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1. Introduction

Natural killer (NK) cells are innate cytotoxic immune cells that play a fundamental role
in anti-tumor immunity, particularly in hematological cancers, disseminated cancers, and
metastasis [1–3]. Unlike T cells, NK cells lack the expression of antigen-specific receptors, in-
stead expressing an array of activating and inhibitory receptors that bind to ligands whose
expression changes upon cancer transformation. Activating receptors, including Natural
Killer Group 2D (NKG2D), DNAX Accessory Molecule-1 (DNAM-1), and Natural Cytotox-
icity Receptors (NCRs), recognize inducible ligands up-regulated in cancer cells (induced
self-recognition) [4]. Inhibitory receptors, such as killing inhibitory receptors (KIRs) or
CD94-NKG2A, mainly sense the loss of Human Leucocyte Antigen (HLA) class I molecules,
a feature frequently observed in cancer cells (missing self-recognition). NK cells from
patients with cancer also express a plethora of inhibitory immune checkpoints, including
Programmed cell Death protein 1 (PD-1), Lymphocyte Activation Gene 3 (LAG-3), T cell
immunoglobulin and mucin-domain containing-3 (TIM-3), T cell immunoreceptor with
Ig, and ITIM domains (TIGIT) and B- and T-lymphocyte attenuator (BTLA) [5–7]. The
balance between signals provided by activating and inhibitory receptors determines NK
cell activation, which results in tumor cell killing and the release of cytokines, such as
IFN-γ, that regulate the adaptive and innate anti-tumor immunity. A central role of NK
cells in anti-tumor immunity is highlighted by several studies showing that high NK cell
tumor infiltration and/or high levels of expression of activating receptors on this immune
cell subset are associated with better prognosis and, contrarily, that NK cell dysfunction
in the tumor microenvironment is associated with adverse clinical outcomes in multiple
cancers [1,2,6–9]. Mechanistically, impaired NK cell function in cancer has been associ-
ated with a myriad of mechanisms, including the up-regulation of PD-1 [10]. PD-1 is an
inhibitory co-receptor transiently expressed on activated T cells, B cells, and myeloid im-
mune cells that specifically binds to programmed death-ligand 1 (PD-L1) and programmed
death-ligand 2 (PD-L2) [11]. PD-L1 is constitutively expressed in a wide range of healthy
cells, whereas PD-L2 is expressed in professional antigen-presenting cells during inflamma-
tion. Physiologically, PD-1 plays a central role in preventing autoimmunity. In advanced
cancers, chronic T cell stimulation induces the up-regulation of the expression of inhibitory
immune checkpoints, including PD-1, leading to an exhausted phenotype characterized by
decreased T cell proliferation, functionality, and survival, thus hindering the anti-tumor
immunity [12]. Immune checkpoint blockade (ICB), which interferes with negative signals
provided by these molecules, has revolutionized cancer therapy, becoming the frontline
therapy for many cancers, and, in certain cancers, such as melanoma, PD-1 inhibitors have
largely replaced chemotherapy [13].
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The Manuscript by Quatrini L. et al. Published in Cancers

The manuscript by Quatrini L. and coauthors [14] brings to light the emerging role
of PD-1 in NK cells and their contribution to the clinical success of anti-PD-1 therapy.
While it was initially thought that blocking the PD-1/PD-L1 axis would only unleash
T cell responses, mounting evidence shows that NK cells also make a relevant contribution
to the clinical success of ICB-based therapy. PD-1 is not expressed on NK cells in most
healthy individuals, but Quatrini L. et al. [14] convincingly review the evidence, showing
that PD-1 expression is induced in peripheral and tumor-infiltrating NK cells in multiple
cancers, including multiple myeloma, renal cell carcinoma, Kaposi sarcoma, digestive
cancers, ovarian cancer, non-small-cell lung carcinoma (NSCLC), Hodgkin lymphoma, and
others [10]. PD-1 pathway is an important determinant of the outcome of T cell response
and mounting data suggest that it plays a similar role in NK cells. The inhibitory role of
PD-1 in NK cells is highlighted by its correlation with intra-tumoral NK cell dysfunction
and poor prognosis of patients in several cancers [9,10,15]. In this scenario, the contribution
of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade has convincingly been
shown in transplantable, spontaneous, or genetically induced mouse tumor models [16].
Recent clinical evidence also suggests a relevant role of NK cells in the clinical effectiveness
of PD-1/PD-L1 therapy, particularly in HLA class I deficient tumors [2]. Downregulation
of HLA class I is a mechanism frequently developed by certain cancers, such as Hodgkin’s
lymphoma, to avoid T cell recognition; however, these cancer cells are more efficiently
identified and eliminated by NK cells (missing-self recognition) [16]. It is worth mentioning
that myeloid leukemia cells induce PD-L1 expression on NK cells and their treatment with
an anti-PD-L1 antibody results in NK cell activation and tumor regression [17]. This finding
is highlighted by Quatrini L. et al. [14] because it provides a potential explanation as to
why some patients with cancer lacking PD-L1 expression on cancer cells respond to the
anti-PD-1/PD-L1 therapy.

Even though interferons and other inflammatory stimuli are well-known key deter-
minants of the regulation of PD-1/PD-L1 expression, Quatrini L. et al. [14] remark the
less-renowned role of glucocorticoids as an indispensable stimulus required for PD-1 sur-
face expression on murine and human NK cells. Glucocorticoids alone are not sufficient for
PD-1 induction in NK cells, and cytokines present in the tumor microenvironment, includ-
ing IL-12, IL-15, and IL-18, are fundamental for PD-1 expression in human NK cells [18].
This finding has crucial clinical implications as synthetic glucocorticoids are frequently
administered to cancer patients treated with chemotherapy and/or immunotherapy, and
they may have a role in anti-PD1/PD-L1 therapy resistance.

Although ICB has been a revolution in cancer therapy, the rate of response across solid
tumors is around 20% [19]. This means that a majority of patients with cancer do not benefit
from ICB. Quatrini L. et al. [14] highlight two major avenues to improve the effectiveness of
this therapy, namely combination therapy and the development of predictive biomarkers.
On one hand, the co-expression of inhibitory receptors on NK cells and T cells, including
NKG2A, TIM-3, LAG-3, and TIGIT, suggests a promising strategy to improve ICB by simul-
taneously targeting multiple immune checkpoints [5]. On the other hand, an unmet need
in anti-PD-1/PD-L1 therapy is the identification of novel predictive biomarkers to better
select those patients that may obtain the maximum benefit from this therapy [20]. The most
known and used biomarker is PD-L1 expression levels, which are required for the adminis-
tration of the anti-PD-1 antibody pembrolizumab in NSCLC, head and neck squamous cell
carcinoma (HNSCC), urothelial carcinoma, esophageal carcinoma, gastric carcinoma, and
cervical carcinoma, and for the administration of the anti-PD-L1 antibody atezolizumab in
triple-negative breast carcinoma (TNBC) and urothelial carcinoma. However, as mentioned
above, PD-1/PD-L1 blockade exhibits clinical effectiveness in some patients with cancer
regardless of PD-L1 expression on tumor cells, thus suggesting a significant contribution of
other immune cells, such as NK cells, to the success of this therapy [17]. Mismatch repair
(MMR) deficiency is another biomarker of response to anti-PD-1/PD-L1 therapy, as these
patients carry genomic instability with high mutational burden and abundant neoantigens,
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which render tumors more immunogenic for T cells [20]. A high mutational burden is
itself associated with the response to immunotherapy [21]. No biomarkers related to NK
cells have been identified yet. Given the emerging role of NK cells in the effectiveness of
PD-1/PD-L1 blockade, Quatrini L. et al. [11] consider that it is foreseeable that the precise
definition of the number, phenotype, or functionality of NK cells in the tumor microen-
vironment could be a novel predictive biomarker that might help to predict the response
to ICB.

Finally, the manuscript by Quatrini L. et al. [14] remarks on the potential role of the
soluble form of PD-1 (sPD1) in the modulation of anti-tumor immunity and its impact on
tumor progression. PD-1 not only exists as a membrane protein but also as a soluble form
that is generated, at least, by alternative splicing [22]. sPD-1 competes with membrane
PD-1 for binding with its ligands, exerting important immune modulatory functions,
impacting the survival of patients with cancer, and modulating the efficacy of the anti-PD-1
therapy [23]. Hence, sPD-1 could be a potential biomarker that should be evaluated in
future preclinical and clinical studies. Further, a potential role of sPD-1 in NK cell biology
remains to be established.

To conclude, Quatrini L. et al. [14] reviewed the role of PD-1 in NK cells and shed light
on the similarities and differences between the biology of PD-1 in NK cells and T cells. A
better understanding of the role of PD-1 will help to fully harness the anti-tumor potential
of NK cells [2,3,24].
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