

) ≥ 0

if and only if

α ≤ 1

l

(
βA −

l∑

i=1

μ(Ai ) −
m∑

i=2

a1−ai∑

j=1

μ(C j
i )

)
− min

x∈X
1

l

m∑

i=2

a1−ai∑

j=1

(
I
C j

i
(x) − μ(C j

i )
)
. (A2)

Now, instead of considering the events A1, . . . , Al , consider A1, . . . , Al , C1
2 . We get:

1

l + 1

(
βA −

l∑

i=1

μ(Ai ) −
m∑

i=2

a1−ai∑

j=1

μ(C j
i )

)

−min
x∈X

[
1

l + 1

( m∑

i=2

a1−ai∑

j=1

(IC j (x) − μ(C j )) − (IC1
2
(x) − μ(C1

2 )
)]

≤ 1

l

(
βA −

l∑

i=1

μ(Ai ) −
m∑

i=2

a1−ai∑

j=1

μ(C j
i )

)
− min

x∈X
1

l

m∑

i=2

a1−ai∑

j=1

(
I
C j

i
(x) − μ(C j

i )
)
.
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In fact, observe that βA − ∑l
i=1 μ(Ai ) − ∑m

i=2
∑a1−ai

j=1 μ(C j
i ) ≥ 0 since μ is an exact

capacity, and that theminimum in each equation is given by− ∑m
i=2

∑a1−ai
j=1 μ(C j

i )+μ(C1
2 ),

and −∑m
i=2

∑a1−ai
j=1 μ(C j

i ) respectively, in both cases considering x ∈ B1.
Iterating the procedure, the minimum value in the right-hand side part of Eq. (A2) is

attained for A1, . . . , Al , C1
2 , . . . , Ca1−a2

2 , . . . , C1
m, . . . , Ca1−am

m . With this, we deduce that

Mα(P) is non-empty if and only if α ≤ minA∈A 1
|A|

(
βA − ∑l

i=1 μ(Ai )

)
, and the proof is

complete. ��
In order to prove Theorem 5, we must establish first a couple of auxiliary lemmas.

Lemma 18 Let μ be a maximally imprecise exact capacity, and considerA ∈ A(X ) such that
there existsA1 ∈ A(X )withA1 ⊂ A. ThenA2 = A\A1 ∈ A(X ), andmin{hA1 , hA2} ≤ hA.

Proof Let A ∈ A and assume that there exists A1 ∈ A such that A1 ⊂ A. This means that∑
A∈A1

IA = βA1 , with βA1 < βA. Take A2 = A \ A1 ⊂ A. It holds that:
∑

A∈A2

IA =
∑

A∈A
IA −

∑

A∈A1

IA = βA − βA1 ∈ N,

which implies thatA2 ∈ A and also that βA = βA1 +βA2 and | A |=| A1 | + | A2 |. Hence
1

| A |
(

βA −
∑

A∈A
μ(A)

)

= 1

| A1 | + | A2 |

⎛

⎝
(
βA1 −

∑

A∈A1

μ(A)
)

+
(
βA2 −

∑

A∈A2

μ(A)
)
⎞

⎠

= | A1 |
| A1 | + | A2 |

1

| A1 |

⎛

⎝βA1 −
∑

A∈A1

μ(A)

⎞

⎠

+ | A2 |
| A1 | + | A2 |

1

| A2 |

⎛

⎝βA2 −
∑

A∈A2

μ(A)

⎞

⎠ .

Thus, hA is a convex combination of hA1 and hA2 , and as a consequence min{hA1 , hA2} ≤
hA. ��
Lemma 19 Let μ be a maximally imprecise exact capacity, and let A = (

Ai
)

i∈I ∈ A(X ) be
a family where the minimum in Eq. (12) is attained.

(a) If βA = 1, then A is a partition of X .
(b) If βA =| A | −1, then Ac = (

Ac
i

)
i∈I is a partition of X .

(c) If 1 < βA < |A| − 1 and for every A, B ∈ A at least one of A ∩ B, A \ B and B \ A is
empty, then there exists A1 ∈ A

∗(X ) such that A1 ⊂ A.

Proof (a) First of all, assume that βA = ∑
A∈A IA = 1. Thismeans that each x ∈ X belongs

to one and only one event A ∈ A, hence A is a partition of X .
(b) Secondly, assume that βA = ∑

A∈A IA =| A | −1. This means that

| A | −1 =
∑

A∈A
IA =

∑

A∈A

[
1 − (1 − IA)

] =| A | −
∑

A∈A
(1 − IA) =| A | −

∑

A∈A
IAc ,

whence
∑

A∈A IAc = 1 and applying (a), Ac = (
Ac

i

)
i∈I is a partition of X .
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(c) From the condition, given two different elements A, B ∈ A either they are disjoint or
one of them is included in the other. If we then consider the partial order � on A given
by set inclusion, then we can find a subfamilyA1 ⊂ A of maximal elements in the order
that are pairwise disjoint. Since any element of X must be included in some maximal
element, it follows that the subfamily A1 is a partition of X .

Proof of Theorem 5 Let A = (
Ai

)
i=1,...,k be the element in A(X ) where the minimum in

Eq. (12) is attained. According to Lemma 19, if βA = 1, then A is partition so A ∈ A
∗(X )

hence Eq. (13) holds. If βA =| A | −1, then Ac = (
Ac

i

)
i=1,...,k is a partition, so it belongs

to A
∗(X ). Also:

αS = 1

| A |
(

(| A | −1) −
∑

A∈A
μ(A)

)
= 1

| A |
(

(| A | −1) +
∑

A∈A
(1 − μ(A) − 1)

)

= 1

| A |
(

(| A | −1− | A |) +
∑

A∈A
μ̄(Ac)

)
= 1

| A |
( ∑

A∈A
μ̄(Ac) − 1

)

= 1

| A |
( ∑

A∈Ac

μ̄(A) − 1

)
,

hence Eq. (13) holds.
Assume now that 1 < βA <| A | −1, and let us prove that it is possible to find another

A∗ ∈ A(X ) such that βA∗ < βA and where αS is attained.
From item (c) in Lemma 19 we deduce that either there is A∗ ∈ A(X ) with A∗ ⊂ A or

there are two different Ai , A j ∈ A with Ai ∩ A j �= ∅, Ai \ A j �= ∅ and A j \ Ai �= ∅. In this
second case, applying 2-monotonicity with the sets Ai and A j above we deduce that:

hA = 1

| A |
(
βA −

∑

A∈A
μ(A)

)
= 1

| A |

⎛

⎝βA −
∑

A∈A\{Ai ,A j }
μ(A) − μ(Ai ) − μ(A j )

⎞

⎠

≥ 1

| A |

⎛

⎝βA −
∑

A∈A\{Ai ,A j }
μ(A) − μ(Ai ∩ A j ) − μ(Ai ∪ A j )

⎞

⎠ = hA1 ,

where A1 = (A \ {Ai , A j }
) ∪ (

Ai ∩ A j , Ai ∪ A j
)
, using that βA1 = βA. Thus, αS = hA1 .

Now, if inA1 it is possible to find twodifferent events Bi , B j with Bi ∩B j �= ∅, Bi \B j �= ∅
and B j \ Bi �= ∅ a similar reasoning shows that A2 = A1 ∪ (

Bi ∪ B j , Bi ∩ B j
) \ (Bi , B j )

also satisfies βA2 = βA1 and hA2 = hA1 = αS . Iterating the procedure, we find after a
finite number of steps that there are no different events C and D in the family Ak such that
C ∩ D �= ∅, C \ D �= ∅ and D \C �= ∅. But then, applying Lemma 19 we deduce that there is
A∗ ∈ A

∗(X ) withA∗ ⊂ Ak . Applying Lemma 18 that either hAk = hA∗ or hAk = hAk\A∗ .
Since both βA∗ and βAk\A∗ are strictly smaller than βAk , we deduce that we can find another
element of A(X ) where the value αS is attained and with a smaller value of βA. If we repeat
this process we end up with a familyA′ ∈ A(X ) such that βA′ = 1, and where αS is attained,
at which point we apply the first part of the proof.

Proof of Propositions 6 and 13 We start proving Proposition 13. From it, Proposition 6 triv-
ially follows just noting that, by hypothesis, L= would be empty and L> would be formed
by all the proper events of X (because μ is by hypothesis maximally imprecise), and this
allows to apply Proposition 13 to a lower prevision were L> contains the indicator functions
of the proper events.
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(⇒) Assume that P0( f ) ≥ P( f )+α for every f ∈ L>, and consider Q ∈ Bα
c (P0). Since we

can assume without loss of generality that 0 = min f < max f = 1 for every f ∈ L>,
it follows that | Q( f ) − P0( f ) |≤ α, whence Q( f ) ≥ P0( f ) − α ≥ P( f ) for every
f ∈ L>. Since by assumption L= = ∅, this implies that Q ∈ M(P).

(⇐) Consider a probability measure P0 such that Bα
c (P0) ⊆ M(P), and let us prove that

P0( f ) ≥ P( f ) + α for every f ∈ L>. Assume ex-absurdo that P0( f ) − α < P( f )

for some gamble f ∈ L>, and let us show that there exists some Q ∈ Bα
c (P0) such that

Q( f ) < P( f ). To see that this is indeed the case, note that since Bα
c (P0) is included in

P
∗(X ), it must be P0({xi }) > α for every xi ∈ X . If we now take xm, xM ∈ X such that:

0 = min f = f (xm), 1 = max f = f (xM ),

and define Q by means of the mass function

Q({xm}) = P0({xm}) + α, Q({xM }) = P0({xM }) − α,

and Q({x}) = P0({x}) for any other x �= xm, xM , it follows that | Q(B) − P0(B) |≤ α

for every B ⊆ X , whence Q ∈ Bα
c (P0) ⊆ M(P). However:

Q( f ) =
∑

x∈X
Q({x}) f (x) =

∑

x �=xm ,xM

Q({x}) f (x) + Q({xm}) f (xm) + Q({xM }) f (xM )

=
∑

x �=xm ,xM

P0({x}) f (x) + (
P0({xm}) + α

)
f (xm) + (

P0({xM }) − α
)

f (xM )

= P0( f ) − α
(

f (xM ) − f (xm)
) = P0( f ) − α < P( f ),

hence Q /∈ M(P), we obtain a contradiction.

The second part of Proposition 6 is an immediate consequence of the first once we realise
that, since M ⊆ P

∗(X ), we can compute αI by means of Eq. (8). ��
Proof of Propositions 7, 8 and 16 We start proving the properties of the centroids for coherent
lower previsions (Proposition 16). Since exact capacities are particular cases of coherent
lower previsions, Propositions 7 and 8 can be regarded as a corollary. Throughout this proof,
for simplicity we use the notation P(A) := P(IA) and P(A) = P(IA).

It xi is a null-player, P(X ) = 1 = P(X \ {xi }), whence P({xi }) = 0. Since �
P
2 ,�

P
3 ,�

P
4

belong to the credal set, any of these centroids gives probability zero to xi .
With respect to symmetry, let σi, j denote the permutation of X that exchanges xi and x j

and leaves the other elements fixed, and let Pσi, j
be given by Pσi, j

( f ) = P( f ◦ σi, j ).
If P is an extreme point ofM(P), then Pσi, j is an extreme point ofM(Pσi, j

). If we now

assume that by symmetry Pσi, j
= P , it follows that �

P
2 = �

Pσi, j
2 . But on the other hand it

must be �
P
2 ({xi }) = �

Pσi, j
2 ({x j }), and as a consequence �

P
2 ({xi }) = �

P
2 ({x j }).

Concerning the set of incenters, if P satisfies that Bα
o (P) ⊆ M(P) ∩ P

∗(X ), then
Bα

o (Pσi, j ) ⊆ M(Pσi, j
) ∩ P

∗(X ) = M(P) ∩ P
∗(X ). Therefore,

{
P({xi }) | P ∈ �

P
3

}
=

{
P({xi }) | P ∈ �

Pσi, j
3

}
=

{
P({x j }) | P ∈ �

P
3

}
.

Finally, for the contraction centroid note that, for any gamble f ∈ L> and any α > 0, it
holds that

P( f ) ≥ P( f ) + α ⇔ Pσi, j ( f ) ≥ Pσi, j
( f ) + α = P( f ) + α,
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whence M(P)α is invariant under σi, j . From here we deduce that �P
4 ({xi }) = �

P
4 ({x j }).

With respect to ignorance preservation, in the case of �
P
1 it follows immediately from

Eq. (3) because the Möbius inverse of P satisfies m(X ) = 1 and zero for any other A �= X .
In the case of �

P
2 , it suffices to note that the extreme points of M(P) are the degenerate

distributions; and for �
P
3 ,�

P
4 it suffices to use that the uniform distribution P0 is the only

one in M(P) for which B
1

|X |
o (P0) is included in M(P) ∩ P

∗(X ).
Finally, with respect to continuity, in the case of�μ

1 it follows directly from Eq. (2); while
in the case of�μ

3 ,�
μ
4 it follows trivially because we are using in their definition the topology

of the total variation. ��
Proof of Propositions 9, 10 and 17 We first prove that ϕ1, ϕ2 and ϕ3 are centrality measures
for a coherent lower prevision P (assuming thatM(P) is a polytope for ϕ1 and ϕ3), proving
hence Proposition 17. Since any exact capacity is a particular type of coherent lower prevision
whose core is a polytope, Propositions 9 and 10 trivially follow as a corollary.

Let us begin by showing that ϕ1 is a centrality measure:

CM1 This holds by definition.
CM2 By construction, if P ∈ ext(M(P)) then d(P,�P ) ≥ β, hence ϕ(P) = 1 − 1 = 0.
CM3 By definition ϕ1(P) = 1 iff d(P,�P ) = 0, and since d is a distance this holds iff

P = �P .
CM4 This follows if and only if for any P ∈ ext

(M(P)
)
and any λ, β ∈ [0, 1] such that

λ ≥ β it holds that

d
(
λP + (1 − λ)�P ,�P) ≤ d

(
β P + (1 − β)�P ,�P)

. (A3)

If we denote P1 := λP + (1 − λ)�P and P2 := β P + (1 − β)�P , there is some
a ∈ (0, 1) such that P2 = a P1 + (1 − a)�P . As a consequence, for any event A it
holds that

| P2(A) − �P (A) |≤ a | P1(A) − �P (A) | +(1 − a) | �P (A) − �P (A) |
= a | P1(A) − �P (A) |,

from which Eq. (A3) follows.

Let us prove now that ϕ2 is a centrality measure.

CM1,CM3 These follow immediately from the definition of M(P)0,M(P)1.
CM2 This holds because any extreme point P of M(P) does not belong to M(P)α

for any α > 0.
CM4 Consider P1 = λP + (1 − λ)P0 and P2 = β P + (1 − β)P0 for λ ≥ β, where

P is an extreme point of M(P) and P0 is the unique element of M(P)1. Then
(CM4) holds if an only if for any γ ∈ (0, 1) such that P1 ∈ M(P)γ , also
P2 ∈ M(P)γ . This is a consequence of the convexity of the set M(P)γ , given
that P2 = a P1 + (1 − a)P0 for some a ∈ [0, 1].

Finally, let us see that ϕ3 satisfies the four properties in Definition 6.

CM1 For any P /∈ M(P), P /∈ M(P)α for any α > 0, whence ϕ3(P) = 0.
CM2 If P ∈ ext

(M(P)
)
, then P( f ) = P( f ) for some gamble f . This implies that P( f ) �

P( f ) + α, and therefore P /∈ M(P)α for any 0 < α ≤ αS1 , which implies that
ϕ3(P) = 0.
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CM3 By definition of the procedure, P0 = �
P
4 is the unique probability in MαSl

(P), so it
is the unique probability with centrality degree 1.

CM4 Take λ ≥ β, P ∈ ext(M(P)) and define P1 = λP + (1− λ)P0 and P2 = β P + (1−
β)P0. Let us see that if P1( f ) ≥ P( f ) + α, then P2( f ) ≥ P( f ) + α too, for every
f ∈ L>. Consider two cases:

1. Case 1: P( f ) ≥ P0( f ). In that case, it holds that P( f ) ≥ P0( f ) ≥ P( f ) + α, hence:

P2( f ) = β P( f ) + (1 − β)P0( f ) ≥ β P0( f ) + (1 − β)P0( f ) = P0( f ) ≥ P( f ) + α.

2. Case 2: P( f ) < P0( f ). Then P1( f ) ≥ P( f ) + α is equivalent to:

λP( f ) + (1 − λ)P0( f ) ≥ P( f ) + α,

which is equivalent to:

λ
(
P( f ) − P0( f )

) ≥ P( f ) + α − P0( f ).

Using that P( f ) − P0( f ) < 0, the previous inequality is equivalent to:

λ ≤ P( f ) + α − P0( f )

P( f ) − P0( f )
.

Since β ≤ λ, following the reversed steps, if follows that:

P2( f ) = β P( f ) + (1 − β)P0( f ) ≥ P( f ) + α.

With this, we conclude that if P1( f ) ≥ P( f )+α, P2( f ) ≥ P( f )+α too, for every f ∈ L>.
Hence, if the centrality degree of P1 is ϕ

P
3 (P1), the centrality degree of P2 should be at least

ϕ
P
3 (P1). ��

Proof of Proposition 14 Since P is associated with a probability interval,

M(P) = {P | li ≤ P({xi }) ≤ ui ∀i = 1, . . . , n},
meaning that, while we can assume without loss of generality that L= ∪ L> include the
indicators of proper events, in this case only the indicators of the singletons are necessary,
and L= and L> reduce to I= and I>, respectively.

Let α be the minimum in Eq. (24), and let us see that α = αS . We consider the following
cases:

1. Assume that α = 1
|I>|

(
1 − ∑n

i=1 li
)
. Define P0 by:

P0({xi }) =
{

li + α, if i ∈ I>.

li , if i ∈ I=.

P0 satisfies the following properties:

(i) It is a probability measure because it is non-negative and

n∑

i=1

P0({xi }) =
∑

i∈I>

(li + α) +
∑

i∈I=
li

=
∑

i∈I>

li + I>α +
∑

i∈I=
li =

n∑

i=1

li + (
1 −

n∑

i=1

li
) = 1.
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(ii) P0({xi }) ∈ [li , ui ]. On the one hand, if i ∈ I=, P0({xi }) = li . On the other hand, if
i ∈ I>, P0({xi }) = li + α > li . Also, by definition of α it holds that α ≤ 1

2 (ui − li ),
hence:

P0({xi }) = li + α < li + 1

2
(ui − li ) = 1

2
(li + ui ) < ui .

(iii) To see that M(P)α = {P0}, and as a consequence that α = αS , note that, by
construction,

M(P)α = {P | P({xi }) ∈ [P({xi } + α, P({xi }) − α] ∀i ∈ I>,

P({xi }) = P({xi }) = P({xi }) ∀i ∈ I=}
= {P | P({xi }) ∈ [li + α, ui − α] ∀i ∈ I>, P({xi }) = li = ui ∀i ∈ I=}.

It follows then that by definition P0 ∈ M(P)α . Since moreover

n∑

i=1

li+ | I> | α = 1,

we deduce that any Q ∈ Mα(P) must coincide with P0 and that Mα′(P) = ∅ for
any α′ > α.

This implies that M(P)α = {P0} is formed by a unique probability measure P0, which
coincides with �

P
4 .

2. Assume that α = 1
|I>|

(∑n
i=1 ui − 1

)
. Define P0 by:

P0({xi }) =
{

ui − α, if i ∈ I>.

ui , if i ∈ I=.

Following the same steps as in the previous case, we obtain thatM(P)α = {P0}, where
P0 = �

P
4 .

3. Assume that α = 1
2 (ui −li ) for some i ∈ {1, . . . , n}. We define a new probability interval

I∗ given by:

[l∗i , u∗
i ] =

{
[li , ui ] if i ∈ I=.

[li + α, ui − α] if i ∈ I>.

Let us prove some interesting properties of this probability interval:

(i) M(I∗) �= ∅: on the one hand,

n∑

i=1

li =
∑

i∈I>

(li + α) +
∑

i∈I=
li =

n∑

i=1

li+ | I> | α ≤ 1,

since by hypothesis α ≤ 1
|I|

(
1−∑n

i=1 li
)
and, since I avoids sure loss,

∑n
i=1 li ≤ 1.

Similarly:

n∑

i=1

ui =
∑

i∈I>

(ui − α) +
∑

i∈I=
ui =

n∑

i=1

ui − α | I> |≥ 1,

since byhypothesisα ≤ 1
|I|

( ∑n
i=1 ui−1

)
and, sinceI avoids sure loss,∑n

i=1 ui ≥ 1.
We therefore conclude that I∗ avoids sure loss.
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(ii) By construction, M(I∗) = M(P)α . Moreover, given α′ > α, if follows that there
is some i = 1, . . . , n such that li + α′ > ui − α′, because α′ > mini

ui −li
2 , and

therefore M(P)α′ = ∅. Thus, α = αS .

It only remains to see that α = αS , but this straightforwardly follows from the fact that
the chosen α saturates the probability of at least one of the events.

��
Proof of Corollary 15 Consider first the PMM.Sincewe are assuming that P P M M (A) ∈ (0, 1)
for non-trivial events A, it corresponds to the probability interval IP M M given by:

li = (1 + δ)P0({xi }) − δ, ui = (1 + δ)P0({xi }) ∀i = 1, . . . , n.

Applying Eq. (24) to this probability interval, we obtain:

αS = min

{
1

n

(
1 −

n∑

i=1

li
)
,
1

n

( n∑

i=1

ui − 1
)
,
1

2
min

i=1,...,n
(ui − li )

}

= min

{
1

n

(
1 − (1 + δ − nδ)

)
,
1

n
δ,

1

2
δ

}
= δ

n
.

Following the steps in the previous proposition, we deduce thatM(P P M M )αS = {
�

P P M M
4 },

where �
P P M M
4 is given by:

�
P P M M
4 = ui − αS = (1 + δ)P0({xi }) − δ

n
∀i = 1, . . . , n.

Similarly, for the LV we are assuming that P LV (A) ∈ (0, 1) for non-trivial events A, so the
LV corresponds to a probability interval ILV given by:

li = (1 − δ)P0({xi }), ui = (1 − δ)P0({xi }) + δ ∀i = 1, . . . , n.

Applying again Eq. (24):

αS = min

{
1

n

(
1 −

n∑

i=1

li
)
,
1

n

( n∑

i=1

ui − 1
)
,
1

2
min

i=1,...,n
(ui − li )

}

= min

{
δ

n
,
1

n
(−δ + nδ),

δ

2

}
= δ

n
.

From Proposition 14, we obtain M(P LV )αS = {
�

P LV
4

}
, where �

P LV
4 is given by:

�
P LV
4 ({xi }) = li + αS = (1 − δ)P0({xi }) + δ

n
.

It follows from the results in Miranda and Montes (2018) that the values obtained for the
PMMand the LV coincidewith the Shapley value. Also, we have seen thatM(P)αS coincides
with the set of incenters with respect to the total variation distance (see Proposition 13). Since
in this case M(P)αS is a singleton (for both the PMM and the LV), the incenter is unique
and it coincides with the contraction center. Finally, to see that these centers also coincide
with the average of the extreme points, we just need to note (see Montes et al. 2019, Sec.3.1
and Montes et al. 2020a, Sec.5.1) that using the approach based on the permutations, each
extreme point appears in the same number of permutations, so the average of the extreme
points coincides with the Shapley value. ��
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