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1 Introduction: Janus and Hades

Janus solutions in string/M-theory were originally introduced in the context of type IIB
supergravity as a simple deformation of the AdS5 × S5 background involving a non-trivial
dilaton profile [1]. The deformation breaks the SO(2, 4) isometries of AdS5 to the SO(2, 3)
isometries of AdS4 , but preserves the SO(6) isometries of the round S5 . Soon after, a
holographic interpretation of the solutions in [1] was proposed in terms of a planar (1 + 2)-
dimensional interface in super Yang-Mills (SYM) separating two half-spaces with different
coupling constants [2]. The supersymmetric Janus was constructed in [3] using a 5D effective
SO(6) gauged supergravity approach. Its ten-dimensional incarnation was put forward
in [4], which provided the gravity dual of the N = 1 three-dimensional interface with
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OSp(1|4) superconformal symmetry first anticipated in [2] and then constructed in [5]. This
supersymmetric Janus turns out to break the symmetry of the original (non-supersymmetric)
Janus down to at least SU(3) ⊂ SO(6) . The supersymmetric Janus solution with SO(4)
symmetry dual to the N = 4 interface with OSp(4|4) superconformal symmetry was
constructed in [6]. However it was only recently that the supersymmetric Janus with
SU(2) × U(1) symmetry dual to the N = 2 interface with OSp(2|4) superconformal
symmetry was constructed in five and ten dimensions [7], thus completing the list of Janus
solutions dual to the SYM interfaces scrutinised in [5].

Janus solutions have been much less investigated in the context of M-theory. The first
examples were constructed in [8] (and generalised in [9]) as half-maximal deformations of
the AdS4×S7 background preserving a subgroup SO(4)×SO(4) ⊂ SO(8) of the isometries
of the round S7 . This time the deformation breaks the SO(2, 3) isometries of AdS4 to
the SO(2, 2) isometries of AdS3 , and the Janus can still be holographically understood
as an N = (4, 4) two-dimensional interface with OSp(4|2) × OSp(4|2) superconformal
symmetry in ABJM theory [10] despite the absence of a dilaton field in the M-theory
context [8, 11, 12]. Interestingly, it was shown in [11] that the SO(4)× SO(4) symmetric
Janus can be alternatively found using a 4D effective SO(8) gauged supergravity description.
Using this 4D approach, a supersymmetric Janus with SU(3)×U(1)2 symmetry dual to an
N = (0, 2) interface with OSp(0|2)×OSp(2|2) superconformal symmetry was constructed
in [11] using numerical methods, for which 11D uplift formuli were provided in [13]. More
numerical Janus solutions were also presented in [11] by studying the G2-invariant sector
of the SO(8) gauged supergravity.1

Amongst the various interesting questions raised in the discussion section of [8] we
will provide a positive answer to that of whether exact M-theory Janus solutions exist
with no supersymmetry. We will use the four-dimensional SO(8) gauged supergravity
that arises upon reduction of eleven-dimensional supergravity on S7 [21, 22] and construct
non-supersymmetric, yet analytic and regular, AdS3-sliced domain-wall solutions of the form

ds2
4 = dµ2 + e2A(µ) ds2

AdS3 , (1.1)

for which the metric function A(µ) depends arbitrarily on three real constants αi ∈ R+

with i = 1, 2, 3 . The geometry is supported by three complex scalar fields zi(αi, βi;µ)
which depend on three additional compact parameters, or phases βi ∈ [0, 2π] , and develop
non-trivial profiles along the radial coordinate µ transverse to the domain-wall. The
effective 4D gauge coupling g — which relates to the inverse radius of S7 — and the set of
real parameters (αi, βi) fully determine a particular Janus configuration.

The Janus parameters (αi, βi) specify the boundary values of the complex scalars at
µ→ ±∞ . In particular, the parameters βi encode the source/VEV and bosonic/fermionic
nature of the dual operators turned on each side of the interface living at the boundary. A
generic choice of Janus parameters breaks all the supersymmetries and the S7 isometry
group down to its Cartan subgroup U(1)4 ⊂ SO(8) . On the contrary, the very special

1See [14] for a numerical study of Janus solutions in the one-parameter family of ω-deformed SO(8)
gauged supergravities [15]. See also [16, 17] for a similar study in the context of massive IIA compactified
on S6 and its effective description in terms of the ISO(7) gauged supergravity [18–20].
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choice αi = 0 ∀i trivialises the Janus and the maximally supersymmetric AdS4 vacuum
of the SO(8) supergravity that uplifts to the AdS4 × S7 Freund-Rubin background of
eleven-dimensional supergravity with a round S7 metric is recovered [23]. Interestingly,
(super) symmetry enhancements occur upon suitable identifications between the parameters.
For instance, the supersymmetric Janus of [8, 11] with SO(4)×SO(4) symmetry is recovered
upon setting two of the αi parameters to zero. In this work we will pay special attention to
the Janus with α1 = α2 = α3 and β1 = β2 = β3 which is non-supersymmetric and features
an SU(3)×U(1)2 symmetry enhancement. We will present the uplift of this 4D Janus to
eleven-dimensions providing, to the best of our knowledge, the first example of an exact
M-theory Janus with no supersymmetry.

In addition to the Janus, we will construct another class of analytic solutions — we refer
to them as flows to Hades following standard terminology in the literature — which are non-
supersymmetric and display a singularity at µ = 0 where the e2A(µ) factor in (1.1) shrinks
to zero size and the complex scalars run to the boundary of moduli space. Some similar
curved-sliced [11] and flat-sliced [13, 24–26] singular flows have been constructed within the
SO(8) gauged supergravity and argued to holographically describe an interface between
a superconformal ABJM phase and a non-conformal phase with potentially interesting
physics.2 In their simplest realisation, these flat-sliced singular flows in M-theory are
the analogue of the type IIB flows to the Coulomb branch of N = 4 SYM investigated
in [24, 27–29].

There are similarities and differences between the Janus and the Hades. As for the
Janus, the Hades solutions depend on a set of six parameters (αi, βi) . Unlike for the Janus,
no supersymmetric limit can be taken on the Hades parameters, and the very special choice
αi = 0 ∀i does not trivialise the Hades to recover AdS4. Instead, a special class of Hades
flows — we will refer to them as ridge flows adopting the terminology of [26] — appears in
this limit. As before, we will concentrate on the simple case with α1 = α2 = α3 ≡ α and
β1 = β2 = β3 ≡ β for which the flows to Hades feature an SU(3)×U(1)2 symmetry, and
present their uplift to eleven-dimensional supergravity.

Special attention will then be paid to the SU(3)×U(1)2 symmetric ridge flows with
α = 0 for which there is just one free parameter left, i.e. the phase β ∈ [0, 2π] . This
phase specifies the boundary values of the complex scalars at µ→∞ and, therefore, the
source/VEV and bosonic/fermionic nature of the dual operators turned on the ultraviolet
(UV) side of the conformal interface. In the infrared (IR) side µ→ 0 of the interface, the
four-dimensional solution becomes singular and the dual field theory is expected to enter the
non-conformal phase. Interestingly, the parameter β determining the boundary conditions
of the complex scalars is associated with a U(1)ξ duality symmetry of the four-dimensional
supergravity Lagrangian. However, as originally noticed in [25] for a class of conventional
flat-sliced RG-flows (see also [13, 26]), the U(1)ξ changes the physics of the ridge flows
once they are uplifted to eleven dimensions: it takes metric modes into three-form gauge
field modes.

2The scalar potential of the maximal SO(8) gauged supergravity is bounded above by its value at the
maximally supersymmetric AdS4 vacuum thus satisfying the good condition of [27].
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We will illustrate this phenomenon by analysing in some detail the simple cases of
setting β = π

2 and β = 0 . The corresponding ridge flows are triggered from the UV solely
by bosonic VEV’s or fermionic sources, respectively. The resulting M-theory ridge flows
will be shown to be drastically different as far as the persistence of the singularity and the
presence of magnetic M5-branes sources in the background are concerned. Setting β = π

2
produces a singular M-theory background without magnetic M5-branes sources akin the
(flat-sliced) Coulomb branch flows constructed in [24]. Modifying the phase β by acting
with U(1)ξ turns out to induce a transformation on the eleven-dimensional backgrounds
that parallels the dielectric rotation of Coulomb branch flows investigated in [13, 25, 26]. We
will look in detail at the limiting case β = 0 and conclude that the U(1)ξ transformation
totally polarises M2-branes into M5-branes when flowing from the UV to the IR, leaving no
M2-branes. We will provide some evidence for this phenomenon to occur also at generic
values of β .

The paper is organised in four sections plus appendices. In section 2 we present our
multi-parametric (αi, βi)-families of analytic Janus and Hades solutions and discuss the
ridge flow limit of the latter. We investigate the various possibilities of (super) symmetry
enhancement depending on the choice of αi parameters, as well as the various possibilities
of boundary conditions for the complex scalars (sources/VEV’s of dual operators) depending
on the choice of βi parameters. In section 3 we present the uplift of the Janus and Hades
solutions with SU(3) × U(1)2 symmetry to eleven-dimensional supergravity. We then
focus on the ridge flows and discuss some eleven-dimensional aspects of the solutions,
like the presence of singularities or the characterisation of the M2/M5-brane sourcing the
backgrounds, as a function of the parameter β . We summarise the results and conclude in
section 4. Two additional appendices accompany the main text which contain technical
results regarding the BPS equations as well as some relevant uplift formuli for the STU
model. This is the subsector of the four-dimensional maximal SO(8) gauged supergravity
within which we have constructed all the solutions presented in this work.

2 Four-dimensional Janus and Hades

2.1 The model

Our starting point is the N = 2 gauged STU supergravity in four dimensions [30]. This
theory has a gauge group U(1)4, the maximal Abelian subgroup of SO(8), and can be
embedded into the maximal N = 8 SO(8)-gauged supergravity [21] as its U(1)4 invariant
sector [30]. The field content consists of the N = 2 supergravity multiplet coupled to three
vector multiplets. Upon setting vector fields to zero, the bosonic Lagrangian reduces to an
Einstein-scalar model given by

L =
(
R

2 − V
)
∗ 1− 1

4

3∑
i=1

[
dϕi ∧ ∗dϕi + e2ϕi dχi ∧ ∗dχi

]

=
(
R

2 − V
)
∗ 1−

3∑
i=1

1
(1− |z̃i|2)2 dz̃i ∧ ∗dz̃

∗
i .

(2.1)

In passing from the first line to the second one in (2.1) we have changed the parameterisation
of the scalar fields zi (i = 1, 2, 3) in the vector multiplets — which serve as coordinates
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in the scalar coset geometry [SL(2)/SO(2)]3 — from the upper-half plane to the unit-disk
parameterisation via the field redefinition

z̃i = zi − i
zi + i

with zi = −χi + i e−ϕi . (2.2)

The non-trivial scalar potential in the Lagrangian (2.1) is given by

V = −1
2 g

2∑
i

(
2 coshϕi + χ2

i e
ϕi
)

= g2
(

3−
∑
i

2
1− |z̃i|2

)
, (2.3)

where g is the gauge coupling in the gauged four-dimensional supergravity. From (2.3)
one immediately sees that only |z̃i| enter the potential. As a result, the Lagrangian (2.1)
is invariant under the three U(1)ξi shifts of arg z̃i , namely, δξi z̃i = i ξi z̃i , with constant
parameters ξi . However, as we will see shortly, the phases arg z̃i will play a central
role when discussing boundary conditions for Janus- and Hades-like solutions in this
supergravity model.

In this work we will investigate Janus-like solutions for which the space-time metric
takes the form

ds2
4 = dµ2 + e2A(µ) dΣ2 , (2.4)

with µ ∈ (−∞,∞) or µ ∈ [0,∞) being the coordinate along which space-time is foliated
with Σ slices, and A(µ) being a scale function. The line element dΣ2 describes a globally
AdS3 space-time of radius ` = 1 . The second-order Euler-Lagrange equations for the scalar
fields that follow from the Lagrangian (2.1) read

ϕ′′i − e2ϕi (χ′i)2 + 3A′ ϕ′i + g2
(
2 sinhϕi + eϕi χ2

i

)
= 0 ,

χ′′i +
(
3A′ + 2ϕ′i

)
χ′i + 2 g2 e−ϕi χi = 0 ,

(2.5)

with i = 1, 2, 3 and where primes denote derivatives with respect to the coordinate µ . The
two equations in (2.5) can be expressed as

z̃′′i + 3A′ z̃′i + 2 z̃∗i (z̃′i)2

1− |z̃i|2
+ 2 g2 z̃i = 0 , (2.6)

in terms of the complex scalars z̃i in (2.2). The Einstein equations impose two additional
independent equations given by

1− e2A
[
A′′ + 1

4
∑
i

(
(ϕ′i)2 + e2ϕi (χ′i)2

) ]
= 0 ,

2 + e2A
[
A′′ + 3 (A′)2 − 1

2 g
2∑

i

(
2 coshϕi + χ2

i e
ϕi
) ]

= 0 .
(2.7)

Equivalently,

2A′′ + e−2A + V + 3 (A′)2 +
∑
i

z̃′i (z̃∗i )′

(1− |z̃i|2)2 = 0 ,

3 e−2A + V + 3 (A′)2 −
∑
i

z̃′i (z̃∗i )′

(1− |z̃i|2)2 = 0 .
(2.8)

We will now present analytic and multi-parametric families of Janus and Hades solutions to
this system of second-order differential equations.
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2.2 Multi-parametric Janus solutions

The second-order equations of motion in (2.5) and (2.7) have a multi-parametric family of
analytic Janus solutions. The scale factor in the space-time metric is given by

e2A(µ) = (gk)−2 cosh2(gµ) , (2.9)

and
k2 = 1 +

∑
i

sinh2 αi ≥ 1 with αi ∈ R+ . (2.10)

Using the unit-disk parameterisation in (2.2) to describe the scalar fields in the three vector
multiplets, they acquire simple µ-dependent profiles of the form

z̃i(µ) = eiβi
sinhαi

coshαi + i sinh(gµ) with βi ∈ [0, 2π] , (2.11)

so that |z̃i(0)| = tanhαi . Eqs. (2.9)–(2.11) describe a multi-parametric family of Janus
solutions parameterised by 3 + 3 arbitrary real constants (αi, βi). Importantly, the presence
of non-trivial axions Imz̃i (spin 0 pseudo-scalars) turns out to be crucial for the existence
of regular Janus solutions, as first noticed in [11]. Parametric plots of the complex scalars
z̃i(µ) in (2.11) are displayed in figure 1. The real Rez̃i and imaginary Imz̃i components
of z̃i are shown in figure 2. Note the special limiting case of αi � 1 (i.e. tanhαi ≈ 1) for
which the flows become singular. In this limit, the complex scalar z̃i gets to the boundary
of the moduli space, which is located at |z̃i| = 1 in the unit-disk parameterisation of the
Lagrangian (2.1), and the scalar potential in (2.3) diverges.

On the other hand, the value αi = 0 is certainly special. At this value an AdS4
maximally supersymmetric solution with radius LAdS4 = g−1 is recovered with the scalars
being fixed at the constant value z̃i = 0 . This AdS4 vacuum uplifts to the AdS4×S7 Freund-
Rubin background of eleven-dimensional supergravity with a round S7 metric [23]. Moreover,
it describes the near-horizon geometry of a stack of M2-branes and is holographically dual
to the three-dimensional ABJM theory [10]. When evaluated at this AdS4 vacuum, the
three U(1)4 invariant complex scalars have a normalised mass

m2
iL

2 = −2 , (2.12)

thus lying within the mass range −9/4 < m2
i L

2 < −5/4 for wich two possible quantisations
of scalar fields in AdS4 exist [31]: the mode with conformal dimension ∆i = ∆− = 1
and the mode with conformal dimension ∆i = ∆+ = 2 (where ∆± are the two roots of
m2
i L

2 = (∆i − 3)∆i ) can be interpreted as the source and the VEV of the corresponding
dual operators (standard quantisation) or viceversa (alternative quantisation). However, as
shown in [32], proper scalars Rez̃i and pseudo-scalars Imz̃i must be quantised in exactly
opposite ways in order to preserve maximal supersymmetry. And, moreover, only the
choice of proper scalars having alternative quantisation yields a perfect matching between
the scaling dimensions of the supergravity modes and those of the dual operators in the
M2-brane theory [33] (see footnote 4).
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Figure 1. Parametric plot of z̃i(µ) in (2.11) for the Janus solutions with αi = 1 and βi = nπ
4 with

n = 0, . . . , 7 . The central red point at z̃i = 0 ∀i corresponds to the maximally supersymmetric
AdS4 vacuum and describes the asymptotic values at µ→ ±∞ .

The class of Janus solutions in (2.9)–(2.11) depends on the set of parameters g and
(αi, βi) . As discussed in [11], the four-dimensional gauge coupling g sets the scale of the
asymptotic AdS4 vacuum and, via the AdS/CFT correspondence, the number of M2-branes
as well as the rank of the Chern-Simons gauge groups in ABJM theory. The parameters αi
set the height of the bump, i.e. |z̃i(0)| = tanhαi , and therefore the strength of the coupling
between the (1+1)-dimensional defect and the three-dimensional ambient field theory. The
parameters βi set the boundary conditions of the bulk scalars at µ→ ±∞ and, again via
the AdS/CFT correspondence (see footnote 4), the specific linear combinations of bosonic
and fermionic bilinear operators that are activated in the field theory. We will analyse the
possible choices of boundary conditions in detail in section 2.4.2.

Lastly, a study of the supersymmetry preserved by this family of solutions is presented
in the appendix A. The BPS equations (A.2) and (A.7) are not satisfied by the Janus
solution in (2.9)–(2.11) for generic values of (αi, βi) thus implying that such a solution is
generically non-supersymmetric. However, as we will see in a moment, some supersymmetry
can be restored upon suitable choice of (αi, βi), namely, upon suitable adjustment of the
Janus boundary conditions.

2.3 Janus with (super) symmetry enhancements

Specific choices of the parameters (αi, βi) translate into various (super) symmetry enhance-
ments of the general Janus solution in (2.9) and (2.11).

2.3.1 SO(4) × SO(4) symmetry enhancement

Setting two vector multiplets to zero, e.g. z̃2 = z̃3 = 0, by setting

α2 = α3 = 0 , (2.13)
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0

1
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1

αi = 1 , βi = π
4 αi � 1 , βi = π

4

-1

0

1

-1

0

1

-1

0
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0

1

αi = 1 , βi = π
2 αi � 1 , βi = π

2

−∞ 0 ∞

gµ
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Figure 2. Plots of Rez̃i (blue dotted line), Imz̃i (orange dashed line) and A′(µ) (green solid line)
as a function of the radial coordinate gµ ∈ (−∞,∞) for different values of the Janus parameters
(αi, βi) . The limit αi � 1 (i.e. tanhαi ≈ 1) renders the Janus solution singular. In this limit, z̃i gets
to the boundary of the moduli space which is located at |z̃i| = 1 in the unit-disk parameterisation
of (2.2).

and renaming z̃1 ≡ z̃ , the SO(4)× SO(4) invariant sector of the SO(8) gauged supergravity
investigated in section 5 of [11] is recovered upon the identification z̃ = zthere. The
Lagrangian (2.1) reduces to

L =
(
R

2 − V
)
∗ 1− 1

4
[
(dϕ)2 + e2ϕ (dχ)2

]
=
(
R

2 − V
)
∗ 1− 1

(1− |z̃|2)2 dz̃ ∧ ∗dz̃
∗ ,

(2.14)

and the scalar potential in (2.3) simplifies to

V = −1
2 g

2
(
4 + 2 coshϕ+ χ2 eϕ

)
= −g2 3− |z̃|2

1− |z̃|2 . (2.15)
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The Janus solution then reads

ds2
4 = dµ2 + e2A(µ) dΣ2 , z̃(µ) = eiβ

sinhα
coshα+ i sinh(gµ) , (2.16)

with
e2A(µ) = (gk)−2 cosh2(gµ) and k = coshα ≥ 1 , (2.17)

where (α, β) = (α1, β1). This solution precisely matches the one presented in section 5
of [11] upon the identification coshα = (1−a2

there)−
1
2 . As noticed therein, the Janus solution

is half-PBS and preserves 16 real supercharges. From a holographic perspective, the (1 + 1)-
dimensional defect dual to the AdS3 factor in the geometry features (4, 4) supersymmetry
and therefore has an SO(4)R× SO(4)R R-symmetry group. We have explicitly verified that
the Janus solution satisfies the 1/2-BPS equations (A.2) and (A.7) for the eight gravitino
mass terms (superpotentials) of the maximal theory (see Footnote 13). Finally, the original
M-theory supersymmetric Janus with SO(4)× SO(4) symmetry was presented in [8].

2.3.2 SU(3) × U(1)2 symmetry enhancement

Identifying the three vector multiplets, namely z̃1 = z̃2 = z̃3 ≡ z̃ , so that

α1 = α2 = α3 ≡ α , β1 = β2 = β3 ≡ β , (2.18)

the SU(3)×U(1)2 invariant sector of section 6 of [11] (see also [13] for the 11D uplift) is
recovered upon the identification z̃ = zthere. The Lagrangian (2.1) simplifies to

L =
(
R

2 − V
)
∗ 1− 3

4
[
(dϕ)2 + e2ϕ (dχ)2

]
=
(
R

2 − V
)
∗ 1− 3

(1− |z̃|2)2 dz̃ ∧ ∗dz̃
∗ ,

(2.19)

and the scalar potential in (2.3) reduces to

V = −3
2 g

2
(
2 coshϕ+ χ2 eϕ

)
= −3 g2 1 + |z̃|2

1− |z̃|2 . (2.20)

The Janus solution takes the form

ds2
4 = dµ2 + e2A(µ) dΣ2 , z̃(µ) = eiβ

sinhα
coshα+ i sinh(gµ) , (2.21)

with
e2A(µ) = (gk)−2 cosh2(gµ) and k2 = 1 + 3 sinh2 α ≥ 1 . (2.22)

This provides an analytic solution in the SU(3) × U(1)2 invariant sector of the SO(8)
maximal supergravity investigated in section 6 of [11]. The solution (2.21)–(2.22) satisfies
the second-order equations of motion in (2.5) and (2.7). However, we have verified that
the BPS equations (A.2) and (A.7) are not satisfied for any of the eight gravitino mass
terms (superpotentials) in the maximal SO(8) gauged supergravity, so the solution is
non-supersymmetric.

– 9 –



J
H
E
P
1
1
(
2
0
2
2
)
1
5
0

2.4 Janus geometry and boundary conditions

Let us discuss the geometry of the multi-parametric family of Janus solutions presented in
the previous sections. Introducing embedding coordiantes in R2,3, the k-family of Janus
metrics in (2.4) and (2.9) corresponds to

X0 = (gk)−1 cos τ
cos η cosh(gµ) ,

X4 = (gk)−1 sin τ
cos η cosh(gµ) ,

X1 = (gk)−1 tan η cos θ cosh(gµ) ,

X2 = (gk)−1 tan η sin θ cosh(gµ) ,

X3 = g−1 iE
(
igµ ; k−2

)
,

(2.23)

with
k2 = 1 +

∑
i

sinh2 αi ≥ 1 , (2.24)

and E(igµ ; k−2) being the incomplete elliptic integral of the second kind. The solution
describes the hyper-surface

−X2
0 −X2

4 +X2
1 +X2

2 + (gk)−2 sinh2(gµ) = −(gk)−2 , (2.25)

where the term (gk)−2 sinh2(gµ) is implicitly given in terms of X3 by the last relation
in (2.23). For k = 1 one has that iE(igµ ; 1) = − sinh(gµ) and (2.25) reduces to the
hyperboloid describing AdS4.

2.4.1 Global coordinates and boundary structure

Let us perform a change of coordinates that will help us to understand the Janus geometry
in (2.4) and (2.9)–(2.10), especially its boundary structure. We start by performing a
change of radial coordinate to make its range compact

µ̃ = 2 k arctan
[
tanh

(
g µ

2

)]
, (2.26)

and then choose global coordinates to describe the AdS3 slicing in (2.4). The Janus metric
in (2.4) and (2.9)–(2.10) then becomes (locally) conformal to R× S3

ds2
4 = (gk)−2

cos2
(
µ̃
k

)
cos2 η

(
−dτ2 + cos2 η dµ̃2 + dη2 + sin2 η dθ2

)
, (2.27)

with

τ ∈ (−∞ ,∞) , µ̃ ∈
[
−πk2 ,

πk

2

]
, η ∈

[
0 , π2

]
, θ ∈ [0 , 2π] . (2.28)

These are the global coordinates used to describe the original type IIB Janus solution
in [1, 2]. The geometry (2.27) has a boundary that consists of two hemi-spheres of S2 at
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µ̃ = ±µ̃0 , with µ̃0 = πk
2 , joined at the S1 equator at η = π

2 . Lastly, using the new radial
coordinate µ̃ , the profiles for the complex scalars in (2.11) become

z̃i(µ̃) = eiβi
sinhαi

coshαi + i tan
(
µ̃
k

) , (2.29)

so that z̃i(µ̃) → 0 when approaching the two hemi-spheres of S2 at µ̃ → ±µ̃0 in the
Janus boundary. Note that arg [z̃i(µ̃0)] − arg [z̃i(−µ̃0)] = π, thus creating an interface
discontinuity at the S1 equator where the defect lives.

2.4.2 AdS3 slicing and boundary conditions

In order to investigate the boundary conditions of the family of Janus solution in (2.9)–(2.11)
we will perform a regular change of radial coordinate

ρ = sinh(gµ) , dµ = g−1 dρ√
ρ2 + 1

, (2.30)

so that the family of Janus solutions in (2.9)–(2.11) becomes3

ds2
4 = 1

g2

(
dρ2

ρ2 + 1 + ρ2 + 1
k2 dΣ2

)
, dΣ2 = 1

cos2 η

(
−dτ2 + dη2 + sin2 η dθ2

)
,

(2.31)
with

τ ∈ (−∞ ,∞) , ρ ∈ (−∞ ,∞) , η ∈
[
0 , π2

]
, θ ∈ [0 , 2π] , (2.32)

and
z̃i(ρ) = eiβi

sinhαi
coshαi + i ρ

. (2.33)

The Janus geometry (2.31) has a three-dimensional conformal boundary at ρ→ ±∞ that
is conformal to R× S2 with a k-dependent prefactor (gk)−2 ρ2 . This is the geometry we
will use to analyse the asymptotic behaviour of the U(1)4 invariant complex scalars (2.33).

When approaching the maximally supersymmetric AdS4 vacuum dual to ABJM the-
ory,4 the asymptotic behaviour of (2.33) around the endpoints ρ → ±∞ of the Janus
solution reads

z̃i(ρ) = z̃i,0
ρ

+ z̃i,1
ρ2 +O

( 1
ρ3

)
with i = 1, 2, 3 , (2.34)

3The Ricci scalar constructed from the metric (2.31) reads

R(ρ) = −6 g2
(

1 + ρ2 + k2

ρ2 + 1

)
,

thus ensuring regularity of the Janus geometry within the whole range ρ ∈ (−∞,∞) .
4The 35 pseudo-scalars and 35 proper scalars of the maximal supergravity multiplet are dual to single-

trace deformations of ABJM theory [10]. More concretely, pseudo-scalars are dual to fermionic bilinears
OF = Tr(ψȦψḂ) − 1

8δ
ȦḂTr(ψĊψĊ) with Ȧ = 1, . . . , 8 and dim(OF ) = 2 . Proper scalars are dual to

bosonic bilinears OB = Tr(XAXB)− 1
8δ
ABTr(XCXC) with A = 1, . . . , 8 and dim(OB) = 1 .
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in terms of normalisable modes z̃i,0 with ∆i = 1 specified by the parameters (αi, βi) ,

z̃i,0 = sinhαi ei(βi−
π
2 ) , (2.35)

as well as normalisable modes z̃i,1 with ∆i = 2 . These modes satisfy a set of αi-dependent
algebraic relations

z̃i,1 − i coshαi z̃i,0 = 0 . (2.36)

The on-shell relations (2.36) will help us to characterise the deformations in the field theory
dual of the Janus solution upon appropriate manipulation of boundary terms and finite
counterterms.

In order to discuss the boundary conditions (2.34)–(2.36) in more detail, we will resort
to an expansion of Rez̃i (proper scalars) and Imz̃i (pseudo-scalars) around ρ → ±∞.
This yields

Rez̃i(ρ) =
a

(v)
i,0
ρ

+
a

(s)
i,1
ρ2 +O

( 1
ρ3

)
,

Imz̃i(ρ) =
b
(s)
i,0
ρ

+
b
(v)
i,1
ρ2 +O

( 1
ρ3

)
,

(2.37)

so that
z̃i,0 = a

(v)
i,0 + i b

(s)
i,0 , z̃i,1 = a

(s)
i,1 + i b

(v)
i,1 , (2.38)

with
a

(v)
i,0 = sinhαi sin βi , b

(s)
i,0 = − sinhαi cosβi . (2.39)

The algebraic relations in (2.36) then become

a
(s)
i,1 + coshαi b(s)i,0 = 0 , b

(v)
i,1 − coshαi a(v)

i,0 = 0 . (2.40)

Note that the independent parameters specifying the boundary conditions in (2.39) are
(αi, βi) . As a consequence, the coefficients in the expansions (2.37) obey the following two
sets of algebraic relations

(
a

(s)
i,1

)2

(
b
(s)
i,0

)2 = 1 + |z̃i,0|2 ,

(
b
(v)
i,1

)2

(
a

(v)
i,0

)2 = 1 + |z̃i,0|2 . (2.41)

Lastly, following [33] (see also [11]), we have attached the labels “source” (s) and “VEV”
(v) to the modes in (2.37) to highlight that, in order to preserve maximal supersymmetry,
proper scalars should feature the alternative quantisation and pseudo-scalars the standard
quantisation. Note that setting βi = ±π

2 switches off the sources in (2.37) leaving only the
VEV’s. This is in agreement with the standard AdS/CFT prescription and renders z̃i,0
in (2.35) real.
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2.4.3 Janus solutions and boundary conditions

Let us compute the on-shell variation of the Lagrangian (2.1). A standard computation
yields the boundary term

δS =
∑
i

δSi =
∑
i

∫
d4x ∂µθ

µ
i = −

∑
i

∫
∂M

d3x

√
−h(

1− |z̃i|2
)2 N

µ (∂µz̃i δz̃∗i + c.c.) , (2.42)

where
θµi ≡ −

√
−g(

1− |z̃i|2
)2 g

µν (∂ν z̃i δz̃∗i + c.c.) , (2.43)

and c.c stands for complex conjugation. In (2.42) we have introduced the standard foliation
gµν = hµν +NµNν with Nµ = √gρρ δρµ being the vector normal to the AdS3 leaves.

Plugging into (2.42) the asymptotic expansion of the scalars in (2.34) around ρ→ ±∞ ,
and using the asymptotic form of the metric (2.31), we encounter the well known linearly
divergent term. In order to regularise the above boundary action and have a well-defined
variational principle we introduce, for each complex field z̃i , the counter-term

Sct,i = −g lim
ρ→±∞

∫
∂M

d3x
√
−h z̃i z̃∗i , (2.44)

so that
δSi + δSct,i = g−2 k−3

∫
∂M

(
z̃i,1 δz̃

∗
i,0 + z̃∗i,1 δz̃i,0

)
dΣ , (2.45)

in terms of the volume element at the boundary dΣ =
√
−γ d3x with

√
−γ = sin η cos−3 η .

Substituting the scalar mode parameterisation of (2.38) into the boundary contributions
in (2.45) one obtains

δSi + δSct,i = 2 g−2 k−3
∫
∂M

(
a

(s)
i,1 δa

(v)
i,0 + b

(v)
i,1 δb

(s)
i,0

)
dΣ , (2.46)

with
k2 = 1 +

∑
i

sinh2 αi = 1 +
∑
i

|z̃i,0|2 ≥ 1 . (2.47)

In order to remove the k−3 factor in (2.46) we could rescale the radial coordinate as ρ̂ = k ρ

or, instead, perform the non-linear mode redefinitions

â
(v)
i,0 = k−1 a

(v)
i,0 , â

(s)
i,1 = k−2 a

(s)
i,1 , b̂

(s)
i,0 = k−1 b

(s)
i,0 , b̂

(v)
i,1 = k−2 b

(v)
i,1 .

(2.48)
Following the latter prescription, the boundary contribution in (2.46) becomes

δSi + δSct,i = 2 g−2
∫
∂M

(
â

(s)
i,1 δâ

(v)
i,0 + b̂

(v)
i,1 δb̂

(s)
i,0

)
dΣ , (2.49)

and, due to the alternative quantisation featured by the proper scalars, we must add an
extra boundary term such that

δSi + δSct,i − δ
(

2 g−2
∫
∂M

â
(s)
i,1 â

(v)
i,0

)
= 2 g−2

∫
∂M

(
b̂
(v)
i,1 δb̂

(s)
i,0 − â

(v)
i,0 δâ

(s)
i,1

)
dΣ . (2.50)
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•

Figure 3. Parametric plot of z̃i(ρ) in (2.54) for the Hades solutions with αi = 1 (blue-solid lines)
and the ridge flows with αi = 0 (brown-dashed lines) upon setting βi = nπ

4 with n = 0, . . . , 7 . The
central red point at z̃i = 0 ∀i corresponds to the maximally supersymmetric AdS4 vacuum and
describes the asymptotic values at ρ → ∞ . The boundary circle at |z̃i| = 1 corresponds to the
singularity at ρ = 1 .

Therefore, having a well-defined variational principle therefore requires δb̂(s)i,0 = δâ
(s)
i,1 = 0 .

Recalling from (2.39)–(2.40) that

b
(s)
i,0 = − sinhαi cosβi and a

(s)
i,1 = − coshαi b(s)i,0 , (2.51)

we conclude that sources are generically present at the boundary theory of the Janus (αi 6= 0)
except for the particular choice of boundary conditions βi = ±π

2 . This implies that every
choice of (αi, βi) with βi 6= ±π

2 corresponds to a different theory with a different value of
the sources in the variational principle. On the contrary, when βi = ±π

2 , the sources are
zero on-shell and the boundary theory is unique.

2.5 Multi-parametric Hades solutions

Starting from the field equations in (2.5)–(2.7) and performing a change of radial coordinate

ρ = cosh(gµ) , dµ = g−1 dρ√
ρ2 − 1

, (2.52)

we find a new class of singular solutions of the form

ds2
4 = 1

g2

(
dρ2

ρ2 − 1 + ρ2 − 1
k2 dΣ2

)
with k2 = −1 +

∑
i

cosh2 αi , (2.53)

and
z̃i(ρ) = eiβi

coshαi
sinhαi + iρ

. (2.54)
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These solutions are defined in the domain ρ ∈ [1,∞) and feature a singularity at ρ = 1
where the change of radial coordinate in (2.52) is ill-defined, the warping factor in front of
the AdS3 piece in the geometry collapses to zero size and |z̃i(1)| = 1 (see figure 3). More
concretely, the Ricci scalar constructed from the metric (2.53) reads

R(ρ) = −6 g2
(

1 + ρ2 + k2

ρ2 − 1

)
, (2.55)

and becomes singular at ρ = 1 . An analysis of the BPS equations (A.7) shows that the
flows in (2.53)–(2.54) turn out to be non-supersymmetric. We will refer to these singular
solutions as flows to Hades. This term was coined for singular (flat-sliced) domain-walls
dual to conventional RG-flows in [27, 28].

As previously done for the Janus solution, let us expand Rez̃i (proper scalars) and
Imz̃i (pseudo-scalars) around ρ→∞ . One finds

Rez̃i(ρ) =
a

(v)
i,0
ρ

+
a

(s)
i,1
ρ2 +O

( 1
ρ3

)
,

Imz̃i(ρ) =
b
(s)
i,0
ρ

+
b
(v)
i,1
ρ2 +O

( 1
ρ3

)
,

(2.56)

with
a

(v)
i,0 = coshαi sin βi , b

(v)
i,1 = sinhαi a(v)

i,0 , (2.57)

and
b
(s)
i,0 = − coshαi cosβi , a

(s)
i,1 = − sinhαi b(s)i,0 . (2.58)

Different choices of the Hades parameters (αi, βi) translate into different boundary con-
ditions in the expansions (2.56). Note that the boundary theory has sources in (2.58)
generically activated except if setting βi = ±π

2 .

2.5.1 Ridge flows with αi = 0

Unlike for the Janus solutions, setting αi = 0 does not recover a regular AdS4 vacuum.
Instead, the complex scalars in (2.54) reduce to

z̃i(ρ) = ρ−1 ei(βi−
π
2 ) , (2.59)

and ridge flows of the type investigated in [13, 26] appear with constant argz̃i = βi− π
2 and

k2 = 2 in the singular geometry (2.53). The ρ→∞ expansion in (2.56) and the boundary
conditions in (2.57)–(2.58) also simplify drastically

Rez̃i(ρ) =
a

(v)
i,0
ρ

+
a

(s)
i,1
ρ2 +O

( 1
ρ3

)
,

Imz̃i(ρ) =
b
(s)
i,0
ρ

+
b
(v)
i,1
ρ2 +O

( 1
ρ3

)
,

(2.60)

with
a

(v)
i,0 = sin βi , b

(s)
i,0 = − cosβi , a

(s)
i,1 = 0 , b

(v)
i,1 = 0 . (2.61)
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Two special cases are immediately identified. Setting βi = 0, π renders z̃i(ρ) purely
imaginary and the ridge flow from the maximally supersymmetric AdS4 vacuum at ρ→∞
is triggered by the source modes b(s)i,0 of the pseudo-scalars dual to fermion bilinears. On
the contrary, setting βi = ±π

2 renders z̃i(ρ) purely real and the ridge flow is triggered
by the VEV modes a(v)

i,0 of the proper scalars dual to boson bilinears. As we will see in
section 3, the uplift of these special ridge flows to eleven dimensions will be very different.
This is to be contrasted with the situation in four dimensions where the Lagrangian (2.1)
is invariant under constant shifts of βi . Note also that a shift of the form βi → βi + π

amounts to a reflection ρ→ −ρ in the respective field z̃i in (2.59) while leaving the Hades
metric in (2.53) invariant. Since the domain of the radial coordinate is fixed to ρ ∈ [1,∞) ,
the shift βi → βi + π generically generates a new solution.

A fundamental difference between our ridge flows in (2.53) and (2.59) and the ones
investigated in [13, 25, 26] is that the ones there have a flat-sliced geometry. Therefore they
correspond to conventional holographic RG-flows. Our solutions have an AdS3-slicing of the
geometry, instead. It was further shown in [13, 26] that, for the flat-sliced solutions, only a
set of discrete values of argz̃i was compatible with supersymmetry. However, if relaxing
supersymmetry, any value of argz̃i was permitted. In our non-supersymmetric ridge flows,
any possible value of βi is permitted too. Generic flows to Hades with αi 6= 0 and ridge
flows with αi = 0 are depicted in figure 3.

2.5.2 Hades with (super) symmetry enhancements

As already discussed for the Janus solutions in section 2.3, imposing identifications between
the complex fields z̃i(ρ) translates into different patterns of (super) symmetry enhancements.
For example, non-supersymmetric Hades solutions with SU(3) × U(1)2 symmetry are
obtained upon identifying the three complex scalars, namely, upon setting α1 = α2 = α3
and β1 = β2 = β3 in the general Hades solution (2.53)–(2.54).

Supersymmetric Hades solutions with an AdS3 slicing have previously been constructed
in [11] within the SO(4)× SO(4) invariant sector of the SO(8) gauged supergravity. As
discussed in section 2.3.1, this sector of the theory is recovered upon setting two of the
three complex fields z̃i to zero, i.e., z̃2(ρ) = z̃3(ρ) = 0 . However, it is easy to see that this
cannot be achieved by tuning the parameters (αi, βi) in (2.54) to any real value. Instead,
one must set two complex fields to zero from the start and search for solutions of the field
equations. In this manner, one finds Hades solutions of the form

ds2
4 = 1

g2

(
dρ2

ρ2 − 1 + ρ2 − 1
k2 dΣ2

)
with k2 = sinh2 α1 , (2.62)

and
z̃1(ρ) = eiβ1 coshα1

sinhα1 + iρ
, z̃2(ρ) = z̃3(ρ) = 0 , (2.63)

which turn out to solve the BPS equations in (A.2)–(A.7). It is worth emphasising that
these supersymmetric Hades with SO(4)×SO(4) symmetry do not belong to the same class
of solutions as the non-supersymmetric Hades in (2.53)–(2.54). Also, they do not admit
a ridge flow limit since setting α1 = 0 implies having a pathological (k2 = 0) warping of
AdS3 in the geometry (2.62).
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3 Uplift to eleven-dimensional supergravity

In this section we present the uplift to eleven-dimensional supergravity of the Janus
and Hades solutions constructed within the four-dimensional SO(8) gauged supergravity.
We use the conventions of [34] according to which the Lagrangian of eleven-dimensional
supergravity [35] takes the form

L11 = R̂ vol11 − 1
2 F̂(4) ∧ ∗11F̂(4) − 1

6 Â(3) ∧ F̂(4) ∧ F̂(4) . (3.1)

A consistent background is then subject to the source-less Bianchi identity

dF̂(4) = 0 , (3.2)

as well as the equations of motion

d
(
∗11F̂(4)

)
+ 1

2 F̂(4) ∧ F̂(4) = 0 ,

R̂MN −
1
12

(
F̂MPQR F̂N

PQR − 1
12 F̂PQRS F̂

PQRS ĜMN

)
= 0 .

(3.3)

The equation of motion for F̂(4) in (3.3) can be used to introduce the dual flux

F̂(7) ≡ ∗11F̂(4) + 1
2Â(3) ∧ F̂(4) , (3.4)

which therefore obeys the Bianchi identity dF̂(7) = 0 . The flux in (3.4) determines the
conserved Page charge of M2-branes in the background5

N2 = 1
(2π)6

∫
M7

F̂(7) = 1
(2π)6

∫
M7
∗11F̂(4) + 1

2Â(3) ∧ F̂(4) , (3.5)

where M7 is the internal space. The contribution ∗11F̂(4) comes from electric M2-branes
and the contribution 1

2Â(3) ∧ F̂(4) originates from magnetic M5-branes.

3.1 SU(3) × U(1)2 invariant sector

The eleven-dimensional uplift of the SU(3)×U(1)2 invariant sector of the maximal SO(8)
supergravity has been worked out in [13, 36] (see also [37]). To describe the internal
geometry, we will closely follow the appendix B.2 of [37] and use intrinsic coordinates on
S7 adapted to its seven-dimensional Sasaki-Einstein structure. In these coordinates, the
round metric on S7 takes the form

ds2
7 = ds2

CP3 + (dψ− + σ−)2 , (3.6)

where ds2
CP3

is the Fubini-Study line element (normalised as in [37])

ds2
CP3 = dα̃2 + cos2 α̃

(
ds2

CP2 + sin2 α̃ (dτ− + σ)2
)

with σ− = cos2 α̃ (dτ− + σ) .
(3.7)

5We have set the string length to unity, i.e., `s = 1 .
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The ranges of the angles in (3.6)–(3.7) are α̃ ∈ [0, π2 ] , τ− ∈ [0, 2π] and ψ− ∈ [0, 2π] .
Moreover, σ in (3.7) is the one-form on CP2 such that dσ = 2J with J being the Kähler
form on CP2 . The round metric in (3.6) occurs when the scalar field in the four-dimensional
Lagrangian (2.19) vanishes, i.e., z̃ = 0 , and the AdS4×S7 Freund-Rubin vacuum of eleven-
dimensional supergravity is recovered [23]. However, whenever non-vanishing, the scalar z̃
in (2.21) inflicts a deformation on the Freund-Rubin vacuum so that a new background is
generated which displays a smaller SU(3)×U(1)2 ⊂ SO(8) isometry group.

We are encoding the breaking of isometries caused by z̃ into a set of metric functions
f ’s and flux functions h ’s. The eleven-dimensional metric takes the form

dŝ2
11 = 1

2 f1 ds
2
4 + 2 g−2

[
f2 dα̃

2 + cos2 α̃
(
f3 ds

2
CP2 + sin2 α̃ f4 (dτ− + σ)2

)

+ f5
(
dψ− + cos2 α̃ f6 (dτ− + σ)

)2
]
,

(3.8)

with ds2
4 given in (2.21)–(2.22). Note that the eleven-dimensional metric (3.8) displays an

SU(3)×U(1)τ− ×U(1)ψ− symmetry. The SU(3) factor accounts for the CP2 isometries
and the two U(1) factors correspond with shifts along the angles τ− and ψ− , hence the
attached labels. The various metric functions in (3.8) depend on the complex scalar z̃
in (2.21) and on the angle α̃ on S7. They are given by

f3
1 = (1 + z̃)(1 + z̃∗)

(1− |z̃|2)3 H2 , f
3/2
2 = H

(1 + z̃)(1 + z̃∗) , f3
3 = (1 + z̃)(1 + z̃∗)

H
,

f
3/2
4 = (1− |z̃|2)3

(1 + z̃)(1 + z̃∗) HK−
3
2 , f

3/2
5 = 1

(1 + z̃)(1 + z̃∗) H
−2K

3
2 ,

f6 =
[
(1 + z̃)(1 + z̃∗)H + (z̃ − z̃∗)2 cos(2α̃)

]
K−1 ,

(3.9)
with

H = 1 + |z̃|2 − (z̃ + z̃∗) cos(2α̃) and K = 1 + |z̃|4 − 2 |z̃|2 cos(4α̃) . (3.10)

The round metric on S7 is recovered from (3.8) upon setting z̃ = 0 , what implies that all
the metric functions H = K = f1,...,6 = 1 . The part of the internal geometry in the upper
line of (3.8) then reconstructs the CP3 metric in (3.7).

The eleven-dimensional four-form flux takes a more lengthy expression given in terms
of three-, one- and zero-form deformations in four dimensions which we collectively denote
h’s. Adopting the terminology of [13], the four-form flux naturally splits as

F̂(4) = F̂ st
(4) + F̂ tr

(4) , (3.11)

with
F̂ st

(4) = − 1
2
√

2
g h1 vol4 + 1√

2
g−1 sin(2α̃) h(3)

2 ∧ dα̃ , (3.12)
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and

F̂ tr
(4) = −2

√
2 g−3

[
sin(2α̃)h(1)

3 ∧ dα̃ ∧ dψ− ∧ (dτ− + σ)

+ cos4 α̃ h
(1)
4 ∧ (dτ− + σ) ∧ J + cos2 α̃ cos(2α̃) h(1)

5 ∧ dψ− ∧ J

+ sin(2α̃)h6 dα̃ ∧ dψ− ∧ J + cos4 α̃ h7 J ∧ J

+ cos2 α̃ sin(2α̃) h8 dα̃ ∧ (dτ− + σ) ∧ J
]
.

(3.13)

For the space-time part in (3.12) we have introduced a zero-form

h1 = 1
(1− |z̃|2)

(
3
(
1 + |z̃|2

)
+ (z̃ + z̃∗) (1− 2 cos(2α̃))

)
, (3.14)

and a three-form

h
(3)
2 = 1

(1− |z̃|2)2

((
z̃2 − 1

)
∗4 dz̃∗ +

(
(z̃∗)2 − 1

)
∗4 dz̃

)
, (3.15)

which has legs along the AdS3 factor in the external geometry.6 For the transverse part
in (3.13) we have introduced a set of one-forms

h
(1)
3 = i

2

(
dz̃∗

(1 + z̃∗)2 −
dz̃

(1 + z̃)2

)
,

h
(1)
4 = h

(1)
5 = iH−2

( (
1− 2 cos(2α̃) z̃∗ + (z̃∗)2

)
dz̃ −

(
1− 2 cos(2α̃) z̃ + z̃2

)
dz̃∗

)
,

(3.16)

together with zero-forms

h6 = i 4H−2 (z̃∗ − z̃) (1 + |z̃|2)
(1 + z̃)(1 + z̃∗)

(
1 + |z̃|2 + (z̃ + z̃∗) sin2 α̃

)
,

h7 = −i 2H−1 (z̃∗ − z̃) ,

h8 = i 2H−2 (z̃∗ − z̃)
(
1 + |z̃|2 + (z̃ + z̃∗) sin2 α̃

)
.

(3.17)

The zero-forms h6 , h7 and h8 determine the purely internal components in (3.13) and
vanish if z̃∗ = z̃ . Also the one-form deformations in (3.16) vanish in this case so that F̂ tr

(4) =
0 . Lastly, the entire eleven-dimensional flux in (3.11) preserves an SU(3)×U(1)τ−×U(1)ψ−

symmetry since there is no explicit dependence on the angle ψ− and, moreover, the two-form
J on CP2 is not charged under U(1)τ− .

To complete the uplift, the above quantities must be evaluated at the value of the
complex scalar z̃ ≡ z̃1 = z̃2 = z̃3 both for the Janus (2.33) and Hades (2.54) solu-
tions. We have explicitly verified that the resulting eleven-dimensional backgrounds
in (3.8) and (3.11) satisfy the source-less Bianchi identity and equations of motion in (3.2)
and (3.3), respectively.

6The Hodge dual ∗4 is defined in four-dimensions using the metric ds2
4 in (2.21)–(2.22).
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Figure 4. Regular metric functions in (3.8) for the Janus solution with α = 1 and β = 0.

3.2 SU(3) × U(1)2 symmetric Janus

We have performed the explicit uplift of the analytic and non-supersymmetric Janus solution
in (2.21)–(2.22). The resulting eleven-dimensional backgrounds are everywhere regular and
depend on the choice of parameters (α, β) specifying the boundary conditions (2.39)–(2.40)
of the four-dimensional Janus solution. Plots of the functions entering the metric (3.8) for
β = 0 and β = π

2 are depicted in figure 4 and figure 5. These two choices respectively
activate only sources or VEV’s in the Janus boundary conditions (2.39)–(2.40). In addition,
the scalar z̃ in the SU(3)×U(1)2 symmetric Janus solution of (2.21) is necessarily complex
so that no limit to a real Janus solution exists even in the general case of (2.11). This
further implies that all the h functions (and also three- and one-forms) entering F̂ st

(4)
in (3.12) and F̂ tr

(4) in (3.13) are generically activated.
In order to compute the M2-brane charge for the SU(3)×U(1)2 symmetric Janus, we

first note that the dual seven-form flux can be expressed as

F̂(7) = dα̂ ∧ h(6) + . . . , (3.18)

with h(6) = 1
2J ∧ J ∧ dτ− ∧ dψ− being the volume form of M6 spanned by (CP2, τ−, ψ−),

and α̂ playing the role of an “adapted” angular coordinate threaded by the flux. This
adapted coordiante is in general a complicated function

α̂ = α̂(ρ, α̃ ; α, β) , (3.19)

that depends on the original coordinates (ρ, α̃) as well as on the Janus parameters (α, β) .
Lastly, the ellipsis in (3.18) stand for additional terms with legs on the AdS3 piece of the
geometry which do not play a relevant role when computing M2-brane charges. Therefore,
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Figure 5. Regular metric functions in (3.8) for the Janus solution with α = 1 and β = π
2 .

all the relevant information regarding M2-brane charges gets codified into the one-form dα̂

as it defines an adapted angular direction. It is important to highlight that, when taking
the limit ρ→ ±∞ , one finds that dα̂ ∝ sin(2α̃) cos4 α̃ dα̃ no longer depends on the Janus
parameters (α, β) . In this limit, the dual seven-form flux threads the S7 as required by
the asymptotic AdS4 × S7 geometry of the flow.

The computation of the M2-brane charge in the Janus solution gives

N2 = 1
(2π)6

∫
Γ×M6

F̂(7) = 1
32π2

∫
∂Γ
α̂ = 1

4π2g6 , (3.20)

where the relevant curves Γ’s threaded by the purely internal part of the seven-form flux
in (3.18) are specified by their tangent vector field v = (vµ,vα̃) = (g

√
ρ2 + 1 ∂ρα̂ , ∂α̃α̂) .7

For the Janus, all the curves Γ start at α̃ = 0 and end at α̃ = π
2 pointing at the α̃

direction on S7 — see figure 8 for an illustration of such curves in various examples –.
Since the N2 charge in (3.20) is independent of Γ and also of the Janus parameters (α, β),
it matches the one of the AdS4 × S7 background controlling the asymptotic behaviour of
the (regular) Janus solutions at ρ→ ±∞ .

Lastly, it is also interesting to compute the volume of the internal manifold vol7 along
the Janus flow as a function of the radial coordinate ρ and the Janus parameters (α, β) .
The result is a lengthy expression not very illuminating that we have evaluated and plotted
in figure 6 for various choices of the Janus parameters. The behaviour is akin a wormhole:
the S7 is a non-contractible seven-manifold whose volume does not vanish anywhere in the
flow along the radial direction ρ . Moreover, for a given value of α , there is a range of the
parameter β for which the eleven-dimensional Janus features two throats (see right plot
in figure 6).

7Note that vµ = ∂µα̂ = g
√
ρ2 + 1 ∂ρα̂ as a consequence of the change of radial coordinate in (2.30).

– 21 –



J
H
E
P
1
1
(
2
0
2
2
)
1
5
0

Rez̃

Imz̃
-4 -2 2 4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ρ

3 g7

27/2π4 vol7

Figure 6. Left: volume of the internal seven-sphere as a function of the complex scalar z̃ (orange
dome). Examples of regular Janus flows (loops) are superimposed. Right: volume of the internal
seven-sphere as a function of the radial coordinate ρ for the regular Janus solutions. The parameters
of the curves are: α = 1 and β = −π2 (blue line), β = π (black line) and β = 17

16π (green line).
Note the presence of two minima (throats) in the black and green lines.

3.3 SU(3) × U(1)2 symmetric Hades and ridge flows

Setting α ≡ α1 = α2 = α3 and β ≡ β1 = β2 = β3 enhances the symmetry of the general
Hades solution in (2.53)–(2.54) from U(1)4 to SU(3)×U(1)2 . Setting α 6= 0 renders the
running of the scalar field (2.54) along the flow intrinsically complex, as it happened for
the Janus case. This again implies that all the h functions (and also three- and one-forms)
entering F̂ st

(4) in (3.12) and F̂ tr
(4) in (3.13) are generically activated.

The decomposition of the seven-form flux F̂(7) in (3.18) is still at work for the Hades
solutions. The computation of the M2-brane charge gives

N2 = 1
(2π)6

∫
Γ×M6

F̂(7) = 1
32π2

∫
∂Γ
α̂ = 1

4π2g6 , (3.21)

so that it matches the one of the AdS4×S7 background controlling the asymptotic behaviour
of the Hades solutions at ρ→∞ . Some examples of Hades flows on the z̃ complex plane
are displayed in figure 7 and superimposed on the volume of the internal seven-sphere.

Ridge flows and singularities. In order to investigate the possible eleven-dimensional
resolution of the four-dimensional Hades singularity at ρ = 1 , we will look at the metric (3.8)
and analyse the relevant function

Ω ≡ f
1
2

1 eA , (3.22)

lying in front of the AdS3 factor of the eleven-dimensional metric describing the world-
volume of the (curved) M2-branes in the UV. For simplicity, we will take the limiting case
of α = 0 and focus on the ridge flows with

ds2
4 = 1

g2

(
dρ2

ρ2 − 1 +
(
ρ2 − 1

)
2 dΣ2

)
and z̃(ρ) = ρ−1 ei(β−

π
2 ) . (3.23)
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Figure 7. Volume of the internal seven-sphere (orange dome) as a function of the complex scalar
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line) and (α, λ) = (2,−π2 ) (red curved line).

Remarkably, for these flows, the four-dimensional singularity at ρ = 1 gets ameliorated
when uplifting the solutions to eleven dimensions provided β 6= ±π

2 .
The explicit computation of the Ω factor in (3.22) for the ridge flows yields

Ω = (2g)−1
(
1 + ρ2 + 2 ρ sin β

) 1
6
(
1 + ρ2 − 2 ρ sin β cos(2α̃)

) 1
3 . (3.24)

Evaluating (3.24) at ρ = 1 where the four-dimensional singularity is located, one concludes
that Ω vanishes at (β, α̃) = (π2 , 0) as well as at (β, α̃) = (−π

2 , α̃) ∀α̃ . This hints at a
potential pathology at ρ = 1 for β = ±π

2 which either localises at α̃ = 0 or gets delocalised
along the interval α̃ ∈ [0, π2 ] .8 We will look at some limiting examples of ridge flows in
order to illustrate their main physical implications.

◦ Singular β = ±π
2 ridge flows. The scalar in (3.23) becomes real when setting

β = π
2 . The eleven-dimensional geometry gets simplified to

ds2
11 =

f
2
3
−
g2

(ρ+ 1)
2
3

4

[
ds2

AdS3 + 2 dρ2

(ρ2 − 1)2 + 8 dα̃2

(ρ+ 1)2

+ 8
f−

cos2 α̃

(
ds2

CP2 + (ρ− 1)2

f+
sin2 α̃ (dτ− + σ)2

)

+ 8
f−

 f
1
2

+
ρ+ 1dψ− + ρ+ 1

f
1
2

+

cos2 α̃ (dτ− + σ)

2  ,
(3.25)

8A similar class of conventional (flat-sliced) RG-flows with SU(3)×U(1)2 symmetry was constructed
in [26]. For the sake of comparison, there is a redefinition of the relevant parameter given by ζ[26] = β − π

2 .
The singularity of the ridge flows we study here would be similar to that of a (yet to be constructed)
non-supersymmetric generalisation of the flows in [26] with cos(3ζ) = +1 .
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β = −π2 . Bottom-Right: ridge flow with β = π

2 .

in terms of the functions
f± = (ρ± 1)2 ∓ 4 ρ sin2 α̃ . (3.26)

Moreover, since the scalar in (3.23) becomes real, one has that

F̂ tr
(4) = 0 , (3.27)

in (3.13). The non-vanishing contribution to the three-form gauge potential in this case is
given by

Âst
(3) = ρ (3 + ρ+ ρ2)− 2 (ρ2 − 1) cos(2α̃)

8 g3 volAdS3 , (3.28)
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producing a space-time four-form flux in (3.12) of the form

F̂ st
(4) = dÂst

(3) = 1
2g3

(3 + ρ (2 + 3 ρ)− 4 ρ cos(2α̃)
4 dρ+ (ρ2 − 1) sin(2α̃) dα̃

)
∧ volAdS3 .

(3.29)
Two facts suggest an interpretation of this flow as a Coulomb branch type flow very much
along the line of [24]. Firstly, this singular ridge flow lies in the purely proper scalar sector
of maximal supergravity as a consequence of β = π

2 . Namely, it is triggered from the UV
solely by the VEV of the proper scalar dual to the boson bilinears. Secondly, the internal
flux in (3.27) vanishes all along the flow so there are no magnetic M5-branes sourcing F̂(7) .

Let us now investigate the four-dimensional singularity at ρ = 1 from a higher-
dimensional perspective. To study the eleven-dimensional geometry around ρ = 1 it is
convenient to look at the Ricci scalar which, in this case, takes the form

R̂(ρ) = g2 (ρ− 1)2

3 (ρ+ 1)
2
3 f

8
3
−

r(ρ, α̃) , (3.30)

in terms of the negative-definite function

r(ρ, α̃) = −(9ρ4 + 12ρ3 + 32ρ2 + 16ρ+ 11) + 8 ρ (3ρ2 + 2ρ+ 3) cos(2α̃)
− 2 (ρ− 1)(3ρ+ 1) cos(4α̃) .

(3.31)

The Ricci scalar in (3.30) becomes singular at (ρ, α̃) = (1, 0) . On the other hand, the
evaluation of the four-form flux in (3.29) around the singular value ρ = 1 is more subtle. The
change of radial coordinate in (2.52) becomes ill-defined and one must resort to the original
coordinate µ in (2.4) using dρ = g

√
ρ2 − 1 dµ . Then, it becomes clear from (3.29) that

F̂ st
(4)

∣∣∣
ρ=1

= 0 . (3.32)

It is also instructive to look at the flux F̂(7) = dα̂∧h(6) + . . . by analysing the expression
of the adapted angular variable α̂ . In this case it takes the form

α̂(ρ, α̃) = −8 g−6 f−1
− (ρ− 1)2 cos6 α̃ , (3.33)

with f− given in (3.26). A plot of the curves Γ is presented in figure 8 (bottom-right plot).
Note that not all of them start at α̃ = 0 and end at α̃ = π

2 . There are curves that start at
α̃ = 0 but end at some value 0 < α̃ < π

2 when reaching the singularity at ρ = 1 . These
curves display a strong singularity bending: the one-form dα̂ interpolates between being
aligned with the S7 direction dα̃ at ρ → ∞ and being aligned with the non-compact
direction dρ when reaching the singularity at ρ = 1 .

Finally, recalling the result in section 2.5.1, setting β = −π
2 amounts to a reflection of

the radial coordinate ρ → −ρ (which implies an exchange f+ ↔ f− ) while keeping the
domain ρ ∈ [1,∞) . This reflection drastically modifies the eleven-dimensional geometry
in (3.25) and (3.26) which becomes singular at ρ = 1 for any value of the angular coordinate
within the interval α̃ ∈ [0, π2 ] . This can also be viewed in the eleven-dimensional Ricci
scalar which reads

R̂(ρ) = g2 (ρ+ 1)2

3 (ρ− 1)
2
3 f

8
3

+

r(−ρ, α̃) . (3.34)
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Since there is no special value of α̃ as far as singularities are concerned, the Γ curves
constructed from the adapted angular variable

α̂(ρ, α̃) = −8 g−6 f−1
+ (ρ+ 1)2 cos6 α̃ , (3.35)

do not display any bending when approaching ρ = 1 . These curves are presented in figure 8
(bottom-left plot). Lastly, the three-form gauge potential at β = −π

2 is given by

Âst
(3) = ρ

(
3− ρ+ ρ2)+ 2

(
ρ2 − 1

)
cos (2α̃)

8 g3 volAdS3 . (3.36)

◦ Regular β = 0, π ridge flows. The scalar in (3.23) becomes purely imaginary when
setting β = 0 . As a result, this ridge flow is triggered from the UV solely by the source
mode of the pseudo-scalar dual to the fermion bilinears.

The eleven-dimensional metric reduces in this case to

ds2
11 = ρ2 + 1

4 g2

[
ds2

AdS3 + 2 dρ2

(ρ2 − 1)2 + 8 dα̃2

ρ2 + 1

+ 8 cos2 α̃

(
1

ρ2 + 1ds
2
CP2 + 1

j2

(ρ2 − 1)2

ρ2 + 1 sin2 α̃ (dτ− + σ)2
)

+ 8 j1
(ρ2 + 1)3

(√
j2
j1
dψ− +

√
j1
j2

cos2 α̃ (dτ− + σ)
)2  ,

(3.37)

in terms of the two functions

j1 = (ρ2 + 1)2 − 4 ρ2 cos(2α̃) , j2 = (ρ2 + 1)2 − 4 ρ2 cos2(2α̃) . (3.38)

The four-form flux in (3.11) comes with both space-time and transverse contributions. The
former is given by

F̂ st
(4) = dÂst

(3) with Âst
(3) = ρ (3 + ρ2)

8 g3 volAdS3 , (3.39)

whereas the latter reads
F̂ tr

(4) = dÂtr
(3) , (3.40)

with

Âtr
(3) = −4

√
2

g3
ρ

ρ2 + 1

[1
2 sin(2α̃) dα̃ ∧ (dτ− + σ) ∧ dψ−

+ cos4 α̃J ∧ (dτ− + σ) + cos2 α̃ cos(2α̃)J ∧ dψ−
]
.

(3.41)

This signals the presence of both electric M2-branes and magnetic M5-branes at a generic
point along the flow.

In order to investigate the four-dimensional singularity at ρ = 1 from a higher-
dimensional perspective we will look again at the eleven-dimensional Ricci scalar. It reads

R̂(ρ) = g2
(
1 + ρ2

)−3 (
1 + 3 ρ2

) [
1 + ρ2

(
8− ρ2

)]
, (3.42)
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and becomes this time independent of the angular variable α̃ . The Ricci scalar in (3.42)
features no singularity within the domain ρ ∈ [1,∞) . It has a boundary value R̂(∞) =
−3 g2 and changes smoothly until reaching the finite value R̂(1) = 4 g2 , thus making the
eleven-dimensional solution regular. The space-time (3.39) and transverse (3.41) components
of the three-form gauge potential are both non-zero when approaching the IR region at
ρ = 1 . However, recalling again the change of radial coordinate dρ = g

√
ρ2 − 1 dµ , it

follows from (3.39) that
F̂ st

(4)

∣∣∣
ρ=1

= 0 . (3.43)

Therefore, only magnetic M5-branes source the geometry in the deep IR. The same behaviour
was observed for the similar, but flat-sliced, SU(3) × U(1)2 invariant flows constructed
in [26]. Such flows were argued to describe how M2-branes in the UV totally dissolve along
the flow into magnetic M5-branes, leaving no M2-branes at the core of the regular flows.9

Moving back to the original radial coordinate

ρ = cosh(g µ) with µ ∈ [0,∞) , (3.44)

and expanding around µ = 0 one arrives at

ds2
11 |IR = 1

4 g2

[( 4
(gµ)2 + 2

3 + 4
15 (gµ)2 + . . .

)
d (gµ)2 +

(
2 + (gµ)2 + . . .

)
ds2

AdS3

+
(

(gµ)4

2 − (gµ)6

6 + . . .

) (
(dτ− + σ) + 2 cos (2α̃)

(
dψ− + 1

2 (dτ− + σ)
))2

+ 8
(
dα̃2 + cos2 α̃ ds2

CP2 + sin2 (2α̃)
(
dψ− + 1

2 (dτ− + σ)
)2
)]

.

(3.45)
Note that the µ-dependent part of the metric only involves the first two lines in (3.45). This
µ-dependent part describes a five-dimensional section of the eleven-dimensional geometry
that involves the original four coordinates of the ridge flow and an additional S1 that is
non-trivially fibered over a six-dimensional manifold. The latter is described by the last
line in (3.45). Ignoring this fibration, the five-dimensional section of the geometry verifies
R

(5D)
µν = 1

5 R
(5D) g

(5D)
µν with R(5D) = −20 g2 < 0 at leading order in the radial coordinate µ .

Therefore, up to the non-trivial fibration over the six-dimensional manifold, this ridge flow
develops a five-dimensional Einstein geometry in the deep IR.

We will now zoom into the deep IR region (µ→ 0) by keeping only the leading terms
in the parenthesis of the metric (3.45). Performing a change of coordinate (gµ)2 =

√
2/r

so that r ∈ [0,∞), one finds a deep IR geometry (r →∞) of the form

ds2
11

∣∣∣
IR
≈ 1

4 g2

[
dτ̃2
− + dr2

r2 + 2 ds2
AdS3

+ 8
(
dα̃2 + cos2 α̃ ds2

CP2 + sin2(2α̃)
(
dψ− + 1

2(dτ− + σ)
)2
)]

,

(3.46)

9The same type of behaviour was also observed in the flat-sliced dielectric flows with SO(4)× SO(4)
symmetry of [25], although the M2-branes do not totally polarise into M5-branes at the core of these flows.
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with
dτ̃− = (dτ− + σ) + 2 cos(2α̃)

(
dψ− + 1

2(dτ− + σ)
)
. (3.47)

As a result, the part of the geometry depending on the coordinate r in (3.46) is (locally) the
two-dimensional Poincaré half-plane (upper half-plane), once again, up to the non-trivial
fibration over the six-dimensional manifold and the compactness of τ− ∈ [0, 2π] . Note that
the four-dimensional singularity at r →∞ is an ideal point of the Poincaré half-plane and,
therefore, is at infinite distance of any other point.

The regularity of the ridge flow at β = 0 is also reflected in the flux F̂(7) = dα̂∧h(6)+. . . .
The adapted angular variable α̂ simplifies in this case to

α̂(α̃) = −8 g−6 cos6 α̃ , (3.48)

so it is independent of ρ . Therefore, all the Γ curves start at α̃ = 0 , end at α̃ =
π
2 and flow parallel to the S7 angular direction α̃ without displaying any bending or
pathological behaviour.

Finally, as discussed in section 2.5.1, setting β = π amounts to a shift ρ→ −ρ in the
four-dimensional ridge flow solution while keeping the domain ρ ∈ [1,∞) . This reflection
of the radial coordinate leaves the eleven-dimensional metric in (3.37) and (3.38) invariant.
The three-form gauge potential in (3.39) and (3.41) simply flips its sign.

4 Summary and discussion

In this paper we have presented new analytic families of AdS3 × R Janus and AdS3 × R+

Hades solutions in the N = 2 gauged STU-model in four dimensions [30]. This supergravity
model corresponds to the U(1)4 invariant sector of the maximal SO(8) gauged supergravity
that arises upon reduction of eleven-dimensional supergravity on a seven sphere.

The Janus solutions turn out to be surprisingly simple. Using a radial coordinate
ρ ∈ (−∞ ,∞) , the geometry is given by

g2 ds2
4 = dρ2

ρ2 + 1 + ρ2 + 1
k2 ds2

AdS3 , (4.1)

in terms of the supergravity gauge coupling g and three constant parameters αi ∈ R+ .
The latter enter (4.1) through the specific combination

k2 = 1 +
3∑
i=1

sinh2 αi ≥ 1 . (4.2)

The Janus geometry (4.1) is supported by ρ-dependent profiles for the three complex scalars
in the STU-model. Using the unit-disk parameterisation of the SL(2)/SO(2) scalar coset,
they adopt the form

z̃i(ρ) = eiβi
sinhαi

coshαi + i ρ
with i = 1, 2, 3 , (4.3)

and depend on three additional phases βi ∈ [0, 2π] . The result is then a six-parameter
family (αi, βi) of Janus solutions in the STU-model which are everywhere regular for
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arbitrary choices of the parameters (αi, βi) . These are generically non-supersymmetric
solutions (they solve second-order equations of motion) but there is a supersymmetry
enhancement when two αi parameters are set to zero. In this limit the supersymmetric
Janus with SO(4)×SO(4) symmetry of [11] is recovered. The very special choice αi = 0 ∀i
sets the three scalars to zero. In this limit the maximally supersymmetric AdS4 vacuum of
the SO(8) supergravity is recovered which uplifts to the Freund-Rubin AdS4 × S7 vacuum
of eleven-dimensional supergravity [23]. Note that this vacuum controls the asymptotic
behaviour of the Janus solutions at ρ→ ±∞ .10 It is also worth emphasising that the Janus
solutions in (4.1)–(4.3) are everywhere regular and genuinely axionic in nature: Imz̃i(ρ) 6= 0
for the solution to exist. This fact makes the study of similar solutions in the Euclidean
theory (where pseudo-scalars pick up an extra factor of i with respect to proper scalars)
interesting in the AdS/CFT spirit of [39, 40]. This could help to understand instanton-like
solutions in the context of M-theory, as it has been done for the type IIB non-extremal
D-instantons [41–43] (see also [44]), and perhaps to shed new light on axionic wormholes in
M-theory. This issue certainly deserves further investigation.

The Hades solutions are closely related to the Janus solutions and turn out to be very
simple too. Using this time a radial coordinate ρ ∈ [1 ,∞), the geometry is given by

g2 ds2
4 = dρ2

ρ2 − 1 + ρ2 − 1
k2 ds2

AdS3 , (4.4)

with

k2 = −1 +
3∑
i=1

cosh2 αi , (4.5)

and the scalar profiles read

z̃i(ρ) = eiβi
coshαi

sinhαi + iρ
with i = 1, 2, 3 . (4.6)

Unlike the Janus, the Hades solutions are singular at ρ = 1 and do not possess a supersym-
metric limit upon tuning of the parameters (αi, βi) . Still the maximally supersymmetric
AdS4 vacuum controls the asymptotic behaviour of the Hades at ρ→∞ . The special limit
αi = 0 ∀i drastically simplifies the Hades solutions giving rise to the so-called ridge flows
(see figure 3).

Being obtained within the U(1)4 invariant sector of the massless N = 8 supergravity
multiplet in four dimensions, the analytic Janus solutions in (4.1)–(4.3) generalise the super-
symmetric ones with SO(4)×SO(4) symmetry constructed in [11]. The non-supersymmetric
Hades solutions in (4.4)–(4.6) are genuinely new an cannot be continuously connected with
the supersymmetric Hades with SO(4)× SO(4) symmetry of [11] upon tuning of αi . In

10The Janus solutions in (4.1)–(4.3) might resemble the “boomerang RG flows” studied in [38] within the
STU-model. These are flows in supergravity both starting and ending at the maximally supersymmetric
AdS4 vacuum of the SO(8) gauged supergravity, thus being also relevant for ABJM theory. However the
Ansatz for the scalar fields in [38] explicitly breaks translation invariance in the spatial directions of the
dual field theory. This is not the case for the Janus solutions (4.1)–(4.3) which have no dependence on the
spatial directions of AdS3.
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addition, the Janus and Hades solutions presented in this work can be readily uplifted to
eleven-dimensional supergravity using the general results for the oxidation of the STU-model
worked out in [30, 36] and the uplift building blocks collected in the appendix B. Instead
of uplifting the general U(1)4 symmetric Janus and Hades solutions, and for the sake of
simplicity, we have restricted to the case

α1 = α2 = α3 = α and β1 = β2 = β3 = β (4.7)

for which a larger symmetry group SU(3)×U(1)2 ⊂ SO(8) is preserved by the solutions.
The Janus solutions are non-supersymmetric and fully regular, both in four and eleven
dimensions, for arbitrary values of the parameters (α, β) . The four-dimensional singularity
of the Hades may or may not be cured when the solutions are uplifted to eleven-dimensions
depending on the choice of parameters (α, β) . For example, in the ridge flow limit α = 0 ,
the choice β = 0, π removes the singularity by placing it at infinite distance whereas, if
setting β = ±π

2 , the singularity remains either localised or delocalised in the internal space.
It would be interesting to understand the ultimate fate of the singularity in the general
Hades solution with U(1)4 symmetry, as well as to investigate the process of taking the
ridge flow limit sequentially on the three scalars z̃i . Also to further investigate a possible
holographic interpretation of these more general flows as interfaces connecting an N = 8
Chern-Simons matter theory to new (non-)conformal phases.

Some open questions and follow-up directions regarding the Janus and Hades presented
in this work are immediately envisaged. The first one is the issue of the stability, both
perturbative and non-perturbative, of the general class of non-supersymmetric Janus and
Hades with U(1)4 symmetry. These solutions can be viewed as AdS3 vacua in M-theory,
so it would be interesting to investigate their stability in light of the Weak Gravity and
Swampland conjectures [45, 46]. In this respect, and unlike for the Hades, the Janus solutions
presented here are continuously connected (in parameter space) to the supersymmetric,
and thus stable, Janus solutions with SO(4)× SO(4) symmetry of [11]. This could help
in improving the stability properties of the generic non-supersymmetric Janus solution
at least within some region in the parameter space (αi, βi) .11 Along this line, it would
also be interesting to perform a probe brane analysis as a first step towards assessing the
non-perturbative stability of the solutions.

The second issue is to understand the higher-dimensional brane picture of the various
flows constructed in this work. For a related class of flat-sliced ridge flows, it was shown
in [26] (motivated by [25]) that the M2-branes in the UV totally polarise into a (1 + 3)-
dimensional intersection of M5-branes in the IR generating an AdS5 metric at the core of
the flow that is non-trivially fibered over a six-dimensional manifold.12 This phenomenon
was signaled by the vanishing of the space-time flux component at the IR endpoint of the
flow. In our ridge flows with SU(3)× U(1)2 symmetry, the expression of the space-time

11See [47] and [48] for an investigation of this phenomenon in the context of non-supersymmetric AdS3

and AdS4 vacua.
12The appearance of a new strongly-coupled IR phase on the M2-brane involving an extra dimension was

argued in [26] to originate from charged solitons that become massless, very much in the spirit of (massless)
type IIA string theory and 11D supergravity.
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four-form flux (3.12) at generic β is given by

F̂ st
(4) = 1

2g3

(
3 (1 + ρ2) + 2 ρ sin β (1− 2 cos(2α̃))

4 dρ+ sin β (ρ2 − 1) sin(2α̃) dα̃
)
∧volAdS3 ,

(4.8)
so that

F̂ st
(4)

∣∣∣
ρ=1

= 0 , (4.9)

in the deep IR by virtue of the change of radial coordinate dρ = g
√
ρ2 − 1 dµ . This

suggests a possible interpretation in terms of non-supersymmetric dielectric flows with
M2-branes being polarised into intersecting M5-branes. Also, in the case of β = 0 , we have
shown the appearence of a five-dimensional geometry in the IR non-trivially fibered over
a six-dimensional manifold along the lines of [26]. The generalisation to ridge and Hades
flows with U(1)4 symmetry also deserves further investigation.

The third issue has to do with the holographic interpretation of the general Janus
and Hades solutions in terms of non-supersymmetric interfaces in the field theory living
at the boundary. We have made manifest the strong correlation between the choice of
Janus/Hades parameters (αi, βi) (i.e. boundary conditions for the complex scalars z̃i ), the
possible emergence of supersymmetry, the source/VEV and bosonic/fermionic nature of the
dual operators that are turned on in the interface and the (dis)appearance of gravitational
singularities. But much work remains to be done to better understand and characterise the
physics of the non-supersymmetric interfaces we have presented.

Finally, it would also be very interesting to construct charged solutions generalising the
Janus and Hades constructed in this work, as well as to investigate the effect of including
hypermultiplets in the setup thus going beyond the STU-model. We plan to come back to
these and related issues in the future.
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A Supersymmetry and BPS equations

In this appendix we present the BPS equations imposed by supersymmetry. We will use
the upper-half plane parameterisation for the complex scalars zi = −χi + i e−ϕi as well as
the Ansatz for the metric in (2.4), namely,

ds2
4 = dµ2 + e2A(µ) dΣ2 . (A.1)

The vanishing of the gravitino variation imposes the BPS equation

A′ = +
√
|W|2 − 1

`2
e−2A , (A.2)
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where we have denoted A′ = dA/dµ. The real scalar function

|W|2 = 1
2 g

2 eK(z,z̄)W (z) W̄ (z̄) , (A.3)

with Kähler potential
K(z, z̄) = −

∑
i

log (−i (zi − z̄ ī)) , (A.4)

and holomorphic superpotential

W (z) =
∏
i

zi −
∑
i

zi , (A.5)

is the gravitino mass square (both N = 2 gravitini have the same mass13) in terms of which

V =
∑
i

4
[(

∂|W|
∂ϕi

)2
+ e−2ϕi

(
∂|W|
∂χi

)2]
− 3 |W|2 . (A.6)

The vanishing of the remaining fermionic supersymmetry variations imply six additional
first-order BPS equations of the form

1
4 ϕ
′
i = − A′

|W|
∂|W|
∂ϕi

+ κ

`
e−ϕi

e−A

|W|
∂|W|
∂χi

,

1
4 χ
′
i = −κ

`
e−ϕi

e−A

|W|
∂|W|
∂ϕi

− e−2ϕi A
′

|W|
∂|W|
∂χi

,

(A.7)

where i = 1, 2, 3 and κ = ±1 (this sign amounts to change µ→ −µ).

Supersymmetric Janus. Using the upper-half plane parameterisation for the complex
scalars zi = −χi + i e−ϕi , the Janus solution in (2.11) reads

e−ϕi = − cosh2(gµ)
1− sinh2(gµ)− 2 cosh2 αi + 2 sinhαi (sinh(gµ) sin βi + coshαi cosβi)

,

χi = 2 sinhαi (sinh(gµ) cosβi − coshαi sin βi)
1− sinh2(gµ)− 2 cosh2 αi + 2 sinhαi (sinh(gµ) sin βi + coshαi cosβi)

.

(A.8)

Setting ` = 1, the BPS equations (A.2) and (A.7) are not satisfied by the Janus solution
in (2.9)–(A.8) for generic values of (αi, βi) thus implying that such a solution is gener-
ically non-supersymmetric within this supergravity model. However the identification
in (2.13) producing a symmetry enhancement to SO(4) × SO(4) is compatible with the
BPS equations (A.2) and (A.7) (with κ = −1 ).

13An explicit computation of the eight gravitino mass terms in the full N = 8 theory shows that they
come in pairs, namely 8 = 2 + 21 + 22 + 23, where the expression of |W|2 for a given pair 2i can be obtained
from (A.3) upon the reflection of the axion χi → −χi .
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Supersymmetric Hades. Using the upper-half plane parameterisation for the complex
scalars zi = −χi + i e−ϕi and performing a change of radial coordinate of the form

ρ = cosh(gµ) , (A.9)

the scalar profiles in the Hades solution (2.54) read

e−ϕi = sinh2(gµ)
cosh2(gµ) + cosh(2αi)− 2 coshαi (cosh(gµ) sin βi + sinhαi cosβi)

,

χi = −2 coshαi (cosh(gµ) cosβi − sinhαi sin βi)
cosh2(gµ) + cosh(2αi)− 2 coshαi (cosh(gµ) sin βi + sinhαi cosβi)

.

(A.10)

Setting ` = 1, the BPS equations (A.2) and (A.7) are not satisfied by the Hades solution
in (2.53)–(A.10) for any value of (αi, βi). Therefore, these solutions are non-supersymmetric
within this supergravity model.

However, setting from the beginning two out of the three complex fields to the origin
of moduli space, i.e. z2 = z3 = i , and changing the geometry to the one in (2.62), produces
a solution that solves the BPS equations (A.2) and (A.7) (with κ = −1 ) and features an
SO(4)× SO(4) symmetry.

B Uplift of the general U(1)4 symmetric solutions

The uplift of the U(1)4 invariant sector of the SO(8) gauged supergravity has explicitly
been worked out in section 5 of [36]. However, our conventions in this work are slightly
different from the ones used in [36]. In order to connect both, we start from our Lagrangian
in (2.1) and rescale the metric as gµν = 2 ĝµν and the gauge coupling as g =

√
2 ĝ . In this

way we obtain the new Lagrangian

L =
(
R̂− V̂

)
∗ 1− 1

2

3∑
i=1

[
dϕi ∧ ∗dϕi + e2ϕi dχi ∧ ∗dχi

]
, (B.1)

with

V̂ = −4 ĝ2
3∑
i=1

Y 2
i + Ỹ 2

i , (B.2)

in terms of the quantities

Y 2
i = 1 + |z̃i|2 − (z̃i + z̃∗i )

1− |z̃i|2
, Ỹ 2

i = (1 + z̃i)(1 + z̃∗i )
1− |z̃i|2

. (B.3)

The Lagrangian in (B.1)–(B.2) matches precisely the one in eqs. (2.1), (2.3), (2.7) and (2.8)
of [36]. In addition to the quantities in (B.3), three additional quantities

bi = −i z̃i − z̃
∗
i

1− |z̃i|2
, (B.4)

are still needed in order to use the uplift formulae in section 5 of [36]. Particularising (B.3)
and (B.4) either to our general Janus (2.31)–(2.33) or Hades (2.53)–(2.54) solutions, their
eleven-dimensional uplift can be systematically obtained using the results of [36]. This goes
beyond the scope of this work and we leave it for the future.
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