
Environmental Science and Pollution Research
 

Pyrolysis temperature influences the capacity of biochar to immobilize copper and
arsenic in mining soil remediation

--Manuscript Draft--

Manuscript Number: ESPR-D-22-12629

Full Title: Pyrolysis temperature influences the capacity of biochar to immobilize copper and
arsenic in mining soil remediation

Article Type: Research Article

Keywords: Biochar, soil remediation, copper, arsenic, Nature-Based Solutions.

Corresponding Author: Ruben Forján Castro, PhD
University of Oviedo: Universidad de Oviedo
Vigo, Pontevedra SPAIN

Corresponding Author Secondary
Information:

Corresponding Author's Institution: University of Oviedo: Universidad de Oviedo

Corresponding Author's Secondary
Institution:

First Author: Sandra Rúa Díaz

First Author Secondary Information:

Order of Authors: Sandra Rúa Díaz

Ruben Forján Castro, PhD

Manoel Lago Vila

Beatriz Cerqueira Cancelo

Elena Arco Lázaro

Purificación Marcet

Diego Baragaño

José Luis Rodríguez Gallego

Emma Fernández Covelo

Order of Authors Secondary Information:

Funding Information: Ministerio de Economía y Competitividad
(MCI-20-PID2019-106939GB-I00)

Full Professor José Luis Rodríguez
Gallego

Ministerio de Ciencia, Innovación y
Universidades
(MU-21-UP2021-030 32892642)

PhD Diego Baragaño

Consellería de Cultura, Educación e
Ordenación Universitaria, Xunta de
Galicia
(ED481B-2018/075)

PhD Beatriz Cerqueira Cancelo

Abstract: Biochar is a promising material used for multiple remediation approaches, mainly in
polluted soils. Its properties can differ depending on feedstock and pyrolysis
temperature. In this context, we tested the capacity of three biochar products made
from corncob, pyrolyzed at different temperatures (350, 500, and 650 ºC), to remediate
a mining soil affected by high levels of Cu and As. We performed an exhaustive
characterization of the biochar.  We found that biochar showed a higher surface area
with increasing pyrolysis temperature, whereas high molecular weight PAHs were
detected in biochar produced at the maximum temperature, thus indicating potential
ecotoxicological risks. After the application of biochar to the soil, Cu was partially
immobilized, especially when using that obtained at 500 ºC. This effect is attributed to

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



the structure of this material and an increase in soil pH and organic matter content.
Conversely, As was increased in the soluble fraction for all three types of biochar but in
a proportion that lacks relevance. On the whole, given its lower PAH content, higher Cu
immobilization ratio, and an almost negligible increase in As availability, biochar
obtained at 500 ºC outperformed the other two products with respect to soil recovery.
Of note, data on Cu and As availability were doubled-checked using two extraction
methodologies. We propose that this operational approach for determining the most
suitable pyrolysis temperature will find application in other soil remediation actions

Suggested Reviewers: Daniel Arenas Lago
University of Vigo - Lagoas Marcosende Campus: Universidade de Vigo
darenas@uvigo.es

Erika S. Santos
Universidade de Lisboa
erikasantos@isa.ulisboa.pt

Manhattan Lebrun
Orleans University: Universite d'Orleans
manhattan.lebrun@univ-orleans.fr

Opposed Reviewers:

Additional Information:

Question Response

§Are you submitting to a Special Issue? No

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



1 

Pyrolysis temperature influences the capacity of biochar to immobilize 1 

copper and arsenic in mining soil remediation 2 

Sandra Rúa-Díaz1, Rubén Forjan4*, Manoel Lago-Vila1, Beatriz Cerqueira1, Elena Arco-Lázaro2, 3 

Purificación Marcet3, Diego Baragaño4, José Luis R. Gallego4, Emma F. Covelo1 4 

1 Departamento de Biología Vegetal y Ciencia del Suelo, Facultad de Biología, Universidad de 5 

Vigo, Vigo, España. 6 

2 Departamento de Producción Vegetal en Zonas Tropicales y Subtropicales, Instituto Canario de 7 

Investigaciones Agrarias, Santa Lucia de Tirajana, España. 8 

3 Departamento de Biología Vegetal y Ciencia del Suelo, Escuela de Forestales, Universidad de 9 

Vigo, Vigo, España. 10 

4 INDUROT and Environmental Biogeochemistry & Raw Materials Group, Campus of Mieres, 11 

University of Oviedo, 33600 Mieres, Spain. 12 

*Corresponding author: rforjan@uvigo.es13 

Abstract 14 

Biochar is a promising material used for multiple remediation approaches, mainly in polluted 15 

soils. Its properties can differ depending on feedstock and pyrolysis temperature. In this context, 16 

we tested the capacity of three biochar products made from corncob, pyrolyzed at different 17 

temperatures (350, 500, and 650 ºC), to remediate a mining soil affected by high levels of Cu and 18 

As. We performed an exhaustive characterization of the biochar.  We found that biochar showed 19 

a higher surface area with increasing pyrolysis temperature, whereas high molecular weight PAHs 20 

were detected in biochar produced at the maximum temperature, thus indicating potential 21 

ecotoxicological risks. After the application of biochar to the soil, Cu was partially immobilized, 22 

especially when using that obtained at 500 ºC. This effect is attributed to the structure of this 23 

material and an increase in soil pH and organic matter content. Conversely, As was increased in 24 

the soluble fraction for all three types of biochar but in a proportion that lacks relevance. On the 25 

whole, given its lower PAH content, higher Cu immobilization ratio, and an almost negligible 26 

increase in As availability, biochar obtained at 500 ºC outperformed the other two products with 27 

respect to soil recovery. Of note, data on Cu and As availability were doubled-checked using two 28 

extraction methodologies. We propose that this operational approach for determining the most 29 

suitable pyrolysis temperature will find application in other soil remediation actions. 30 

Key words: Biochar, soil remediation, copper, arsenic, Nature-Based Solutions. 31 
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1. Introduction 37 

One of the main environmental impacts of mining activity is contamination by potentially toxic 38 

elements (PTEs) (Akala and Lal, 2000; Shrestha and Lal, 2011; Li et al. 2014). PTEs can promote 39 

physical-chemical alterations of mining soils and such changes can extend into areas far from the 40 

mine (Ghosh and Maiti 2020). In this context, mining areas affected by pollution usually present 41 

a low content of organic matter (OM) and nutrients, decompensated cation exchange capacity 42 

(CEC), low water retention capacity, high electrical conductivity, altered pH, little or no 43 

vegetation cover, and high available concentrations of PTEs. Such characteristics impair soil 44 

ecosystem services (Ussiri and Lal, 2005; Zhou et al. 2015; Pietrzykowski 2019). Open-pit mining 45 

in particular causes loss of basic pedological properties. In this context, poor management of 46 

settling ponds and tailings can be a major environmental issue. In fact, mine tailings are 47 

susceptible to alteration by erosion, leading to increased mobility and leaching of PTEs (Forján 48 

et al. 2019), which become a continuous source of long-term contamination until they are 49 

stabilized by natural processes. This contamination affects environmental compartments (mainly 50 

soil, surface water, and groundwater) close to mine tailings, as well as wider areas, which can 51 

lead PTEs to enter the food chain (Mombo et al. 2015; Puga et al. 2016). In this context, and given 52 

that the mobility, toxicity, and bioavailability of PTEs do not depend solely on their 53 
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concentrations, the examination of chemical speciation is critical to understand contamination by 54 

these toxic compounds (Gamboa-Herrera et al. 2021). 55 

Reclamation strategies are required to reduce the incidence of PTE movement into adjacent 56 

ecosystems via water and air erosion (Trippe et al. 2021). Soil recovery is currently being 57 

promoted through the provision of Nature-Based Solutions (NBS), which are defined as strategies 58 

inspired and supported by nature that are cost-effective and simultaneously provide 59 

environmental, social, and economic benefits (European Commission, 2017). NBS offer great 60 

potential in the field of contaminated soil remediation, including the application of amendments 61 

made from by-products such as biochar, a well-known amendment that effectively improves soil 62 

characteristics (Yadav and Garg 2011; Wu et al. 2017; Ghosh and Maiti 2020). 63 

Biochar is an amorphous carbonaceous black mass produced by the pyrolytic conversion of 64 

organic biomass-a process that yields a porous, low density, carbon-rich material with a large 65 

specific surface area (Duwiejuah et al. 2020; Ghosh and Maiti 2020).  Biochar has numerous 66 

beneficial effects on soil. In this regard, it has been reported to raise soil pH, enhance the OM 67 

content and CEC, increase moisture-holding capacity, attract more beneficial fungi and microbes, 68 

retain nutrients, and increase carbon sequestration (Beesley et al. 2011; Diacono and Montemurro 69 

2011; Beesley et al. 2014; Forján et al. 2017). Of note, biochar can also reduce the availability of 70 

PTEs through metal ion complexation on its surface (Beesley et al. 2010; Beesley and Marmiroli 71 

2011; Beesley et al. 2011; Park et al. 2011). This complexation capacity is explained by the 72 

organic functional groups present on the surface of biochar, such as –COOH, –CO–, –OH, and 73 

R–COO–R groups, which have a high capacity to take up metal(loid)s from soil (Ahmad et al. 74 

2014, Fellet et al. 2014; Puga et al. 2015; Lomaglio et al. 2017). These effects can be attributed 75 

to electrostatic interactions between the negatively charged carbon surface and metal cations, to 76 

ionic exchange between metal cations and ionizable protons at the acidic carbon surface, and to 77 

sorptive interaction involving delocalized carbon electrons (Sohi et al. 2010). Biochar is more 78 

environmentally friendly than active carbon (-0.9 kg CO2-eq kg-1 vs. 6.6 kg CO2-eq kg-1) and 79 

production costs are lower. In this regard, production costs for granular activated carbon and 80 

powdered activated carbon were estimated at $6.40 and $1.20-2.00 per kg-1, respectively, whereas 81 
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several types of biochar were reported to have an average price of $0.90 per kg-1 (Alhashimi and 82 

Aktas 2017; Sizirici et al. 2021).  83 

The behaviour of biochar can differ depending on the anionic or cationic nature of PTEs (Beesley 84 

et al. 2011; Park et al. 2011; Manyà 2012; Fellet et al. 2014; Luo et al. 2014; Baragaño et al. 85 

2020). Furthermore, the interaction of biochar with PTEs may also vary in function of its chemical 86 

and physical properties (Duwiejuah et al. 2020; Głąb et al. 2021), which are related to the 87 

pyrolysis temperature and source material used for its production (Kloss et al. 2012; Chen et al. 88 

2016). The effects of fine-tuning pyrolysis temperature may imply a loss of acidic functional 89 

groups and an increase in the amount of ash, as well as variations in the concentration of exchange 90 

cations on the surface area, density, and pore diameter (Antal and Grønli 2003; Lin et al. 2008; 91 

Budai et al. 2014; Ippolito et al. 2015). In addition, the potential presence of polycyclic aromatic 92 

hydrocarbons (PAHs) (Singh et al. 2010; Hale et al. 2012) may also be affected by pyrolysis 93 

temperature. Therefore, there is currently controversy regarding the application of biochar to all 94 

soil types as some kinds might supply PAHs to this matrix (Xing et al. 2021). 95 

Raw biomass for biochar production usually comes from organic waste, thereby promoting the 96 

circular economy (agroforestry biomass, livestock waste, urban or industrial waste, etc.) (Beesley 97 

et al. 2011).  A good example of such a waste product is corncobs, which are generated in high 98 

numbers because maize is one of the most common staple crops worldwide (Szufa et al. 2020). 99 

Biochar made from maize waste can remove a large number of contaminants from soil (Lehmann 100 

and Joseph 2015; Sizirici et al. 2021). 101 

Given the above considerations, here we comprehensively evaluated the properties of corncob 102 

biochar produced at three temperatures and the behaviour of these materials when used to amend 103 

mining soil containing metal(loid)s. In particular, we addressed the interaction of the biochar with 104 

Copper (Cu, metal) and Arsenic (As, metalloid), both abundant in the mining soil under study. 105 

 106 

2. Material and methods 107 

2.1. Soil sampling 108 
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Soil affected by As and Cu pollution was sampled in an area close to a metal mine in NW Spain 109 

that has been active for decades. Several soil subsamples were taken at a depth of 30 cm. These 110 

were then mixed and a 50-kg composite sample was obtained. The composite sample was taken 111 

to the laboratory, air-dried, sieved through 2-mm mesh, and homogenized. 112 

 113 

2.2. Soil analyses 114 

The pseudo-total concentrations of As and Cu were determined after extraction with aqua regia 115 

1:3 (v/v) (HNO3 / HCl) in a microwave oven (Milestone ETHOS 1) and analysis by ICP-OES  116 

(Perkin-Elmer; Optima 4300 DV). Soil texture data were obtained following Guitián and 117 

Carballas (1976) and USDA criteria to determine soil texture (USDA 1982). Clays were 118 

qualitatively identified following the procedure described by Brown and Brindley (1980) using 119 

X-ray diffraction (XRD) analysis. A powder X-ray diffraction (PXRD) pattern was obtained using 120 

a SIEMENS D-5000 diffractometer (with a Cu kα1 radiation source). pH was measured with an 121 

electrode in a 1:2.5 ratio of water to sample following the method described by Guitián and 122 

Carballas (1976). Total carbon (TC) and total nitrogen (TN) were measured in the solid sample 123 

module of a LECO elemental macro-analyzer (CNS2000), while a bidistilled water extraction 124 

was carried out to measure dissolved organic carbon (DOC), following Sanchez-Monedero et al. 125 

(1996). The Mehlich III method (Mehlich 1984) was used to determine available phosphorus 126 

(AP). Organic matter (OM) was measured by weight loss on ignition (LOI: loss on ignition) 127 

(Beaudoin 2003). Exchangeable cations (Ca2+, K+, Mg2+, Na+, and Al3+) were extracted with 0.1M 128 

BaCl2 (Hendershot and Duquette 1986) and their concentrations were determined by ICP-OES 129 

(Perkin-Elmer; Optima 4300 DV). Cation exchange capacity (CEC) was calculated by adding the 130 

total concentrations of exchangeable cations. The concentrations of free oxides of Fe, Al and Mn 131 

were determined using the method described by Mehra and Jackson (1960), with subsequent 132 

measurement by ICP-OES (Perkin-Elmer; Optima 4300 DV). 133 

 134 

2.3. Biochar production and characterization 135 
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Three types of biochar were produced using corncobs as raw biomass. The biochar was developed 136 

in collaboration with the company Centro de Valorización Ambiental del Norte S.L. (Touro, A 137 

Coruña). The furnace used (model HCV_56 CCH) was designed by Forns Hobersal SL. Biochar 138 

is usually obtained at temperatures above 250 ºC irrespective of the source of biomass (Lehmann 139 

and Joseph 2015; Sizirici et al. 2021). In our case, the pyrolysis temperatures selected were as 140 

follows 350 ºC (B350),  500 ºC (B500) and 650 ºC (B650) (Fig. S1A, S1B, S1C Supplementary 141 

Material). The raw material was pre-dried so that the starting conditions were the same for all 142 

pyrolytic procedures. After pyrolysis, the biochar was air-dried, ground and sieved to 2 mm to 143 

homogenize the biochar particles and to equalize them to the soil fraction which is considered 144 

below 2 mm. The general pyrolysis times, temperatures, and yields obtained for each biochar 145 

product are shown in Table S1 (Supplementary Material). As expected, the yield was lower with 146 

increasing pyrolysis temperature due to a greater loss of biomass. These yield data are consistent 147 

with those obtained by Szufa et al. (2020) and Das et al. (2021). 148 

The biochars obtained were subjected to the following determinations. First, the specific surface 149 

area (SSA) was measured by CO2 adsorption at 77 K using an ASAP 2020 Micromeritics analyzer 150 

on samples previously outgassed at 373 K for 2 h. Complementarily, pore size distribution was 151 

determined following the Dubinin-Stoeckli model. CHN concentrations were measured in a 152 

LECO CN-2000 module, oxygen content was calculated by difference. Biochar surface was 153 

observed using a JEOL JSM-5600 Scanning Electron Microscope. To obtain information about 154 

the presence of ash in the biochar, thermogravimetric curves (TGA) and differential scanning 155 

calorimetry (DSC) were achieved from ambient temperature to 1273 K at a heating rate of 283 K 156 

min−1 in an inert N2 atmosphere using an SDT Q600 instrument. Finally, to determine PAHs, 5-g 157 

representative subsamples were extracted by dichloromethane:acetone (1:1) in a Soxtherm 158 

apparatus (Gerhardt), according to a usual protocol (Boente et al. 2020). The 16 priority PAHs 159 

were measured after injection into a 7890A GC System coupled to a 5975C Inert XL MSD with 160 

a Triple-Axis Detector (Agilent Technologies) and following a modification of EPA method 161 

8272. A capillary column DB-5 ms (5% phenyl and 95% dimethylpolysiloxane) 30 m × 0.25 mm 162 

i.d. × 0.25 μm film (Agilent Technologies) was used, with He as carrier gas at a flow rate of 1 mL 163 
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min-1. The initial oven temperature was 80 °C (held for 2 min), which was ramped up at 15 °C/min 164 

to 300 °C (held for 10 min). The GC injector was operated in splitless mode for 2 min at 260 °C. 165 

The mass spectrometer was operated in selected ion monitoring mode (SIM), and the m/z ratios 166 

for PAHs quantification were 128, 152, 153, 154, 165, 166, 178, 202, 228, 252, 276, and 278I. 167 

Calibration mixtures (AccuStandard) were used. 168 

 169 

2.4. Experimental design and pollutant mobility 170 

The soil (S) was subjected to the following four treatments: 171 

- S: Initial mining soil. 172 

- SB350: S + corncobs pyrolyzed at 350 ºC (B350). 173 

- SB500: S + corncobs pyrolyzed at 500 ºC (B500). 174 

- SB650: S + corncobs pyrolyzed at 650 ºC (B650). 175 

The samples (100-g, dry weight) with a soil:biochar ratio of 95:5 (w/w) were incubated in 500-176 

mg glass jars in triplicate for 40 days under controlled conditions of darkness, temperature (22 ± 177 

2 °C) and water content (maintained around field capacity by adding distilled water periodically). 178 

At the end of the experiments, samples were air-dried, passed through a 2-mm sieve, and 179 

homogenized prior to analysis. To monitor the available concentrations of As and Cu, these metal 180 

and metalloid were extracted with 0.01 M CaCl2 in soil solution (Houba et al. 2000) and their 181 

concentrations were determined by ICP-OES (Perkin-Elmer; Optima 4300 DV).  182 

Furthermore, and to gain a deeper understanding of pollutant mobility, a sequential extraction 183 

was carried out following the procedure described by Salbu et al. (1998), modified from the 184 

method of Tessier et al. (1979). The concentrations of As and Cu were fractionated into mobile 185 

phases (F1: Water-soluble, F2: Exchangeable, and F3: Bound to carbonates) and less mobile or 186 

immobile phases (F4: Bound to iron and manganese oxides, F5: Bound to organic matter, and F6: 187 

Residual) by means of extractants of increasing strength from fraction 1 to fraction 6. 188 

After each extraction, the samples were centrifuged, and the extracts were clean with syringes 189 

with 0.45-µm filters (Sartorius Minisart) into 50-ml glass tubes (using the same syringe and filter 190 
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for each of the replicates during the entire process). Each sample residue was washed with 10 ml 191 

of bidistilled water (water was added, stirred manually, and centrifuged for another 15 min at 192 

3300 rpm), and the resulting extract was added to the extract obtained in that fraction. The extracts 193 

obtained were analyzed by ICP-OES (Perkin-Elmer; Optima 4300 DV). 194 

 195 

2.5. Statistical analysis 196 

All analytical determinations were performed in triplicate. The data obtained were processed 197 

statistically using the SPSS program for Windows (version 24.0), taking statistical significance 198 

with p values <0.05. Normality tests (Kolmogorov-Smirrnov test), Levene's homogeneity of 199 

variances, and analysis of variances (ANOVA) were performed. In the case of homogeneity of 200 

variances, a post hoc least significant distance (LSD) test was performed, while if there was no 201 

homogeneity of variances, Dunnett's T3 test was carried out. In addition, a Pearson’s bivariate 202 

correlation analysis was also performed. 203 

 204 

3. Results and discussion 205 

3.1. General characteristics of the biochar and mining soil 206 

Pseudo-total concentrations of As and Cu in the initial soil were higher than in natural soils, 207 

whereas the contents of these PTEs in the three biochar products were almost negligible. 208 

Concretely, As concentrations in the three pyrolyzed biochar products remained below the 209 

quantification limit (0.001 mg L-1), while soil content was 85.09 mg kg-1. At the same time, Cu 210 

concentration in soil was 1124 mg kg-1, while in the biochar products it was below 10 mg kg-1, 211 

with slightly increasing values as the pyrolysis temperature increased (Table 1). The chosen soil 212 

belongs to a mine tailing, according to the USDA (1982), the initial soil can be classified as loam-213 

sandy-clay.  The XRD analysis indicated that the clay fraction consisted mainly of kaolinite, 214 

montmorillonite and illite (Fig. S2, Supplementary Material), while other silicates such as quartz 215 

were also present (Table S2, Supplementary Material).  216 

Oxide analysis of the initial soil showed high concentrations of Fe oxides and considerable 217 

concentrations of Al oxides, while concentrations of Mn oxides were low (Table 1). The initial 218 
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soil had an acidic pH while three biochar products were alkaline. Biochar pH values (B350, B500 219 

and B650) increased with pyrolysis temperature, as previously indicated by Duwiejuah et al. 220 

(2020). The soil had a lower OM and TC content than the biochar, whereas the increase in 221 

pyrolysis temperature caused a slightly decrease in the OM content of the latter, whereas the 222 

higher the pyrolysis temperature, the higher the TC content. This result might be due to the yield 223 

being lower at 650 ºC and are consistent with those reported by Kim et al. (2021) and Das et al. 224 

(2021), who concluded that biochar TC content increases up to 10.14% with pyrolysis 225 

temperature. In turn, we observed that the biochar products had a higher DOC content than the 226 

soil (Table 1) and that biochar pyrolyzed at higher temperature had a greater DOC content than 227 

that produced at 350°C. These data contrast with those obtained by authors such as Luo et al. 228 

(2015) and Uchimiya et al. (2013), who concluded that an increase in pyrolysis temperature leads 229 

to a decrease in DOC content. The biochar products showed a higher TN content and available P 230 

concentration than soil (Table 1). In this regard, B350 had a higher available P concentration than 231 

B500 and B650, whereas TN was almost the same.  These results are in line with the conclusions 232 

obtained by Mukherjee and Zimmerman (2013). All three biochar products had a higher CEC 233 

than the initial soil (Table 1) and, specifically, B500 and B650 had a higher CEC than B350. 234 

Remarkably, the high CEC values of the products were due mainly to their high concentrations 235 

of K+. It should also be noted that Al3+ was undetectable in these amendments, and thus the base 236 

saturation values (V) were 100% in all three cases; however, the Al3+ concentration in soil was 237 

11.60 cmol(+)kg-1. 238 

 239 

3.2. Specific biochar characterization 240 

The specific surface area (SSA) of the biochar products increased progressively with pyrolysis 241 

temperature (Table 1), in agreement with Zhang et al. (2011), who deduced an increase in 242 

aromatic C content and the progressive destruction of –OH groups, ester C=O bonds, aliphatic -243 

CH2, and C–O groups shielding the aromatic core as the pyrolytic temperature rises, i.e., the 244 

increase in aromatic C content enlarges the SA. Furthermore, this higher SSA is possibly due to 245 

a decrease in pore size as pyrolysis temperature rises (Sizirici et al. 2021). In this regard, the 246 
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largest difference in pore size was found between B350 and the other two amendments (B500 and 247 

B650) (Fig. S3, Supplementary Material); these differences also coincide with differences in SSA. 248 

In addition, it is possible to observe this using SEM, as it is revealed in Fig. S1 (Supplementary 249 

Material). C/H and C/O ratios indicate degree of aromaticity and polarity, respectively, which are 250 

critical properties to evaluate the carbon structure of this material (Xing et al., 2021). The molar 251 

H/C ratio is important as it gives an indication of the degree of carbonization of biochar (Das et 252 

al., 2021; Mohan et al., 2018). In our case, contrary to what might be expected, B350 and B650 253 

showed identical degrees of carbonization (Table 1). In turn, authors such as Mohan et al. (2018) 254 

and Das et al. (2021) took the C/O molar ratio as an indicator of the hydrophilicity of the biochar 255 

surface because it reflects the content of polar groups derived mainly from carbohydrates. We 256 

found that the value of the C/O ratio followed the sequence B500 > B650 > B350 (Table 1), 257 

thereby suggesting that biochar produced at 500 ºC is the most hydrophilic. 258 

The thermogravimetric analysis (TGA) curve (Fig. S3, Supplementary Material) of the three 259 

biochar products revealed that B350 lost more mass (weight %) and more rapidly than B500 and 260 

B650. Higher losses at lower temperatures could be explained by moisture as the mass loss from 261 

0 ºC to 250 ºC was due to the release of water (volatilization), together with the formation and 262 

release of volatile gaseous products such as CO, CO2, CH3COOH, and other organic compounds 263 

(Szufa et al., 2020; Das et al., 2021). The mass loss from 250 ºC to 600 ºC was caused by thermal 264 

decomposition of the biomass and decomposition of lignocellulosic substances (Cao and Harris 265 

2010; Das et al. 2021). In this regard, corncob has three main components, namely hemicellulose, 266 

cellulose, and lignin, and these compounds pyrolyze at different temperatures and thus influence 267 

the TGA curve of each biochar product (Ouyang et al. 2015). The mass loss from 600 ºC and 268 

above could be attributable to, among other factors, the decomposition of calcium phosphate and 269 

inorganic minerals such as calcite (CaCO3) (Das et al. 2021). Regarding the PAH content of each 270 

biochar product, quantitative data are shown in Table 2. In our case, biochar pyrolyzed at the 271 

lowest temperature had a higher content of low molecular weight PAHs (2-3 aromatic rings), 272 

whereas the highest temperature promoted an abundance of heavy molecular weight PAHs (4 or 273 

more aromatic rings). Of note, the total concentration of PAHs was the lowest at the intermediate 274 
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temperature (500 ºC) and thus this material emerges as the best option as a soil amendment in 275 

terms of reducing potential toxicity.   276 

3.3. Biochar treatments of polluted soil. 277 

3.3.1. pH, organic matter, and dissolve organic carbon evolution. 278 

The three treatments applied caused a moderate but significant (p<0.05) increase in soil pH (Fig. 279 

1A). However, in all cases, the soil treated with biochar continued to maintain an acidic pH. The 280 

increase in pH observed is consistent with previous work on biochar treatment of mining soils 281 

(Zhao et al. 2015; Rodríguez-Vila et al. 2017). This increase is probably caused mainly by the 282 

association of H+ ions with the biochar and subsequent decarboxylation processes (Solaiman et 283 

al. 2015). The SB500 treatment led to the greatest increase in pH (Fig. 1A), possibly because this 284 

amendment had a greater CEC due to its higher content of the basic cation K+ (Table 1). In this 285 

regard, high CEC and %K are often correlated with high pH values (Canet et al. 2007; Alvarenga 286 

et al. 2008; Forján et al. 2018). The increase in pH after soil treatment with biochar was lower 287 

than expected, possibly due to a low buffering capacity of the soil, a common effect in acidic soil 288 

such as that found in and around mines (Baileys and Blankenhord 1982, Beesley et al. 2014, 289 

Budai et al. 2014, Forján et al. 2018). Regarding potential acidity (pH KCl), in the control soil, this 290 

parameter was less than 3.4, and a significant increase (p <0.05) was observed after the addition 291 

of biochar, reaching a maximum of 4.3 in SB500. On the whole, an increase in pH, although 292 

restrained in our case, may influence other soil properties and thereby mobilize metalloids 293 

(Ahmad et al. 2014; Duwiejuah et al. 2020). 294 

The addition of B350, B500, and B650 to the mining soil caused an increase in OM content. This 295 

increase was more notable with biochar produced at higher pyrolysis temperatures (Fig. 1B), 296 

conversely to what could be expected since, for instance, B350 had a higher OM content than 297 

B650. Therefore, and also taking into account (Fatima et al. 2021) that the amendment of soil 298 

with biochar can reduce the decomposition of soil OM, we conclude that the increase in pyrolysis 299 

temperature improves the capacity of biochar to retain organic matter by mechanisms such as 300 

adsorption (Duwiejuah et al. 2020, Xing et al. 2021),. In turn, the increase in OM caused a 301 
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significant increase in DOC in all treatments (Fig. 1C), i.e., a remarkable positive correlation was 302 

observed between OM and DOC (0.94, p < 0.01). A greater increase in DOC content was expected 303 

in the SB500 and SB650 treatments since the biochar prepared at 500 ºC and 650 ºC had a much 304 

higher initial DOC content than B350 (Table 1). However, the greatest increase in soil DOC was 305 

induced by B350, which is in agreement with Li et al. (2018), who observed that biochar 306 

pyrolyzed at low temperatures leads to a greater increase in this parameter than that produced at 307 

higher temperatures. 308 

3.3.2. Evaluation of Cu sequential extraction 309 

The chemical distribution of Cu is shown in Fig. 2. On the whole, and irrespective of the 310 

treatment, a similar concentration of immobile Cu (F4 to F6) and mobile Cu (F1 to F3) was found. 311 

This behaviour was not observed in the control soil, in which there was a higher concentration of 312 

Cu in the mobile than in the immobile phase. This trend was more evident in the case of the SB500 313 

treatment, especially for F1. In the most mobile phases (F1 and F2), the availability of Cu 314 

decreased significantly (p < 0.05) in all three biochar treatments (Fig. 2A). The maximum 315 

reduction was observed in the SB500 treatment (from 234 mg kg-1 in the control down to 121 mg 316 

kg-1 in F1). Similarly, exchangeable Cu in F2 (Fig. 2B) was decreased from 386 mg kg-1 in the 317 

control down to 302 mg kg-1 in SB500. On the contrary, in the fraction bound to carbonates (F3, 318 

Fig. 2C), the concentration of Cu was increased, being more significant in treatments SB500 and 319 

SB650. Regarding the less mobile fractions, F4 and F5 (Fig. 2D and Fig. 2E), there were only 320 

slightly significant differences in F5 between the control and the treatments. Finally, the residual 321 

fraction, F6, remained essentially stable irrespective of the biochar used.  322 

As indicated by these results, the most bioavailable fractions (F1 and F2) tended to show 323 

immobilization, especially in the SB350 and SB500 treatments. This observation is consistent 324 

with the findings of Solaiman et al. (2015) as the two most important factors affecting the 325 

bioavailability of toxic metals are the OM content and pH of the soil. In our case, the increase in 326 

pH described is expected to have promoted the precipitation of Cu carbonates. In the same sense, 327 

negative correlations were found between OM vs. pH and Cu concentrations in F1 and F2, with 328 
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values of -0.91, -0.95 (p < 0.01) and -0.78, -0.80 (p < 0.01), respectively. Several authors obtained 329 

similar results (a decrease in Cu availability) when pH and OM values were increased (Park et al. 330 

2011; Pérez-Esteban et al. 2012; Forján et al. 2016). Also, and according to Sizirici et al. (2021), 331 

Cu removal efficiency and sorption capacity increase more in a pH range from 2 to 6 while at 332 

higher pH the growth in sorption efficiency is lower. In our case, SB500 caused the greatest 333 

increase in pH (from 3.42 to 4.27), becoming the treatment with the highest Cu sorption efficiency 334 

in these first two fractions. Complementarily to pH effects, the decrease in Cu concentrations in 335 

the most mobile phases (F1 and F2) was significantly negatively correlated with the DOC 336 

provided by the treatments (-0.92 and -0.91, p < 0.01), thus Cu can also be complexed by DOC 337 

and subsequently its concentration decreases (Beesley et al. 2014).  338 

The reduction of Cu bioavailability can be explained not only by the chemical effects of biochar 339 

amendments but also by the intrinsic properties of the different biochar material used. In this 340 

regard, B500 and B650 had higher SSAs and smaller and more homogeneous pores than B350, 341 

and these two factors should improve Cu immobilization (Chen et al. 2014; Sizirici et al. 2021). 342 

In fact, the functional groups present on the biochar surface confer adsorption potential for toxic 343 

compounds such as Cu (Uchimiya et al. 2010; Duwiejuah et al. 2020). In addition, the increase in 344 

SA also increases the number of functional groups that interact with pollutants. 345 

3.3.3. Evaluation of As sequential extraction 346 

The results are shown in Fig. 3. Note that only F1, F4, F5, and F6 are shown as F2 and F3 values 347 

were below the quantification limit. The initial As availability was very low (F1 close to detection 348 

limit, Fig. 3A), whereas the most abundant fractions were F4 and F6 (Fig. 3B and Fig. 3D, 349 

respectively). A general effect of biochar amendment was slight mobilization (F1 increase but 350 

only up to very low concentrations) for all treatments (Fig. 3A), and this was simultaneous to a 351 

slight decrease in As in the residual fraction (F6 reduction, Fig. 3D). Although the pH increased 352 

significantly in all treatments, it continued to be acidic, as shown in Fig. 1A, and thus positive 353 

charges predominated on the soil adsorption surface, allowing As to remain strongly retained (Lin 354 

et al. 2008; Hartley et al. 2009; Tack et al. 2010). Therefore, the increase in pH in the SB350, 355 
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SB500 and SB650 treatments was not enough for relevant mobilization of As. On the contrary, 356 

the presence of biochar may favour a slight increase in available As, as the negatively charged 357 

functional groups present in biochar repel As anions (Arco-Lázaro et al. 2016; Abou et al. 2019).  358 

In the same context, an increase in DOC mobilizes available As (Beesley et al. 2010; Guisquiani 359 

et al. 1998; Hartley et al. 2010), given that OM is adsorbed preferentially on the soil aggregates 360 

instead of As and/or it forms soluble organometallic complexes with As. However, in this 361 

experiment, no correlations were obtained between DOC and F1, perhaps because As 362 

concentrations were very low. In turn, as shown previously in Table 1, the biochar products 363 

showed a significantly higher P content than the initial soil. This might also partially explain the 364 

release of some As to the most mobile fraction due to the competitive interaction between As and 365 

P for sorption sites given that P can displace and mobilize As (Hartley et al. 2009; Bolan et al. 366 

2013; Fleming et al. 2013; Baragaño et al. 2020). This process occurs most significantly in low 367 

pH soils (Xu et al. 2014; Solaiman and Anawar 2015), as occurs in our case (Table 1).  368 

3.3.4. Evaluation of Cu and As availability in CaCl2 extraction. 369 

To corroborate previous results of sequential extraction and to address potential effects on 370 

vegetation, an additional extraction with CaCl2 was performed. The treatments applied caused a 371 

decrease in available Cu, with SB500 being the most effective (Fig. 4A). This decrease is probably 372 

due to the increase in pH and OM, as explained above (Weng et al., 2001; Park et al., 2011). In 373 

addition, this relationship between pH and OM with available Cu was reflected by negative 374 

Pearson correlations, with values of r=-0.82, r=-0.97 for pH and OM, respectively (p˂0.01). 375 

Again, there was a significantly negative correlation between available Cu and DOC (-0.87, 376 

P˂0.01)—an observation that reinforces the results obtained in the previous section. As regards 377 

available As, this was below the quantification limit in the initial soil whereas As availability in 378 

CaCl2 increased marginally once the treatments were applied (Fig. 4B), without significant 379 

differences between the three biochar products. This behaviour is fully concordant with that of 380 

the most mobile fraction of the Tessier extraction described in the previous section. 381 
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4. Conclusion 382 

The results reported herein indicate that the use of biochar as an amendment led to an 383 

improvement in the physical-chemical characteristics of the mining soil, such as an increase in 384 

OM content and pH in all cases, irrespective of the pyrolysis temperature used to prepare the 385 

biochar. However, biochar produced at higher pyrolysis temperatures (350 ºC > 500 ºC > 650ºC) 386 

showed a higher specific surface area, which is related to Cu immobilization. The SB500 and 387 

SB650 treatments were more effective at immobilizing Cu than SB300.  Of note, B500 emerges 388 

as the amendment of choice as it showed lower concentrations of PAHs and less energy was 389 

required for its production. All the biochar treatments led to a slight mobilization of As. However, 390 

the very low As availability observed, these changes are not significant enough to cause a relevant 391 

effect. The different behaviour of Cu and As in response to biochar amendment were concordant 392 

in a sequential extraction procedure and a CaCl2 extraction, thereby demonstrating the feasibility 393 

of using biochar to immobilize metals without remobilizing metalloids.  In addition, pyrolysis 394 

temperature emerges as a critical parameter to take into account when preparing biochar for 395 

remediation purposes. 396 
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Fig. 1. pHH20 and pHKCl (A), organic matter (OM) (B), and dissolved organic carbon (DOC) (C) 

in the control soil and in the different treatments after 40 days. 

 

Figure 1



  

  

  
Fig. 2. Evaluation of sequential copper extraction (mg kg-1) where the fractions measured are 

observed: A (F1), B (F2), C (F3), D (F4), E (F5), F (F6). 
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Fig. 3. Concentrations (mg kg−1) of As in F1 (A), F4(B) F5 (C) and F6 (D) from each treatment. 
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Fig. 4. Graphical representation of CaCl2 extracted Cu (A) and As (B) after 40-day 

incubation. 
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Table 1. Soil and biochar characterization. 

Parameter Units Polluted Soil (S) 
Biochar 350 ºC 

(B350) 

Biochar 500 ºC 

(B500) 

Biochar 650 ºC 

(B650) 

pH H2O - 3.73 ± 0.01 8.38 ± 0.06 9.95 ± 0.03 10.21 ± 0.02 

pH KCl - 3.49 ± 0.01 7.13 ± 0.01 9.65 ± 0.02 9.91 ± 0.01 

SSA D-A 

(cm3/g) 

- 170 346 421 

SSA D-R - 171 347 435 

C/H  - 0.07 0.11 0.07 

C/O  - 0.69 1.11 0.74 

Sand 

% 

49.74 - - - 

Silt 27.45 - - - 

Clay 22.81 - - - 

Iron oxides 

(mg kg-1) 

3855.65 - - - 

Aluminum oxides 744.07 - - - 

Manganese oxides 5.51 - - - 

OM % 7.18 ± 0.02 98.18 ± 0.16 96.19 ± 0.15 96.18 ± 0.14 

TC 

(g kg-1) 

0.15 ± 0.02 72.04 ± 0.07 80.4 ± 0.15 83.01 ± 0.09 

DOC 0.05±0.01 0.66±0.02 3.75±0.39 3.67±0.06 

TN 0.01 ± 0.00 0.69 ± 0.03 0.67 ± 0.02 0.70 ± 0.01 

AP 14.45 ± 0.67 232.78 ± 5.10 120.86 ± 2.46 142.19 ± 3.19 

E
x

ch
a

n
g

ea
b

le
 c

a
ti

o
n

s 

Na+ 

cmol(+)kg-1 

1.71 ± 0.38 2.10 ± 0.24 3.56 ± 0.89 5.72 ± 0.05 

K+ 4.09 ± 0.44 147.24 ± 3.46 378.29 ± 4.57 369.32 ± 6.28 

Ca2+ 34.13 ± 0.79 3.97 ± 0.59 2.12 ± 0.27 0.33 ± 0.08 

Mg2+ 33.29 ± 0.99 10.88 ± 0.95 1.09 ± 0.13 1.69 ± 0.05 

Al3+ 11.60 ± 0.14 < 0.001 < 0.001 < 0.001 

CEC 84.82 ± 0.56 164.20 ± 4.04 385.06 ± 5.22 377.05 ± 6.36 

 %V 
% 

86.32 100 100 100 

 %Al 13.68 u.l. u.l. u.l. 

Table 1



P
se

u
d

o
to

ta
l 

As 

(mg kg-1) 

85.09 ± 9.94 < 0.001 < 0.001 < 0.001 

Cu 1124.96 ± 10.33 8.50 ± 0.46 4.39 ± 4.06 3.39 ± 5.88 

u.l.: undetectable level, BET Surface Area Dubinin- Astakhov (SSA D-A) and Dubinin- 

Radushkevich (SSA D-R), C/H and C/O ratios, TC: total carbon, TN: total nitrogen, AP: available 

P, OM: organic matter, DOC: dissolved organic carbon, CEC: cation exchange capacity, %V: 

base saturation, %Al: aluminium saturation. ±, standard error.  

 



Table 2. Polycyclic aromatic hydrocarbon (PAH) content in the initial soil and the three 

biochar products. 

PAHs (µg·kg-1) Soil B350 B500 B650 

2-3 ring PAHs 

Naphthalene 4 611 3 8 

Acenaphthylene 6 53 3 21 

Acenaphthene 5 92 7 9 

Fluorene u.l. 117 17 35 

Phenanthrene 24 740 171 480 

Anthracene 3 181 76 128 

4-6 ring PAHs 

Fluoranthene 5 127 87 323 

Pyrene 4 102 79 361 

Benzo[a]anthracene 2 35 49 151 

Chrysene 1 27 35 135 

Benzo[k]fluoranthene u.l. u.l. 22 93 

Benzo[b]fluoranthene u.l. u.l. 4 22 

Benzo[a]pyrene u.l. u.l. 29 80 

Indeno[1,2,3-c,d]pyrene u.l. u.l. 29 49 

Dibenzo[a,h]anthracene u.l. u.l. 19 21 

Benzo[g,h,i]perylene 2 u.l. 10 34 

Sum 16 PAHs 56 2085 641 1951 
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