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Abstract: Ground contact time (GCT) is one of the most relevant factors when assessing running
performance in sports practice. In recent years, inertial measurement units (IMUs) have been widely
used to automatically evaluate GCT, since they can be used in field conditions and are friendly and
easy to wear devices. In this paper we describe the results of a systematic search, using the Web of
Science, to assess what reliable options are available to GCT estimation using inertial sensors. Our
analysis reveals that estimation of GCT from the upper body (upper back and upper arm) has rarely
been addressed. Proper estimation of GCT from these locations could permit an extension of the
analysis of running performance to the public, where users, especially vocational runners, usually
wear pockets that are ideal to hold sensing devices fitted with inertial sensors (or even using their
own cell phones for that purpose). Therefore, in the second part of the paper, an experimental study
is described. Six subjects, both amateur and semi-elite runners, were recruited for the experiments,
and ran on a treadmill at different paces to estimate GCT from inertial sensors placed at the foot
(for validation purposes), the upper arm, and upper back. Initial and final foot contact events were
identified in these signals to estimate the GCT per step, and compared to times estimated from an
optical MOCAP (Optitrack), used as the ground truth. We found an average error in GCT estimation
of 0.01 s in absolute value using the foot and the upper back IMU, and of 0.05 s using the upper arm
IMU. Limits of agreement (LoA, 1.96 times the standard deviation) were [−0.01 s, 0.04 s], [−0.04 s,
0.02 s], and [0.0 s, 0.1 s] using the sensors on the foot, the upper back, and the upper arm, respectively.

Keywords: running; ground contact time; inertial measurement unit (IMU)

1. Introduction

Ground contact time (GCT) is defined as the amount of time a runner is in contact
with the ground for each step (from initial foot contact to final foot contact). GCT has been ad-
dressed as one of the most influential biomechanical factors that affect running economy [1,2].

The use of inertial measurement units (IMUs) for the measurement and evaluation
of sports or human motion, has been an established technique for a long time [3]. The
possibility of using these sensors outside of the laboratory environment has made them
interesting for application in localization [4], occupational health and safety [5], or patho-
logical gait analysis [6], among others. This has led, in the past decade, to an exploration of
the possibility of estimating GCT from IMUs attached to different parts of an athlete’s body.

Different body segments have been selected for the placement of the sensors, and
different algorithms have been proposed to estimate the GCT from the sampled signals.
From a systematic search of the literature, described below, we have found (see Figure 1)
relevant works based on sensors placed on the lower body segments: the foot [7–11], the
ankle [12], the tibia [9,13], the pelvis [8,9], and the trunk lower back [14]. However, the
upper body has received little attention in the scientific literature as a target place to locate
the sensors for the estimation of GCT, with a few exceptions, where GCT was estimated
from a torso-mounted IMU [15].
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The upper body is, from a practical point of view, an ideal place for wearable sensor 
placement. In fact, runners, especially vocational runners, mainly motivated by the neces-
sity of wearing their cellular phones during sports practice, usually wear pockets attached 
to the upper back or to the upper arm that are ideal to hold sensing devices. Therefore, a 
correct estimation of GCT from such places could permit an extension of the analysis of 
the performance of their running to the public, even allowing them to do this from their 
own cellular phone, that is in general provided with inertial sensors, and could be easily 
provided with an app to record the sampled signals and even to estimate GCT. Therefore, 
in this work we conduct an experimental study to estimate the GCT from an inertial sensor 
located at the upper back and the upper arm. We include advanced (semi-elite) and ama-
teur runners (six in total), running on a treadmill at different rhythms. We compare the 
performance between our estimations and those obtained from estimations based on a 
ground truth optical motion capture system (Optitrack). For assessment purposes, we also 
address the estimation of the GCT from an IMU placed at the foot, using a validated 
method proposed in the state of the art [7]. 

The paper is organized as follows. In Section 2 we describe the design, execution, and 
results of a systematic search based on the Web of Science, to select and analyze the most 
relevant works for GCT estimation from body-worn IMUs. Sections 3 and 4 describe the 
experimental methods and results. The paper is finished with the discussion and conclu-
sions in Sections 5 and 6. 
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Figure 1. IMU location of the reference works, selected from the state of the art, as a result of a
systematic search. References: (Falbriard et al., 2018), [7]; (Benson et al., 2019), [8]; (Mo & Chow,
2018), [9]; (Nazarahari et al., 2022), [10]; (Chew et al., 2018), [11]; (Blauberger et al., 2021), [12];
(Fadillioglu et al., 2020), [13]; (Bergamini et al., 2012), [14]; (Watari et al., 2016), [15].

The upper body is, from a practical point of view, an ideal place for wearable sensor
placement. In fact, runners, especially vocational runners, mainly motivated by the neces-
sity of wearing their cellular phones during sports practice, usually wear pockets attached
to the upper back or to the upper arm that are ideal to hold sensing devices. Therefore, a
correct estimation of GCT from such places could permit an extension of the analysis of
the performance of their running to the public, even allowing them to do this from their
own cellular phone, that is in general provided with inertial sensors, and could be easily
provided with an app to record the sampled signals and even to estimate GCT. Therefore,
in this work we conduct an experimental study to estimate the GCT from an inertial sen-
sor located at the upper back and the upper arm. We include advanced (semi-elite) and
amateur runners (six in total), running on a treadmill at different rhythms. We compare
the performance between our estimations and those obtained from estimations based on
a ground truth optical motion capture system (Optitrack). For assessment purposes, we
also address the estimation of the GCT from an IMU placed at the foot, using a validated
method proposed in the state of the art [7].

The paper is organized as follows. In Section 2 we describe the design, execution,
and results of a systematic search based on the Web of Science, to select and analyze the
most relevant works for GCT estimation from body-worn IMUs. Sections 3 and 4 describe
the experimental methods and results. The paper is finished with the discussion and
conclusions in Section 5.

2. State of the Art

A systematic search was run using the Web of Science database on the 4th of February
2022. The following sentence was used for that purpose:
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• Conference papers were discarded;
• The primary objective of the study had to be the timing of step events or ground

contact time as a summarized result. Works with a different primary objective were
not considered, even though event detection was addressed for that purpose. This
consideration was applied sequentially over the title, abstract, and the whole paper, to
screen the recorded papers.

After this preliminary screening, 11 papers were selected for a more exhaustive screen-
ing. From these, two papers were later discarded, as they only addressed identification of
the initial contact event [16,17].

Figure 2 summarizes the process using the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-analyses) flow diagram.
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Figure 2. Flow diagram of the study according to the PRISMA methodology.

After the references screening, two researchers independently analyzed each reference
and findings were discussed later. The reading was focused on:

• The identification of the location of the IMU on the body;
• The identification of the participants in the experiments (number of people, running

experience, gender, velocities, and duration);
• The identification of the performance of the method described to estimate the GCT

with respect to the gold standard method used for validation of the results (accuracy,
precision, or similar performance metrics).

Two papers were removed in this phase [10,13]. While they addressed the identifi-
cation of initial and final contact events, they did not make a paired analysis that could
permit the calculation of the GCT.

Table 1 contains the information extracted from the selected references. For outdoor
experiments, optical [14], photoelectric bar [12], and force platforms [9] systems were used
as the gold standard. Indoor experiments (four from seven) used an optical MOCAP
system [11] or an instrumented treadmill as the gold standard.
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Table 1. Systematic search results. From left to right: reference, gold standard method used for
validation of estimated GCT, number of participants (M: men, W: women), category of runners
(recreational, elite, intermediate), speeds considered in the experiments, location of the sensor
(different methods were addressed in some works from a single sensor), accuracy and precision of
estimated GCT.

Reference Gold Standard Participants Cat Speed Location
GCT

Estimation
Accuracy

GCT
Estimation
Precision

[7]
Instrumented treadmill

(force platform) 25 M/W Intermediate

2.78 m/s to
5.56 m/s,
0.56 m/s

variation, 30 s
each

Foot (method a) −30 ms 4 ms

Foot (method b) −27 ms 4 ms

Foot (method c) −15 ms 5 ms

Foot (method d) −30 ms 4 ms

Foot (method e) −27 ms 4 ms

Foot (method f) −15 ms 5 ms

Foot (method g) −38 ms 5 ms

Foot (method h) −35 ms 5 ms

Foot (method i) −23 ms 5 ms

[8]
Instrumented treadmill

(force platform)
8 M, 4 W Recreational 2.7, 3.2, and 3.6 m/s

90 s each

Foot (method a) 47 ms 53 ms

Pelvis (method b) −29 ms 20 ms

[12] Photoelectric bars
(outdoor) 5 Elite 100 m sprint, 50 m

were monitored Ankle 3.55 ms 6.04 ms

[9] Force platform
(outdoor) 7 M, 4 W –

4.1 ± 1.2 m/s
10 steps were
analyzed from

each runner

Pelvis (method a) 4.6 ms 12.1 ms

Shank (method b) 32.9 ms 34.1 ms

Foot (method c) −56.0 ms 9.6 ms

Shank+foot
(method d) −1.3 ms 7.1 ms

[15] Instrumented treadmill
(force platform) 14 M, 8 W Intermediate

2.7, 3.0, 3.3, 3.6,
3.9 m/s

30 s each
Torso −5.82 ms 11.21 ms

[11] Optical MOCAP 10 M –
2.22, 2.5, 2.78,

3.06 m/s
3 min each

Foot −8.09 ms 4.19 ms

[14] High speed camera
(outdoor) 5 Elite 6 sprint

(4 steps per sprint) Trunk 0.002 ms 0.01 ms

Elite participants were only considered in two studies from the seven. In the rest,
recreational runners were involved in the experiments, mixing male and female runners.
We include in Table 1 the number of runners for each paper that were used for the GCT
estimation, and whose results were validated against the gold standard. This refers to
the 25 subjects defined as the validation set in [7], and the 14 subjects that were validated
against the gold standard in [8]. With regards to [14], experiments were performed with
amateur and elite runners. We include results from the elite athletes that were used to test
the estimation algorithms. For the rest of the analyzed references, all the subjects involved
in the experiments were considered.

Recreational runners run at recreational running velocities, except for [7], where higher
running rhythms, up to 5.56 m/s (20 km/h, 3 min/km), were considered.

GCT estimation performance is reported in the different works, using different metrics.
For our study, we decided to interpret the information reported in the different papers
using a generic measure of accuracy and precision. To interpret accuracy and precision
values (those included in Table 1), we adopted the following decisions:

• Positive values for the accuracy were used to indicate that GCT estimations from the
IMU are higher than GCT estimations from the ground truth (negative values were
used in the other case);
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• In [7], the central tendency and dispersion of estimation errors are indicated, respec-
tively, using (i) the median of the mean error, and (ii) the median of the standard
deviation, between the IMU and the force-platform-based GCT estimations in the
different trials (person/speed). We have taken these values as being representative of
the accuracy and precision of estimations;

• Accuracy and precision were compiled from [8,12] and [14] using Bland–Altman plots
between the accelerometer-based and the gold-standard-based identification of GCT.
We used the offset as accuracy. Variability is reported in these works in terms of 95%
LoA (we have interpreted this as 1.96 times the standard deviation unless a different
value was specified in the paper). Values included in our table refer to the standard
deviations, and are calculated from them. In [14], the included values were identified
from a figure, so perhaps a little error may exist in the values included in the table;

• The authors of [9] directly reported the mean and standard deviation of the error from
each IMU-based method and the ground truth;

• The authors of [15] reported the average accuracy and LoA for errors from estimations
compared to a force platform at the different velocities. We include in the table
the median of these values, as representatives of the accuracy and precision of the
method. Similarly, [11] reports average accuracy and precision values for errors from
estimations compared to a force platform at the different velocities. We include in the
table the median of these values as representative values.

3. Materials and Experimental Methods
3.1. Experiments

Experiments were conducted on a treadmill. Two rounds of experiments were devel-
oped (see Figure 3 for a graphical description of the experimental procedures).
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Figure 3. Experimental flowchart.

A preliminary experimental round, involving three volunteer adults, recruited from
the scientific team (one female, two male, age 41 ± 14.52 years, weight 75.33 ± 8.39 kg,
height 175 ± 8.66 cm), were used to define the estimation methods. Subjects ran at a
comfortable running pace, and cameras and IMU signals were collected and matched to
define the estimation methods from the IMUs.

The validation experiment involved six healthy adults from the University of Oviedo
athletics team (two female, four male, age 37 ± 12.38 years, weight 60.17 ± 8.84 kg, height
168.67 ± 10.19 cm) without any symptomatic musculoskeletal injuries. Two of them
were semi-elite runners. Written informed consent was obtained in advance from all the
participants. Runners were told to warm-up at their desired running pace for two minutes.
After that, they ran at three different rhythms (Z1, Z2, Z3), one minute for each. Velocities
corresponding to each rhythm were specified by their coach attending to the personal
conditions of each one (see Table 2).



Sensors 2023, 23, 2523 6 of 13

Table 2. Race paces in km/h (m/s) for each of the athletes, as specified by their coach.

Runner Z1 Z2 Z3

1 17 (4.7) 18.5 (5.1) 20 (5.6)

2 14 (3.9) 15 (4.2) 16 (4.4)

3 13 (3.6) 14 (3.9) 15 (4.2)

4 12.5 (3.5) 13 (3.6) 14.5 (4.0)

5 12 (3.3) 13.5 (3.7) 15 (4.2)

6 16.5 (4.6) 18 (5) 19.5 (5.4)

Runners were equipped with Xsens DOT V2 inertial sensors (see Figure 4, left). Two of
them were firmly attached, using elastic bands, to the upper back and the upper arm of the
subjects. An additional sensor was attached to the right foot, close to the third metatarsal,
using an adhesive band. The sampling frequency was fixed at 100 Hz. Sensor measure-
ments between the different IMUs were synchronized using the option available in the
configuration software provided by the manufacturer, Xsens DOT app for Android. Sensors
were also configured to store the sampled data in their internal memory, to avoid data loss.
Data were transferred to a personal computer once the experiments were completed.
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Figure 4. (Left): positioning of the IMUs, and the reflective markers for the optical MOCAP system,
over the body of the athlete. (Right): Optitrack camera disposition.

Three Flex 3 Optitrack (Figure 4, right) cameras were positioned so that the markers
on the athlete’s right foot were always visible. Reflective markers were placed on the heel
and the third metatarsal of the foot (Figure 4, left-bottom), positioned so as not to impede
the correct running technique. The four cameras were connected via a USB to a personal
computer, on which the Optitrack Motive Tracker 2 software was run. An additional Flex 3
camera was used to record the image of the foot for testing purposes.

Synchronization between the IMU system and the Optitrack was performed manually
for each runner. The Optitrack system and the IMUs were each started on their own time
base. After initiating the data collection in both systems, the athlete remained static for 5 s
and then tapped their foot vertically on the treadmill, remaining static for another 5 s. The
time of contact of the foot with the floor, visually identified from the corresponding signal
peaks in both sensor signals, was used as the initial time, with all other events measured
with respect to it.

3.2. GCT Estimation from the Optical System

The position signals measured by the MOCAP system were filtered by a bidirectional
FIR filter, designed using the window method, with order 6 and a cutoff frequency of 3 Hz.

The steps were segmented from the vertical marker position signal located on the toe
of the foot. Local minima, with a prominence of at least 40 mm, were located on this marker
and used as step markers. To detect initial and final contacts, a threshold was placed at
each step, corresponding to 20 mm above the recorded minimum of the toe of the foot (we
observed that the minimum of the marker at the heel systematically occurred later). The
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instant at which this value was reached was identified as IC, while the instant at which this
height was exceeded again was identified as FC.

3.3. GCT Estimation from the Inertial Sensors

Based on previous work [7], the initial and final foot contacts can be detected from
the angular velocity of the pitch of a foot-mounted inertial sensor. As reported, three local
minima can be identified in each footfall cycle (see Figure 5), the first of which corresponds
to the start of contact and the second to the end of contact.
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To detect these minima, the angular velocity signal was filtered using the same bidi-
rectional FIR filter used for the camera signals. All local minima and maxima present in
this filtered signal were detected. Those where the slew rate was positive were discarded.
Maxima were used to segment the signal into single steps.

In each cycle (step) of the filtered signal, three minima appear. The first of the minima
present is identified as IC, while the absolute minimum of the cycle is identified as FC.

In our training experiments, we found that the initial and final foot contact events
can be identified from the minimum and maximum, respectively, of the low pass filtered
resulting acceleration, recorded by the inertial sensor mounted on the upper back (see
Figure 6). For this purpose, the modulus of the acceleration at each instant of time was
calculated. This signal was then filtered with a bidirectional filter, of moving average and
order 20.
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Since the signals vary in amplitude in different cycles, a dynamic threshold was
established, which was used to differentiate the absolute maximum of each cycle from the
rest of the maxima present. The threshold was taken as the average between the maximum
and the minimum value recorded in the last 50 measurements.

Each time a local maximum was encountered, if the acceleration value was higher
than the set threshold, the maximum was identified as the final contact of the step.

The initial contact was identified as the local minimum detected just before the FC
(see Figure 6).
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Finally, we proposed a method to estimate the GCT from the IMU mounted on the
upper arm, estimating the initial contact as the maximum of the jerk in the vertical axis
(which corresponds to the inflexion point of the vertical acceleration), and the final contact
from the local minima of the derivative of the resulting acceleration (see Figure 7).
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For this purpose, the accelerations were filtered using a bidirectional moving average
filter of order 10.

The step cycle was segmented using the resulting acceleration signal. For this purpose,
a dynamic threshold was set as the mean between the maximum and minimum of the
last 50 samples, and the steps were segmented considering the maximum of the resulting
acceleration exceeding this value.

The initial contact of each step was located as the last maximum of the vertical jerk
acceleration signal before the maximum of the resulting acceleration.

The final contact of each step was located as the first minimum of the vertical accelera-
tion after the maximum of the resulting acceleration.

In all cases, we sought to achieve a logical sequence of detections, in which each IC
was followed by its corresponding FC. If any of the algorithms detected two ICs in a row,
or two FCs in a row, the second one was eliminated, to maintain the logical sequence
of events.

On the other hand, while the MOCAP system and the sensor located on the foot only
detected the events corresponding to the right foot, the inertial sensors located above the
waist (on the back and on the arm) detected the initial and final contacts of both feet. To
make a comparison between the different methods, the events corresponding to the left
foot were not considered for further analysis.

4. Experimental Results

A total of 1722 steps were identified from the cameras, 1708 from the foot-attached
IMU, 3421 from the back-attached IMU, and 3414 from the arm-attached IMU. From the arm
and back, a much higher number of steps were identified, since the steps corresponding to
both the right and left foot were detected, while from the camera and from the foot, only
those of the right foot were detected.

To perform step-by-step paired comparisons, the times recorded as the initial contact
from the steps identified from the cameras, and from each of the IMUs, were checked. Each
of the steps identified from the camera was matched to the step recorded by each of the
IMUs closest in time. Steps from the IMUs not matched to steps from the cameras were
discarded. The total number of steps matched was 1705 from the foot IMU, and 1720 from
each of the arm and back IMUs. Finally, we discarded those steps where either method
provided clearly erroneous results, including step times of less than 15 ms or contact times
of less than 8 ms. A total of 1673 steps were finally included in the statistical study. In
summary, more than 99% of the steps were identified from all the IMUs (99.8% from the
back and arm sensors). Likewise, 98.1% of the total number of detected steps presented
consistent step times and contact times, and were included in the statistical study.

Table 3 shows (mean ± std) the GCT estimated for every subject from the different
sensors, and the corresponding step time estimated from the ground truth. An ANOVA
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analysis revealed that the mean GCT estimated from the cameras was significatively
different for each subject and running velocity ( p ∼ 0). The test also revealed that the mean
estimation errors from the camera, and from each of the IMUs, were significantly different
( p ∼ 0) for the different IMUs, subjects, and running velocities, with the exception of
estimation errors from the upper arm, where a p-value of 0.066 was found for the influence
of the running velocity.

Table 3. Ground contact time in seconds (mean ± std) for the different subjects using the different sensors.
The right-hand column shows aggregated results for the step time identified using the cameras.

Camera IMU Foot IMU Upper Back IMU Upper Arm Step Time

Subject 1 0.145 ± 0.010 0.159 ± 0.010 0.151 ± 0.009 0.176 ± 0.009 0.316 ± 0.011

Subject 2 0.157 ± 0.017 0.167 ± 0.008 0.146 ± 0.007 0.212 ± 0.020 0.314 ± 0.011

Subject 3 0.165 ± 0.011 0.182 ± 0.008 0.160 ± 0.006 0.205 ± 0.007 0.317 ± 0.012

Subject 4 0.166 ± 0.014 0.172 ± 0.007 0.145 ± 0.013 0.196 ± 0.010 0.316 ± 0.014

Subject 5 0.172 ± 0.007 0.190 ± 0.008 0.158 ± 0.007 0.258 ± 0.025 0.321 ± 0.009

Subject 6 0.159 ± 0.012 0.174 ± 0.010 0.157 ± 0.006 0.204 ± 0.013 0.331 ± 0.004

Figure 8 shows the Bland–Altman plot for the error analysis in the estimations from
the cameras compared to each of the accelerometers. The average difference for estimations
from the cameras, and both from the foot and the upper back IMUs, is 0.01 s (one sample)
as an absolute value (a positive bias means that the IMU overestimates the cameras and a
negative difference means that the IMU underestimates the cameras). This average error
grows to 0.05 s (five samples) for the difference between the estimation from the cameras
and from the upper-arm-attached IMU. The LoA (1.96 times the standard deviation) was
[−0.01 s, 0.04 s] (−1 to 4 samples) from the foot-attached sensor, [−0.04 s, 0.02 s] (−4 to
2 samples) from the upper back sensor, and [0.0 s, 0.1 s] (0 to 10 samples) from the upper
arm IMU. Figure 8 shows also correlation plots that relate the GCT estimated from the
cameras and the different IMUs. A positive relation is found in all the cases.
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Figure 8. (Top). Bland–Altman plot for the error in the estimation of GCT from the cameras and from
the IMUs: foot-attached (left), upper-back-attached (center) and upper-arm-attached (right). The
paired difference between the GCT estimations from the IMUs and the cameras are plotted against
their mean for all the steps in the experiments. Mean difference in the GCT estimation between the
IMU and the cameras is plotted with a central continuous straight line. 95% limits of agreement
(1.96 times the standard deviation of the estimation errors) are plotted with upper and lower dashed
straight lines. (Bottom). Correlation plots. X-axis shows the GCT estimated from the cameras.
Y-axis shows the corresponding GCT estimated from the IMUs attached to the foot (left), upper back
(center), and upper arm (right).



Sensors 2023, 23, 2523 10 of 13

5. Discussion

A great deal of work has been done in recent years addressing the estimation of GCT
from inertial sensors placed on different body segments. To have a clear picture of the
state of the art, in the initial phase of our study we addressed a systematic search from
one of the widest and most recognized databases of scientific research (Web of Science),
finding related works. We found that, usually lower body segments have been selected
for sensor placement. The upper body has rarely been considered for that purpose, with
the exceptions of some sporadic studies that considered a sensor placed on the trunk. This
motivated our experimental work, motivated by the potential benefits of estimating GCT
from these positions, that may extend the improvement of running technique to the public,
permitting them to do this even from consumer devices such as cellular phones.

To design the experiments, we adopted the usual configuration for indoor studies
based on treadmill running. In our case, an instrumented treadmill was not available, so
we used a standard treadmill and a gold standard visual MOCAP system, as proposed
in previous work [11]. Methods to estimate GCT from the upper back and the upper
arm sensors were designed in advance, from an initial study considering unstructured
experiments involving three amateur subjects. For the validation experiments, we included
a mixture of recreational (four) and semi-elite (two) runners, with the aim of extending our
results to a wide population. Running velocities in our experiments (3.3 m/s to 5.6 m/s)
were in the range of normal to high rhythms (2.78 m/s to 5.56 m/s), as proposed in [7].

The IMUs were placed in comfortable positions on the upper back and arm, inspired
by the usual commercially available utility pockets (mainly used for mobile phones), in the
form of armbands around the upper arm, or harnesses on the upper back. A third IMU was
placed on the foot, as a representative of the state of the art, IMU-based GCT estimation
methods. This third IMU was used to interpret the results of the novel methods proposed
in our work in the light of the results of other methods tested in the state of the art. With
this paired analysis, we tried to mitigate the effect of the different experimental conditions
from our setup to those used in the original experiments, including the actual sensors used.
The work in [7] was selected as representative for several reasons. In the first place, the
original work considered the largest population and the widest range of velocities, from
the references analyzed. Most importantly, the algorithm was based on simple techniques
to detect the initial and final contacts. Described events in the signal were clearly found in
our signals, without complex processing, and therefore estimation from the reproduced
algorithm was expected to be less prone to error implementation than could be the case
from other algorithms analyzed.

GCT estimation requires a prior step segmentation from the sampled signals. The
success of this phase was not generally reported in the analyzed references from the
systematic search, with the exception of [8], that reported a step rate detection of 97%,
and [12], that reported values close to 100% for step detection success. Our results also
show a high step detection rate from all the IMUs, identifying above 98% of the actual steps
identified by the optical system.

Using the estimations from the optical system, we found (Table 3) an average step time
of 0.32 s and an average GCT from the cameras of 0.18 s. These results are in agreement
with previous studies for treadmill running [18], where, for velocities between 12 km/h
and 20 km/h (our velocity range), the authors reported an average step time of 0.34 s and
an average GCT of 0.22 s.

The GCT estimated from the IMU attached to the foot showed an average bias of
0.014 s and a precision of 0.013 s. These values signify that, on average, we get an estimation
error of one sample with a precision of one additional sample. This is an acceptable error,
as an improvement over this would suppose nearly perfect detection. This result confirms
that the estimation from the accelerometers works properly in our experimental setup. The
results in our experiments differ from the results reported in the original work that used
the same estimation method applied to a foot-worn inertial sensor [7], which reported a
higher estimation error accuracy, of −0.03 s, with a precision of 0.004 s, and [11] reported an
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improved estimation accuracy of −0.008 s, with a precision of ±0.004 s. The experimental
conditions are different in our setup, which may have caused the differences.

We found an average error value of 0.008 s in the estimations from the upper-back-
attached sensor compared to the ground truth, with a precision (standard deviation) of
0.016 s. This error is similar to that found from estimation from the foot-attached sensor,
that may lead one to suspect that a similar performance may be expected in general terms
between the foot-attached and the upper-back-attached IMUs, although the difference was
found to be significant in statistical terms (ANOVA, p~0). Regarding estimations from
the upper arm, GCT estimations were less accurate and precise, reporting up to 0.049 s of
average error with a precision of 0.027 s (standard deviation). However, the values are in
the range of reported values for GCT estimation from the state of the art. The authors of [7]
and [9] reported average errors around 0.03 s, and [8] and [9] reported a similar average
error, around 0.05 ms. A precision with an estimated standard deviation around 30 ms
was less frequent. Only [9] reported a similar standard deviation of error, of 34.1 ms, for
estimation errors from a shank-mounted inertial sensor.

As a summary, Figure 9 shows, using error bars, the precision (as absolute values, to
facilitate the comparison) and accuracy of the methods reported in the state of the art and
those analyzed in this paper. Varied performance values have been reported. There are, on
the one side, very accurate and precise methods [12,14], and estimations from the pelvis
and the foot, performed by [9]. This high performance can be justified, as in these studies
experimental conditions were very controlled, which may have reduced the variability of
the steps analyzed. In [12], 50 m of stable running were monitored from elite athletes; the
authors of [9] and [14] analyzed only a reduced number of steps (ten and four, respectively).
In any case, the estimation method seems to affect the results, as [9] reports, from the
same experiments, an improved performance for estimations based on the pelvis and a
combination of the shank and the foot. For the remaining references, performance is varied,
and the methods analyzed in this paper (shown in orange on the right) are comparable to
them, with estimations from the foot and the upper back having among the lowest errors
and, on the contrary, estimations from the upper arm among the highest.Sensors 2023, 23, x FOR PEER REVIEW 13 of 14 
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This work is, to our knowledge, the first experimental study to estimate GCT from the
upper arm and the upper back. The results confirm the feasibility of obtaining a significant
estimation of GCT from the upper back and the upper arm. In line with previous studies [7],
further studies addressing a systematic assessment of other upper back/arm signal events,
as indicators of the initial and final foot contact, may eventually confirm the optimality of
the proposed algorithm, or lead to improvements of the estimation results. Tests with a
greater population, and outside laboratory conditions, are other lines of future research.
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