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ABSTRACT
Quality control and defect detection are major challenges in industrial environ-
ments. The localization of these defects is of crucial importance, as they can affect
the performance of manufactured products and even the safety of people. Defect
detection methods based on visual sensors and image processing are nowadays the
most common approaches. To detect subsurface defects it is common to combine
active thermography and deep learning. In this paper, PCT (Principal Components
Thermography) is employed to enhance the SNR (signal-to-noise ratio), leading to
a significant improvement in the results. Recent developments in this field apply
deep learning models for semantic segmentation and object detection. However, the
quality of the predictions is not enough to ensure that all quality controls are met. In
this paper, a combination of semantic segmentation and object detection is proposed
to increase the reliability of predictions. To carry out this combination, a working
methodology and two new ensembling strategies are proposed. After comparing the
results of the proposed combination with the results of using only semantic segmen-
tation methods in a real industrial scenario, where carbon fiber sheets are used, it
is found that the proposal improves the segmentation metrics by a 5% to a 24%.
Thus the reliability of the predictions is improved.

KEYWORDS
Quality control; Subsurface defect detection; Model ensembling; Semantic
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1. Introduction

Quality control is of vital importance in industry, which leads to continuous innovation
in defect detection methods. Particular emphasis has been placed on identifying surface
defects, but there is still room for improvement in the detection of subsurface defects.
These defects are not visible to humans, so their proper localization represents a major
challenge.

Non-destructive testing (NDT) is a set of techniques to evaluate materials or com-
ponents without damaging them Inagaki, Ishii, and Iwamoto (1999). Among the set of
NDT techniques there are several non-contact solutions for inspecting subsurface de-
fects. Some of the most common solutions are X-ray and infrared thermography (IRT).
X-rays, although more precise than thermography, are more hazardous to operators.
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Infrared thermography, in addition to be contactless, does not have the damaging
properties of X-rays. These two facts make IRT a suitable method for the inspection
of industrial parts.

Thermography can be divided into two types: passive and active. In passive thermog-
raphy, the temperature contrasts of a body is measured without adding an external
heat source. In active thermography, an external heat source is added to maximize
these contrasts Usamentiaga et al. (2013). Inert objects, as is the case of the sheets
to be evaluated in this work, do not present temperature variations. For this reason,
active thermography is used. The induced heat affects differently the areas with sub-
surface defects than the areas without defects. This way, it is possible to detect the
defects.

Because the defects are subtle, in this work, after applying active thermography
and capturing the images with infrared cameras, Principal Component Thermography
(PCT) is applied as a post-processing technique to enhance the signal-to-noise ratio
(SNR) of the data.

Until relatively recently, defect inspection was performed manually by a experienced
worker Usamentiaga et al. (2017). This made the inspection time-consuming and sub-
jective. However, in recent years, the trend of combining IRT with deep learning to
automate the process has emerged.

Thanks to the popularization of GPUs (Graphics Processing Unit) it is possible
to train deep learning models with large amounts of data. These models offer high
accuracy with high inference speed.

The combination of deep learning-based algorithms with active thermography has
been applied in various fields. In medicine, several works have been done in which the
conditions of patients are improved. In Lyra et al. (2021), deep learning and active
thermography are combined to monitor vital signs of Intensive Care Unit (ICU) pa-
tients. To do this, they create a model based on YOLOv4-Tiny in which thermographic
images are used to monitor chest movements caused by breathing. As the active ther-
mography is contactless, it is possible to create a system that reduces the need to use
technology based on wired sensors. In Cruz-Vega et al. (2020), both technologies are
combined to detect Diabetes Mellitus. To do this, they create a classifier that is fed
by thermographic images. In this work, traditional image classification techniques are
compared with deep learning based methods. After a series of experiments, it is shown
that deep learning based methods give better results than the traditional ones.

Deep learning and IRT are also used in the food industry. In Izquierdo et al. (2020),
to detect possible food frauds, honey is adulterated with concentrations of rice syrup.
To detect these frauds, they use a thermographic camera to extract images of the
honey. These images are then used together with models based on CNNs (Convolu-
tional Neural Network) to identify possible alterations. The results confirm that this
combination of technologies is a valid option for improving food quality control. In
Estrada-Pérez et al. (2021), both technologies are combined to detect adulterated rice
grains. After conducting several experiments, it is possible to detect adulterations with
an accuracy of 98%.

Defect control in industrial sheets is another field where the combination of these
technologies offers great results. In Bang, Park, and Jeon (2020), both techniques are
combined to detect defects in composite materials. For this purpose, a dataset has been
developed from the available literature and a framework has been created in which the
thermography process is integrated with a deep learning technique. In Fang, Ibarra-
Castanedo, and Maldague (2021), the possibility of creating synthetic thermographic
data to create robust deep learning models has been explored. In Yousefi et al. (2018),
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an image classification technique for detecting defects using thermography is tested. In
Lema et al. (2022), active thermography for detecting subsurface defects is combined
with deep learning. For this purpose, a proprietary dataset is created and a large
number of experiments are performed. In Liu et al. (2022), to locale subsurface flaws in
polymer composites a convolutional graphic thermography (CGT) method is proposed.
The goal is to be able to use low quality thermal images. For this purpose, they
create a convolutional thermogram enhancer with which the image noise is reduced.
The features of the enhanced thermograms are then extracted, allowing defects to be
visually highlighted.

In Lema et al. (2022), the problem of subsurface defect detection is solved using ob-
ject detection solutions. In Pedrayes et al. (2022), the problem is solved using semantic
segmentation techniques. The main difference between object detection and seman-
tic segmentation is that, in object detection the objective is to locate the objects of
interest by bounding boxes. In semantic segmentation, each image pixel is classified.

In both papers, great results are achieved by combining active thermography and
deep learning. However, neither work attempts to improve the results obtained by
model ensembling in carbon fiber sheets. Model ensemble is a process in which multiple
models are combined to predict a result. After each base model generates a prediction,
these are combined according to a specific criterion. The objective in mixing the results
of several models is to reduce possible errors, since if the models are independent of
each other, the prediction error will be higher. Various ensembling techniques are
covered in the literature:

• Adaptive Boosting (AdaBoost): this technique is based on training models from
the errors generated by a previous model Freund and Schapire (1997). The first
model is trained with the whole training set. Then, another model is trained,
using the incorrect predictions made by the previous model as its training set.
The predictions of both models together are more robust than those of the first
model. Theoretically, the more iterations performed, the more accurate the final
model will be. Care must be taken, since an excessive number of iterations can
lead to overfitting, which will worsen the results.
• Gradient boosting: in this method, as in the previous, the next model in com-

bination with the previous one produces better results than the independent
models. The difference is that in this method not all the errors of the previous
model are used to train a new model; the data that minimizes the error is sought.
An example of this technique is XGBoost Chen and Guestrin (2016).
• Bagging: with this technique each model learns the error generated by the pre-

vious model using another subset for training Breiman (1996). The main dif-
ference with AdaBoost is the way in which the training subsets are selected.
In AdaBoost, a sequential system is followed. With the errors of the previous
model, a new model is obtained that solves them. This way, in Boosting (or
AdaBoost) the actual model learns from the errors of the previous model. In
Bagging, independent training subsets are selected. Finally, their predictions are
combined using a voting technique. Since models trained with different subsets,
each model have different errors. The errors of one model are compensated with
the other models.

One example of Bagging is Random Forest. Random Forest is a machine learn-
ing algorithm based on decision trees that combines several trees to produce a
single strong model. It can be used as a classification algorithm Breiman (2001).
It uses bagging to create each tree, with the objective of creating an uncorre-
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lated forest of trees. The predictions of the forest are more accurate than the
predictions of individual trees.

The techniques mentioned above can be applied in several machine learning tasks,
but some specific to object detection. An object detector can be seen as a function
that, given an image I , returns a list of detections, D = [d1, ..., dN ], in which each
detection, di, is composed of [bi, ci, si], bi being the bounding boxes coordinates, ci the
object class and si the confidence score. In the ensemble of object detection models,
given an image I , a list DL = [D1, ..., DM ] is returned with i ∈ {1, ...,M}, M being the
number of models used. Once all the models produce their predictions (DL), several
strategies can be carried out Casado-Garćıa and Heras (2020):

• Affirmative or OR ensembling: all detection lists (Di) in the ensemble list (DL)
are used. This means that if one of the models makes a prediction, it is considered
correct.
• Consensus: if M models are used, to consider a prediction as correct it is neces-

sary that M/2 + 1 models have made that prediction.
• Unanimous or AND ensembling: if M models are used, to consider a prediction

as correct it is necessary that M models have made that prediction.

Once one of these strategies has been applied, it is common to make redundant
predictions. This is because the object detector algorithm can make several predictions
for the same object. Obviously, only the best one is interesting since keeping the
rest would negatively affect the evaluation metrics and the results in production. For
this reason, the next step is to apply NMS (Non-Maximal Suppression) to eliminate
redundant predictions. NMS removes redundant predictions based on the confidence
score Bodla et al. (2017). One alternative to NMS is Weighted-NMS Solovyev, Wang,
and Gabruseva (2021). If there are redundant predictions, NMS selects the one with
the highest confidence. Weighted-NMS takes all predictions into account, generating
a new prediction from them. To produce the best possible predictions, the predictions
with the highest confidence are given more weight. Weighted-NMS can produce better
results than NMS if the quality of the predictions of each model is high.

All these techniques for the ensemble of deep learning models improve the results
produced by the models independently of each other. But they have a drawback:
they do not combine predictions from object detection and semantic segmentation.
One of the requirements to apply Boosting, Bagging or these specific techniques for
object detection is that they require data with similar characteristics to perform the
ensemble process. However, the outputs provided by object detection and semantic
segmentation are different. What would be feasible would be to apply Boosting or
Bagging on different object detection and semantic segmentation models. Once the
ensemble of both tasks has been performed independently, the ensemble of object
detection and semantic segmentation could be performed with the technique proposed
in this work. However, using Boosting or Bagging adds complexity to the models, and
usually leads to overfitting. For these reasons, it was decided not to use them, and to
apply the proposed technique directly.

In ?, predictions are first made with YOLOv5. The output is then taken as input to
UNET. However, it presents the problem that it depends on the architecture used. If in
the future it is desired to use other segmentation or object detection algorithms, it will
be necessary to modify the proposed architecture. The novelty of this work consists in
creating a framework, as well as a methodology, that enables the integration of object
detection and semantic segmentation independently of their architecture. This way,
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Figure 1. Carbon fiber solid laminate sheet

the reliability of predictions increases.

2. Materials and methods

2.1. Dataset

To obtain a dataset on which to apply the deep learning models, a carbon fiber solid
laminate specimen is used. This laminate is composed of several layers of carbon fiber.
Each layer contains fibers stacked and bonded by a resin. To simulate subsurface flaws,
12 defects of different sizes have been introduced. Figure 1 shows the specimen used.

To collect the images, several inspections are performed. In each inspection, the film
is heated for 10 seconds, and then the heating is stopped for another 10 seconds. As
shown in Figure 2, the infrared camera is setup at 1.5 m from the sheet and the lamps
are located 1.6 m away.

Principal Component Thermography (PCT) is applied to reduce the noise generated
during inspections. This technique simplifies the detection process, as it reduces the
data variables. Each inspection has 1000 frames. After applying PCT, the 3 frames
with the most relevant information are chosen to generate an RGB image, to feed
the selected deep learning algorithms. This is because the object detection algorithms
used take 3-channel images as input. Eq. 1 shows the signal-to-noise ratio (SNR) metric
used to select the frames with the most relevant information. The SNR is calculated
for each defect, where Defu is the mean of the pixels in the defect area, Refu is the
mean of the pixels in the non-defect area and Refσ is the standard deviation of the
pixels in the non-defect area. Considering that in the images there is a part that does
not belong to the sheet but to the laboratory, not all pixels can be used to calculate
Refu and Refσ. For this reason, exclusion areas shown in Figure 3 have been used.
Table 1 shows how the SNR is higher after applying PCT.
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Figure 2. Infrared inspection setup
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Figure 3. In black the defect area (Defu), in red the exclusion area and in green the reference area (Refu
and Refσ)

Table 1. SNR for each of the flaws before and after applying PCT.

Before PCT After PCT
Flaw 1 -3.6 -1.3
Flaw 2 -18.1 -5.7
Flaw 3 1.3 19.5
Flaw 4 -8.2 -1.6
Flaw 5 -14.9 -9.6
Flaw 6 -8.7 11.7
Flaw 7 -31.6 -7.8
Flaw 8 -14.5 -17.2
Flaw 9 -13.0 9.2
Flaw 10 -7.7 -22.5
Flaw 11 -24.8 -5.2
Flaw 12 -3.7 3.8

SNR = 20 log10

(
|Defu −Refu|

Refσ

)
(1)

After all this process, 36 images of 640x480 size are obtained. Twenty-four are used
for training and twelve for testing. Before using them to train deep learning based mod-
els, it is necessary to label them. Since the lab illumination can lead to confusion, the
CLAHE algorithm (Contrast Limited Adaptive Histogram Equalization) Reza (2004)
is used to improve the contrast. After this preprocessing step, images are labeled. This
can be an arduous task, therefore an autolabeling tool has been used. To use it, it is
necessary to label the first image carefully. The rest of the images are rotations and
translations, therefore it is possible to calculate where the defects are from the labeled
image. Firstly, it is necessary to calculate the edges of the sheet. For this purpose, the
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Canny algorithm Rong et al. (2014) is used. Then, the corners of the sheet are calcu-
lated. For doing so, the Hough transformation is used to look for lines on a binary edge
image Ji and Qi (2011). The corners are calculated as the intersection of lines. Once
the corners are calculated, it is possible to determinate the correspondence between
the first labeled image and the rotated. Thanks to this correspondence, it is possible
to know where the defects are in the rotated images, and therefore it is not necessary
to label them manually.

2.2. Object detection techniques based on CNN

In recent years, several object detectors have given good results in popular datasets
such as COCO Lin et al. (2014). These object detector algorithms belong to one
of these two types: one-state and two-state detectors. Two-state detectors, such as
R-CNN Girshick et al. (2014), propose a set of regions of interest (ROI) and then
classify each of these ROIs. One-state detectors, such as SSD Liu et al. (2016) or
YOLO Redmon et al. (2016), process the whole image at once. Normally, one-stage
detectors are faster, therefore, in this work the YOLO (You Only Look Once) family
of detectors are used.

a) YOLOv1 Redmon et al. (2016): the first version of the YOLO family introduces
inference in real time to the CNN-based object detectors. For this, YOLO divides
the image into an S × S grid. Each cell of the grid is responsible for detecting
the objects whose center falls in that cell. To reduce the number of redundant
predictions, Non-Maximal Suppression (NMS) is applied.

b) YOLOv2 Redmon and Farhadi (2017): the second version of YOLO introduces
anchor boxes. In YOLOv1 it was necessary to train from scratch. With these
anchor boxes, the model has some initial guesses, thus it does not start from
zero. In other works, such as Faster R-CNN Ren et al. (2017), the anchor boxes
were selected by hand, but in YOLOv2 they are selected using k-means. This
produces better anchor boxes, and therefore, better results.

c) YOLOv3 Redmon and Farhadi (2018): the previous versions mainly failed in
detecting small objects. YOLOv3 introduces predictions on three scales, which
gives better results for small objects.

d) YOLOv4 and YOLOv5 Bochkovskiy, Wang, and Liao (2020); Jocher et al. (2021):
these versions of this object detector are the continuation of YOLOv3 by dif-
ferent authors. Both detectors introduce several improvements widely used in
modern CNN-based object detectors. The networks are divided in three parts:
backbone, neck and head. CSPDarknet-53 is used as backbone, PA-NET as neck
and YOLOv3 as head. Fig. 4 shows the architecture of YOLOv5. They also
introduce novel techniques related with data augmentation, such as mosaic aug-
mentation.

2.3. Semantic segmentation techniques based on CNN

Several semantic segmentation networks have also been created. Two of the most
widely used by the scientific community have been selected for this work: U-Net and
DeepLab.

a) U-Net Ronneberger, Fischer, and Brox (2015) owes its name to the U-shape
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Figure 4. Architecture of YOLOv5. The model is composed of three parts: (1) the Backbone: CSPDarknet,
(2) the Neck: PANet, and (3) the Head: YOLO Layer. The data goes through CSPDarknet for feature extraction

initially, then it is processed by PANet for feature fusion. Finally, the YOLO Layer produces the detection
results which includes class, score, location, and size.
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Figure 6. Architecture of DeepLabv3+. The encoder module captures multi-scale contextual information by
using atrous convolution at multiple scales, while the decoder module, which is simple yet effective, improves

the segmentation results along the boundaries of the objects.

encoder–decoder architecture, shown in Fig. 5. Originally, it was used for biomed-
ical image segmentation. Its simplicity allows it to be adapted to different prob-
lems by modifying the number of classes or the size of the input images.

b) DeepLabv3+ Chen et al. (2018b) is a semantic segmentation network that arises
as an evolution of previous networks. DeepLabv1 Chen et al. (2014) uses atrous
convolutions to tune the resolution at which features are calculated. DeepLabv2
Chen et al. (2018a) uses ASPP (Atrous Spatial Pyramid Pooling) to improve the
precision at different scales. DeepLabv3 Chen et al. (2017) updates the ASPP
module and adds batch normalization. Finally, DeepLabv3+ adopts an encoder–
decoder architecture, as shown in Fig. 6.

2.4. Proposed techniques for semantic segmentation and object detection
ensemble

Improving the predicted mask from semantic segmentation is a complicated task. In
this work, the improvement is proposed by combining semantic segmentation and ob-
ject detection. Fig. 7 shows the proposed methodology. After collecting the data, it
must be labeled properly for object detection and semantic segmentation. Then, after
several training experiments in which the objective is to find the best hyperparam-
eters, an object detection and semantic segmentation model is obtained. Hereafter,
the training data is ensembled following the two proposed strategies. Each strategy is
performed independently, and then the results are compared.

• Intersection: the intersection between the contours predicted by the semantic
segmentation method and the bounding boxes of the object detector is the sim-
plest of the two proposed strategies. Pixels outside the intersection are discarded,
thus eliminating incorrect predictions. To carry out this ensemble strategy, it is
necessary to set the minimum confidence threshold of the bounding boxes, since
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Figure 7. Proposed ensembling methodology.
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the ensemble results will depend on it. To select the appropriate threshold, exper-
imentation must be carried out using different thresholds to finally select the one
that maximizes the evaluation metrics. In this work, the confidence thresholds
belonging to the interval [0.1, 1] (with an step of 0.1) are used.

Fig. 8a shows the ground truth of an image, and Fig. 8b the predicted mask
of that image. Visually, they are not 100% identical. To improve this, the inter-
secting pixels between the mask and the bounding box are calculated, as shown
in Fig. 8c. As a result of this ensemble strategy, a new more precise mask is
generated (Fig. 8d).
• IOU: intersection over the union or IOU, shown in Eq. (2), can be used to im-

prove the quality of the predicted mask. This alternative is more complicated
than the previous one, since it is not only necessary to evaluate different confi-
dence thresholds, but also to evaluate different IOU thresholds. The higher the
IOU between the contour and the bounding box, the higher the precision but
the lower the recall. However, the lower the IOU, the lower the precision but the
higher the recall. For this reason, it is necessary to find the IOU threshold that
maximizes the evaluation metrics. This threshold, like the confidence threshold,
depends on the quality of the predictions (both semantic segmentation and ob-
ject detection). Therefore, it is necessary to evaluate it in each of the possible
application scenarios.

Fig. 8e shows the ensemble using this approach. The IOU between the con-
tour in red and the predicted bounding box is higher than the IOU threshold
established, but the IOU between the other contour and the bounding box is
lower. Therefore, it is eliminated, as shown in Fig. 8f.

After the ensemble has been performed under the two strategies, the results are
evaluated and the option that maximizes the evaluation metrics is selected. Then,
the best ensemble option must be evaluated on the testing set and compared with
the results of the semantic segmentation method. In section 3, it is shown how the
application of these simple but effective strategies improves the precision obtained by
semantic segmentation methods.

The advantages of this approach are the following: 1) the combination of the results
of these two tasks makes it unnecessary to retrain a new model, 2) it is a simple solution
that can be applied to any semantic segmentation and object detection method, 3) if
future developments in the field of semantic segmentation or object detection are made,
this method can be further implemented, and 4) unlike some instance segmentation
methods, such as Mask-RCNN He et al. (2017), which have one branch for object
detection and another for semantic segmentation, this method treats the two tasks
independently. Therefore, if new ensembling strategies are proposed it will be easy to
implement them.

2.5. Evaluation metrics

Although there are significant differences between the evaluation metrics in semantic
segmentation and object detection, there are certain similarities. In both cases, the
basic metrics are the following Hossin and Sulaiman (2015):

• True positives or TPs: number of correctly predicted elements.
• False positives or FPs: number of incorrectly predicted elements.
• False negatives or FNs: number of incorrectly unpredicted elements.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Proposed techniques for semantic segmentation and object detection ensemble. (a) Ground truth
mask. (b) Predicted mask. (c) Ensemble using the intersection approach. (d) Resulting mask of using the
intersection approach. (e) Ensemble using the IOU approach. (f) Resulting mask using the IOU approach.
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• True negatives or TNs: number of correctly unpredicted elements.

In the case of semantic segmentation, the elements are the pixels of the image. For
computing these metrics, it is only necessary to compare the ground truth mask with
the predicted one.

In the case of object detection, the elements are the objects of interest. As it is
common that a predicted bounding box does not match 100% with its corresponding
ground truth bounding box, it is necessary to compare the degree of overlap between
them. To compare them, the intersection over the union (IOU) is used, shown in Eq.
(2). This is also known as the Jaccard index.

IOU =
|P ∩G|
|P ∪G|

(2)

After calculating these metrics, it is possible to measure how good the performance
of the model is. The precision, shown in Eq. (3), measures how good the predictions
made are. The recall, shown in Eq. (4), measures how many of the elements are cor-
rectly detected. The F1 , shown in Eq. (5), weights the precision and recall in a single
value.

Precision =
TPs

TPs + FPs
(3)

Recall =
TPs

TPs + FNs
(4)

F1 =
2× Precision × Recall

Precision + Recall
(5)

These are common metrics used in semantic segmentation and in object detection,
but there are two other metrics commonly used in each field. The IOU, shown in Eq.
(2) is used to calculate the area of overlap between two bounding boxes, but it can also
be used to measure the degree of similarity between the ground truth mask and the
predicted mask, in semantic segmentation Everingham et al. (2015). For this purpose,
the IOU is calculated at pixel level as shown in Eq. (6). For object detection, the
Average Precision (AP) is the most commonly used metric Everingham et al. (2010).
In object detection, each prediction is composed of the bounding box, the object class,
and a confidence value. This confidence value expresses how sure the model is about
the prediction. For computing the metrics (TPs, FPs, FNs and TNs), it is necessary
to establish a minimum confidence threshold. If the confidence value of a prediction
is lower than the threshold established, it is discarded. This makes the precision and
recall dependent on the confidence. Therefore, the AP is used. The AP is calculated
as the area under the precision–recall curve Padilla et al. (2021). The curves are
created using different confidence thresholds, which makes the AP non-dependent on
the confidence. There are several ways of referring to the AP: 1) AP50 when a fixed
IOU threshold of 0.5 is used to calculate the metrics, 2) AP75 when 0.75 is used as
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Table 2. Results obtained with SSD, YOLOv3, YOLOv4 and YOLOv5.

Precision Recall F1 Confidence AP50 AP
SSD 0.8105 0.8241 0.8172 0.311 0.8039 0.3267

YOLOv3 0.8977 0.9150 0.9063 0.101 0.9260 0.4106
YOLOv4 0.9687 0.8611 0.9117 0.271 0.9254 0.3967
YOLOv5 0.9716 0.9513 0.9614 0.197 0.9767 0.4831

the IOU threshold and 3) AP when the values in the interval [0.5, 0.95] (step of 0.05)
are used as IOU thresholds and the different APs obtained are averaged.

IOU =
TPs

TPs + FPs + FNs
(6)

3. Results and discussion

To perform the ensemble of object detection and semantic segmentation, it is first
necessary to have the best models of both techniques independently. For this purpose, a
large number of experiments are carried out, which are detailed below. All experiments
have been performed 10 times. The results shown are the average. To check whether
the results are statistically significant, the mean of the distributions is compared. In
none of the tests performed at the 5% significance level is the null hypothesis rejected.

3.1. Object detection experiments

To detect subsurface defects, the following object detectors have been analyzed: SSD,
YOLOv3, YOLOv4 and YOLOv5. After performing several experiments, it is con-
cluded that 24 training images are not enough to achieve the expected results. For
this reason, it was decided to apply a policy of data augmentation until obtaining
500 training images. Data augmentation consists of these modifications: 1% to 20%
zoom variations, horizontal and vertical flips, ±5◦rotation, and random elastic image
distortion.

After performing several experiments with each of the detectors, it is concluded that
YOLOv5 offers the best results. Table 2 shows the confidence threshold used with each
of the algorithms. It is calculated from a validation subset. On that subset the metrics
are calculated using all possible confidence thresholds in the interval [0, 1] with a step
of 0.001. The confidence threshold that maximizes F1 is the selected threshold. As IOU
threshold, 0.5 has been selected for all algorithms. This is because experiments have
been performed on the validation subset, and it has been concluded that this value
does not affect the results. This is because there are no overlapping objects. Table 3
shows the hyperparameters used. The hyperparameters that maximize the results of
each algorithm are shown. The number of epochs used in each algorithm varies because
the training convergence times are not the same for all algorithms.

Figure 9 shows some examples of subsurface defect detection with YOLOv5. As can
be seen in Figure 9c, all defects are detected. However, Figure 9d shows and example
where two of the defects are not detected.
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Table 3. Hyperparameters used during training.

Epochs Batch size Learning rate Backbone Solver
SSD 15 16 0.01 Resnet50 sgdm

YOLOv3 100 8 0.001 Darknet53 adam
YOLOv4 100 8 0.01 CSPDarknet53 sgdm
YOLOv5 1 000 8 0.001 CSPDarknet53 adam

(a) (b)

(c) (d)

Figure 9. Detections performed with YOLOv5. (a and b) Ground truth. (c and d) Detections with YOLOv5.
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Table 4. Results obtained with UNet and DeepLabv3+.

Channels Precision Recall F1 IOU
UNet 3 0.689 0.717 0.703 0.542
UNet 30 0.764 0.726 0.745 0.593

DeepLabv3+ 3 0.760 0.786 0.773 0.629

3.2. Semantic segmentation experiments

The following semantic segmentation algorithms have been used: UNet and
DeepLabv3+. UNet is a network that allows the use of images with multiple chan-
nels, therefore more information can be used than with other networks. For this rea-
son, several experiments are performed using images with 3 and 30 channels. Since
the 30-channel images contain more information, the results are better. However,
DeepLabv3+ gives better results than UNet, despite using 3-channel images. Table
4 shows the results obtained.

Figure 10 shows some examples of predictions made with these networks. UNet with
3 channels achieves good results, however using 30 channels generates less FP (False
Positive). Even so, DeepLabv3+ achieves the best results.

3.3. Model ensemble experiments

The objective of this work is to increase the reliability of subsurface defect detection.
In other words, to improve precision without negatively affecting recall. To this end, it
is proposed the ensemble of object detection and semantic segmentation models using
two approaches: intersection and IOU.

In the case of IOU, it is necessary to establish the minimum confidence threshold
required in object detection, as well as the level of IOU between the predictions of
object detection and semantic segmentation required to accept a prediction as correct.
As the confidence level increases the precision increases. However, recall decreases
negatively affecting F1. For this reason, a series of experiments to find out the optimal
value are carried out. Something similar happens with the IOU. As the IOU threshold
increases so does the reliability of the predictions, however too many predictions that
are actually correct are discarded. In the case of intersection, only the confidence
threshold of object detections needs to be selected.

After performing a large number of experiments, where all possible combinations
are tested, the conclusion is that for this scenario the best ensemble option is the
intersection. With this approach, the best results are obtained with a confidence level
between 0.1 and 0.7. This way, the original results shown in Table 5 are slightly
improved. In Figure 11 the AUPRC (Area Under the Precision–Recall Curve) is shown.
The training performed with DeepLabv3 with this dataset lasts 1 hour and 18 minutes.
However, the training with YOLOv5 takes 8 minutes. YOLOv5’s short trainings make
ensemble processing inexpensive, regardless of the required time.

Figure 13 shows some examples where it can be seen how the predicted mask after
ensemble is more accurate than the one obtained directly by DeepLabv3+.

3.4. Experiments with other pieces

To reinforce the results obtained in the previous section, two other pieces with sub-
surface defects are used. These pieces are composed of different materials than the
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(c) (d)

(e) (f)

(g) (h)

Figure 10. Examples of predictions made with semantic segmentation algorithms. (a, b) Ground truth.

(c, d) Predictions with UNet 3 channels. (e, f) Predictions with UNet 30 channels. (g, h) Predictions with
DeepLabv3+.
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Table 5. Metrics after model ensembling with YOLOv5 and DeepLabv3+.

Method Precision Recall F1 IOU

Original - 0.7599 0.7858 0.7727 0.6295
Ensembled IOU 0.7624 0.7858 0.7739 0.6312
Ensembled Intersection 0.8102 0.7824 0.7960 0.6612
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Figure 11. Area under the Precision–Recall curve (AUPRC) for DeepLabv3. (a) Before ensembling. (b) With
IOU approach. (v) With intersection approach.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12. Examples of ensemble for subsurface defect detection. (a, d, g) Original masks. (b, e, h) Predicted

masks with DeepLabv3+. (c, f, g) Masks after ensembling.
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(a) (b)

Figure 13. (a) Foam sandwich specimen. (b) Honeycomb sandwich specimen.

Table 6. Results obtained with UNet 3-channels and DeepLabv3+ on the foam sandwich panel.

Precision Recall F1 IOU
DeepLav3+ 0.7895 0.7718 0.7805 0.6401

UNet 3-channels 0.5978 0.5131 0.5522 0.3814

one used for training. Even so, the previously generated models are used to check how
feasible is the generalization of results from one piece to others.

The first piece, shown in Figure 13(a), is composed of a foam sandwich specimen
with flaws at different depths than the original sheet. The second piece, shown in
Figure 13(b), is composed of a honeycomb sandwich specimen, also with flaws at
different depths than the original piece. It is decided to use both pieces because of
their wide use in the aeronautical and naval industry. These pieces are composed of a
sheet similar to the original and a filler. The original sheet was composed of 12 layers,
while these are composed of 20 layers. These modifications cause the defects to be
found at a depth of 0.38 mm, 1.46 mm and 2.08 mm.

The results of applying DeepLabv3+ and UNet with 3 channels on the foam sand-
wich panel are shown in Table 6. DeepLabv3+ improves the results obtained with the
original piece. This is partly due to the fact that only one image (one piece) is being
used to evaluate the model, while in the original experiments several images (although
all of the same piece) are used. With UNet, the results are worse than the original
ones. This is logical since a different piece has been used than the one used for training.

Table 7 shows the results with the honeycomb sandwich panel piece. The results
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Table 7. Results obtained with UNet 3-channels and DeepLabv3+ on the honeycomb sandwich panel.

Precision Recall F1 IOU
DeepLav3+ 0.8705 0.3499 0.4991 0.3326

UNet 3-channels 0.5984 0.5509 0.5736 0.4022

Table 8. Results obtained after ensembling on the foam sandwich panel.

Ensemble strategy Precision Recall F1 IOU
DeepLav3+ Intersection 0.8556 0.7523 0.8007 0.6676
DeepLav3+ IOU 0.7904 0.7718 0.7809 0.6406

UNet Intersection 0.8416 0.4951 0.6234 0.4529
UNet IOU 0.6019 0.5056 0.5496 0.3789

are lower than those obtained with the original piece. This is due to the fact that the
material properties are not the same as those of the original piece, and therefore the
information varies.

After performing the segmentation, these models are ensembled with YOLOv5 using
the intersection and IOU approach. Tables 8 and 9 show the results of the ensemble
on both pieces. In both cases, the results obtained in segmentation are significantly
improved.

Figure 14 (a,b) shows the images of the alternatives pieces used with their corre-
sponding ground truth. Figure 14 (c,d) shows the predictions made with DeepLabv3+
and Figure 14 (e,f) shows the resulting mask after ensembling YOLOv5 and DeepLabv3
using the intersection approach, since it gives highest F1 than with the IOU. If Figure
14 (c,d) and Figure 14 (e,f) are compared with Figure 14 (a,b), it is clear that the
ensembling process improves the resulting mask. For this reason, the F1 for the foam
sandwich panel is improved by 2%, and the F1 for the honeycomb sandwich panel by
1%.

Figure 14 (g,h) shows the predictions of UNet. This results, are improved by the
ensembling process, as shown in Figure 14 (i,j). With the intersection approach, the
F1 is improved by a 7% for the foam sandwich panel and for the honeycomb sandwich
panel by a 4%.

4. Conclusion

The detection of defects in industry is of vital importance as the safety of people
may depend on it. In recent years, several advances have been made in the field of
defect detection in industrial sheets. Most of these works use semantic segmentation
or object detection algorithms independently to detect such defects. In this work, the
possibility of combining both approaches to improve the precision of the predictions is
studied. For this purpose, a real industrial scenario has been selected where, thanks to

Table 9. Results obtained after ensembling on the honeycomb sandwich panel.

Ensemble strategy Precision Recall F1 IOU
DeepLav3+ Intersection 0.9304 0.3499 0.5085 0.3409
DeepLav3+ IOU 0.8844 0.3426 0.4939 0.3279

UNet Intersection 0.7161 0.5429 0.6176 0.4468
UNet IOU 0.6796 0.5509 0.6085 0.4373
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(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 14. Detections performed after model ensembling. (a) Foam sandwich specimen ground truth. (b)

Honeycomb sandwich specimen ground truth. (c) Predictions made with DeepLabv3+ on the foam sandwich
panel. (d) Predictions made with DeepLabv3+ on the honeycomb sandwich panel. (e) Detections on the foam

sandwich panel after ensembling YOLOv5 and DeepLabv3+. (f) Detections on the honeycomb sandwich panel

after ensembling YOLOv5 and DeepLabv3+. (g) Predictions made with UNet on the foam sandwich panel. (h)
Predictions made with UNet on the honeycomb sandwich panel. (i) Detections on the honeycomb sandwich

panel after ensembling YOLOv5 and UNet. (j) Detections on the honeycomb sandwich panel after ensembling

YOLOv5 and UNet.
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the methodology proposed in this work, the precision is considerably improved while
maintaining a similar recall. In the selected scenario, deep learning is combined with
active thermography to identify subsurface defects in single carbon fiber solid laminate
sheets.

The proposed methodology includes two ensemble strategies. The first one is based
on the intersection of the contours predicted by the semantic segmentation method
and the bounding boxes predicted by the object detector. In this case, it is necessary
to select the confidence threshold that maximizes the evaluation metrics. The second
strategy is based on calculating the intersection over union (IOU) between the contours
and the bounding boxes. If the IOU is lower than a certain threshold, the contour is
discarded, and both the confidence threshold and the IOU threshold that maximize
the evaluation metrics must be selected.

Thanks to these simple but effective ensemble strategies, the precision obtained
independently by the semantic segmentation methods is improved by a 5%, with neg-
ligible effect on the recall. This ensemble approach has the advantage that it is not
necessary to retrain a model, but rather it takes advantage of two previously trained
models. This offers great flexibility: if a new object detection or semantic segmenta-
tion algorithm that improves the current results emerges in the future, these ensemble
techniques will still be valid.

The results of the ensemble are highly dependent on the data and the algorithms
used. For this reason, two alternative pieces are also evaluated. The precision of the
foam sandwich panel is improved by a 7% to 24% and for the honeycomb sandwich
panel by a 6% to 11%.

By using these ensemble techniques, false positives (FP) generated by the semantic
segmentation models are considerably reduced. In this way, models obtained improve
precision, making the detection of subsurface defects safer and simpler. Thanks to
this improvement in reliability, the increasingly stringent quality control requirements
demanded by the industry can be met.
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