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1 Introduction

Via the AdS/CFT correspondence [1], Janus solutions of supergravity theories [2] provide
a simple and explicit realisation of interfaces in dual field theories [3–5]. The original
type IIB Janus solutions are characterised by two properties: i) they feature an AdSd−1
space-time geometry that asymptotes to an AdSd vacuum on each side of the Janus. ii) the
type IIB dilaton field jumps across the interface living at the boundary of space-time and
takes different values ±Φ0 on each side. However, Janus solutions have been generalised to
theories without a dilaton field so that they are solely characterised by the first property.
Examples are the Janus solutions of [6, 7] constructed in the four-dimensional SO(8) maximal
supergravity that arises upon consistent truncation of eleven-dimensional supergravity on
a seven-sphere [8, 9]. In this work we will relax the first property and investigate regular
Janus-type solutions featuring an AdSd−2 space-time geometry that asymptotes to an AdSd
geometry on each side of the solution. For the type IIB scenario investigated in this work
one has d = 5 whereas d = 4 is the relevant value for the M-theory scenario.

The original type IIB Janus solutions are dual to three-dimensional interfaces in
N = 4 super Yang-Mills (SYM4). Remarkably, all possible such interfaces preserving
supersymmetry have been classified [4]: when restricted to the largest symmetric cases,
these preserve N = 1 & SU(3), N = 2 & U(2) and N = 4 & SO(4) symmetry.1 Following

1Our notation N &G0 is adapted to the gravity side of the AdS/CFT correspondence. Namely, we have
G0 = SO(N )×GF where SO(N ) is the R-symmetry group of the three-dimensional interface preserving N
supersymmetries and GF is its flavour symmetry group.
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this classification, the solutions with N = 1 & SU(3) and N = 4 & SO(4) symmetry were
explicitly constructed in type IIB supergravity in [10] and [11, 12], respectively. The
N = 1 & SU(3) Janus was alternatively found in five-dimensional gauged supergravity [13,
14] and uplifted to type IIB supergravity [14]. It is only recently that all supersymmetric
Janus solutions have been constructed in the SO(6)-gauged N = 8 supergravity in five
dimensions, [15–17], and uplifted to type IIB supergravity in a systematic manner [18, 19].

The field theory living on the interface with N = 4 & SO(4) symmetry led to the
discovery of new 3d N = 4 SCFTs dubbed T [SU(N)] theories in [5]. They provide the
building blocks for 3d N = 4 SCFTs. The gravity dual was found to be closely related to
the N = 4 & SO(4) Janus, but to be a distinct class of solutions [20, 21]. Furthermore, by
gauging the U(N)×U(N) global symmetry of 3d T [SU(N)] theories with vector multiplets,
yet another new class of strongly coupled 3d SCFTs, named S-folds, was put forward
in [22] (see also [23, 24]). The gravity duals of the S-fold theories were realised by first
compactifying one spatial direction — we denote it η — into a circle S1 in a putative AdS5
space-time, and then imposing a non-trivial SL(2,Z) monodromy of hyperbolic type along
the circle [22, 25]. The corresponding type IIB backgrounds are of the form AdS4 × S1 × S5

with a characteristic dilaton profile that is linear on the coordinate η along the S1. As
they are the gravity duals of 3d S-fold theories closely related to Janus solutions, they were
named J-fold solutions in [22]. In [18, 19], a systematic method was implemented to obtain
J-fold solutions from all the families of Janus solutions in the N = 8 and SO(6)-gauged
supergravity in five dimensions. These solutions were also uplifted to type IIB supergravity
in [18, 19]. Using the effective five-dimensional approach, new S-fold solutions as well as
RG-flows between S-fold CFT’s have been investigated in [26–28].

Interestingly, there is an alternative four-dimensional approach to construct S-fold
solutions preceding the five-dimensional method of [18, 19]. S-folds can be seen as simple
AdS4 vacua of the maximal [SO(1, 1)× SO(6)]nR12 dyonically-gauged supergravity in four
dimensions that arises from the consistent truncation of type IIB supergravity on S1 × S5

including an S-duality twist [25]. Indeed, the S-fold solutions with N = 1 & SU(3), [29],
N = 2 & U(2), [30], and N = 4 & SO(4), [25, 31], were originally found in the four-
dimensional context and subsequently uplifted to type IIB supergravity using Exceptional
Field Theory techniques [32, 33]. Recently, holographic (flat-sliced) RG-flows between
S-fold CFT’s have been investigated using the 4D approach [34]. Also the existence of a
(non-)supersymmetric conformal manifold of S-fold CFT’s has been investigated using this
approach [34–40].

In this work we continue the above four-dimensional program and construct super-
symmetric domain-wall solutions of the form R × AdS3 in the [SO(1, 1) × SO(6)] n R12

dyonically-gauged maximal supergravity in four dimensions. When uplifted to type IIB
supergravity, they describe Janus-type solutions of the form

R×AdS3 × S1 × S5 , (1.1)

involving a non-trivial SL(2,Z) monodromy along the S1. The S-duality twist inducing the
monodromy is codified in a parameter c that is also responsible for the dyonic nature of
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the gauging in four dimensions [25, 41].2 However, and unlike for standard Janus solutions
in type IIB [19] and M-theory [6, 7], this time there is no maximally supersymmetric
round vacuum of the form AdS4 × S1 × S5 that can serve as an endpoint on each side
of the Janus solution.3 This implies that there is no maximally supersymemtric AdS4
vacuum at the origin of the scalar potential of the effective [SO(1, 1)× SO(6)]nR12 gauged
supergravity. As a consequence, the flows we construct in this work are attracted towards
a particular non-AdS4 background at both endpoints of the domain-walls. Such a non-
AdS4 behaviour was recognised as the four-dimensional incarnation of a deformation of
the AdS5 × S5 background of type IIB supergravity. And the deformation parameter c
(the same one codifying the S-duality twist) was interpreted as a source of anisotropy
along the compactified S1 direction in the dual SYM4 theory [34]. Thus, the seemingly
non-conformal asymptotics from a four-dimensional perspective actually correspond to
a deformed D3-brane with a five-dimensional R × AdS3 × S1 space-time metric in (1.1)
given by

g2 ds2
5 = dλ2 + f1(λ) ds2

AdS3
+ f2(λ) dη2 , (1.2)

in terms of the four-dimensional gauge coupling g and two functions f1,2(λ) of an slicing
coordinate λ ∈ [0,∞). The standard D3-brane solution is recovered at c = 0 upon setting
f1(λ) = cosh2 λ and f2(λ) = sinh2 λ so that (1.2) reproduces an AdS5 space-time metric
with a compactified S1 direction parameterised by η.

As already stated, the goal of this work is to construct supersymmetric R×AdS3 domain-
wall solutions in the effective [SO(1, 1)× SO(6)] nR12 gauged supergravity that arises upon
compactifying type IIB supergravity on S1×S5 including a non-trivial SL(2,Z) monodromy
along S1. Employing numerical techniques, we find two classes of regular solutions:

• The generic Janus-type solutions preserve the SO(2, 2) isometries of the AdS3 factor
in (1.2) all along the flow and are attracted towards the deformed D3-brane discussed
above. From a 5D perspective, they correspond to flows in the bulk where the
space-time geometry along the flows conforms to AdS5 −AdS3 −AdS5.

• Upon tuning of the boundary conditions, special Janus-type solutions appear which
still approach the deformed D3-brane asymptotically but feature an intermediate
S-fold regime. This regime is characterised by a factorised space-time in (1.2) of the
form AdS4 × S1, so there is a symmetry enhancement to SO(2, 3) associated with the
AdS4 factor. From a 5D perspective, these are flows in the bulk with a space-time
geometry that conforms to AdS5 −AdS3 −AdS4 −AdS3 −AdS5.

In addition there are also singular solutions (akin to the flows to Hades discussed in [6, 7])
which diverge at some finite value of the radial direction. All together, these three classes
of solutions are the analogue of the Janus solutions in the SO(8) [8] and ISO(7) [42–44]
maximal supergravities constructed in [6, 7] and [45, 46], respectively.

2As argued in [41], the parameter c is a discrete (on/off) parameter that can be set to either 1 or 0
without loss of generality.

3There is an AdS4 × S1 × S5 S-fold with SO(6) symmetry featuring a round S5 internal geometry but it
is non-supersymmetric and perturbatively unstable [29].
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The work is organised as follows. In section 2 we review the Z3
2-invariant sector of

the dyonically-gauged [SO(1, 1) × SO(6)] n R12 maximal supergravity in order to set up
the model and derive the BPS equations. In section 3 we first identify the (undeformed,
c = 0) D3-brane solution with a curved worldvolume within our four-dimensional effective
model, and then semi-analytically identify the (deformed, c 6= 0) D3-brane behaviour that
controls the asymptotics at both sides of the Janus-type solutions. Then we numerically
construct and characterise such Janus-type solutions paying special attention to the choice
of boundary conditions. Upon tuning of the latter, we present examples of Janus-type
solutions displaying an AdS4 intermediate S-fold regime for all the S-folds discussed in the
introduction. Our conclusions and a final discussion are presented in section 4. Some results
regarding the type IIB uplift of the Janus-type solutions presented here are collected in
the appendix.

2 The Z3
2-invariant truncation

We consider the Z3
2-invariant sector of the dyonically-gauged [SO(1, 1) × SO(6)] n R12

maximal supergravity investigated in [30]. This sector has previously been considered in
the ISO(7) theory [47] as well as in the SO(8) theory [48]. It describes a minimal N = 1
supergravity coupled to seven chiral fields with scalar components zi and i = 1 , . . . , 7. In a
canonical N = 1 formulation, the Einstein-scalar action is given by

S = 1
16πG4

∫
d4x
√
−g

[
R−Kziz̄jdzi ∧ ∗dz̄j − V

]
. (2.1)

The Kähler potential describes a [SL(2)/SO(2)]7 coset space for the scalar geometry and is
given by

K = −
7∑
i=1

log [−i (zi − z̄i)] . (2.2)

The Kähler metric is then defined as

Kziz̄j = ∂zi∂z̄jK , (2.3)

with Kziz̄j denoting its inverse. The holomorphic superpotential is given by

V = 2g [z1z5z6 + z2z4z6 + z3z4z5 + (z1z4 + z2z5 + z3z6) z7] + 2gc (1− z4z5z6z7) , (2.4)

where g and c are the gauge coupling constant and the electromagnetic deformation
parameter, respectively. The scalar potential is obtained from (2.2)–(2.4) as

V = eK
[
Kziz̄jDziVDz̄jV − 3VV

]
, (2.5)

where the Kähler covariant derivative is

DziV = ∂ziV + (∂ziK)V . (2.6)

We also introduce the (complex) gravitino mass term

W = e
K
2 V , (2.7)
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which defines a real superpotential

W 2 = |W|2 , (2.8)

that enters the BPS flow equations (see next section).

Families of AdS4 vacua. Four multi-parametric families of supersymmetric AdS4 vacua
have been constructed within this sector of theory.

I. A two-parameter family of N = 1 & U(1)2 invariant vacua at

z1 = z2 = z3 = c

(
−χ1,2,3 + i

√
5

3

)
, z4 = z5 = z6 = z7 = 1√

6

(
1 + i

√
5
)
, (2.9)

subject to the constraint
χ1 + χ2 + χ3 = 0 . (2.10)

The symmetry enhances to U(2) when the parameters are identified pairwise and to
SU(3) when they all vanish [29].

II. A one-parameter family of N = 2 & U(1)2 invariant vacua at

z1 =−z̄3 = c

(
−χ+ i

1√
2

)
, z2 = ic , z4 = z6 = i , z5 = z7 = 1√

2
(1+ i) .

(2.11)
The symmetry enhances to U(2) when χ = 0 [30].

III. A one-parameter family of N = 2 & U(1)2 invariant vacua at

z1 = z2 = i c

√
ϕ2 + 1√

2
, z3 = ic , z4 = z5 = 1√

2
(1 + i) , z6 = −z̄7 = −ϕ+ i√

ϕ2 + 1
.

(2.12)
The symmetry enhances to U(2) when ϕ = 0 [36]. At the specific value ϕ = 0, the
solution (2.12) reduces (up to permutation of the complex scalars) to (2.11) with
χ = 0.

IV. N = 4 & SO(4) invariant vacuum [31] at

z1 = z2 = z3 = ic , z4 = z5 = z6 = −z̄7 = 1√
2

(1 + i) . (2.13)

This vacuum also belongs to Family III and is obtained from (2.12) upon setting
ϕ = 1. Recently, two axion-like flat deformations breaking supersymmetry have been
identified also for this vacuum [37, 40]. Higher-dimensional and holographic aspects
of these axionic deformations have been further investigated in [39].

Within a given family, the radius of the corresponding AdS4 vacua, L, is always the
same and given by

L2 = 1
W 2

0
= − 3

V0
, (2.14)
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where W0 and V0 denote values at the vacuum. Note that different values of the free
parameters within a given family of AdS4 vacua do not change L. Moreover, families II,
III and IV feature the same value of L and have been shown to be connected by marginal
deformations in the two-dimensional conformal manifold of three-dimensional N = 2 S-fold
CFT’s [36].

Further truncations. In order to construct supersymmetric Janus-type solutions numer-
ically, we will further truncate the Z3

2 invariant sector described above to simpler subsectors
containing a smaller number of scalar fields. We will do it in a minimal manner, namely,
for each of the N = 1 & SU(3), N = 2 & U(2) and N = 4 & SO(4) AdS4 vacua, we will
consider the simplest supersymmetric model accommodating that specific AdS4 vacuum.
This will improve the efficiency of the numerical integration method as there are no other
supersymmetric AdS4 vacua towards which the flow is attracted.

The set of minimal models we will consider in this work are:

i) The SU(3) invariant sector of the theory to study flows involving the N = 1 & SU(3)
AdS4 vacuum.

ii) An SU(2) invariant sector of the theory to study flows involving the N = 2 & U(2)
AdS4 vacuum.

iii) An SO(3) invariant sector of the theory to study flows involving the N = 4 & SO(4)
AdS4 vacuum.

Needless to say, working with a truncated model necessarily entails a loss of generality
in the structure of solutions we will present. We leave a more thorough characterisa-
tion/classification of numerical solutions for the future.

3 Supersymmetric Janus-type solutions

Janus solutions correspond to AdS3-sliced domain-wall configurations for which the four-
dimensional metric takes the form

ds2
4 = dr2 + e2A(r)ds2

AdS3 , (3.1)

in terms of the AdS3 line element ds2
AdS3

and a metric function A(r) that only depends
on the radial coordinate r ∈ (−∞,∞) transverse to the domain-wall. The metric (3.1)
conforms to AdS4 when

A(r) = log
(
L

l
cosh

(
r

L

))
, (3.2)

where L and l are the radii of AdS4 and AdS3, respectively.

BPS flow equations. Let us now solve the supersymmetry variations of fermionic fields
on the curved background, as it was done on the Lorentzian AdS3-sliced domain-walls
in [6, 45]. The supersymmetric BPS equations for the complex scalar fields read

z′j =
(
−iκe

−A

l
−A′

)
Kzj z̄j

2
W

∂W

∂z̄j
, (3.3)
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whereas for the metric function one finds

A′ = ±

√
W 2 − e−2A

l2
, (3.4)

in terms of the AdS3 radius l and κ = ±1. The choice κ = ±1 is not related to the ± sign
in (3.4). Reversing the sign of κ merely generates a solution reflected along the coordinate r.

It will prove convenient to introduce the upper-half plane parameterisation for the
Z3

2-invariant scalars in the theory, namely,

zj = −χj + i e−ϕj . (3.5)

These scalars span an [SL(2)/SO(2)]7 coset geometry and, in terms of their real and
imaginary components, the supersymmetric BPS equations take the form

χ′j + 4 e−2ϕj
A′

W

∂W

∂χj
− 4κe

−A−ϕj

l

1
W

∂W

∂ϕj
= 0 ,

ϕ′j + 4 A
′

W

∂W

∂ϕj
+ 4κe

−A−ϕj

l

1
W

∂W

∂χj
= 0 . (3.6)

Second-order equations of motion. In our numerical analysis we will look at the
second-order equations of motion. The ones for the scalar fields are given by

e−3A∂µ(e3Agµν∂νϕj)− e2ϕjgµν∂µχj∂νχj −
∂V

∂ϕj
= 0 ,

e−3A∂µ(e3A+2ϕjgµν∂νχj)−
∂V

∂χj
= 0 , (3.7)

whereas the Einstein equations yield two additional equations

2A′′ + 3(A′)2 + 1
l2
e−2A = −

∑
j

1
2
(
(ϕ′j)2 + e2ϕj (χ′j)2)+ V ,

3(A′)2 + 3
l2
e−2A =

∑
j

1
2
(
(ϕ′j)2 + e2ϕj (χ′j)2)+ V . (3.8)

We have verified that the equations of motion (3.7) and (3.8) are verified provided the BPS
equations (3.3) and (3.4) hold.

Numerical methodology. In order to construct supersymmetric Janus solutions numer-
ically, we closely follow the method employed in [6, 45]. It also proves efficient to solve
the differential equations starting from a given AdS4 vacuum and perturbing it to trigger
the flow. Moreover we set l = 1, g = 1, c = 1, and κ = +1 for all numerical solutions in
this work.

As the BPS equation for the warp factor (3.4) involves a square root, it involves a
branch cut. In order to obtain regular Janus solutions in the domain r ∈ (−∞,∞), we
must choose the positive sign for r > 0 and the negative sign for r < 0 [6, 13, 14, 49].
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Then, in order to avoid dealing with branch cuts, we solve the second-order equations of
motion (3.7)–(3.8) instead of the first-order BPS equations (3.3)–(3.4). To numerically solve
the second-order equations of motion, we should specify the initial conditions for the scalar
fields (ϕi, χi), the warp factor A, and their derivatives. We impose a smoothness condition
at the interface

A′(0) = 0 . (3.9)

As a consequence of the smoothness condition in (3.9), and once the initial conditions for
the scalar fields {ϕi(0), χi(0)} are fixed, the initial condition for the warp factor A(0) is
automatically determined through its BPS equation in (3.4). Similarly, {ϕ′i(0), χ′i(0)} are
also determined through the BPS equations for the scalar fields in (3.6). Summarising, we
have a set of fourteen free parameters specifying the boundary conditions

zi(0) = −χi(0) + i e−ϕi(0) with i = 1, . . . , 7 , (3.10)

and, once they are fixed, the rest of the parameters are also fixed by the smoothness
condition (3.9) and the BPS equations. Finally, once we have obtained a numerical
solution of the second-order equations of motion, we numerically verify that it satisfies the
BPS equations.

3.1 D3-brane

Here we describe the generic non-AdS4 background towards which the regular BPS flows
are attracted when reaching the boundary at r → ±∞. As argued in [34], this non-AdS4
configuration uplifts to a deformation of the AdS5×S5 geometry arising as the near-horizon
geometry of a D3-brane in type IIB supergravity. The deformation is induced by the
four-dimensional electromagnetic parameter c in (2.4).

3.1.1 D3-brane at c = 0

Let us start by presenting an exact solution to the BPS equations in (3.3) and (3.4) in
the case of c = 0. In order to find the solution analytically, we first truncate to the
(SU(3) ∩ Z3

2)-invariant sector of the theory by performing the scalar identifications

z1 = z2 = z3 ≡ z1,2,3 , z4 = z5 = z6 = z7 ≡ z4,5,6,7 , (3.11)

and then perform a change of radial coordinate

dλ = g√
2
Im[z1,2,3]−

1
2 dr . (3.12)

In this manner we obtain an analytic solution with (continuous) U(3) symmetry of the form

z1,2,3 = g−1σ

(
−1

3 + i sinh λ
)
, z4,5,6,7 = i e−

Φ0
2 , (3.13)

and
e2A = 2 g−3σ sinh λ cosh2 λ , (3.14)
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z̃1,2,3 z̃4,5,6,7

Figure 1. Parametric plot of the D3-brane solution at c = 0 using the unit-disk parameterisation
of the complex scalars z̃1,2,3 and z̃4,5,6,7 in (3.15). On the left plot, the black point at z̃1,2,3 = 1 is
reached at the asymptotic values λ→∞ (red curves with σ > 0) and λ→ −∞ (blue curves with
σ < 0). The singular value σ = 0 corresponds to the straight line starting at z̃1,2,3 = −1. On the
right plot, different points belonging to the black line in the real axis correspond to different values
of the D3-brane constant parameter Φ0.

in terms of two arbitrary parameters (g , Φ0) and the scaling parameter σ.4 Note that
demanding Imz1,2,3 ≥ 0, as imposed by (3.5), and e2A ≥ 0 requires λ ∈ [0,∞) for the choice
σ > 0 and λ ∈ (−∞, 0] for the choice σ < 0. Moreover, taking σ → 0 renders the solution
in (3.13) pathological as z1,2,3 → 0 in this limit. Using the (finite) unit-disk parameterisation
of the complex scalars, namely,

z̃1,2,3 = z1,2,3 − i
z1,2,3 + i

= 1− 6
3 + σ (3 sinh λ+ i) , z̃4,5,6,7 = z4,5,6,7 − i

z4,5,6,7 + i
= tanh

(
−Φ0

4

)
,

(3.15)
various plots of the z̃1,2,3 scalar in (3.15) are presented in figure 1 for different values of σ.
Note that the scalar z̃4,5,6,7 in (3.15) covers the real interval [−1, 1] in figure 1 as a function
of the constant parameter Φ0 setting the asymptotic value of the type IIB dilaton field.

This four-dimensional solution uplifts to a D3-brane in ten-dimensional type IIB
supergravity (see appendix A for more details on the geometry of the uplift). More
concretely the metric reads

g2 ds2
10 = dλ2 + cosh2 λ ds2

AdS3
+ σ2 sinh2 λ dη2 +

(
ds2

CP2
+ η1 ⊗ η1

)
, (3.16)

4This solution can be generalised to a larger class of solutions solving the second-order equations of
motion in (3.7) and (3.8) but no longer the BPS equations in (3.3) and (3.4). This is given by

z1,2,3 = g−1
(
− σ̃3 + i σ sinhλ

)
, z4,5,6,7 = ie− Φ0

2 ,

and the metric function in (3.14), so it allows for an additional parameter σ̃. Setting σ̃ = 0 implies
Rez1,2,3 = 0 and the (continuous) symmetry group of the solution is enhanced from U(3) to SO(6).
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with σ > 0 and the coordinate λ ∈ [0,∞) specifying an AdS3 × S1 slicing of AdS5 that
parameterises the curved worldvolume of the D3-brane. The rest of the type IIB fields are
given by

mαβ =
(
e−Φ0 0
0 eΦ0

)
, Bα = 0 , F̃5 = 4 g (1 + ∗) volCP2 ∧ η1 . (3.17)

From (3.16) one observes that the parameter σ can be reabsorbed in a redefinition of the
coordinate η thus rendering the limit σ → 0 pathological this time from a higher-dimensional
perspective. In addition, having Rez1,2,3 = −1

3g
−1σ 6= 0 formally induces a monodromy

(see (A.7)) on the S1 in S5 = CP2 o S1 when moving along the compactified η direction.
This results in the global breaking of the S5 isometries from SO(6) to U(3) as discussed
in [34]. Unlike for the curved-sliced D3-brane discussed here, the flat-sliced D3-brane in [34]
corresponds to a four-dimensional analytic flow solution with Rez1,2,3 = 0 and, therefore,
features a larger SO(6) symmetry.

3.1.2 D3-brane at c 6= 0

Let us study a perturbation of the analytic solution at c = 0 in (3.13)–(3.14) with U(3)
symmetry. We will redefine the radial coordinate as

ρ = sinh λ , (3.18)

so that ρ ∈ [0,∞) and the solution in (3.13)–(3.14) at c = 0 takes the form

z1,2,3 = g−1σ
(
−1

3 + iρ
)

, z4,5,6,7 = i e−
Φ0
2 , e2A = 2 g−3σ ρ (1 + ρ2) .

(3.19)
Using the new radial coordinate ρ it is possible to analytically solve the BPS equations (3.3)–
(3.4) order by order as a power series in the deformation parameter c (which can be set to
any desired numerical value without loss of generality). At linear order in c, and further
expanding around the region at ρ→∞, the scalar fields conform to the power series

z1,2,3 = −1
3 g
−1 σ

[
1 + c

(
λ0 − 2λ2 + 2 g−2σ−1 sinh Φ0 − (λ2 + 4λ4)

( 1
ρ2 −

1
ρ4 + . . .

))]
+ i g−1 σ ρ

[
1 + c

(
λ0 + λ2

ρ2 + λ4
ρ4 + . . .

)]
,

z4,5,6,7 = c e−
Φ0
2

[
g−2σ−1 cosh Φ0

ρ
− 2κ4

( 1
ρ3 −

1
ρ5 + . . .

)]

+ i e−
Φ0
2

[
1 + c

(
κ0 + κ4

ρ4 + . . .

)]
,

(3.20)
in terms of five integration constants {λ0 , λ2 , λ4 , κ0 , κ4}. The scale factor approaches
ρ→∞ as

e2A = 2 g−3σ ρ (1 + ρ2)
[
1 + c

(
λ0 + 4λ2 −

λ2
ρ2 + 4λ2 + λ4

3 ρ4 + . . .

)]
. (3.21)
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In the following we will construct numerical solutions to the BPS equations (3.3)–(3.4)
with c 6= 0. Such solutions will generically approach the ρ → ∞ region as in (3.20)–
(3.21) with specific values of the integration constants {λ0 , λ2 , λ4 , κ0 , κ4} as well as Φ0.
Note that Rez4,5,6,7 6= 0 at linear order in c but dies off as ρ−1 switching off the type
IIB two-form potentials in (A.16)–(A.18). As a result, the deformed D3-brane solution
in (3.20)–(3.21) breaks the U(3) symmetry of (3.13)–(3.14) down to SU(3). This concludes
our characterisation of the D3-brane behaviour in the ρ→∞ region when c 6= 0.

3.2 SU(3)-invariant flows

The (SU(3)∩Z3
2)-invariant sector of the theory is recovered upon the identifications in (3.11),

namely,
z1 = z2 = z3 , z4 = z5 = z6 = z7 . (3.22)

This yields an effective two-field model and the holomorphic superpotential in (2.4) reduces to

V = 12 g z1 z
2
4 + 2 g c

(
1− z4

4

)
. (3.23)

The identifications in (3.22) are compatible with the Family I of AdS4 vacua presented
in (2.9). However, the condition (2.10) requires Rez1 = 0 at the corresponding AdS4 vacuum.
Still, as we will see (e.g. red flow in figure 3), a generic Janus-type solution involving such an
AdS4 vacuum in the intermediate regime will arrive at the asymptotic D3-brane behaviour
at r → ±∞ with a non-zero value of the axion Rez1.

Numerical study. Following the numerical methodology introduced before, a numerical
Janus-type flow is constructed upon suitable choice of boundary conditions {z1(0) , z4(0)}.
It proves covenient to switch again to the unit-disk parameterisation for the complex scalars

z̃1 = z1 − i
z1 + i

, z̃4 = z4 − i
z4 + i

, (3.24)

and specify the boundary conditions in terms of {z̃1(0) , z̃4(0)}. The location in field space
of the N = 1 & SU(3) AdS4 vacuum and the D3-brane asymptotic behaviour (see figure 2)
suggest two natural choices of boundary conditions.

The first choice is to distribute the turning points of the numerical flows (pink points
in figure 2) along the Rez̃1 real axis while keeping z̃4 fixed at its value in the AdS4 vacuum.
This is

z̃1(0) = z̃
(∗)
1 + ε , z̃4(0) = z̃

(∗)
4 , (3.25)

where z̃(∗)
1,4 denote the expectation values of the scalars at the N = 1 & SU(3) AdS4 vacuum.

Regular flows only exist for 0 < ε < εcrit with εcrit ≈ 0.34315. Varying the parameter ε
within this range we obtain the numerical flows depicted in figure 2. The profiles for the
original fields z1 and z4 in the upper half-plane parameterisation are displayed in figure 3.
From the latter figure, we observe the existence of two limiting/bounding flows. The first one
is the flow with ε ≈ 0 (red solid lines). This flow develops an AdS4 intermediate behaviour
with constant scalars around the turning point at r = 0 (green point in figure 2). When
uplifted to ten dimensions (see (A.10)–(A.12)), this intermediate behaviour is identified

– 11 –



J
H
E
P
1
1
(
2
0
2
2
)
1
3
4

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

-0.4 -0.2 0.0 0.2 0.4

-0.20

-0.15

-0.10

-0.05

0.00

z̃1 z̃4

Figure 2. Samples of regular flows within the SU(3)-invariant sector using the boundary condi-
tions (3.25) for the complex scalar fields z̃1 (left) and z̃4 (right). The N = 1 & SU(3) AdS4 vacuum
and the D3-brane asymptotics are denoted by green and black dots, respectively. The grey line in
the left plot corresponds to the boundary values |z̃1| = 1. The red flow corresponds to the choice
ε ≈ 0 whereas the orange one corresponds to ε ≈ εcrit. Black dots in the right plot are compatible
with SO(6) invariance, i.e. z̃4 is real-valued, and correspond to the values ±Φ0 of the type IIB
dilaton in the D3-brane asymptotics at r → ±∞.

with the N = 1 & SU(3) type IIB S-fold of [29]. The other bounding flow is the critical flow
(orange solid lines) corresponding to the largest value ε ≈ εcrit. This critical flow comes
along with a very large value of Rez1 around the asymptotic D3-brane regions, as it can be
recognised in figure 3. All the numerical solutions approach the D3-brane behaviour at the
flow endpoints, i.e. r → ±∞, with a different value of ±Φ0 depending on the choice of ε in
the boundary conditions (3.25).

The second natural choice of boundary conditions is to distribute the turning points of
the numerical flows along the Imz̃4 imaginary axis while keeping z̃1 fixed at its value in the
AdS4 vacuum. This is

z̃1(0) = z̃
(∗)
1 , z̃4(0) = z̃

(∗)
4 + i ε . (3.26)

However, we find no regular flows for this choice of boundary conditions. Actually, we
cannot find regular flows with boundary conditions different from (3.25).

3.3 SU(2)-invariant flows

The (SU(2) ∩ Z3
2)-invariant sector of the theory is obtained upon identifying the complex

scalars as
z1 = z3 , z2 , z4 = z6 , z5 = z7 , (3.27)

so the resulting effective model involves four chiral fields. The holomorphic superpotential
in (2.4) simplifies to

V = 2 g
(
4 z1 z4 z5 + z2

(
z2

4 + z2
5

) )
+ 2 g c

(
1− z2

4 z
2
5

)
. (3.28)
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Figure 3. Samples of regular flows within the SU(3)-invariant sector using the boundary condi-
tions (3.25) for the complex scalar fields z1 and z4.

The identifications in (3.27) are compatible with the Family II of AdS4 vacua in (2.11)
provided

Rez1 = 0 . (3.29)
For generic choices of boundary conditions, the algebraic condition (3.29) will not be
preserved along the flows we will construct. However, as we will see, a specific choice of
boundary conditions will preserve the condition (3.29).

Numerical study. The SU(2) invariant sector we are considering involves four complex
scalars and, therefore, it is hard to perform an exhaustive study of numerical flows. Still the
location of the N = 2 & U(2) AdS4 vacuum and the D3-brane attractor point (see figure 4)
suggest again various natural choices of boundary conditions.

The first choice of boundary conditions consists in distributing the turning points of
the numerical flows (pink points in figure 4) along the Rez̃1 and Rez̃2 axes, while keeping z̃4
and z̃5 fixed at their values in the N = 2 & U(2) AdS4 vacuum. Moreover, the identification
z1,2,3 in the D3-brane solution (3.13) further motivates the symmetric choice

z1(0) = −χ(∗)
1 + i e

−
(
ϕ

(∗)
1 − ε

)
, z2(0) = −χ(∗)

2 + i e
−
(
ϕ

(∗)
2 − ε

)
, z4(0) = z

(∗)
4 , z5(0) = z

(∗)
5 ,

(3.30)
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Figure 4. Samples of regular flows within the SU(2)-invariant sector using the boundary con-
ditions (3.30) for the complex scalar fields z̃1 (top-left), z̃2 (top-right), z̃4 (bottom-left) and z̃5
(bottom-right). The N = 2 & U(2) AdS4 vacuum and the D3-brane asymptotics are denoted by
green and black dots, respectively. The grey lines in the left column plots correspond to the boundary
values |z̃1| = 1. The red flow corresponds to the choice ε ≈ 0 whereas the orange one corresponds
to ε ≈ εcrit. Black dots in the bottom plots are compatible with SO(6) invariance, i.e. z̃4 = z̃5 are
real-valued, and correspond to the values ±Φ0 of the type IIB dilaton in the D3-brane asymptotics
at r → ±∞.

where the asterisk (∗) denotes again the expectation values of the scalars at the N = 2 & U(2)
AdS4 vacuum. As before, regular flows only exist for 0 < ε < εcrit with εcrit ≈ 0.64778. The
profiles for the fields are displayed in figure 5. We find again two limiting/bounding flows
associated with the boundary values of the parameter ε ≈ 0 and ε ≈ εcrit, which respectively
correspond to the solid red and orange lines in figure 4 and figure 5. The flow with ε ≈ 0
(red solid lines) develops an AdS4 intermediate behaviour with constant scalars around
the turning point at r = 0. This AdS4 regime uplifts to the N = 2 & U(2) type IIB S-fold
of [30]. In addition, we observe the presence of a crossing point with Imz̃2 = Rez2 = 0 at
finite r = ±r0 in all the flows having 0 < ε < ε∗ with ε∗ ≈ 0.23428. An example of this
is the flow with ε = 0.15 < ε∗ (blue dotted line) depicted in figure 4 and figure 5.5 On

5A crossing point is also present in the red flow with ε ≈ 0 although it cannot be appreciated in the
figures due to its small size and the fact that r0 → ±0 in this limiting case.
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Figure 5. Samples of regular flows within the SU(2)-invariant sector using the boundary condi-
tions (3.30) for the complex scalar fields z1, z2, z4 and z5.
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Figure 6. Samples of regular flows within the SU(2)-invariant sector using the boundary con-
ditions (3.31) for the complex scalar fields z̃1 (top-left), z̃2 (top-right), z̃4 (bottom-left) and z̃5
(bottom-right). The N = 2 & U(2) AdS4 vacuum and the D3-brane asymptotics are denoted by
green and black dots, respectively. The grey lines in the left column plots correspond to the boundary
values |z̃1| = 1. The red flow corresponds to the choice ε ≈ 0 whereas the orange one corresponds
to ε ≈ εcrit. Black dots in the bottom plots are compatible with SO(6) invariance, i.e. z̃4 = z̃5 are
real-valued, and correspond to the values ±Φ0 of the type IIB dilaton in the D3-brane asymptotics
at r → ±∞.

the contrary, note that, for example, the crossing point is not present in the flow with
ε = 0.30 > ε∗ (blue dashed line) in the same figures. Lastly, the flow at the special value
ε ≈ ε∗ has Imz̃2 = Rez2 = 0 at r0 → ±∞, namely, the crossing point has been pushed to
the endpoints of the flow.

One could also think of relaxing the z1,3(0) = z2(0) symmetry of the boundary conditions
in (3.30). For instance, we can distribute the turning points of the numerical flows (pink
points in figure 6) only along the Rez̃1 real axis while keeping z̃2, z̃4 and z̃5 fixed at their
values in the AdS4 vacuum. This is

z̃1(0) = z̃
(∗)
1 + ε , z̃2(0) = z̃

(∗)
2 , z̃4(0) = z̃

(∗)
4 , z̃5(0) = z̃

(∗)
5 . (3.31)

This choice of boundary conditions produces regular flows only within the range 0 < ε <

εcrit with εcrit ≈ 0.44262. Furthermore, as it can be seen from figure 6, the boundary
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Figure 7. Samples of regular flows within the SO(3)-invariant sector using the boundary condi-
tions (3.34) for the complex scalar fields z̃1 (left), z̃4 (middle) and z̃7 (right). The N = 4 & SO(4)
AdS4 vacuum and the D3-brane asymptotics are denoted by green and black dots, respectively. The
grey line in the left plot corresponds to the boundary values |z̃1| = 1. The red flow corresponds
to the choice ε ≈ 0 whereas the orange one corresponds to ε ≈ εcrit. Black dots in the middle and
right plots are compatible with SO(6) invariance, i.e. z̃4 = z̃7 are real-valued, and correspond to the
values ±Φ0 of the type IIB dilaton in the D3-brane asymptotics at r → ±∞.

conditions (3.31) localise the flows in the real axis both for z̃1 and z̃4. In our numerical
scanning, we could not find regular flows with boundary conditions different from (3.30)
and (3.31).

3.4 SO(3)-invariant flows

The (SO(3) ∩ Z3
2)-invariant sector of the theory is a three field model that is obtained upon

the identifications
z1 = z2 = z3 , z4 = z5 = z6 , z7 . (3.32)

The holomorphic superpotential (2.4) reduces in this case to

V = 6 g z1 z4 (z4 + z7) + 2 g c
(
1− z4z

3
7

)
. (3.33)

The identification in (3.32) is compatible with the N = 4 & SO(4) invariant vacuum in (2.13)
which has Imz1 = 0. As in the previous cases, this condition will no longer hold along the
numerical flows when approaching the D3-brane behaviour describing the endpoints of the
generic flows.

Numerical study. First we will consider the simplest case in which the turning points of
the numerical flows (pink points in figure 7) are distributed along the Rez̃1 real axis while
z̃4 and z̃7 are kept fixed at their values in the AdS4 vacuum. This amounts to set

z̃1(0) = z̃
(∗)
1 + ε , z̃4(0) = z̃

(∗)
4 , z̃7(0) = z̃

(∗)
7 , (3.34)

where z̃(∗)
1,4,7 denote the expectation values of the scalars at the N = 4 & SO(4) AdS4 vacuum.

We find a structure of flows similar to the cases previously analysed. Namely, regular flows
only exist within the numerical window 0 < ε < εcrit with εcrit ≈ 0.22592. These flows lie in
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Figure 8. Samples of regular flows within the SO(3)-invariant sector using the boundary condi-
tions (3.34) for the complex scalar fields z1, z4 and z7.

between two limiting/bounding flows at ε ≈ 0 and ε ≈ εcrit which respectively correspond to
the solid red and orange lines in figures 7 and 8. As in the other cases, the flow with ε ≈ 0
(red solid lines) features an AdS4 intermediate behaviour with constant scalars around the
turning point at r = 0. This AdS4 regime uplifts this time to the N = 4 & SO(4) type IIB
S-fold of [25].

More general boundary conditions {z̃1(0) , z̃4(0) , z̃7(0)} can be specified which also
give rise to regular flows. A choice that is motivated by the D3-brane solution (3.13) is
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Figure 9. Samples of regular flows within the SO(3)-invariant sector using the boundary condi-
tions (3.35) for the complex scalar fields z̃1 (left), z̃4 (middle) and z̃7 (right). The N = 4 & SO(4)
AdS4 vacuum and the D3-brane asymptotics are denoted by green and black dots, respectively. The
grey line in the left plot corresponds to the boundary values |z̃1| = 1. The red flow corresponds
to the choice ε ≈ 0 whereas the orange one corresponds to ε ≈ εcrit. Black dots in the middle and
right plots are compatible with SO(6) invariance, i.e. z̃4 = z̃7 are real-valued, and correspond to the
values ±Φ0 of the type IIB dilaton in the D3-brane asymptotics at r → ±∞.

given by

z1(0) = z
(∗)
1 , z4(0) = −χ(∗)

4 + i e
−
(
ϕ

(∗)
4 − ε

)
, z7(0) = −χ(∗)

7 + i e
−
(
ϕ

(∗)
7 − ε

)
. (3.35)

The above choice of boundary conditions produces regular flows only within the range
0 < ε < εcrit with εcrit ≈ 0.03472. Some examples are depicted in figure 9. Performing an
exhaustive study of the entire six-dimensional parameter space goes beyond the scope of
this paper.

4 Final remarks

In this work we have investigated a class of Janus-type solutions in type IIB supergravity,
some of them accommodating an S-fold intermediate regime at their core. Instead of
addressing the problem directly in ten dimensions, we have made use of the effective
four-dimensional [SO(1, 1)× SO(6)] nR12 gauged supergravity that arises upon a twisted
compactification of type IIB supergravity on S1 × S5 [25]. The implementation of an
S-duality twist in the reduction along the S1 is a necessary ingredient for the intermediate
S-fold region to exist. This twist totally codifies the simple and analytic dependence of the
Janus-type solution on the coordinate η along the S1 (see appendix A). In order to obtain
the flow solutions along the radial coordinate r, we have resorted to numerical methods
and solved the BPS equations in the four-dimensional [SO(1, 1)× SO(6)] nR12 gauged
supergravity imposing an AdS3-sliced domain-wall ansatz.

When uplifted back to ten dimensions, the flow solutions are interpreted as type IIB
Janus-type solutions that interpolate between a supersymmetric deformation of AdS5 × S5

on each side of the Janus (r → ±∞) and generically display an R×AdS3×S1×S5 geometry
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along the flow. However, upon tuning of the boundary conditions for the running scalars
when solving the four-dimensional BPS equations, it is possible to obtain a special class of
Janus-type solutions for which an S-fold geometry of the form AdS4×S1×S5 emerges at the
core of the solution (r = 0). We have constructed such special classes of Janus-type solutions
for the three largest symmetric S-folds preserving N = 1 & SU(3) [29], N = 2 & U(2) [30]
and N = 4 & SO(4) [25] symmetry. A natural extension is to consider Janus-type solutions
involving less symmetric S-folds obtained, for example, by turning on the so-called flat
deformations dual to marginal deformations in the dual S-fold CFT’s [37, 40].

One may wonder whether the solutions presented in this work could have been found
in the much more studied Einstein-scalar models describing consistent subsectors of the
SO(6) gauged supergravity in five dimensions [15–17]. However, this is not possible because
the axions (pseudo-scalars) Imz̃1,2,3 in four dimensions originate from Wilson lines of five-
dimensional vector fields along the S1 [34]. And even if these axions are set to zero at the
intermediate S-fold regime of the Janus-type solutions, they are generically activated away
from the core of the solutions. Nonetheless, there are direct flows in which Imz̃1,2,3 = 0
all along the Janus-type solutions. These particular flows therefore stand a chance of
being found analytically in four, five and ten dimensions. It would be very interesting to
investigate these direct flows in more detail.

On the other hand, sticking to the common characteristic of usual Janus solutions
— AdSd−1 solutions with AdSd asymptotics on each side of the Janus —, it would be
interesting to construct flows that depart from an AdS4 S-fold and arrive at either the same
or a different AdS4 S-fold while preserving the SO(2, 2) isometries of AdS3 along the flow.
The latter would be the curved counterparts of the holographic RG-flows (with a three-
dimensional flat slicing) connecting S-fold CFT’s in [34], and would holographically describe
conformal interfaces in three-dimensional S-fold CFT’s. In the M-theory context, examples
of supersymmetric Janus solutions dual to conformal interfaces in ABJM theory [50] (and
mass deformed versions thereof) were put forward in [6].

Let us conclude with some remarks on the Janus-type solutions with an S-fold at the
core for which the space-time geometry conforms to AdS5 −AdS3 −AdS4 −AdS3 −AdS5.
Each side of these Janus-type solutions can be viewed as a D3-brane to S-fold flow with a
geometry of the form AdS5−AdS3−AdS4, and holography anticipates an interplay between
field theories of different dimensionality. Despite the presence of nested AdS factors, the
geometry in our solutions is different from the Janus within Janus solutions considered
in [51] describing interfaces of higher codimensions in N = 4 SYM4. In our case there is
no dependence of the ten-dimensional geometry on the fifth coordinate η on S1 since the
metric is a singlet under S-duality and therefore is not affected by the twisted reduction
(see eq. (A.11)). The setup here also differs from the Janus on the brane construction of [52]
realising interfaces on surface defects in N = 4 SYM4. This construction considers an
AdS2×R slicing on the AdS3 ⊂ AdS3×S1 parameterising the worldvolume of the D3-brane.
It would therefore be interesting to make progress in understanding the holography of the
Janus-type solutions presented here in light of the AdS/CFT correspondence. We leave this
and other related questions for the future.
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A Type IIB uplift of the SU(3)-invariant sector

The SU(3)-invariant sector of the theory was uplifted to type IIB supergravity in section 4.3.1
of [34]. We employ the results there to uplift some of the solutions presented in the main
text. For example, the non-AdS4 exact flow at c = 0 given in (3.13)–(3.14) that uplifts to
the D3-brane solution (3.16)–(3.17).

Ten-dimensional metric. A Sasaki-Einstein metric can be locally written as

ds2(SE5) = ds2(KE4) + η1 ⊗ η1 , (A.1)

where ds2(KE4) is a local Kähler-Einstein metric with positive curvature and η1 is a globally
well-defined one-form dual to the Reeb Killing vector. There are also a globally well-defined
Kähler two-form, J2, and a (2, 0)-form complex structure, Ω2, and they satisfy

dη1 = 2J2 ,

dΩ2 = 3iη1 ∧ Ω2 . (A.2)

The uplift of the SU(3)-invariant sector of the [SO(1, 1)×SO(6)]nR12 dyonically-gauged
maximal supergravity is the following. The ten-dimensional metric is given by

ds2
10 = 1

2∆ds2
4 + 1

g2c2Hdη
2 + 1

g2F

(
ds2

CP2 + 1
F 2 η1 ⊗ η1

)
, (A.3)

where we have defined the metric functions

F = Imz4,5,6,7
|z4,5,6,7|

, H = 1
F
Im[z1,2,3]2 , ∆ = F Imz1,2,3 , (A.4)

and ds2
4 is the four-dimensional metric in (3.1). The metric on CP2 is given by

dsCP2 = dα2 + 1
4 sin2 α

(
σ2

1 + σ2
2 + cos2 ασ2

3

)
, (A.5)

where the left-invariant one-forms are

σ1 = − sinψdθ + cosψ sin θdθ ,
σ2 = cosψdθ + sinψ sin θdθ ,
σ3 = dψ + cos θdφ . (A.6)

As a non-trivial monodromy on the internal manifold is induced by the set of non-zero
constant axion Rez1,2,3 the real one-form is given by

η1 = dβ +A1 + Rez1,2,3 dη , (A.7)
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where the one-form potential on CP2 is

A1 = 1
2 sin2 ασ3 . (A.8)

They satisfy the torsion conditions for the SU(2)-structure

d (η1 − Rez1,2,3 dη) = 2J2 , dJ2 = 0 , dΩ2 = 3i (η1 − Rez1,2,3 dη) ∧ Ω2 . (A.9)

To understand the geometry along the flows, it proves convenient to perform a change
of radial coordinate of the form

dλ = g√
2
Im[z1,2,3]−

1
2 F−

1
2 dr , (A.10)

so that the metric in (A.3) becomes

ds2
10 = g−2

[
dλ2 + f1(λ) ds2

AdS3
+ f2(λ) dη2 + F (λ) ds2

CP2
+ F (λ)−1 η1 ⊗ η1

]
, (A.11)

with

f1(λ) = 1
2 g

2 F−1 e2A Im[z1,2,3]−1 and f2(λ) = c−2 F−1 Im[z1,2,3]2 . (A.12)

Note that, at the core of the SU(3)-invariant flow with ε ≈ 0 (red solid line) in figure 3, the
scalars undergo a constant behaviour so that f1(λ) ∝ e2A ≈

(
L
l

)2
cosh2

(
λ
L

)
and f2(λ) ≈ cst.

As a result, the five-dimensional space-time metric conforms to AdS4 × S1 as required by
the S-fold regime. Note also that, at finite c, the function f2 in (A.12) vanishes whenever
Im[z1,2,3] = 0 (F in (A.4) is bounded both above and bellow). Having Im[z1,2,3] = 0 implies
|z̃1,2,3| = 1. Therefore, when this occurs, z̃1,2,3 hits the boundary of the unit-disk and the
solution becomes singular: the S1 in (A.11) parameterised by η collapses. Flows of this
type can be constructed for which the singularity occurs at a finite radial distance, although
we are not investigating them in this work. As mentioned in the introduction, these are the
counterparts of the flows to Hades investigated in [6, 7].

Axion-dilaton. The axion-dilaton matrix including the ten-dimensional dilaton Φ and
the Ramond-Ramond (RR) axion C0 is given by

mαβ =
(
A−t

)
α

γ mγδ

(
A−1

)δ
β = eΦ

(
e−2Φ + C2

0 −C0
−C0 1

)
, (A.13)

where
mγδ =

(
|z4,5,6,7|2 0
0 |z4,5,6,7|−2

)
. (A.14)

The SL(2) hyperbolic twist matrix induced by the electromagnetic parameter (we are setting
c = 1) reads

Aαβ =
(

cosh η sinh η
sinh η cosh η

)
,
(
A−1

)α
β =

(
cosh η − sinh η
− sinh η cosh η

)
. (A.15)

Importantly, the twist matrix trivialises to Aαβ = δαβ when having a purely electric gauging
with c = 0. This is the case studied in section 3.1.1.
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Three-form fluxes. The type IIB two-form potentials Bα = (B2, C2) are given by

Bα = Aαβ b
β . (A.16)

In terms of the complex combination of potentials one finds

b2 + i |z4,5,6,7|2 b1 = i

g2 Rez4,5,6,7 Ω2

= i

g2 e
3iβ Rez4,5,6,7

(
dα+ i

4 sin(2α)σ3
)
∧
(

1
2 sinα (σ1 − σ2)

)
,

(A.17)

or, equivalently,

b1 = − 1
g2

Rez4,5,6,7
|z4,5,6,7|2

Re[Ω2] , b2 = 1
g2Rez4,5,6,7 Im[Ω2] . (A.18)

Their three-form field strengths are readily computed as

Hα = dBα = (H3 , F3) , (A.19)

and we obtain
Hα = Aα β

(
dη1 ∧ bγθγ

β + dbβ
)
, (A.20)

with

db1 = − 1
g2d

(
Rez4,5,6,7
|z4,5,6,7|2

)
∧ Re[Ω2] + 3

g2
Rez4,5,6,7
|z4,5,6,7|2

(η1 − Rez1,2,3 dη) ∧ Im[Ω2] ,

db2 = 1
g2dRez4,5,6,7 ∧ Im[Ω2] + 3

g2Rez4,5,6,7 (η1 − Rez1,2,3 dη) ∧ Re[Ω2] . (A.21)

In (A.20) we introduced the constant matrix

θγ
β =

(
0 1
1 0

)
. (A.22)

Five-form flux. The self-dual five-form field strength is given by

F̃5 = g (1 + ∗)
[(

4− 6
(
1− F 2

) )
volCP2 ∧ dβ

+
(

4Rez1,2,3 + Re[z4,5,6,7]2
(

1− 1
|z4,5,6,7|4

))
volCP2 ∧ dη

− dRez1,2,3 ∧ dη ∧
(
dα ∧ 1

2 sinασ1 ∧A1 + 2 J2 ∧ dβ
)]

. (A.23)
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