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Abstract
Patients with chronic lymphocytic leukemia (CLL) progressively develop marked immunosuppression, dampening innate 
and adaptive-driven antitumor responses. However, the underlying mechanisms promoting immune exhaustion are largely 
unknown. Herein, we provide new insights into the role of BTLA/HVEM axis promoting defects in T cell-mediated responses 
against leukemic cells. Increased expression of BTLA, an inhibitory immune checkpoint, was detected on the surface of 
CD4 + and CD8 + T lymphocytes in patients with CLL. Moreover, high levels of BTLA on CD4 + T cells correlated with 
diminished time to treatment. Signaling through BTLA activation led to decreased IL-2 and IFN-γ production ex vivo, 
whereas BTLA/HVEM binding disruption enhanced IFN-γ + CD8 + T lymphocytes. Accordingly, BTLA blockade in com-
bination with bispecific anti-CD3/anti-CD19 antibody promoted CD8 + T cell-mediated anti-leukemic responses. Finally, 
treatment with an anti-BLTA blocking monoclonal antibody alone or in combination with ibrutinib-induced leukemic cell 
depletion in vitro. Altogether, our data reveal that BTLA dysregulation has a prognostic role and is limiting T cell-driven 
antitumor responses, thus providing new insights about immune exhaustion in patients with CLL.
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Introduction

Within the last decade, the therapeutic landscape of patients 
with chronic lymphocytic leukemia (CLL) has been revolu-
tionized by using small molecule inhibitors, including ibru-
tinib/acalabrutinib, idelalisib, and venetoclax [1, 2]. How-
ever, despite these recent advances in therapeutic protocols, 
CLL treatment is still challenging, and this hematological 
malignancy remains incurable. Treatment-associated tox-
icities and mutations affecting key genes have limited the 
clinical success of these approaches, highlighting the need 
for a deeper understanding of CLL pathogenesis that might 
improve patient management [3, 4].

CLL progression is associated with substantial NK cell 
and T cell exhaustion [5]. We and others have reported that 
increased expression of inhibitory immune checkpoints, 
such as LAG-3, ILT2, NKG2A, or TIGIT, plays an essen-
tial role in hampering the antitumor immune response [6–9]. 
Nonetheless, ICB-based therapeutical interventions target-
ing PD-1 failed to achieve clinical benefits in clinical trials 
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in CLL, bringing to light the importance of unveiling the 
immunobiology of this malignancy [10].

B- And T-Lymphocyte Attenuator (BTLA), an inhibi-
tory immune checkpoint expressed on B, T, and NK cells, 
has gained attention within the last few years [11]. HVEM 
stands as the binding partner for BTLA, it is characterized by 
a broader expression, since it can also be detected in hemat-
opoietic, epithelial, and endothelial cells, and neurons [12]. 
HVEM works as a bidirectional switch, acting as a ligand for 
distinct co-stimulatory and co-inhibitory molecules, but also 
being able to activate its own signal transduction. This intri-
cate network is crucial for the maintenance of homeostasis of 
the immune response [13]. Upon binding, HVEM provides 
pro-survival and proliferative signals through activation of 
NF-κB and AKT transcriptional pathways, whereas BTLA 
downregulates T cell-mediated responses [11, 14–17]. It has 
been previously described that BTLA engagement to HVEM 
results in defective T cell function. More specifically, tumor 
antigen-specific CD8 + T cells displayed enhanced cytokine 
production and proliferation upon BTLA blockade in mela-
noma models in vitro [18]. BTLA/HVEM axis dysregulation 
has been linked to poor outcome and diminished antitumor 
immune responses in a wide variety of cancers, including 
solid tumors (e.g. pancreatic adenocarcinoma, non-small-
cell lung cancer) and those from the hematological origin 
(e.g. follicular lymphoma, CLL) [19–23]. Icatolimab, a first-
in-class anti-BTLA monoclonal blocking antibody (mAb), 
has shown promising preliminary results in recent clinical 
trials in patients with advanced solid tumors [24]. Like-
wise, ongoing clinical trials are also being conducted to test 
the efficacy of icatolimab in hematological malignancies, 
including recurrent/refractory lymphoma (NCT04477772), 
although no results have been published to date.

In line with this, we have recently reported that BTLA/
HVEM axis is deeply dysregulated on leukemic cells 
and NK cells from patients with CLL [25]. Importantly, 
enhanced BTLA expression on NK cells correlated to a 
shorter time to treatment (TTT) and diminished antitumor 
responses. Ex vivo treatment with anti-BTLA blocking 
mAbs restored, at least in part, NK cell-mediated anti-leuke-
mic activity by promoting cytokine production and cytotox-
icity, as well as antibody-dependent cytotoxicity (ADCC) in 
combination with the anti-CD20 antibody rituximab. Herein, 

we evaluate BTLA expression and function on T cells from 
patients with CLL.

Results

BTLA expression is increased on T lymphocytes 
from patients with CLL

We have previously reported that BTLA expression is 
increased on leukemic cells compared to their healthy 
counterpart [25]. These findings were confirmed in a new 
cohort of patients (n = 11) and HD (n = 11) upon pheno-
typic characterization of peripheral blood mononuclear cells 
(PBMCs) from patients with CLL and healthy donors (HD) 
(Fig. 1A–B, left panels). As expected, BTLA expression 
was increased in leukemic cells compared to B cells from 
HD (p = 0.0066), whereas HVEM levels were decreased 
(p = 0.0008) (Fig. 1C–D).

Surface BTLA/HVEM expression was next evaluated 
on T cells from 71 patients and 20 healthy donors by flow 
cytometry (Fig. 1A–B, right panels). BTLA expression 
was found to be significantly heightened in T cells from 
patients with CLL (Fig. 1E), however, no differences were 
detected regarding surface HVEM (Fig. 1F). Interestingly, 
BTLA levels were elevated in all the T cell subsets ana-
lyzed: total CD3 + (p < 0.0001), CD4 + (p < 0.0001), and 
CD8 + (p = 0.01) cells.

BTLA expression on CD4 + T cells, but not on CD8 + T 
cells, correlates with a shorter time to treatment

Next, we assessed whether the expression of BTLA/HVEM 
on T lymphocytes may predict a patient’s outcome. For this 
purpose, the impact on TTT of BTLA and HVEM surface 
expression on CD4 + and CD8 + T cells in our cohort was 
evaluated using Kaplan–Meier analysis. Our data revealed 
that high expression of BTLA on CD4 + T cells, but not on 
CD8 + T cells, correlated with diminished TTT (Fig. 2), sug-
gesting that this inhibitory immune checkpoint might play 
a role in T cell exhaustion in this malignancy. Of note, no 
correlation between TTT and HVEM levels on CD4 + or 
CD8 + T cells was observed (Fig. 2C–D).

BTLA blockade promotes cytokine production and T 
cell‑mediated cytotoxicity

In order to elucidate whether BTLA dysregulation impinges 
on T lymphocyte-mediated responses, we first evaluated the 
relevance of BTLA on the immune production of cytokines 
with key roles in antitumor responses. More specifically, 
IFN-γ and IL-2 intracellular levels were assessed upon 
BTLA activation or blockade in PBMCs from 8 patients 

Fig. 1  T cells from patients with CLL showed increased BTLA 
expression. BTLA and HVEM surface expression was evaluated on 
PBMCs from patients with CLL and HD by flow cytometry. A Gat-
ing strategy for leukemic cell and T cell subsets detection. B Repre-
sentative histograms from three patients with CLL and three healthy 
donors (HD). C–D Comparison of BTLA and HVEM expression 
(MFI ± SEM) between leukemic cells and B cells from HD (n = 11). 
E–F Evaluation of surface BTLA/HVEM levels in T cell sub-
sets from patients with CLL (n = 70) and HD (n = 20). *p < 0.05, 
**p < 0.01 and ***p < 0.001
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with CLL (Fig. 3A and Supplementary Figure S1). Treat-
ment with agonistic anti-BTLA mAb led to a decreased 
percentage of IL-2 + CD3 + T cells (33.81 ± 5.57 vs. 
21.71 ± 6.925, p = 0.01), IL-2 + CD4 + T cells (37.03 ± 5.518 
vs. 23.87 ± 8.048, p = 0.01), as well as IL-2 + CD8 + T cells 
(18.05 ± 4.022 vs. 10.35 ± 3.051, p = 0.01) (Fig. 3B). In 
line with this, BTLA activation significantly reduced IFN-γ 
levels in these immune cell subsets (16.72 ± 2.758 vs. 
11.46 ± 1.514, 8.13 ± 1.178 vs. 5.85 ± 1.99 and 41.91 ± 7.23 
vs. 28.8 ± 4.17, respectively) (Fig. 3C). On the other hand, 
ex vivo treatment with antagonistic anti-BTLA mAb showed 
little effect on IL-2 production (Fig. 3D). However, IFN-γ 
intracellular levels were significantly augmented upon 
BTLA/HVEM axis disruption, mainly in cytotoxic CD8 + T 
cells (27.1 ± 6.01 vs. 37.32 ± 7.82, p = 0.007) (Fig. 3E).

BTLA signaling disruption promotes T cell‑mediated 
cytotoxicity

Lastly, we evaluated whether treatment with anti-BTLA 
blocking mAbs specifically boosted T cell-mediated antileu-
kemic cytotoxicity. For that purpose, stimulated HD-derived 
CD8 + T lymphocytes, pre-treated with blocking anti-BTLA 
mAb, were co-cultured with MEC-1 cell line at indicated 
E:T ratios (n = 7) (Fig. 4A). Noteworthy, MEC-1 cells dis-
play a similar phenotype to that of leukemic cells from 
patients with CLL, expressing high levels of surface BTLA 
(mean MFI: 61,629.7) and HVEM (mean MFI: 9515.4) 
(Supplementary Figure S1). The percentage of viable leu-
kemic cells was analyzed by flow cytometry. As depicted in 
Fig. 4A, BTLA blockade significantly augmented the target 

Fig. 2  High BTLA expression on CD4 + T cells correlates with a 
shorter time to treatment in CLL. Kaplan–Meier survival analysis 
showing TTT in patients with CLL categorized by BTLA (A, B) or 

HVEM (C, D) levels on CD8 + T cells and CD4 + T cells. n.s. = not 
significant, p < 0.05
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Fig. 3  Ex vivo treatment with an anti-BTLA blocking antibody 
increases cytokine production by T cells in patients with CLL. A 
Representative histograms of IL-2 + CD4 + and IFN-γ + CD8 + T 
cells treated ex vivo with agonistic or antagonistic anti-BTLA mAbs. 

B–E Effect of BTLA signaling upon activation or blockade on IL-2 
and IFN-γ production on the total T cell (CD3 + /CD56 −) and 
CD4 + /CD8 + T lymphocyte subsets (percentage normalized to con-
trol ± SEM). *p < 0.05, **p < 0.01
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cell lysis, supporting the role of BTLA/HVEM axis in damp-
ening T cell-mediated cytotoxicity. Taking these results into 
account, we studied the impact of an anti-BTLA blocking 
mAb in combination with bispecific anti-CD3/anti-CD19 
antibodies in CLL. PBMCs from 9 patients with CLL were 
treated with BTLA blocking antibodies for 72 h and, then, 
NK and T cell anti-leukemic responses against CLL-derived 
MEC-1 cells were evaluated (Fig. 4B). As we previously 

reported, BTLA blockade enhanced NK cell cytotoxicity 
[25]. In line with this, pre-treatment of MEC-1 target cells 
with bispecific anti-CD3/anti-CD19 antibodies increased 
specific leukemia cell lysis. Further, such cytotoxic activity 
was significantly heightened upon BTLA blockade.

Finally, we analyzed whether BTLA blockade might 
effectively work with BTK inhibitors routinely employed 
in the context of CLL. PBMCs obtained from 9 consecutive 

Fig. 4  BTLA blockade promotes T cell-mediated anti-leukemic 
responses in CLL. A Cytotoxic activity was evaluated on stimulated 
HD-isolated CD8 + T lymphocytes treated with anti-BTLA mAb or 
isotype control and co-cultured with MEC-1 cell line as target cells 
at the indicated ratios (n = 7). Viability was measured by CD19/
PI staining and flow cytometry. The effect of BTLA blockade on 
cellular cytotoxicity was evaluated in  vitro by calcein-AM assay. B 
PBMCs from patients with CLL were treated with anti-BTLA mAb 

or isotype control and co-cultured with MEC-1 cell line at 50:1 (E:T) 
ratio. Where indicated, MEC-1 cells were pre-treated with 100 ng/mL 
bispecific anti-CD3/anti-CD19 antibody (n = 9). Absolute leukemic C 
and T cell D count was evaluated on PBMCs from patients with CLL 
(n = 9 and n = 3, respectively) upon treatment with 10  µg/mL anti-
BTLA mAb or isotype control alone or in combination with 1  µM 
ibrutinib. *p < 0.05, **p < 0.01
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patients with CLL were treated ex vivo with anti-BTLA 
blocking mAb in combination with ibrutinib (Fig. 4C). 
BTLA blockade significantly reduced leukemic cell numbers 
after 72 h. Interestingly, a combination of both treatments 
significantly enhanced tumor cell depletion. Remarkably, no 
effect on T cell count was observed upon treatment with 
anti-BTLA mAb or ibrutinib (Fig. 4D).

Discussion

The progression of CLL is tightly associated with grow-
ing immunosuppression affecting all compartments of the 
immune system promoting the development of secondary 
neoplasias and an increased risk of infections. Inhibitory 
immune checkpoint dysregulation has previously been asso-
ciated with antitumor immune defects in CLL, including an 
altered cytokine profile and dampened NK cell and T cell 
cytotoxicity, which lead to lessened anti-leukemic responses 
[26]. In this line, we first reported the immunosuppres-
sive and prognostic role of BTLA in CLL to gain insight 
into the potential of BTLA as a target for immunotherapy 
[25]. In this work, we further demonstrate that BTLA, but 
not HVEM, surface expression is increased on circulating 
CD4 + and CD8 + T cells from patients with CLL. Similar 
results have been detected on T cell subsets in other types of 
cancer, such as BTLA upregulation on peripheral CD4 + T 
cells in hepatocellular carcinoma or tumor antigen-specific 
CD8 + T cells from melanoma [15, 18, 27]. In line with our 
previous work, which disclosed that high BTLA surface 
expression on NK cells correlates with poor outcome, we 
herein report that increased levels of this immune check-
point on CD4 + T cells are also associated with diminished 
TTT in patients with CLL. Notoriously, the prognostic value 
of BTLA expression has already been reported in other 
hematological malignancies. For instance, the presence of 
BTLA + T cells in the tumor microenvironment was associ-
ated with lower cytotoxic capability, advanced stage, and 
poor prognosis in diffuse large B-cell lymphoma [22].

Herein, immunosuppression and functional inhibition 
of T lymphocytes through BTLA was evaluated using ago-
nistic and antagonistic anti-BTLA mAb. The activation 
of this inhibitory immune checkpoint decreased IL-2 and 
IFN-γ production, which is consistent with earlier studies 
[22, 28]. On the other hand, BTLA binding disruption with 
anti-BTLA blocking mAb partially restored cytokine pro-
duction, enhancing the percentage of IFN-γ + T cells, but 
not IL-2 + T cells. Interestingly, dual BTLA/PD-1 block-
ade showed heightened IFN-γ levels and improved over-
all survival compared to monotherapies in murine models 
of glioblastoma [29]. Since BTLA has been reported to 
be co-expressed with several other immune checkpoints, 
whether the efficacy of BTLA blockade in monotherapy 

is related to inhibitory signaling through other receptors 
requires further investigations [22, 28]. In addition to 
cytokine production, BTLA tightly modulates cytotoxic 
responses driven by NK cells and CD8 + T lymphocytes 
as well, thus suggesting that this inhibitory checkpoint 
hinders innate and adaptive antitumor responses [22, 30, 
31]. In CLL, and in consonance with our precedent work, 
the use of an anti-BTLA blocking mAb potentiated NK 
cell-mediated cytotoxicity. Moreover, the combination of 
BTLA blockade with bispecific anti-CD3/anti-CD19 anti-
bodies boosted CD8 + T cell anti-leukemic activity, thus 
suggesting that BTLA upregulation is limiting antitumor 
responses.

Remarkably, and despite the disappointing results from 
initial clinical trials targeting PD-1/PD-L1, recent reports 
propose that a subset of patients might benefit from these 
therapies in combinatorial regimens. Treatment with pem-
brolizumab, alone or in combination BTK inhibitors, are 
currently ongoing in patients with high-risk CLL and those 
who underwent Richter transformation [10, 32]. Notewor-
thy, ibrutinib improves CLL-associated T cell dysfunction 
and downregulates BTLA expression on tumor cells without 
affecting its expression on T lymphocytes [33]. Here, we 
show that the combination of BTLA blockade with ibrutinib 
significantly increased leukemic cell depletion ex vivo with-
out affecting T cell numbers. Altogether, these data suggest 
that BTLA/HVEM axis might favor immune exhaustion and 
tumor evasion in CLL.

BTLA and HVEM belong to an exceptionally complex 
network, since HVEM acts as a bidirectional switch, provid-
ing pro-survival signaling upon BTLA binding [17]. It is 
estimated that the cis-complex established between BTLA 
and HVEM represents approximately 80% of their surface 
reservoir on T cells, which prevents HVEM trans activation 
[34]. However, a recent study demonstrated that inhibitory 
signaling through BTLA plays a major role even in cis het-
erodimers, limiting T cell activation via HVEM [35]. Since 
BTLA expression is upregulated on CD4 + and CD8 + T 
lymphocytes from patients with CLL, whereas no changes 
on surface HVEM were detected on this immune subset, 
we hypothesize that BTLA may inhibit T cell-mediated 
responses through cis complexes as well as by trans inter-
action with HVEM on leukemic cells. The role of cis and 
trans BTLA/HVEM interplay favoring o limiting leukemic 
cell development has not been addressed in this work. Yet, 
HVEM/BTLA trans interaction among adjacent tumor cells 
in follicular lymphoma has been described to hinder tumor 
development [36]. Consequently, inactivating mutations or 
downregulation of these immune checkpoints might provide 
a mechanism for stimulating BCR-associated mitogenic sig-
nals in lymphoma cells [36]. Whether surface BTLA and 
HVEM expression may act as a tumor suppressor in leuke-
mic cells in CLL deserves further investigation.
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In conclusion, our study, despite its limitations, demon-
strates that BTLA/HVEM axis is highly dysregulated on T 
cells from patients with CLL and increased BTLA expres-
sion on CD4 + T lymphocytes correlates with shorter TTT. 
BTLA blockade promotes anti-leukemic responses driven 
by NK cells and T cells by boosting cytokine production 
and cytotoxicity. Accordingly, herein, we provide the ration-
ale for further investigating novel anti-BTLA mAbs such as 
icatolimab, and the clinical relevance of the BTLA/HVEM 
axis in CLL alone or in combination with BTK inhibitors.

Materials and methods

Samples

71 consecutive non-treated patients with CLL were included 
in the study. Peripheral blood samples from patients with 
CLL were obtained from Hospital Universitario Central de 
Asturias (HUCA) and Hospital Universitario de Cabueñes 
(Table 1), whereas samples from HD were provided by Cen-
tro Comunitario de Sangre y Tejidos de Asturias. Written 
informed consent following the Declaration of Helsinki was 
obtained from all individuals with approval from the local 
ethics committee (case-19042016). The median follow-
up from the diagnosis of patients was 74 months. PBMCs 
were obtained by Ficoll density gradient centrifugation 
(Histopaque®-1077).

Phenotypical analyses

BTLA and HVEM expression on B cells and T lymphocytes 
from patients with CLL and HD was assessed in fresh by 
flow cytometry using the antibodies listed below (Supple-
mentary Table 2).

Intracellular cytokine measurement

Intracellular cytokine staining was performed as previously 
described by our group [37]. Patient-derived PBMCs were 
cultured with anti-BTLA blocking antibody (clone 3B1, 
murine Ig  G1, kindly provided by Genentech) or proper 
isotype control (murine  IgG1 kindly provided by Dr. Juan 
Ramón de los Toyos González, Universidad de Oviedo, 
Oviedo, Spain) for 72 h at 10 µg/mL. For BTLA activa-
tion experiments, PBMCs were cultured in 96-well plates 
coated with 10 µg/mL agonistic anti-BTLA antibody (clone 
MIH26, Biolegend, San Diego, CA, USA) or isotype con-
trol (clone MG2a-53, Biolegend, San Diego, CA, USA) for 
24 h. PBMCs were stimulated with 50 nM PMA and 1 µg/
mL ionomycin for 4 h and brefeldin A was added after 1 h of 
incubation (Biolegend, San Diego, CA, USA). Right after-
ward, immune subsets were stained as mentioned above 

and BD Cytofix/Cytoperm Fixation/Permeabilization Kit 
(BD Biosciences, BD Biosciences, San Jose, CA, USA) 
was employed according to the manufacturer’s protocol. 
IFN-γ and IL-2 production by T lymphocytes was evalu-
ated using anti-IFN-γ-PE or anti-IFN-γ-PercP/C5.5 (clone 
4S.B3, Biolegend, San Diego, CA, USA) and anti-IL-2-PE 
(clone MQ1-17H12, Biolegend, San Diego, CA, USA) and 
flow cytometry.

Determination of NK and T cell‑mediated 
cytotoxicity

NK and T cell cytotoxic activity was measured by the cal-
cein-AM assay as previously described [38]. Briefly, PBMCs 
from patients with CLL were treated with 10 μg/mL anti-
BTLA (clone 3B1, Genentech) or isotype control for 72 h. 
CLL-derived MEC-1 cell line (ATCC) was employed as tar-
get cells and stained with 10 µM calcein-AM (Biolegend). 
Then, tumor cells were co-cultured with PBMCs at a 50:1 
effector: target (E:T) ratio for 4 h. Right afterward, calcein 
release was measured on a Varioskan™ LUX multimode 

Table 1  Clinical characteristics of patients with CLL

Patients (n = 71) %

Age
 Years (mean) 66.7

Sex
 Female 31 43.6
 Male 40 56.4

Rai Stage
 0 37 52.1
 I-II 21 29.5
 III-IV 13 18.3

Binet Stage
 A 51 71.8
 B 11 15.4
 C 9 12.6

Cytogenetic abnormalities (FISH)
 No alterations 16 22.5
 del(13q) 19 26.7
 del(11q) 4 7.0
 del(17p) 5 5.6
 Trisomy 12 7 9.8
 Others 19 26.7
IGHV status
 Mutated 43 60.5
 Unmutated 15 21.1
 Unknown 13 18.3

Progression
 Stable disease 45 63.3
 Progressive disease 26 36.6
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microplate reader. In order to evaluate allogeneic T cell-
mediated cytotoxicity, MEC-1 cell line was pre-incubated 
with 100 ng/mL bispecific anti-CD3/anti-CD19 (Invivogen) 
for 45 min.

For in vitro evaluation of BTLA blockade on T cell 
cellular cytotoxicity, HD CD8 + T lymphocytes were iso-
lated using MojoSort™ Human CD8 T Cell Isolation Kit 
(Biolegend). Purified CD8 + T cells were stimulated with 
ImmunoCult™ beads (Stemcell) in the presence of blocking 
anti-BTLA mAb (clone 3B1, Genentech) or isotype control 
(10 μg/mL) for 7 days. Stimulated T cells were then incu-
bated with MEC-1 cell line for an additional 72 h at indi-
cated E:T ratios and the viability of tumor cells was evalu-
ated by CD19-APC and PI staining (Immunostep). Basal 
apoptosis was measured by incubating target cells alone and 
specific lysis was calculated as previously detailed [39].

Absolute leukemic cell count

PBMCs from patients with CLL were treated with anti-
BTLA blocking antibody (clone 3B1, Genentech) or iso-
type control (10 µg/mL) alone or in combination with 1 µM 
ibrutinib (MedChemExpress) or vehicle (DMSO) for 72 h. 
Then, PBMCs were stained for leukemic/T cell identifica-
tion, and an equal volume of cell count reference microbeads 
was added to each condition (Sigma-Aldrich). 5 ×  103 refer-
ence beads were acquired in each well by flow cytometry and 
absolute leukemic cell count was determined.

Statistics

The normality was tested by the Shapiro–Wilk test. The rela-
tionship between continuous and categorical variables was 
evaluated by Mann–Whitney U-test. Wilcoxon Matched-
Pairs Signed Ranks test was used for intra-group compari-
sons. For time-to-treatment analysis, considering time to 
treatment as the period from diagnosis to the first thera-
peutic intervention, Kaplan–Meier curves were plotted, and 
each group was compared by log-rank test using SPSS v23.0 
software. Patients were cataloged using the median value 
as the cutoff level. Patients with a follow-up ≤ 1 year were 
excluded from the Kaplan–Meier analysis. p-values ≤ 0.05 
were considered statistically significant.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00262- 023- 03435-1.
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