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Abstract: There are several neurological diseases under which processes related to adult brain
neurogenesis, such cell proliferation, neural differentiation and neuronal maturation, are affected.
Melatonin can exert a relevant benefit for treating neurological disorders, given its well-known
antioxidant and anti-inflammatory properties as well as its pro-survival effects. In addition, melatonin
is able to modulate cell proliferation and neural differentiation processes in neural stem/progenitor
cells while improving neuronal maturation of neural precursor cells and newly created postmitotic
neurons. Thus, melatonin shows relevant pro-neurogenic properties that may have benefits for
neurological conditions associated with impairments in adult brain neurogenesis. For instance, the
anti-aging properties of melatonin seem to be linked to its neurogenic properties. Modulation of
neurogenesis by melatonin is beneficial under conditions of stress, anxiety and depression as well
as for the ischemic brain or after a brain stroke. Pro-neurogenic actions of melatonin may also be
beneficial for treating dementias, after a traumatic brain injury, and under conditions of epilepsy,
schizophrenia and amyotrophic lateral sclerosis. Melatonin may represent a pro-neurogenic treatment
effective for retarding the progression of neuropathology associated with Down syndrome. Finally,
more studies are necessary to elucidate the benefits of melatonin treatments under brain disorders
related to impairments in glucose and insulin homeostasis.

Keywords: melatonin; neural stem cells; adult hippocampal neurogenesis; neurological disorders;
neurodegeneration

1. Melatonin

Melatonin (N-acetyl-5-methoxytryptamine) is a multifunctional hormone naturally
produced and released rhythmically throughout the night by the pineal gland to regulate
sleep—wake cycles [1]. The secretion of this neurohormone increases after the onset of
darkness, reaching peak levels in the middle of the night, and gradually decreases in
the second half of the night [2]. Light exposure stimulates the inhibition of melatonin
production, and consequently, during the day its levels drop, becoming undetectable [3].
Furthermore, melatonin, once it is synthesized by the pineal gland, is promptly released into
the bloodstream and is distributed among all tissues [4]. In particular, given the amphiphilic
properties of melatonin, this neurohormone is able to cross biological barriers and enter
cells, influencing tissue functions [5]. Additionally, melatonin is also locally synthetized in
numerous cells and tissues, which presumably do not follow circadian rhythms.

Although melatonin is mainly referred to as the sleep hormone, this indolamine has
been shown to exert antioxidant, anti-inflammatory and anti-apoptotic reprogramming in
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cellular homeostasis and disease (Figure 1). Melatonin mainly mediates its effects through
MT1 and MT?2 receptors, which belong to the superfamily of G protein-coupled recep-
tors (GPCRs), by switching on/off intracellular signaling cascades. However, melatonin
secretion, as well as the expression of melatonin receptors, has been widely proven to
progressively decrease over the lifespan and in certain diseases [6,7], including neurodegen-
erative diseases or mental disorders [8]. This indicates that the downregulation of melatonin
levels and their potential therapeutic effects may be involved in the onset and progression
of diverse human diseases. Indeed, several recent studies endorse melatonin administration
potentiality in various diseases, especially in neurodegenerative disorders [9,10].

Antioxidant activity Augmented immunity response
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+ (SOD, CAT, GPx and GR)

= oxidative phosphorylation

= antibody formation

PLEIOTROPIC + = anti- inflammatory cytokines
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Figure 1. Melatonin’s pleiotropic actions on physiological processes.

2. Regulatory Role of Melatonin in Physiological Processes
2.1. Antioxidant Activity

Melatonin and its metabolic derivatives have been demonstrated to possess strong
antioxidant properties against free radicals and are the reference agents in this field. This
indolamine is considered an efficient scavenger of reactive oxygen species (ROS), reactive
nitrogen species (RNS) and other oxidative agents [11]. Melatonin’s functions as an antioxi-
dant include direct scavenging of free radicals, stimulation of the activity and efficiency
of antioxidant enzymes, lowering the activation of pro-oxidant enzymes and improving
the efficiency of mitochondrial respiration, thereby reducing ROS production [12]. First,
melatonin, as an electron-rich molecule, acts as a potent endogenous free radical scavenger,
forming stable end-products that are ultimately excreted by the organism. Additionally,
this indolamine has been found to trigger the gene expression and activity of numerous
antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), glutathione
peroxidase (GPx) and glutathione reductase (GR), among others [13,14]; it therefore con-
tributes indirectly to the detoxification of free radicals. Furthermore, melatonin also protects
against enzymes involved in the generation of free radicals. Abundant evidence indicates
that melatonin inhibits nitric oxide synthase (NOS) activity, xanthine oxidase (XO) and
myeloperoxidase (MPO) [15-17]. Finally, it should be noted that melatonin also acts within
the mitochondrion, an organelle that is widely considered the major intracellular source of
ROS production. In this context, the mechanisms by which melatonin protects mitochondria
involve multiple pathways, from the increase in the activity of antioxidant enzymes while
reducing pro-oxidant enzymes within the mitochondria to the stabilization of the mitochon-



Int. J. Mol. Sci. 2023, 24, 4803

30f21

drial inner membrane, the improvement of the oxidative phosphorylation and the reduction
of electron transport leakage ROS production and the control of opening the mitochondrial
permeability transition pore [12]. Thus, taking all these factors into account, melatonin not
only contributes both directly and indirectly to the detoxification of free radicals, but it also
avoids their production, favoring the maintenance of cellular homeostasis.

2.2. Immune System Properties

One of the most relevant pleiotropic effects of melatonin is the modulation of the
immune system, reducing chronic and acute inflammation [18,19]. This relationship is
mainly established through the bidirectional communication between the pineal gland, as
a neuroendocrine interface, and the immune system. As early as 1926, Berman described
for the first time this potential interrelation, evidenced after kittens were fed pineal glands
from bullocks, and observed increased learning, activity and resistance against infectious
diseases. After this finding, numerous investigations focused on better understanding this
relationship. In particular, to discover this tight connection, two experimental approaches
have mainly been addressed: (a) pinealectomy and (b) the synchronization between rhyth-
mic melatonin synthesis and the immune response [20,21]. Largely, pinealectomy causes a
reduction in the size of both primary and secondary lymphoid organs, ultimately affecting
innate responses [22]. Moreover, the circadian rhythm for the release of melatonin also in-
fluences antibody formation. When melatonin levels are higher, there is greater stimulation
of antibody formation, thus contributing to an augmented immune response [23,24].

Generally, basic and clinical research suggests that the anti-inflammatory effects of
melatonin are mediated by the modulation of anti- and proinflammatory cytokines [25,26].
Melatonin was reported to inhibit the production of two of the main inflammatory me-
diators, cyclooxygenase (COX) and inducible NOS (iNOS), by modulating nuclear factor
kappa B (NF-kB) translocation [27-30]. In addition, this indolamine has also been shown to
alleviate inflammasome activation. Melatonin was demonstrated to reduce lipopolysaccha-
ride (LPS)-induced inflammation and the formation of the NLRP3 inflammasome in mouse
adipocytes, thus inhibiting caspase-1 and IL-1 activation and the NLRP3 inflammasome-
mediated pyroptosis [31,32]. Given that inflammation is implicated in the development and
progression of several diseases, such as neurological disorders, the immunomodulatory
effect of melatonin has gained increasing attention in recent years.

2.3. Anti-apoptotic Activity

Melatonin is considered a master regulator of cell death via the inhibition of apop-
totic responses and the activation of survival pathways. Mitochondria are one of the
main cellular organelles that sense and respond to many stressors, leading to adaptive
and maladaptive responses through the regulation of diverse signaling pathways, among
which it is worth highlighting apoptosis and autophagy [33]. Under adverse conditions,
mitochondrial function is affected, which ultimately triggers the release of cytochrome c
(CytC) and apoptosis-inducing factor (AIF) into the cytosol, and therefore, the activation of
apoptosis machinery. Caspases are also critical regulatory molecules that generate a cascade
of signaling events, controlling cell death in disease. It has been found that melatonin is
capable repressing the mitochondrial-mediated apoptotic response by enhancing a com-
pensatory pathway. This neurohormone increases the expression of the anti-apoptotic Bcl-2
family proteins, but it inhibits the activity of the pro-apoptotic Bax protein by acting on
the SIRT1/NF-kB axis [34,35]. Additionally, melatonin also suppresses caspase-dependent
apoptosis [36]. This indolamine was found to silence the caspase-1 pathway and reduce the
overexpression and activation of caspase-3 [37,38]. Furthermore, melatonin not only sup-
presses apoptotic responses but also stimulates the Akt pathway, mediating the activation
of autophagy and its roles in cell survival [10,39]. Therefore, melatonin has been widely
demonstrated to be a potent anti-apoptotic agent mainly due to its regulatory action on
proteins involved in mitochondria-mediated apoptosis and on cell survival mechanisms.
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3. Neurogenesis in the Adult Brain

The current dogma “that new neurons can and do form in the adult mammalian brain”
is well accepted [40]. In the adult brain, neurogenesis is a process that starts with cell
proliferation and ends with new functional neurons that integrate into existing neural
circuits. There are two “canonical” regions of the mammalian adult brain that generate
new neurons: (a) the border of the lateral ventricles of the brain (subventricular zone)
and (b) the subgranular zone of the hippocampal dentate gyrus [41-44]. Several non-
canonical regions also contain neural progenitor cells, including the neocortex, striatum
and hypothalamus [44].

In adult hippocampal neurogenesis, the differentiation of adult neural stem cells into
mature functional neurons proceeds through a clearly defined set of cellular stages starting
from (a) type-1 cells (radial glia-like cells) that express different markers such as glial
fibrillar acidic protein (GFAP), nestin, SRY-box transcription factor 2 (SOX2) and brain
lipid-binding protein (BLBP) to (b) type-2a and 2b cells (transiently amplifying progenitor
cells) that are positive for specific markers (e.g., nestin, SOX2, achaete-scute family bHLH
transcription factor 1 (ASCL1), T-box transcriptional factor 2 (TBR-2), etc.); and (c) type-3
cells (neuroblasts), which undergo migration and final maturation to functional neurons
and express specific markers such as polysialylated neural cell adhesion molecule (PSA-
NCAM) and neurogenic differentiation factor 1 (NeuroD1) [41,42,44]. The newly created
neurons developing from neural stem cells in the hippocampus integrate into pre-existing
neural networks of the granular neuron layer of the dentate gyrus to participate in learning
and memory processes [43—45].

In addition to ciliated ependymal cells, the subventricular zone of lateral ventricles
presents a varied niche of neural stem cells and precursors, including (a) proliferating
neuroblasts (type A cells) that express different neuronal markers (Tubulin beta 3 Class I1I
(TUBB3) and NeuroD1) and are able to migrate to the olfactory bulb via the rostral migratory
pathway (b) slowly proliferating cells (type B cells), which express multipotent neural stem
cell markers (nestin and GFAP) and show capacity for self-renewal and differentiation
toward neurons and glial cells; and (c) transiently amplifying progenitors (type C cells)
that show nestin expression and a very active state of proliferation [41].

Neurogenesis alteration can be a consequence of a decrease in the pool of neural stem
cells, alterations in the molecular microenvironment that do not favor cell proliferation
and/or cell differentiation or because neural stem cells and progenitor cells cannot re-
spond to neurogenic signals in the aged brain and/or under neurodegeneration [42,46].
Therefore, interventions that can maintain adult brain neurogenesis are key to improving
neurological functions, even in the late phases of aging, and especially under conditions of
neurodegeneration [42,43,45,46].

Melatonin promotes neuroprotection due to its antioxidant, anti-inflammatory and
anti-apoptotic properties [10,47-50]. Melatonin also plays an important role in the regula-
tion of neurogenesis [51-53]. Therefore, melatonin is a potential treatment for neurodegen-
erative and neurologic disorders associated with an impairment of neurogenesis, including
normal brain aging, dementia, stress, depression, stroke, traumatic brain injury, etc. [53-55].
The first evidence of the neurogenic potential of melatonin comes from studies in pinealec-
tomized rats, which showed that an important reduction in melatonin levels also leads to
decreases in adult hippocampal neurogenesis [56]. Exogenous administration of melatonin
in these animals restored their melatonin levels and the functionality of neurogenesis [56].
Similarly, chronic administration of luzindole (an antagonist for melatonin receptors) also
demonstrated that a lack of melatonin significantly affects hippocampal neurogenesis in
C57BL/6 adult mice [57].

Melatonin is able to modulate several processes involved in adult brain neurogenesis in-
cluding survival, proliferation and neuronal differentiation processes of neural stem/progenitor
cells, normal migration of neuronal precursors and survival and maturation of newly created
neurons (formation and growth of dendrites, complexity of dendrite trees, length of axonal
prolongations, processes of synaptic plasticity, etc.) [42,46,51,55,586-62]. These neurogenic
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actions of melatonin may involve several signaling pathways and molecular mechanisms
that impact adult brain neurogenesis [53,55,62,63], as summarized in Figure 2.

MELATONIN

1S

* MAPK/ERK pathway * MAPK/ERK pathway
* PI3K/Akt pathway * PI3K/Akt pathway
* Bcl-2 family proteins
* Nrf-2 signaling

* MAPK/ERK pathway * Ca?*/CaMKII
* PI3K/Akt pathway * Calretinin
* BDNF/TrkB signaling
* Histone acetylation

Figure 2. Some of mechanisms involved in the neurogenic potential of melatonin. AKT, pro-
tein kinase B; Bcl-2, B-cell lymphoma; BDNF, brain-derived neurotrophic factor; Ca?* /CaMKIJ,
calcium/calmodulin-dependent kinase II; ERK, extracellular signal-regulated kinases; GDNEF, glial
cell line-derived neurotrophic factor; Nrf-2, nuclear factor erythroid 2-related factor 2; MAPK,
mitogen-activated protein kinases; PI3K, phosphoinositide 3-kinase; TrkB, tropomycin-receptor
kinase B.

Neurogenic pathways of melatonin can be mediated by its membrane receptors
(MT1/2) [51,57]. Signaling pathways related to activation of mitogen-activated protein ki-
nases (MAPK) and extracellular signal-regulated kinases 1/2 (ERK 1/2) as well as phospho-
inositide 3-kinase (PI3K) and protein kinase B (Akt) are frequently involved in melatonin-
receptor-related effects on cell survival, proliferation and neuronal differentiation of neural
stem/progenitor cells [51-53]. However, other neurogenic actions of melatonin can be
independent of its receptors, including melatonin’s capacity to promote cell survival of
neural progenitor and precursor cells through regulation of apoptosis by modulating Bcl-2
family proteins [51,53], and due to its antioxidant properties by modulation of Nrf2 sig-
naling [51,53]. Increases in neurotrophic factors, such as brain-derived neurotrophic factor
(BDNG), are also involved in the capacity of melatonin to activate neuronal differentiation
processes in neural stem/progenitor cells independently of its receptors [51,53]. Histone
acetylation is also promoted by melatonin to activate neuronal differentiation, which may or
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may not involve its membrane receptors [51]. Melatonin can activate tropomycin-receptor
kinase B (TrkB) signaling via the MT1 receptor or by increasing BDNF levels to impact cell
survival and proliferation [51-53]. Finally, melatonin also promotes maturation processes
in new postmitotic neurons, including the formation, growth and complexity of dendrites
and synaptic plasticity [59,61]. In this last case, melatonin is able to directly interact with
intracellular proteins, such as calcium/calmodulin-dependent kinase II (Ca?*/ CaMKII) and
the Ca?* binding protein calretinin, to modulate the cytoskeleton and promote different
neuronal maturation processes [64-66] (Figure 2).

These beneficial effects of melatonin on different parameters of neurogenesis (survival,
proliferation, differentiation, maturation, etc.) have been demonstrated by using different
concentrations of melatonin (from nM to uM) during acute treatments (from hours to
days) in several models in vitro, including commercial cell lines (e.g., rat PC12 and mouse
C17.2 cell lines), primary cultures of neural stem/progenitor cells obtained from the brain
or spinal cord of adult rats and mice, cultured mesenchymal stem cells from human
amniotic fluid, induced pluripotent stem cells from mice and adult rat/mouse hippocampus
organotypic cultures [55]. Likewise, several animal models have confirmed the neurogenic
potential of melatonin in both acute and chronic melatonin treatments [55]. For instance,
various studies in Balb/C mice have demonstrated positive effects of melatonin promoting
the proliferation and survival of neural progenitor cells as well as the survival, maturation
and complexity of dendrites in the new postmitotic immature neurons in the dentate gyrus
of the hippocampus of these adult mice [54,67,68]. Melatonin also modulates the structural
plasticity of axons in granule cells in the dentate gyrus of Balb/C mice by regulating mossy
fiber projections to establish new functional synapses in the hippocampus [61]. Similarly,
melatonin also increased the survival of neural progenitor cells and postmitotic immature
neurons in the dentate gyrus of adult C57BL/6 mice [58]. More recent studies have shown
that melatonin restores the functionality of adult hippocampal neurogenesis during the
accelerated and pathological brain aging of SAMP8 mice [46]. The benefits of melatonin
acquire an especial relevance in the success of treatments of different nervous tissue lesions
by transplants with mesenchymal stem cells. Antioxidant and anti-inflammatory properties
of melatonin may improve the survival and functionality of transplanted mesenchymal
stem cells. This then leads to favorable outcomes in different experimental treatments,
for instance, in focal cerebral ischemia and neurodegenerative processes of Alzheimer’s
disease [62]. Neurogenic differentiation from mesenchymal stem cells specifically requires
wingless-integration-1 (Wnt) expression and activation of c-Jun N-terminal kinases (JNK)
pathway [62]. Finally, melatonin is also able to revert those alterations on neurogenesis
that are induced by several drugs or toxic compounds including lipopolysaccharides,
valproic acid, methamphetamines, cuprizone, methotrexate, dexamethasone, metformin,
scopolamine, 5-fluorouracil and corticosteroids [53,55,62,69-74].

4. Melatonin and Neurogenesis: Impact on Different Neurological Disorders
4.1. Aging and Dementia

Neurogenic processes can persist in the adult aged brain [75]. However, these are
altered during the normal aging of the brain as well as under different neuropathological
conditions, such as dementia [42,43,45,55,76]. Various studies in animal models of aging
have demonstrated the beneficial effects of melatonin associated with an improvement in
neurogenesis. For instance, acute treatments with melatonin improved neurogenesis in
C57BL/6 mice with d-galactose-induced aging, since melatonin restored proliferation and
neuronal differentiation processes while improving spatial memory deficits in these aged
mice [77]. Likewise, long term treatments with melatonin for 3, 6 or 9 months were able to
positively modulate hippocampal neurogenic processes during the normal aging of Balb/C
mice [54,64]. In this study, melatonin increased cell proliferation (>90%), promoted the
survival of newly created cells (>50%) and increased the number of doublecortin-labeled
postmitotic cells (>150%) and calretinin-positive neurons (>66%) in the dentate gyrus of the
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hippocampus of these mice [54,64]. Therefore, the anti-aging properties of melatonin seem
to be linked to its neurogenic properties.

Alzheimer 's disease (AD) is the most common form of dementia during aging. Im-
portantly, the age-related decline in adult hippocampal neurogenesis can be accelerated
due to the presence of AD, thus further contributing to hippocampus-dependent cognitive
and emotional dysfunctions during aging [45,75]. Likewise, recent studies have shown a
compromised adult hippocampal neurogenesis in the aged and neurodegenerative brains
of SAMPS8 mice [46]. These mice are considered an animal model for studying AD-related
neurodegenerative processes [47,49,78]. Chronic treatment with melatonin (10 mg/kg) for
9 months in SAMPS8 mice improved cell survival, the correct migration of neural precursor
cells and their neuronal maturation (e.g., neural processes and the length of neuronal
prolongations) [46]. Given that SAMP8 mice present an early decrease in melatonin levels
and its receptors in several organs, including the brain [47,79], the benefits and neurogenic
actions of melatonin in these mice seem to be independent of the melatonin receptors.

4.2. Stress, Anxiety and Depression

The most common mental disorders are mood disorders, especially depression and
situations of chronic stress and anxiety. In particular, depression is one of the most fre-
quent mood disorders in the world [80,81]. A depressive mood may be an adaptive stress
response manifested by different behavioral phenomena, such as anhedonia, psychomotor
disturbance and loss of appetite and sleep, that can lead to a great variety of psychological
symptoms ranging from loss of motivation and energy to suicidal thoughts [81,82]. Theo-
ries involving the presence of neuroinflammation and impairments in neurogenesis and
processes of neuronal remodeling are widely accepted in the pathogenesis related to mood
depression [81].

The antidepressant-like and anti-stress effects of melatonin are well known [58,67,68,82-84].
Accordingly, melatonin levels decrease in the plasma of depressive patients [83]. Several
studies regarding stress, anxiety and/or depression have confirmed the antidepressant
properties of melatonin linked to its neurogenic potential [82]. For instance, treatment
with melatonin (2.5 mg/kg) in BalB/C mice exposed to chronic mild stress showed rele-
vant antidepressant-like effects by inducing relevant anti-inflammatory and neurogenic
responses in the dentate gyrus of the hippocampus. The neurogenic benefits of melatonin in
these mice included increased cell proliferation and survival as well as a higher complexity
of the dendrite trees in doublecortin-positive neurons [67,68]. Ramirez-Rodriguez et al.
(2020) also confirmed the interrelationship between antidepressive and pro-neurogenic
properties of melatonin by applying different melatonin concentrations (ranging from
0.5 to 10 mg/kg) to Balb/C mice for 14 days. These authors observed that melatonin
(>2.5 mg/kg) was able to significantly increase the number of doublecortin-positive neu-
rons as well as the number and complexity of dendrite trees in the hippocampal dentate
gyrus while decreasing the immobility behavior of mice in forced swim tests [67]. Similar
effects were found in C57BL /6 mice treated with melatonin (8 mg/kg) since this indolamine
promoted the survival of neural progenitor cells and newly postmitotic immature neu-
rons while also decreasing depressive-like behavior in the forced swim test [58]. Other
animal models based on maternal separation of infants and their social isolation are also
used as study models of depression. These animal models showed disruptions of cell
proliferation and the creation of new neurons in the hippocampal dentate gyrus, which
were reverted by exogenous administration of melatonin (10 mg/kg) [85]. Melatonin also
potentiates the beneficial effects of other common antidepressant drugs, such as citalopram
and ketamine, by significantly modulating the adult hippocampal neurogenesis (prolifer-
ation, survival, number of newly created neurons, etc.), while minimizing their possible
secondary effects (e.g., increase in locomotor activity) [80,83]. Agomelatine, a common
antidepressant drug that functions via melatonin receptors, also exerts beneficial effects
on adult hippocampal neurogenesis. This drug promotes cell survival and proliferation
in the dentate gyrus of stressed rats and with anxiety due to their light exposure twice a
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day for one week [86]. Agomelatine also favors neuronal maturation of dendrite trees in
newly created doublecortin-positive neurons in stressed rats and with a depressive mood
due to chronic and constant exposure to light [87]. Therefore, modulation of neurogenesis
by melatonin is clearly beneficial under conditions of stress, anxiety and depression.

4.3. Acquired Brain Damage

Different brain damage can be acquired during adult life, such as traumatic brain injury
(TBI), damage under situations of ischemia and reperfusion as well as consequences of
brain stroke. Brain injuries can activate a neurogenic response in the brain by promoting the
proliferation of neural stem cells and their migration to the injured area to initiate recovery
of the affected nervous tissue [88]. In the particular case of TBI, the neurogenic response
is limited, depending on the level of brain damage acquired and patient age, and in the
best cases, this response is not extended more than 14 days [89,90]. In this way, therapeutic
strategies based on melatonin administration [91-93] and/or stem cells are promising
approaches in several animal models of TBI [89,90,94]. For instance, melatonin attenuates
deficits in spatial memory and motor function in mice with cortical compact injury via
the modification of cortical and hippocampal dendritic spine morphology, decreasing
hippocampal microgliosis and neuroinflammation, and promoting neurogenesis [94]. In a
recent study, a three-dimensional system containing the combination of neural stem cells
and melatonin repaired damage from TBI in rats so that the brain injury volume decreased,
while cell survival increased with an important recovery of neurologic functions [88]. This
last study also shows that melatonin is able to promote in vitro the differentiation of neural
stem cells in that matrix into different cell types of the nervous system [88].

Melatonin also protects against brain ischemia/reperfusion injuries and stroke [95-98].
The beneficial effects of melatonin under ischemic and brain stroke injuries include an-
tioxidant and anti-inflammatory responses, preservation of the blood-brain barrier and
an improvement in neurobehavioral outcomes [95-97]. Neurogenesis is also increased
by melatonin in ischemic-stroke mice via its melatonin receptors. Under this condition,
melatonin promotes the proliferation of neural stem cells and their neuronal differentiation,
thus activating structural and functional recovery of the ischemic and/or infarcted brain
area [96-98]. Likewise, melatonin pretreatment also improves the survival and function of
transplanted mesenchymal stem cells after focal cerebral ischemia. In particular, melatonin
promotes neurogenesis and angiogenesis processes in transplanted mesenchymal stem cells,
resulting in a decrease in the brain infracted area and an improvement in neurobehavioral
outcomes [99]. Given these premises, the pro-neurogenic properties of melatonin have
relevant benefits for the ischemic brain or after a brain stroke.

4.4. Down Syndrome

Down syndrome (DS) is a consequence of a trisomy in chromosome 21 and is the most
common cause of mental retardation by chromosome disorder. Ts65Dn mice are a good
animal model of DS with developmental delays and motor, cognitive and behavioral alter-
ations similar to those of patients with DS [100-102]. Specifically, cognitive impairments in
these animals include deficits in hippocampal-dependent learning and memory processes
as a consequence of impaired neurogenesis, relevant hypocellularity, increased oxidative
stress and several other neuromorphological and electrophysiological alterations [101,102].

Long term treatment with melatonin has been associated with relevant antioxidant
and anti-aging effects in Ts65Dn adult mice [103]. Likewise, chronic oral supplementation
with melatonin is also able to improve spatial learning and memory in middle-aged Ts65Dn
mice, thus delaying the neurodegeneration and cognitive deterioration that characterize
these animals [100]. These beneficial effects of melatonin in Ts65Dn mice are related to
an improvement in adult neurogenesis, since melatonin increases cell proliferation and
promotes the differentiation of neuroblasts in the hippocampus of these mice [101]. How-
ever, melatonin has neither pro-neurogenic effects nor prevents the cognitive impairments
of Ts65Dn mice when it is administered in pregnant animals throughout their conception



Int. J. Mol. Sci. 2023, 24, 4803

9 of 21

as well as in their offspring until 5 postnatal months [102]. Therefore, melatonin may
represent an effective pro-neurogenic treatment, at least for retarding the progression of
neuropathology of DS in the adult brain but not during neurodevelopment.

4.5. Epilepsy

Epilepsy is a neurological disorder characterized by anomalous brain activity that
arises because of a burst of abnormal electrical activity, ultimately causing seizures and
sometimes loss of awareness. Epilepsy is the second most common chronic neurological
disorder after headaches and affects all age groups. Globally, approximately 5 million
people are diagnosed with epilepsy each year, and currently, over 70 million people suffer
from this disorder [104,105]. Generally, epilepsy is treated by taking a combination of
drugs, commonly known as antiepileptic medication, which can reduce the frequency and
intensity of seizures. Currently, more than 20 different types of antiepileptic medications
are available, but these treatments are not always effective, and sometimes surgery is
recommended [106,107]. Although important research advances have been made in the
development of more effective drugs for the treatment of epilepsy during the last few years,
the vast majority of medicaments used today cause apoptotic neurodegeneration [108], and
approximately 35% of patients experience recurrent spontaneous seizures [109].

Increasing lines of evidence indicate that melatonin can act as an adjunctive treatment
in epilepsy given its neuroprotective effects [110]. Generally, epileptic disorders were
found to induce excitotoxic neural death mediated by the interaction of the GluR2/GAPDH
complex. A study carried out in a rat model revealed that chronic treatment with melatonin
after induction of epilepticus reduces seizure severity and neural death by disrupting the
GluR2/GAPDH complex interaction [111]. Likewise, it has also been described that this
neurohormone mediates an anticonvulsant effect by acting on GABA receptors [112]. Mela-
tonin was found to block voltage-dependent calcium-channel-mediated neurotransmitter
release, leading to the suppression of neural activity and, therefore, reducing epileptic
symptoms [113]. It is worth mentioning that the use of melatonin as a possible treatment for
epilepsy is gaining even more attention given the regulatory properties of this indolamine
in cell neurogenesis and differentiation. Uyanikgil and colleagues studied for the first
time the modulatory action of melatonin administration on neurogenesis in newborns of
pinealectomized rats subjected to epilepsy during pregnancy [114]. In the cerebellum of
these animals, it was observed that the lack of melatonin leads to increased expression of
nestin, a widely known marker of neural stem cells, which has been recently demonstrated
to negatively regulate neural differentiation and survival [115]. Interestingly, melatonin
administration was able to inhibit the disproportionate expression of nestin and alleviate
epileptic seizures [114]. Later, another study also observed a similar response in the CA1
region of the hippocampus [116], further strengthening that melatonin exhibits neurogenic
and neuroprotective properties in epilepsy.

Moreover, melatonin coadministration in rats receiving valproic acid (VPA) treatment
was found to regulate certain adverse effects caused by the conventional antiepileptic drug
used [117]. VPA was described to trigger oxidative stress, subsequently stimulating the
expression of p21 and the induction of cell cycle arrest [118], which resulted in the repres-
sion of hippocampal neurogenesis [117]. However, melatonin coadministration protected
against VPA-induced alteration of neurogenesis by downregulating p21 levels [117]. In line
with these findings, melatonin appears to regulate neural migration and differentiation
in epileptic disorders. It was shown that VPA treatment leads to cognitive impairments
and a reduction in cell proliferation in the hippocampus by decreasing doublecortin (DCX)
levels [119]. Melatonin administration was able to increase the protein levels of DCX, sug-
gesting that this indolamine seems to regulate neurogenesis by influencing the proportion
of newly generated immature neurons and, consequently, counteracting the cognitive im-
pairment induced by VPA [117]. In addition, VPA was also found to decrease the expression
of SRY-Box transcription factor 2 (SOX2) [120], which is tightly involved in the promotion
of neural stem cell proliferation and survival and in the activation of neural differentia-
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tion [121,122]. Melatonin treatment had previously been shown to increase SOX2 levels,
promoting cell proliferation [123]. Moreover, the adjuvant administration of melatonin
in epilepsy was demonstrated to also upregulate SOX2 expression in the hippocampus,
counteracting neurogenesis impairment [117]. Therefore, all these works indicate that
melatonin positively regulates neuronal differentiation and survival in epilepsy through
its action on different cell signaling pathways, and its use as an adjuvant to suppress the
adverse aspects of the currently used antiepileptic drugs is interesting.

4.6. Schizophrenia

Schizophrenia is a severe mental disorder characterized by positive or psychotic symp-
toms, such as hallucinations, which are usually temporary, and by negative symptomes,
such as anhedonia and cognitive dysfunction, that tend to be chronic [124-126]. Cognitive
and social impairments are the first symptoms that patients experience, in a period called
prodromal, many years (>10 years) before suffering the first episode of psychosis, which
generally appears in adolescence or in early adulthood [125]. Although schizophrenia is
not a common disease (incidence is approximately 1% of the world s population [127]),
acute schizophrenia is valued as one of the most disabling disorders worldwide [128],
which makes its diagnosis crucial for early intervention. However, schizophrenia is cur-
rently diagnosed once the patient experiences two or more episodes of psychosis following
the criteria described in the Statistical Manual (DSM) of the American Psychiatric Asso-
ciation [129] or in the International Classification of Diseases (ICD) of the World Health
Organization [130]. Moreover, most of the currently existing antipsychotic drugs, which
primarily mediate the blockage of neurotransmitter receptors [131], seem to be effective
against positive symptoms, but exert only a slight improvement in negative and cognitive
symptoms [132].

Currently, schizophrenia pathophysiology is unknown, but the evidence suggests that
this disorder is caused by early brain developmental impairment due to the influence of
genetic and environmental risk factors [126]. Interestingly, season of birth is associated with
an increased risk of developing schizophrenia [133]. It has been suggested that the maternal
chronobiological disturbances during pregnancy might be the cause [134]. Alterations in
melatonin production during pregnancy were also related to psychiatric disorders [135].
Nevertheless, existing research on the effect of melatonin on neurodevelopment, particu-
larly in schizophrenia, is limited [136]. A study carried out with human olfactory neuronal
precursors (ONPs), a model widely used for the study of neurodevelopment since it shares
many characteristics with embryonic neural stem cells [137], has shown that melatonin
promotes neural differentiation [136]. Specifically, the differentiation capacity of ONPs
derived from patients with schizophrenia was markedly reduced, which was found to
be associated with decreased levels of the phosphorylated protein glycogen synthase 33
(GSK3p) and melatonergic receptors, which seem to be essential for axon formation [136].
Interestingly, melatonin was found to counteract this reduction in ONPs obtained from
schizophrenic patients. Furthermore, these ONPs from patients diagnosed with schizophre-
nia also exhibited an alteration in the cellular mechanism of exocytosis, which was found to
be improved with melatonin treatment, since this neurohormone causes changes in the actin
microfilaments of the cytoskeleton [138]. These results suggest that melatonin is involved in
neurodevelopment by promoting differentiation and the correct establishment of neuronal
circuits. In the context of fetal brain development, the proper melatonin supply from the
mother to the fetus is critical for the appropriate development of neuronal morphology and
the functional differentiation of neurons, as well as for the prevention of schizophrenia and
the associated neurodevelopmental anomalies [136,138]. Despite the recent findings, there
remains a significant need for research in this direction to deepen the understanding of the
origin of this pathology.

On the other hand, neurogenesis seems to be impaired during neurodevelopment in
schizophrenia, and there is also a reduction in this capacity in schizophrenic adults [139],
especially affecting the hippocampal stem cells of the dentate gyrus [140]. Additionally,



Int. J. Mol. Sci. 2023, 24, 4803

11 of 21

structural and functional abnormalities of the hippocampus were found to be present in
patients with schizophrenia, where hippocampal shrinkage, synaptic alterations and a
disconnection with the rest of the central nervous system were observed, leading to the
cognitive impairments experienced by these patients [141]. Several studies have shown
that melatonin is able to attenuate alterations in the hippocampal region of the brain and
improve the cognitive system [46,142,143] by promoting both proliferation and differenti-
ation of neurons [142,143]. Moreover, patients with schizophrenia were found to exhibit
a reduction in the size of the pineal gland, leading to disturbances in melatonin secretion
levels [144]. However, many of the antipsychotics used for the treatment of this mental
disorder, such as haloperidol and risperidone, do not improve the levels of melatonin or
the levels of GAP-34, a protein involved in neurodevelopment and neuroplasticity [145].
Therefore, the administration of melatonin together with antipsychotics could improve
the symptomatology of these individuals. Indeed, a recently published review has shown
that the administration of melatonin together with antipsychotics improves sleep and
medication side effects [146]. Moreover, although melatonin administration did not show
significant improvement in cognitive function compared to control individuals, this neuro-
hormone was able to improve the memory of patients with schizophrenia in comparison
to baseline assessments [146]. Given that adjunctive melatonin therapy seems to exert
positive outcomes in schizophrenia, future investigations using large sample sizes and
testing melatonin administration together with different antipsychotic drugs are needed.

4.7. Amyotrophic Lateral Sclerosis (ALS)

ALS is a rare disease that causes the progressive deterioration and loss of function
of motor neurons in the anterior horn of the spinal cord, eventually leading to severe
disability and death. Normally, patients die from respiratory failure within 2—4 years after
symptom onset [147]. Overall, the worldwide incidence of ALS is approximately 1.7 cases
per 100,000, with a prevalence of 5 in 100,000 people [148]. Generally, the diagnosis of ALS,
especially during the early stages of the disease, is complicated and uncertain. The major
problem lies with the absence of characteristic abnormalities of the first and the second
motor neuron pathways. As a result, there is no definitive test for ALS, and the diagnosis
is determined by the exclusion of other causes of motor neuron dysfunction [148,149].
Moreover, since it is an extremely heterogeneous disease, the only approved drug to date
is riluzole, a benzothiazole derivative that blocks glutamatergic neurotransmission in the
central nervous system. Even though this treatment is well tolerated, its efficacy in ALS is
moderate, prolonging the survival of patients by only 2-3 months [150,151].

Despite intensive research efforts, the etiology of ALS is currently not well under-
stood. Research has indicated that the major pathophysiological mechanism linked to
ALS is mutation in the SOD1 gene. Data obtained in a recent study support that folding
intermediates, instead of the mature SOD1 protein, promotes the accumulation of toxic
substances [152], which seem to be influenced by the decrease in the antioxidant cellular ca-
pacity by affecting zinc binding capacity [153,154]. Moreover, ALS also courses with protein
aggregation, which involves cytoskeletal proteins, as well as mitochondrial dysfunction.
These alterations, in turn, promote greater cytotoxicity [155].

In recent years, studies focused on evaluating the therapeutic action of melatonin in
ALS have gained attention. Indeed, melatonin has been proposed as a potential compound
for neuroprotection in ALS since it leads to better prognosis by slowing disease progression
and prolonging survival [156]. Although at present there are no significant research reports
on the effects of this indolamine on neural stem cells from subjects with ALS, various modu-
latory effects of melatonin on diverse cellular mechanisms that could influence cell fate and
differentiation have been observed. The antioxidant properties of melatonin were found to
allow the reduction of oxidative stress in ALS patients [157]. It has been widely described
that the regulation of redox signaling is critical for the coordination of the cell cycle with
differentiation to ensure homeostasis and control cell fate in other diseases and in develop-
mental processes [158-160]. ROS directly regulate cellular signaling, especially metabolism
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and cell death processes. A novel study has recently shown that melatonin also promotes
autophagy in ALS mice via the upregulation of SIRT1 [161]. Moreover, another work
found that melatonin exerts neuroprotective effects in the mutant SOD1 (G93A) transgenic
mouse model of ALS through the regulation of caspase-mediated cell death. Melatonin
inhibited activation of the caspase-1 pathway, blocked the release of mitochondrial CytC
and decreased the expression and activation of caspase-3 [37]. Several works have focused
on evaluating the role of autophagy and cell death signaling in the modulation of neural
stem cells. Autophagy was demonstrated to regulate Wnt and Notch signaling, two cellular
pathways that are essential for adequate neural differentiation [162,163]. The available
data denote that autophagy contributes to the preservation and activation of quiescent
adult neural stem cells and the survival of newborn neurons [164]. Likewise, cell death
pathways were found to act as regulatory mechanisms in neurogenesis and synaptic activity.
The blockade of caspase-1 was reported to increase neurogenesis [165], and the local and
controlled activation of caspase-3 mediated cell death was intimately involved in many reg-
ulatory mechanisms, including the regulation of neuron death during neurodevelopment
and synapse pruning during differentiation [166]. Therefore, data obtained in relation to
the regulatory action of melatonin on these mechanisms seem to suggest that melatonin
may enhance neurogenesis in ALS not only by preventing neurotoxicity but also by acting
as an autophagy activator and a cell death regulator. Thus, a better understanding of how
melatonin acts on these mechanisms in ALS may provide insights into how melatonin
could be used to reprogram neural progenitor cells for regeneration.

4.8. Other Common Diseases Related to Neurogenesis Impairments

Melatonin also attenuates neurogenesis impairments in a wide range of other com-
mon diseases. Among them, we would like to note diabetes mellitus (DM) given its high
prevalence in the population worldwide. Importantly, this metabolic dysfunction may
negatively impact the adult brain [167] and even contribute to the development of AD [168].
Exogenous administration of melatonin may alleviate DM and its related complications
(e.g., diabetic neuropathies) in cell lines, animal models and diabetic patients [169]. For
instance, leptin-deficient (ob/ob) mice are a preclinical model of obesity and type 2 diabetes,
with clinical complications such as diabetic neuropathy [170,171]. In this way, these mice
express markers of neurodegeneration and anxiety-like and stress-like behaviors [167]. Ex-
ogenous administration of melatonin (500 ng/kg) has beneficial effects on ob/ob mice, such
that melatonin is able to modulate several parameters, including oxidative stress, stress of
the endoplasmic reticulum, inflammation, adipogenesis and proteolytic systems in organs
such as the liver and brain. As a consequence, melatonin reduces neurodegeneration in the
brains of ob/ob mice and the behavioral impairments found in these animals [167,171,172].
In contrast, endogenous melatonin may interfere with measurements of glycemic control
in diabetic patients [173]. Likewise, a rare variant of melatonin receptor 1b (MTNR1B) has
been recently identified and is associated with impaired glucose tolerance and an increased
risk of type 2 DM [169].

There are few studies about the pro-neurogenic effects of melatonin in situations of
DM. However, it is well known that disruptions in the plasma levels of insulin and/or
glucose may negatively impact not only neurodevelopment [174,175] but also adult brain
neurogenesis in animal models of DM [176-178]. Oxidative stress and its consequences
mediate the inhibitory effects of high levels glucose on the differentiation of neural stem
cells [179]. Wongchitrat et al. (2016) observed that melatonin treatment (10 mg/kg) for
4 weeks in mice with DM decreased astrogliosis in the hippocampus and reverted impair-
ments observed in neurogenesis and synaptogenesis via melatonin and insulin receptors,
with an improvement in spatial memory deficits [55,98]. Other studies have also demon-
strated beneficial effects of melatonin in animal models of gestational diabetes. Injections of
melatonin (10 mg/kg) in these animals prevented fetal neuropathies in their offspring given
that melatonin promoted the proliferation and survival of neural stem cells and avoided
their premature neuronal differentiation [55,174,175]. Therefore, although the benefits of
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melatonin for DM are still controversial, the interplay between melatonin and neurogenesis
is promising as a potential treatment for brain disorders related to impairments in glucose
and insulin homeostasis. However, further studies are necessary to support this point.

5. Conclusions

Neuroprotective effects of melatonin on different neurological pathologies may in-
clude (a) improvements in antioxidant defenses; (b) a relevant anti-inflammatory response;
(c) decreased cell sensitization to apoptosis; and (d) promotion of appropriate functional
neurogenesis. These properties of melatonin may promote several benefits on neural stem
cells, without toxic side effects, that include increases in the survival and proliferation of
neural stem/progenitor cells as well as the promotion of neuronal differentiation processes
of neural progenitor cells and the correct migration and neuronal maturation of neural
precursor cells. Finally, melatonin treatments may improve neurobehavioral outcomes as
well as motor and cognitive functions (e.g., learning and memory processes). Depending
on the specific neurologic pathology, melatonin may revert and/or, at least, delay those
alterations that affect neurogenic mechanisms in order to promote appropriate neuroge-
nesis and the structural and functional recovery of those damages that are produced on
the nervous tissue under different neuropathologies, as reviewed above. In particular, pro-
neurogenic actions of melatonin may be beneficial during brain aging, dementias, situations
of anxiety and chronic stress, under a depressive mood, after TBI, neurological damage due
to ischemia and stroke, in Down syndrome, under conditions of epilepsy, schizophrenia
and ALS and due to metabolic disorders with a relevant neurological impact, such as DM
(Figure 3). In this way, future strategies based on appropriate melatonin administration
might be useful in clinical practice to fight these common and frequent neuropathological
conditions. It is paramount to note that we have always included both neurogenic niches
of the adult brain in our searches regarding effects of melatonin on neurogenesis under
different neurological and neuropsychiatric conditions. However, it is true that in most of
the pathologies considered in our study, the neurogenic zone affected by melatonin has
always been the stem cell niche of the hippocampus. Therefore, neural stem cells of the
dentate gyrus of the hippocampus seem to be a key target for the benefits of melatonin in
neurological diseases related to impairments of adult brain neurogenesis.
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Figure 3. Melatonin may positively impact several neurological outcomes by correcting impairments
that affect neurogenesis in the adult brain under different neuropathological conditions.
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