
Python implementation of an
Unsupervised Learning algorithm:

leveraged affinity propagation

Bachelor thesis in Software Engineering

Héctor Dı́az Beltrán

Tutors

Juan Luis Mateo Cerdán

Antonio Mart́ınez Sánchez

Oviedo, July 2023

School of Computer Engineering

Universiy of Oviedo

1 of 60

Acknowledgements

I would like to thank my two supervisors, Juan Luis Mateo Cerdán and Antonio
Mart́ınez Sánchez, for their guidance and support throughout this bachelor’s thesis.
I also extend my thanks to the faculty and staff of the University of Oviedo and the
School of Computer Engineering for providing an enabling academic environment.

To my family, thanks for always being there for me, supporting and understanding
my academic journey. To my friends, thank you for your support and for always
being there to lend an ear or offer a helping hand. Your positive energy and shared
enthusiasm have made this journey all the more enjoyable.

University of Oviedo Héctor Dı́az Beltrán

2 of 60

Abstract

This work presents a new Python library for Leveraged Affinity Propagation (LAP),
a clustering technique used in machine learning and data analysis. LAP is de-
signed to reduce memory usage compared to existing Affinity Propagation (AP)
implementations, including those in scikit-learn and the original R library. The li-
brary’s performance and memory usage are evaluated against these existing methods
through various experiments on benchmark datasets, both synthetic and real-world.
The results demonstrate that the proposed library achieves competitive performance
while significantly reducing memory usage. The library is a valuable addition to the
Python data science ecosystem and offers an efficient and effective tool for AP-based
clustering analysis.

Keywords

Affinity Propagation, Unsupervised learning, Clustering, Python, Cython

University of Oviedo Héctor Dı́az Beltrán

CONTENTS 3 of 60

Contents

1 Introduction 7

2 Affinity Propagation (AP) 9
2.1 Algorithm . 9
2.2 Usage . 10
2.3 Available implementations . 10

2.3.1 apcluster . 11
2.3.2 matlab . 11
2.3.3 scikit-learn . 11
2.3.4 ELKI . 11
2.3.5 Clustering.jl . 11

2.4 Limitations . 12

3 Leveraged Affinity Propagation 14
3.1 Introduction . 14
3.2 Available implementations . 14

3.2.1 apcluster . 14
3.2.2 matlab . 14

3.3 Implementation . 15
3.3.1 Performance . 15

3.3.1.1 Clustering . 15
3.3.1.2 Memory and runtime considerations 16

4 Python package 17
4.1 Requirements . 17

4.1.1 Functional requirements . 17
4.1.2 Non-functional requirements 17

4.2 Design . 18
4.3 Development . 19
4.4 Packaging . 20

4.4.1 Installation . 21
4.5 Challenges . 21

4.5.1 Algorithm implementation . 21
4.5.2 Platform agnostic indexing integers 21
4.5.3 Packaging . 21

5 Validation 23
5.1 Design . 23

5.1.1 Hardware . 23
5.1.2 Software . 23
5.1.3 Metrics . 24

University of Oviedo Héctor Dı́az Beltrán

CONTENTS 4 of 60

5.1.4 LAP Parameters . 25
5.2 Datasets . 25

5.2.1 Synthetic . 25
5.2.2 Olivetti Faces . 36
5.2.3 Fashion-MNIST . 40
5.2.4 Amazon . 45

5.2.4.1 Methodology . 45
5.2.4.2 Evaluation . 47

6 Conclusions 49
6.1 Future work . 49

A ASV Benchmarks 54

B Fashion-MNIST Benchmarks 58

University of Oviedo Héctor Dı́az Beltrán

LIST OF FIGURES 5 of 60

List of Figures

2.1 R package apcluster : plot example . 12

4.1 Profiler: lap method . 20
4.2 Profiler: affinity propagation method 20

5.1 Comparison between Python AP and LAP and apclusterL 26
5.2 Comparison between AP and LAP 27
5.3 Scikit-learn clustering comparison . 28
5.4 Scikit-learn clustering comparison . 29
5.5 Noisy moons apclusterL . 29
5.6 Synthetic baseline AP peak memory usage 31
5.7 Synthetic Baseline AP time taken for different configurations. Note

the logarithmic scale on the y-axis . 31
5.8 Synthetic baseline AP clustering performance 32
5.9 AP vs LAP memory consumption in the asv benchmarks 33
5.10 AP vs LAP time in the asv benchmarks 33
5.11 Synthetic LAP peak memory usage for different configurations 33
5.12 Synthetic LAP time taken for different configurations. Note the log-

arithmic scale on the y-axis. 34
5.13 Synthetic LAP peak adjusted mutual information for different con-

figurations . 34
5.14 Synthetic LAP homogeneity for different configurations 34
5.15 Synthetic LAP silhouette score for different configurations 35
5.16 Olivetti faces LAP peak memory usage for different configurations . . 37
5.17 Olivetti faces LAP time taken for different configurations. Note the

logarithmic scale on the y-axis. 37
5.18 Olivetti faces LAP clustering performance 38
5.19 LAP Olivetti faces cluster 0 . 38
5.20 LAP results for the Olivetti faces dataset: cluster 6 39
5.21 Fashion-MNIST AP clustering performance 41
5.22 Fashion-MNIST AP vs LAP times . 42
5.23 Fashion-MNIST AP vs LAP peak memory usage 42
5.24 Fashion-MNIST AP vs LAP AMI . 42
5.25 Fashion-MNIST LAP peak memory usage for different configurations 43
5.26 Fashion-MNIST LAP time taken for different configurations. Note

the logarithmic scale on the y-axis. 43
5.27 Fashion-MNIST LAP peak adjusted mutual information for different

configurations . 43
5.28 Fashion-MNIST LAP homogeneity for different configurations 43
5.29 Fashion-MNIST LAP silhouette score for different configurations . . . 44
5.30 Fashion-MNIST LAP first identified cluster 44

University of Oviedo Héctor Dı́az Beltrán

LIST OF TABLES 6 of 60

List of Tables

5.1 Synthetic baseline AP results . 30
5.2 Synthetic LAP result excerpt . 32
5.3 Olivetti faces baseline asv-benchmark results 36
5.4 Fashion-MNIST baseline asv-benchmark results 40
5.5 Fashion-MNIST LAP asv-benchmark excerpt 41
5.6 ABO Dataset example . 46
5.7 ABO AP and LAP performance profile 47
5.8 ABO Dataset LAP clustering performance 48

A.1 Sythetic asv-benchmark results . 54
A.2 Fashion-MNIST asv-benchmark results 56
A.3 Olivetti faces asv-benchmark results 57

B.1 Fashion-MNIST LAP results . 60

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 1. INTRODUCTION 7 of 60

Chapter 1

Introduction

Clustering algorithms play a pivotal role in data analysis, enabling the identification
of inherent patterns and structures within datasets, without the need for labels. The
result of a clustering algorithm is the division of the dataset into groups or clusters.

Clustering algorithms are a type of unsupervised learning technique used in machine
learning and data analysis to discover patterns or groupings in a dataset. The goal
of clustering is to fit the data points into distinct groups, also called clusters, based
on their similarities or proximity to each other.

Unsupervised learning refers to the process of finding patterns or structures in data
without any labels or target variables present. In contrast with supervised learn-
ing, where the algorithm is provided with labeled data to learn from, unsupervised
learning relies only on the given input data.

There are multiple types of techniques available to perform clustering. Between
them, there are some groups that are heavily differentiated and more commonly
available in machine learning libraries [1].

Based on partition: This kind of algorithm set the central element of the data
points as the center of the cluster. One of the most recognizable algorithms in this
category is K-means. The K-means algorithm iterates over the cluster centers until
it converges, meaning that K-means has reached a stable and desired solution. K-
means requires specifying the number of clusters K, which can be a detriment when
the number of clusters to generate is not known a priori, requiring experimentation
and multiple runs to find an optimal number of clusters.

Based on hierarchy: This kind of clustering algorithm organizes data points into
a hierarchical structure based on their similarity or dissimilarity. There exist two
methods to create the hierarchy of clusters, depending on the “direction” that the
algorithm takes. Agglomerative clustering starts with each data point as a separate
cluster and progressively merges the most similar clusters, while divisive clustering
begins with a single cluster and recursively splits it. These hierarchical techniques
also require specifying the number of clusters to generate.

Based on density: This kind of clustering algorithm group data points based
on their density within the dataset. These algorithms are particularly effective in
identifying clusters of arbitrary shapes and handling datasets with varying density
or containing noise or outliers. The most well-known density-based clustering algo-
rithm is DBSCAN and its variations [1]. DBSCAN does not require specifying the
number of clusters to identify.

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 1. INTRODUCTION 8 of 60

Affinity Propagation (AP)

AP has emerged as a powerful and versatile clustering algorithm, demonstrating im-
pressive performance across various applications, particularly in bioinformatics [2].
It can be classified as a partitioning-based method [1], and unlike others of the same
kind, it does not require specifying the number of clusters to find. However, AP’s
scalability and memory efficiency become challenging when confronted with large
datasets, due to its quadratic scaling memory and computation requirements. To
address this limitation, this work investigates a variation of AP, known as Leveraged
Affinity Propagation (LAP), specifically designed for handling large datasets.

LAP, implemented as a new Python library, fills a gap in the current landscape of
clustering tools by providing a scalable and memory-efficient solution for Python.
While similar libraries exist for R (apcluster library) [3] and MATLAB, the avail-
ability of LAP in Python opens up opportunities for a wider community of data
scientists. This work explores the implementation details of the LAP library, empha-
sizing its compatibility with the scikit-learn [4] interface to ensure ease of integration
into existing workflows and benchmarks it.

The primary objective of this investigation is to evaluate the performance of LAP
in comparison to traditional AP, particularly concerning its ability to handle large
datasets without exhausting available memory. The benchmarking process involves
subjecting the LAP library to various small and large datasets and assessing its
memory consumption, computational efficiency, and clustering performance. The
comparative analysis highlights the advantages of LAP over conventional AP when
it comes to large datasets.

To ensure broader accessibility, the LAP library will be made available on PyPI, the
Python Package Index, allowing Python programmers to easily install and utilize it
in their projects. The library’s compatibility with the scikit-learn interface ensures
seamless integration with existing machine learning pipelines, providing a common
environment.

In summary, this work introduces a new Python library for Leveraged Affinity Prop-
agation (LAP), designed to address the challenges of handling large datasets. The
evaluation benchmarks LAP against traditional AP, demonstrating its scalability
and memory efficiency. The availability of LAP on PyPI and its compatibility with
the scikit-learn interface open doors for Python programmers to leverage this clus-
tering technique in their data analysis workflows.

The next chapters in the thesis will review AP and introduce its lightweight variant
LAP, along with the design and development of the Python package for the LAP
algorithm. Next, the proposed LAP implementation in Python will be tested against
other available implementations of LAP in other programming languages, mainly R,
and it will also be compared with scikit-learn’s AP algorithm in order to ensure the
proposed LAP implementation achieves similar clustering performance to AP while
reducing peak memory consumption as the size of the dataset grows.

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 2. AFFINITY PROPAGATION (AP) 9 of 60

Chapter 2

Affinity Propagation (AP)

Affinity Propagation (AP) is a clustering algorithm that works by exchanging real-
valued messages between data points, generating clusters based on similarities be-
tween data points [2]. It finds cluster centers, called exemplars, that are themselves
points in the dataset. Furthermore, it is a technique that does not need to explicitly
configure the number of clusters to identify, as it can automatically determine it
from a configurable parameter (preference), which can also be used to make specific
points more likely to end up being exemplars.

2.1 Algorithm

AP core is based on two key matrices. These two matrices are known as responsi-
bility and availability matrices. The responsibility matrix R contains a quantifier
of how well-suited a data point k is to serve as an exemplar of another data point
i, relative to other candidates for i. In contrast, the availability matrix A explains
how proper would it be for a data point i to take k as an exemplar, considering
other data points’ preference for k.

The responsibility updates depend on the similarity between data points, and it is
what makes the algorithm extremely flexible, as it can be used with any similarity
measure. Another important aspect of the similarity matrix is the self-similarity or
preference. AP uses a similarity matrix, where the diagonal serves an important
role: it controls how likely a data point is to be chosen as an exemplar. If the
entirety of the diagonal is set to the same value, it then controls how many clusters
the algorithm generates. Values closer to the minimum similarity will generate
fewer clusters, while bigger values will generate many. In most implementations,
the default value of the diagonal is the median similarity of all pairs.

As can be seen, AP has quadratic memory scaling, as the algorithm needs to hold
several square matrices that contain the whole dataset. In the following sections,
the algorithm will be detailed, allowing us to infer its runtime complexity to be
quadratic based on its inner workings. That’s why AP viability is reduced when
working with large datasets or Big Data.

Initially, both matrices are initialized to zero. Afterward, R and A are updated iter-
atively until the algorithm converges. When updating the messages, it is important
that they be damped to avoid numerical oscillations that arise in some circum-
stances. Each message is set to times its value from the previous iteration plus (1
– λ) times its prescribed updated value, where the damping factor λ is between 0

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 2. AFFINITY PROPAGATION (AP) 10 of 60

and 1 [2]. The damping value λ is a configurable parameter of the algorithm. This
damping will not be shown in the equations that follow in this section.

Firstly, responsibilities are updated per equation 2.1.

r(i, k)← s(i, k)−max
k′ ̸=k
{a(i, k′) + s(i, k′)} (2.1)

where s represents the similarity matrix, a represents the availability matrix, and
r represents the responsibility matrix. That means that the responsibility between
two elements i and k is given by the similarity between i and k, minus the maximum
of the sum of the availability and similarity of the data point i to other candidate
exemplars (k′) different from k.

Once the responsibilities are computed, the availability is calculated for elements
different than the data point per equation 2.2.

a(i, k) = min

0, r(k, k) +
∑

i′ ̸∈{i,k}

max(0, r(i′, k))

 (2.2)

Availability for each data point to itself, also called self-availability is updated per
2.3

a(k, k) =
∑
i′ ̸=k

max(0, r(i′, k)) (2.3)

Data points are considered exemplars if the sum of their self-responsibility and self-
availability is positive.

2.2 Usage

From its inception, AP has been successfully used in genetics and biomedical re-
search. It continues to be used in tasks like clustering genome sequences [5], ex-
emplar gene sets [6], or finding spatially connected and coherent regions of tumor-
infiltrating lymphocytes image patches [7]. The has also been additional research
on AP variations applied to specific areas like SAP [8] used for text clustering or a
MapReduce version of AP [9], an approach with linear run-time complexity.

2.3 Available implementations

This section describes currently available implementations for several programming
languages and their current state. There are more implementations available and
published online, although they may not be as complete or have as much recognition
as the ones selected. There are several standalone implementations that have not

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 2. AFFINITY PROPAGATION (AP) 11 of 60

been updated or received any attention for years, like [10] an implementation of AP
for the JavaScript programming language.

2.3.1 apcluster

The R package apcluster [3] is the most complete implementation of AP currently
available. It implements both AP and other derivations of it, including sparse ver-
sions and leveraged affinity propagation. It is freely available in the CRAN reposi-
tory [11] licensed under the GPL2 and GPL3 open source licenses.

The sparse version has lower memory requirements when used against a dataset
where the similarity matrix is sparse. However, the memory gains from using the
sparse version are not always applicable.

2.3.2 matlab

The Probabilistic and Statistical Inference Group from the University of Toronto
has published Matlab code for AP and some variants, including Leveraged Affinity
Propagation. However, the main website for the tooling is down, and it may only
be accessed by using internet archival tools, like the Internet Archive. It is also not
part of a documented library per se. Only the FAQ on AP is available, and it may
only be accessed using an older version of the site (http://genes.toronto.edu/
affinitypropagation/faq.html).

2.3.3 scikit-learn

The scikit-learn [4] Python package implements AP in such a way that it is possible
to work with both dense and sparse similarity matrices. The current version of
scikit-learn does not implement leveraged affinity propagation and relies on auxiliary
matrices during execution, further exacerbating AP memory constraints. Despite
the usage of auxiliary matrices for the inner computations, the memory complexity
of the algorithm remains quadratic.

The results can also be plotted easily thanks to how the library implements the
clustering results. An example of the plots produced for both AP and LAP can be
seen in Figure 2.1.

2.3.4 ELKI

There exists an implementation for the Java programming language in the ELKI
toolkit [12]. It implements AP with support for dense matrices, and it belongs to a
big machine-learning framework, much like the scikit-learn implementation.

2.3.5 Clustering.jl

Available for the Julia programming language, Clustering.jl [13] is a library that
implements many different types of clustering algorithms, AP between them. It is
an implementation of the classic algorithm described in the original paper, without

University of Oviedo Héctor Dı́az Beltrán

http://genes.toronto.edu/affinitypropagation/faq.html
http://genes.toronto.edu/affinitypropagation/faq.html

CHAPTER 2. AFFINITY PROPAGATION (AP) 12 of 60

Figure 2.1: Example of clustering results produced by the apclusterL function, which
implements Leveraged Affinity Propagation. Points in the figure represent data
points of the original dataset, the squares are the centers or exemplars of each
cluster generated by Leveraged Affinity Propagation, and the lines join each data
point with its exemplar. A different color is used for every cluster found.

any variation or special considerations and functions like those from more complete
libraries like apcluster.

2.4 Limitations

The primary memory-consuming factor in AP is the similarity matrix, which repre-
sents the pairwise similarities among data points. The size of this matrix is propor-
tional to the square of the number of data points.

The memory complexity of AP can be inferred from the maximum space complexity
of the data structures that are needed in order to run the algorithm. For AP this
means storing at least the similarity matrix [2]. The space complexity of AP can be
expressed mathematically as:

O(n2) (2.4)

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 2. AFFINITY PROPAGATION (AP) 13 of 60

where n represents the size of the input data. This means that the memory usage
of the algorithm grows quadratically as the input size increases.

Additionally, AP maintains two other matrices during the iterative process: the
responsibility matrix and the availability matrix. Both matrices have the same
dimensions as the similarity matrix (n× n). Therefore, they also contribute to the
memory requirements, adding to the overall space complexity of the algorithm.

Furthermore, AP implementations need to keep track of the current exemplars for
each element, generally in a vector of size n, and use some data structure to hold
the necessary information to check for convergence. In apcluster and scikit-learn
implementations of AP, this is achieved through an extra matrix, of size n×c, where
n represents the size of the input data, and c represents the number of iterations of
AP to keep track of. In both libraries, this parameter is referred to as the convergence
iterations and is configurable by the user. In the apcluster package it defaults to
100 iterations [3] while in scikit-learn it defaults to 15 [4].

The minimum memory requirements of the most common implementations of AP
can then be given by:

Memory (in bytes) = 3n2w1 + (n+ nc)w2 (2.5)

where n is the size of the input data, c is the number of iterations to check for
convergence and w1 represents the number of bytes needed for each element in the
similarity, responsibility, and availability matrices, most often 4 or 8 bytes, used
for single and double precision floating points and w2 the number of bytes used for
array indexing, which is an integer type that depends on the platform that the code
is executing in.

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 3. LEVERAGED AFFINITY PROPAGATION 14 of 60

Chapter 3

Leveraged Affinity Propagation

3.1 Introduction

Leveraged Affinity Propagation (LAP) is a variant of the Affinity Propagation (AP)
clustering algorithm that incorporates a subsampling technique during the exemplar
selection process.

By utilizing a smaller subset of the data, LAP reduces the computational complexity
and memory requirements of the AP algorithm. This subsampling step allows LAP
to handle larger datasets that might be impractical to process with the original AP
algorithm.

The key idea behind LAP is that the exemplars selected from the leverage set should
be representative of the overall data distribution, enabling efficient and effective
clustering. LAP aims to strike a balance between computational efficiency and
preserving the clustering quality.

Leveraged Affinity Propagation is a useful approach when dealing with large datasets
where the computational requirements of the original AP algorithm are prohibitive,
making it easier to uncover meaningful patterns and extract valuable knowledge from
even the most massive datasets. By leveraging a subsample of the data, LAP offers
a scalable solution for clustering tasks while still capturing the essential patterns
and structure within the dataset.

3.2 Available implementations

3.2.1 apcluster

As described in previous sections, the apcluster R package [3] is one of the most
complete implementations of Affinity Propagation algorithms, and it does not fail
to integrate Leveraged Affinity Propagation on its repertoire of functions. It has all
the expected functionality of LAP, with a lot of versatility in the implementation,
for example, allowing precomputed subsamples of the similarity matrix for a given
selection if one wishes to run the algorithm step by step.

3.2.2 matlab

The Probabilistic and Statistical Inference Group from the University of Toronto
has published MATLAB code for Affinity Propagation and some variants, including

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 3. LEVERAGED AFFINITY PROPAGATION 15 of 60

Leveraged Affinity Propagation. However, the main website for the tooling is par-
tially down, and it may only be accessed by using internet archival tools, like the
Internet Archive. It is also not part of a documented library per se. Only the FAQ
on Affinity Propagation is currently available, and it may only be accessed using an
older version of the site. For example, while https://psi.toronto.edu/research/
affinity-propagation-clustering-by-message-passing/ is accessible, most of
the links included in the page link to URLs that give 404 errors.

3.3 Implementation

The fundamentals of Affinity Propagation are still present in LAP, it keeps the mes-
sage passing between data points and the concepts of responsibility and availability.
However, rather than computing the responsibility and availability between all data
points, only a subsample of the whole is considered as potential exemplars.

With a sufficiently large dataset, a random subselection of data points should have
enough information to generate appropriate clusters for most entries, only losing
significant performance against AP for very small outlier clusters in the dataset
where none of the data points were selected as candidates. However, if these outliers
are detected, it would be possible to run Leveraged Affinity Propagation with a
manual selection of candidates to ensure that at least one data point for the outlier
group is considered as a candidate exemplar.

The number of elements that are considered candidate exemplars is defined by the
fraction parameter, which stands for the fraction of the total number of points n to
be subsampled. The selection will have a total of αn candidates. Where α is the
value of fraction, which must always take a value in the range (0, 1).

Another parameter available to avoid the problem of not having good enough candi-
dates in the selected subsample is sweeps. It is used to increase the number of runs
or sweeps that LAP makes over the dataset. In each sweep new candidate exemplars
are considered, and if the resulting clusters from running the algorithm have greater
net similarity than the previous sweep they are added to the new selection. The
selection for the new sweep is then the old exemplars and enough randomly selected
points to fill the selection until it reaches αn candidates.

LAP always performs the number of sweeps (k) that it is configured to execute,
regardless of whether the exemplars remain unchanged after each sweep or not.

3.3.1 Performance

3.3.1.1 Clustering

One key issue that may arise on LAP and is not present in AP is that the number of
clusters that the algorithm can find is limited to the size of the subsample. LAP will
not find more clusters than the number of candidates that exist in a single sweep.
What is more, the number of data points to subsample should be higher than that
of the possible desired clusters.

University of Oviedo Héctor Dı́az Beltrán

https://psi.toronto.edu/research/affinity-propagation-clustering-by-message-passing/
https://psi.toronto.edu/research/affinity-propagation-clustering-by-message-passing/

CHAPTER 3. LEVERAGED AFFINITY PROPAGATION 16 of 60

This limitation arises from the previously explained candidate selection mechanism.
Since all the resulting exemplars from each sweep are included in the new selection,
whenever all the subsample candidates are selected as exemplars no new candidates
will be explored on the new sweep.

3.3.1.2 Memory and runtime considerations

As explained in the implementation section, instead of requiring multiple n × n
matrices, LAP uses n× αn matrices. The space complexity of LAP is then:

O(αn2) (3.1)

In the AP section, a minimum memory requirement of AP was given, the adapted
formula for LAP is:

Memory (in bytes) = 3αn2w1 + (n+ nc)w2 (3.2)

where c is the number of iterations to check for convergence and w1 represents
the number of bytes needed for each element in the similarity, responsibility, and
availability matrices, most often 4 or 8 bytes, used for single and double precision
floating points and w2 the number of bytes used for array indexing, which is an
integer type that depends on the platform that the code is executing in.

This makes the performance of LAP, particularly for large datasets, much better
when it comes to both peak memory usage and might result in less computing time.
The memory gains over AP are configurable by the user and are always expressed
as α of the total memory consumption of AP.

However, the compute time gains may be lost if the sweeps (k) and fraction (α)
parameters are too high, as the total number of data points evaluated could exceed
those of AP for combinations of sweeps and fraction.

Empirically (see Appendix A), a good estimation of the upper bound for the time
taken by LAP in different configurations 1 and 2 can be given by:

t2 = t1 ×
α2

α1

× k2
k1

(3.3)

where tx, αx and kx indicate the time taken by configuration x, with parameters
fraction=α and sweeps=k.

The peak memory usage gains are better than the compute time, as it does not
depend on the sweeps. There exist variations of LAP that attempt to mitigate the
algorithm’s runtime, for example, using a parallel ensemble variant of LAP [14].

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 4. PYTHON PACKAGE 17 of 60

Chapter 4

Python package

4.1 Requirements

This section lists high-level requirements for different areas that the package should
cover.

4.1.1 Functional requirements

Algorithmic implementation of LAP, offering both the complete algorithm and the
inner affinity propagation functions. Exposing the inner affinity propagation func-
tions allows the users with niche use cases, like very specific candidate exemplar
selection, to still have a use for the library using its inner functions.

4.1.2 Non-functional requirements

Compatibility with scikit-learn

The Python package should be designed in a way that it seamlessly integrates and is
compatible with the scikit-learn library. It should follow the conventions of the scikit-
learn API, ensuring good interoperability. This compatibility will allow users to
easily incorporate the package into their existing scikit-learn workflows and pipelines
without encountering any conflicts or compatibility issues.

Packaging

The package should have the least dependencies possible while retaining proper
performance characteristics.

PyPI (Python Package Index) is an integral component of the Python ecosystem
and plays a crucial role in facilitating the distribution, discovery, and installation of
software packages. As a centralized repository, PyPI serves as a hub where devel-
opers can publish their packages, making them accessible to the Python community
worldwide. The resulting package should be available to install from PyPI.

Documentation

The Python package should provide comprehensive documentation that includes
clear explanations of its functionality, instructions on how to use it, and code exam-
ples. The documentation should cover the package’s compatibility with scikit-learn,
demonstrating how it can be used alongside scikit-learn’s pipelines. Furthermore,

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 4. PYTHON PACKAGE 18 of 60

the package should provide practical examples and use cases to illustrate its capabil-
ities, helping users understand how it can be integrated effectively with scikit-learn.

4.2 Design

Math-heavy Python libraries, such as those used for numerical computations, sim-
ulations, or scientific calculations, often involve repetitive mathematical operations
that can benefit from the performance enhancements provided by low-level routines
that use optimized machine code rather than the Python interpreter. This is the
case of affinity propagation.

There are several options to write performant code in Python, including but not
limited to:

• NumPy routines, which are implemented mainly in heavily optimized C code
under the hood, and are completely transparent to the programmer.

• numba methods, which use a Just In Time (JIT) compiler to optimize the code
at runtime.

• C or C++ extensions, which offer the most flexibility, but require writing
Python extension module code, which can become a complex task.

• Cython, which is a programming language that combines the ease and sim-
plicity of Python with the speed and efficiency of C, simplifying the creation
process of Python modules and offering extra flexibility with Python types.

NumPy offers many methods that would help to write performant code, but it
falls short of extension modules (C, C++, Cython ...) when there is no matching
operation defined that covers a needed use case. The next best option that allows
for performant code for arbitrary iteration over matrices is Cython, because while
numba may be easier to write code for, it is still JIT compiled, with all the drawbacks
that it may bring, like the need to perform a function call several times so that it
gets properly optimized.

Cython also natively supports NumPy arrays as it can directly access and manipu-
late NumPy arrays without any significant overhead. This allows for efficient data
processing and computation, leveraging the optimized routines provided by NumPy.

By writing critical sections of code in Cython, the library can harness the power of
low-level optimizations and achieve faster execution times. Furthermore, memory
management is explicit in Cython, allowing much finer control over allocations and
memory usage.

The advantage of using Cython over C or C++ directly is the ease of use when
it comes to later calling the code from Python, and integration with libraries that
would be used, mainly NumPy. If the extension code was written in the aforemen-
tioned languages, the glue code to call it from Python would have been developed
in Cython.

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 4. PYTHON PACKAGE 19 of 60

Using any solution that relies on compiled extensions can present certain challenges
due to the nature of the language and the need to compile the code, and Cython
is no exception. However, if pre-compiled binaries are provided, these hurdles do
not significantly affect users. By offering pre-compiled binaries developers can save
consumers from compiling the Cython code themselves. This ensures that users can
simply install the package using the provided binary distribution, regardless of their
system configuration. Said binary distribution can be hosted on PyPI, the Python
Package Index.

4.3 Development

First, the package implements all the components of LAP excluding the inner affin-
ity propagation function in Python. These components are what makes the library
compatible with the scikit-learn library, via the implementation of a Python class
LeveragedAffinityPropagation that extends scikit-learn BaseEstimator and follow-
ing naming conventions for the attributes and functions available.

The similarity calculation, the sampling process for the exemplar candidate selection,
and the final clusters processing are implemented in Python, using NumPy when
applicable.

Regarding the inner affinity propagation function, the core availability and respon-
sibility updates were implemented as a Cython function. This Cython function is
compiled by Cython during the build process to C++ code that includes Python
glue, later compiled by the platform’s C++ compiler.

The resulting code was benchmarked using line profiler to check that most of the
time spent was running the compiled Cython code. In Figure 4.1 the overall LAP
function that runs selection mechanisms and runs new sweeps spends most of its
time in the affinity propagation function.

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 4. PYTHON PACKAGE 20 of 60

Figure 4.1: Detail of the line profiler for the lap function. From left to right the
columns indicate the number of lines in the code: number of hits or times the line
was executed, total time taken in a line, time taken per hit, and percentage of total
run-time. The calls to the affinity propagation function take 99.9% of the total time
spent in the lap function.

In turn, as shown in Figure 4.2, it is shown how the affinity propagation function
spends most of its time on the inner propagation call which is the Cython function,
which compiles to heavily optimized machine code.

Figure 4.2: Detail of the line profiler for the affinity propagation function. From
left to right the columns indicate the number of lines in the code: number of hits
or times the line was executed, total time taken in a line, time taken per hit, and
percentage of total run-time.

4.4 Packaging

The Python code and the Cython extension module are packaged using setuptools
and using a modern, declarative approach with the pyproject.toml file, which covers
package metadata, build system and dependencies, and core project dependencies.

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 4. PYTHON PACKAGE 21 of 60

4.4.1 Installation

Installation of the package from source requires calling pip install. The installation
should be straightforward, if problems during installation arise, particularly due
to compilation, it is most likely to be either the lack of Cython in the current
environment, even if it is listed as a build dependency, or the lack of a C++ compiler.

Installation from PyPI should be even easier, just running pip install in an environ-
ment supported by the main dependencies NumPy and scikit-learn should suffice.

4.5 Challenges

4.5.1 Algorithm implementation

An initial “pure” Python version of the algorithm was developed, though work-
ing with NumPy required the use of additional auxiliary matrices. As this was
against the spirit of the project, which aimed to implement a leveraged variant of
AP precisely to reduce memory usage, and using loops in pure Python proved to be
extraordinarily slow, Cython was introduced to optimize both memory usage and
time used by the algorithm.

4.5.2 Platform agnostic indexing integers

Writing Cython code that compiles and interoperates with Python in a platform-
agnostic manner proved to be a challenge, in particular, minor differences between
integer widths between Python and Cython for Linux and Windows were detected,
which required an investigation on which types were adequate for the supporting
index vector and matrix that LAP were using, as the “int” Python type was not
sufficient.

The solution involved creating the index vector and matrix using numpy integer
pointer types in Python and using the special Cython type “Py ssize t” on the
Cython function signature.

4.5.3 Packaging

Initially, the package used modern tooling for its dependency management and over-
all building, namely Poetry (https://python-poetry.org/). Unfortunately, the
inclusion of Cython and compiled code meant that most of the functionality needed
for the build system and specification was not as seamless as it could have been for
a pure Python package under the same scenario. The initial build system with Po-
etry and modern Python Enhancement Proposals (PEP) like PEP621 and PEP631
was scrapped. In the end, a traditional setuptools setup and installation was im-
plemented, attempting to keep as much of the modern solution as possible, inspired
by other big libraries that use the same tooling and have similar requirements and
library usage, such as scikit-learn.

University of Oviedo Héctor Dı́az Beltrán

https://python-poetry.org/

CHAPTER 4. PYTHON PACKAGE 22 of 60

This means that the declarative style packaging was kept, with the addition of the
pyproject.toml file, rather than using only the tradition setup.py with configuration
options spread out, most likely between the build script and a setup.cfg file.

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 23 of 60

Chapter 5

Validation

5.1 Design

5.1.1 Hardware

The benchmarking machine is equipped with an AMD processor, specifically the
R7 1700 model. The AMD R7 1700 is a high-performance processor known for
its multi-threading capabilities, offering 8 cores (16 threads with multithreading)
allowing for efficient parallel processing. However, it does not offer the best single-
core performance. The machine is equipped with 32GB of RAM, providing enough
memory to test Affinity Propagation algorithms, as one of the objectives of the
benchmarking is to test when AP runs out of memory and how LAP can avoid it
when using limited resources.

5.1.2 Software

The benchmarking machine operates on the Windows 10 operating system. The
primary programming language used for testing and benchmarking on this machine
is Python 3.9, though the inner workings of the proposed LAP algorithm are written
in Cython and compiled into C++.

Python Jupyter Notebooks were also used, particularly during the initial validation
phase and they were also used for dataset exploration and cleanup tasks. Jupyter
notebooks are widely used in the field of machine learning. They offer a flexible
and interactive environment for data exploration, model development, and algo-
rithm evaluation. However, this interactivity means they are not suited for accurate
benchmarking tasks due to the overhead that they could introduce. The benchmarks
implemented in the package use scikit-learn common base classes as a base to build
the AP and LAP benchmarks.

In order to have more robust benchmarks associated with the Python package, asv-
benchmark was introduced. The asv-benchmark (Airspeed Velocity Benchmark)
Python package is a tool designed to perform benchmarking and performance track-
ing of code across different versions, configurations, and machines. It sees use in
many of the big Python machine learning and mathematical packages, including
most of the biggest libraries used in data science: numpy, scipy, pandas and scikit-
learn.

The main objective of asv-benchmark is to measure and compare the execution time
and resource utilization of different implementations. It allows developers to define

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 24 of 60

a benchmarking suite, which consists of specific code snippets or functions to be
evaluated. These benchmarks offer a lot of flexibility in their configuration.

In the context of machine learning, and more clustering, the asv-benchmark package
is valuable for assessing the performance and efficiency of algorithms and mod-
els. It can be used to evaluate the execution time and memory usage of different
machine learning implementations, compare the performance of various libraries or
frameworks, and track performance improvements or regressions over time and com-
mits. Introducing these benchmarks promotes the development of high-performance
clustering algorithms by providing a systematic and quantitative approach to bench-
marking and performance evaluation.

5.1.3 Metrics

Comparing clustering results requires metrics to objectively evaluate the quality and
performance of different clustering techniques or variations. In our case, we want to
explore LAP clustering performance and compare it with AP.

Employing appropriate metrics for comparing variations of the same clustering al-
gorithm across multiple datasets is crucial for an unbiased evaluation and effective
selection of the most suitable variation. This is even more pronounced in AP and
LAP, which are not deterministic and rely on random state seeds in order to choose
the selected items to be evaluated as exemplars. These metrics enable us to objec-
tively assess the performance of each algorithm variation, including different LAP
parameters, and understand their adaptability to different datasets.

• Homogeneity Score: Measures the extent to which each cluster contains only
samples from a single class. A score of 1.0 indicates perfect homogeneity.

• V-measure Score: Combines homogeneity and completeness scores into a single
metric. It provides a balanced evaluation of clustering results. A score of 1.0
indicates the best clustering result.

• Silhouette Coefficient: Measures how close each sample in one cluster is to
samples in neighboring clusters. A higher coefficient indicates better-defined
clusters. The range is from -1 to 1, where values close to 1 indicate well-
separated clusters.

• Mutual information Score: Measures the similarity between two labels of the
same data. It quantifies the shared information and dependence between the
sets, indicating how well the clusters align with the true class labels.

• Rand Index: Measures the agreement between the clustering result and the
ground truth labels. It calculates the proportion of pairs of data points that are
either correctly assigned to the same cluster or correctly assigned to different
clusters, relative to all possible pairs. It ranges from 0 to 1, with 1 indicating a
perfect match between the clustering and the ground truth. It does not ensure
obtaining a value close to 0.0 for random labeling, though its Adjusted version
(ARI) does.

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 25 of 60

• Fowlkes-Mallows: Geometric mean of the pairwise precision and recall. The
score ranges from 0 to 1, and higher values indicate good similarity between
two clusters. Random label assignments have values closer to 0 regardless of
sample size or number of clusters.

5.1.4 LAP Parameters

LAP has two extremely important parameters that dictate performance character-
istics from a memory and computing point of view: fraction and sweeps. Fraction
controls the percentage of the total dataset that is used as exemplar candidates
while sweeps controls how many times does the algorithm run in sequence.

Differences in these two parameters should also be reflected in the quality of the
produced clustering for small or imbalanced datasets. As the fraction and sweeps
increase, LAP should explore more possible exemplars. If the fraction is too small
for the size of the dataset or there is an extreme class imbalance, LAP may never
evaluate an exemplar of a certain combination of classes or characteristics, reducing
clustering performance.

Due to these reasons, each test is performed for different fraction and sweeps val-
ues. It should be noted that the fraction parameter ultimately controls the memory
advantage of LAP over AP, along with the maximum number of clusters possible.
Moreover, the exemplar candidate selection process is random, so each run is per-
formed multiple times using different random seeds.

As explained in previous sections, an important parameter that controls the number
of clusters generated by both AP and LAP is the preference, which unless it is
explicitly mentioned will be set to the library default, most often the median of the
similarities.

Note that for many figures presented in the following sections, references to LAP
parameters will be given in the form of α*k. For example, a figure or table that
indicates LAP 0.1*5 means that LAP was configured to use α=fraction=0.1 and
k=sweeps=5.

5.2 Datasets

In order to test the proposed Leveraged Affinity Propagation implementation, sev-
eral datasets, both synthetic and real-world, will be used to assess LAP performance.
Both memory and compute time will be measured, along with clustering performance
in datasets where it is possible. The proposed implementation will also be tested
against AP and R apclusterL.

5.2.1 Synthetic

Some kind of synthetic dataset had to be chosen due to the need for an easily
configurable and adaptable dataset. The synthetic datasets used have a known
working similarity measure which can be computed fast and can be interpreted and

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 26 of 60

visualized easily. With this in mind, two-dimensional datasets with a predefined
number of clusters in different configurations were chosen to test LAP against.

These datasets can be generated using utilities provided by standard data science
Python tooling and are present in many documentation examples, making result
interpretation much more accessible.

Most tests performed in this section use variations of the blobs dataset. The
blobs datasets are generated using scitkit-learn make blobs function, which generates
isotropic Gaussian blobs used for clustering. Isotropic means that the covariance
matrix of the features is diagonal, meaning all the features are uncorrelated.

Initially, the proposed LAP implementation and scikit-learn’s AP were compared
against the R package apcluster implementation: apclusterL. The results of the
clustering indicated very similar clusters generated by all algorithms and implemen-
tations in the toy synthetic datasets. The results are shown in Figures 5.1 and
5.2.

Most of the work in this section used Jupyter Notebooks along with the rpy2 Python
package [15], used to call R code from Python and share data.

(a) AP Clusters (b) AP vs LAP 0.1*5 (c) 0.1*5: Python vs R

Figure 5.1: Graphical comparison between scikit-learn Affinity Propagation, apclus-
terL Leveraged Affinity Propagation implementation, and the proposed implemen-
tation. The dataset is a blobs dataset with 1500 points and three clusters. Purple
points indicate disagreement in the clustering group. All affinity propagation im-
plementations used -200 as preference and 0.9 as damping.

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 27 of 60

(a) AP Clusters (b) AP vs LAP 0.1*5

(c) AP vs LAP 0.05*4 (d) LAP 0.1*5 vs LAP 0.05*4

Figure 5.2: Graphical comparison between scikit-learn Affinity Propagation and the
Leveraged Affinity Propagation implementation in two different configurations. The
dataset is a rotated blobs dataset with 1500 points and three clusters. Purple points
indicate disagreement in the clustering group. All affinity propagation implementa-
tions used -200 as preference and 0.9 as damping.

Afterward, LAP is tested against additional synthetic datasets. Before delving into
the specifics of LAP, it is useful to know how different clustering algorithms perform
on the same dataset and compare them.

For this purpose, the clustering example available on the scikit-learn Python package
was replicated with the inclusion of multiple configurations of Python LAP. The
results can be seen in Figure 5.3. This first introduction to LAP can already show
the advantages in processing time between algorithms, and a preview of clustering
performance for simple scenarios, even if it is only graphically without employing
any robust metric. As shown in Figure 5.3 LAP takes less time to execute for all
datasets when compared to AP, offering results in times closer to other alternatives.
However, even only the faster LAP configurations can offer results in a comparable
time to other algorithms, though it is still far ahead of AP, which takes at least an
order of magnitude more than the rest to finish its execution.

University of Oviedo Héctor Dı́az Beltrán

C
H
A
P
T
E
R

5.
V
A
L
ID

A
T
IO

N
28

of
60

Figure 5.3: Comparison of clustering algorithms with Leveraged Affinity Propagation in different configurations. The comparison is
that of [4] clustering documentation extended with the LAP runs. It also includes the time taken by the different algorithms for each
dataset in the bottom right corner of each image in seconds. The percentage indicates the fraction parameter and it is multiplied
by the sweeps parameter.

U
n
iv
e
rsity

o
f
O
v
ie
d
o

H
é
cto

r
D
ı́a
z
B
e
ltrá

n

CHAPTER 5. VALIDATION 29 of 60

Figure 5.4: Detail of the comparison between AP with Leveraged Affinity Prop-
agation in different configurations to achieve the same number of clusters. The
comparison is that of scikit-learn [4] clustering documentation extended with the
LAP runs. The percentage indicates the fraction parameter and it is multiplied by
the sweeps parameter.

There is another difference that can be appreciated in the figure. LAP generates
more clusters in the noisy moons dataset. Lower preference values for LAP and
higher sweeps and fractions allowed LAP to also achieve three clusters, as seen in
Figure 5.4. The preference values for the LAP runs were the ones used for the tests
in Figure 5.3, -220 for all LAP configurations, reduced by 100 except for the LAP
20% * 5 configuration, which reduced the original preference by 90.

Figure 5.5 shows the clustering results over the same noisy moons dataset using
the apclusterL R function. Different preferences were used, and it shows in the
“mirrored” clusters how it can affect behavior along with the random seed.

(a) preference=−340 seed=10 (b) preference=−320 seed=0

Figure 5.5: R apclusterL over the noisy moons dataset, using 5% as fraction and 6
sweeps, with 0.9 as damping factor.

Now, AP performance will be compared to that of the proposed LAP implementation
using the asv-benchmark framework. The dataset is a five-cluster, ten features blobs
dataset generated using scikit-learn dataset functions, with varying sample sizes.

First, the results from the AP benchmarks to be used as a baseline are available in

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 30 of 60

Table 5.1. Here we can already see the jump in memory consumption from n = 2000
and n = 5000, where the peak memory consumption more than triples. This increase
is even more pronounced when taking into consideration the fact that n = 10 has a
peak memory consumption of 91MB.

The n = 10 scenario is included specifically to understand what could be the baseline
memory usage of the benchmarking tooling and the Python process itself. Taking
this basic minimum consumption for Python and the benchmarking tools, n = 1000
consumes 22MB, n = 2000 consumes 88MB and n = 5000 consumes 540MB. This
is expected, as AP space complexity is quadratic. It is not by chance that a doubling
of dataset size results in a 22 increase in memory (22× 22 = 88), or that a five-fold
increase results in a 52 increase in memory consumption (22× 52 = 550).

n samples time peakmem memory silhouette homogeneity AMI

10 0.0054 91.07MB 0MB 0.6975 0.8658 0.8288

1000 0.4104 113.27MB 22MB 0.7412 1.0000 1.0000

2000 3.2570 178.66MB 88MB 0.0721 1.0000 0.8279

5000 30.3699 634.10MB 443MB 0.0552 1.0000 0.7022

Table 5.1: Synthetic baseline AP results. memory refers to the approximate memory
consumed by AP alone, excluding the base consumption of the Python process and
benchmarking software. At n = 10 the impact of AP on peak memory consumption
should be approximately 0MB, this can be tested using Equation 2.5: we can expect
AP to consume 3× 102 × 4 + (10 + 10× 15)× 4 = 1840B ≈ 1.8KB.

These results can also be seen graphically in Figure 5.6 for the peak memory con-
sumption, and Figure 5.7 for the time taken by AP. Note that for Figure 5.7 the
y-axis is logarithmic.

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 31 of 60

Figure 5.6: Synthetic baseline AP peak memory usage

Figure 5.7: Synthetic Baseline AP time taken for different configurations. Note the
logarithmic scale on the y-axis

The clustering performance of AP in this five-cluster blobs dataset is evaluated using
the Adjusted Mutual Information (AMI), homogeneity, and silhouette scores. The
results are shown in Figure 5.8. Notice the decrease in both AMI and silhouette
scores when n increases. Both of these metrics penalize clusterings where not all of
the data points of a single class are in the same cluster. This observation, coupled
with a homogeneity score of 1 is a clear indicator that AP is generating many clusters
that contain only data points from one of the five true clusters. Better AMI and
silhouette scores could be achieved by reducing the preference parameter, which
would in turn decrease the number of generated clusters, reducing the penalization
for the scores.

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 32 of 60

α n time peakmemory memory silhouette homo AMI

0.005 10 0.0023 91.11MB 0MB 0.5006 0.3350 0.3131

0.005 1000 0.0140 91.68MB 0.5MB 0.3744 0.5867 0.7337

0.005 2000 0.0449 92.65MB 1.5MB 0.4668 1.0000 0.9253

0.005 5000 0.1836 96.12MB 5MB 0.0514 1.0000 0.7542

0.1 10 0.0023 90.74MB 0MB 0.5006 0.3350 0.3131

0.1 1000 0.1447 94.91MB 3MB 0.6112 1.0000 0.9595

0.1 2000 0.4786 104.15MB 13MB 0.0666 1.0000 0.8240

0.1 5000 3.8689 167.25MB 76MB 0.0546 1.0000 0.7012

Table 5.2: Synthetic LAP result excerpt. All LAP runs use sweeps = k = 1.
memory refers to the approximate memory consumed by LAP alone, excluding the
base consumption of the Python process and benchmarking software. At n = 10
the impact of AP on peak memory consumption should be approximately 0MB, this
can be tested using Equation 3.2: we can expect AP to consume 3× α× 102 × 4 +
(10 + 10× 15)× 4 = 184B ≈ 0.18KB.

(a) AMI (b) homogeneity (c) silhouette

Figure 5.8: Synthetic baseline AP clustering performance

Then, the results from LAP clustering and runtime performance for the synthetic
dataset in the asv-benchmark are shown fully in A.1, an excerpt with relevant sce-
narios is included in Table 5.2. As it can be seen in the table, LAP, particularly
in higher fraction (α) configurations, behaves extremely similar to AP, obtaining
0.8240 AMI score to AP’s 0.8279 for n = 2000 and AMI score of 0.7012 to AP’s
0.7022.

Memory consumption of LAP is clearly lower than AP, as shown in Figure 5.9. The
Figure includes a polynomial regression of order two and different configurations of
fraction (α) for LAP. Runtime performance is also better for most all combinations
of α and k as shown in Figure 5.10.

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 33 of 60

Figure 5.9: AP vs LAP memory consumption in the asv benchmarks

Figure 5.10: AP vs LAP time in the asv benchmarks

The behavior of LAP peak memory usage, time, and clustering performance was
also studied for different LAP parameters in this synthetic asv benchmark.

Figure 5.11 shows LAP peak memory consumption for different parameters. As can
be seen in the graphs, the number of sweeps that LAP makes over a dataset to refine
the clustering results does not have an impact on the peak memory consumption.
However, the time taken by LAP does depend on the number of sweeps as shown in
Figure 5.12.

Figure 5.11: Synthetic LAP peak memory usage for different configurations

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 34 of 60

Figure 5.12: Synthetic LAP time taken for different configurations. Note the loga-
rithmic scale on the y-axis.

Next, the clustering performance of LAP in relation to its parameters is evaluated.
Do note that these results are not generalizable for all datasets, as it is likely that
datasets with more than the five true underlying clusters of the benchmarked dataset
would benefit more from the additional exploration from a greater amount of sweeps.
Figure 5.15 shows silhouette scores close to zero for n > 1000. These scores combined
with extremely high homogeneity as can be seen in Figure 5.14 indicate overlapping
clusters. Figure 5.13 includes graphs that show the AMI for multiple configurations
of LAP. Here we can see how increases in the sweeps parameter cause a very slight
increase in clustering performance.

Figure 5.13: Synthetic LAP peak adjusted mutual information for different config-
urations

Figure 5.14: Synthetic LAP homogeneity for different configurations

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 35 of 60

Figure 5.15: Synthetic LAP silhouette score for different configurations

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 36 of 60

5.2.2 Olivetti Faces

The Olivetti Faces dataset is a widely used benchmark dataset in the field of com-
puter vision and facial recognition. It consists of a collection of grayscale facial
images captured under controlled conditions. The dataset was created by AT&T
Laboratories Cambridge and contains face images of 40 different subjects, each with
10 different images.

It was included in the benchmarks due to it being one of the original datasets show-
cased in the original Affinity Propagation paper [2], though they used the dataset
to build its own using only the first 100 pictures and then applied transformations.
This section covers the original 400 Olivetti faces dataset, rather than the modified
version from the paper.

The asv benchmarks were executed for the whole dataset of 400 images, rather than
a subsample, damping values of 0.5 and 0.8 were tested for the baseline AP bench-
marks. Table 5.3 shows the results of AP for the Olivetti face dataset. Note that
the memory consumption was extremely close to that of the previous benchmarks
baseline for the Python process, and as shown before n = 400 is a relatively low
number of samples to hit AP memory constraints.

damping time peakmem silhouette homogeneity AMI

0.5 0.0751 114.05MB 0.1516 0.7970 0.6085

0.8 0.1127 114.06MB 0.1478 0.8006 0.6122

Table 5.3: Results from the runs of asv-benchmark on the Olivetti faces dataset for
the baseline AP clustering algorithm

The full results from all LAP experiments can be found in Appendix A, in Table
A.3. The peak memory consumption of any LAP run never went over 116MB,
though some configurations managed to stay near 110MB, consuming a slightly lower
amount of memory than AP. The Olivetti dataset shows how in smaller datasets,
the difference between AP and LAP can be negligible when it comes to memory
consumption while affecting clustering performance and runtime negatively.

Figure 5.16 shows the peak memory usage of LAP for different configurations. Here
sweeps = 1 consumes approximately 1MB less of memory than other configurations.
Interestingly, the difference between the rest of sweeps values is less pronounced and
the same behavior was observed in other datasets, see Figure 5.25.

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 37 of 60

Figure 5.16: Olivetti faces LAP peak memory usage for different configurations

Figure 5.17 shows LAP runtime, which increases with sweeps as it already happened
with the synthetic dataset tested in the previous section.

Figure 5.17: Olivetti faces LAP time taken for different configurations. Note the
logarithmic scale on the y-axis.

Finally, Figure 5.18 shows clustering performance. As expected, using a real-world
dataset makes the additional exploration given by the higher sweeps values increase
performance in all metrics. This means that the generated clusters were more differ-
entiated and the elements of each cluster were more homogeneous for higher values
of sweeps.

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 38 of 60

(a) AMI (b) homogeneity (c) silhouette

Figure 5.18: Olivetti faces LAP clustering performance

LAP still manages to generate clusters of faces that contain images from the same
subjects, like in Figure 5.19. However, some clusters include faces from multiple
subjects, like in the seventh cluster identified by LAP shown in Figure 5.20.

Figure 5.19: LAP results for the Olivetti faces dataset, showing a gallery with the
faces from the first cluster identified by LAP. LAP properly identified 9 out of 10
faces from this subject in the same cluster.

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 39 of 60

Figure 5.20: LAP results for the Olivetti faces dataset: cluster 6

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 40 of 60

5.2.3 Fashion-MNIST

The dataset consists of 70,000 grayscale images, each with a resolution of 28x28
pixels. The Fashion-MNIST dataset contains a total of 10 classes or categories, rep-
resenting different fashion items. It serves as a replacement for the original MNIST
handwritten digit dataset, oftentimes used as an introduction to large datasets used
for training image processing systems.

It was chosen as a benchmark to act as a scalable continuation of the Olivetti face
dataset. It also offers a more challenging task of classifying fashion-related images
when compared to the original MNIST dataset [16].

Moreover, the Fashion-MNIST dataset can be processed by LAP using fast similar-
ity measures, in this case, pairwise Euclidean distances, reducing overhead in the
similarity computation in such a way that LAP run-time should be mostly message
passing and the algorithm itself rather than similarity computations.

First, AP was executed for varying subsample sizes of the dataset. The results for
AP are found in Table 5.4. And the clustering performance can be visualized in
Figure 5.21.

n samples time peakmem memory silhouette homogeneity AMI

10 0.0033 136.08MB 0MB 0.1343 0.4169 0.2067

100 0.0074 137.04MB 1MB 0.1633 0.5935 0.5342

1000 0.4857 169.75MB 34MB 0.0784 0.7003 0.4946

5000 13.8254 922.15MB 786MB 0.0515 0.7402 0.4477

Table 5.4: Results from the runs of asv-benchmark on the Fashion-MNIST dataset
for the baseline Affinity Propagation. memory refers to the approximate memory
consumed by AP alone, excluding the base consumption of the Python process and
benchmarking software. At n = 10 the impact of AP on peak memory consumption
should be approximately 0MB. As each data point in the Fashion-MNIST dataset is
a 28× 28 matrix, for values of n < 1000 the memory column might be a misleading
approximation of memory consumption due to the memory allocated in the process
to hold the dataset itself not being negligible.

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 41 of 60

(a) AMI (b) homogeneity (c) silhouette

Figure 5.21: Fashion-MNIST AP clustering performance

For this dataset, the following parameter grid for LAP was tested. For the asv-
benchmarks, fraction values in [0.005, 0.02, 0.01], sweeps in [1, 2, 3], and seeds in
[0, 1, 2]. The results of this benchmark are available in the appendix Table A.2. An
excerpt of relevant runs is available in Table 5.5. A deeper benchmark that tests
against a greater number of LAP parameters can be found in appendix Table B.1.

fraction n time peakmem memory silhouette homo AMI

0.005 100 0.0033 136.48MB 0.5MB 0.1211 0.1269 0.1668

0.005 1000 0.0199 143.04MB 7MB 0.0951 0.2981 0.3600

0.005 5000 0.2592 173.02MB 37MB 0.0423 0.5141 0.4625

0.02 100 0.0030 136.49MB 0.5MB 0.1234 0.0981 0.1214

0.02 1000 0.0400 143.47MB 7MB 0.0429 0.4475 0.3916

0.02 5000 0.8039 179.41MB 43MB 0.0361 0.6668 0.4615

0.1 100 0.0056 137.12MB 1MB 0.0789 0.4935 0.4483

0.1 1000 0.1973 145.08MB 9MB 0.0631 0.6459 0.4746

0.1 5000 5.8787 256.62MB 120MB 0.0390 0.7156 0.4425

Table 5.5: Results from the runs of asv-benchmark on the Fashion-MNIST dataset
for LAP. All runs shown in this table used sweeps = k = 1. memory refers to the
approximate memory consumed by LAP alone, excluding the base consumption of
the Python process and benchmarking software. As each data point in the Fashion-
MNIST dataset is a 28 × 28 matrix, for values of n < 1000 the memory column
might be a misleading approximation of memory consumption due to the memory
allocated in the process to hold the dataset itself not being negligible.

Interestingly, Figure 5.22 shows how increasing the sweeps parameter can increase
computational time beyond that of AP. This cost may not even come with the
clustering performance gains expected from allowing the algorithm to perform more
exploration on the dataset, as shown in Figures 5.24, 5.27, 5.28 and 5.29 where the

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 42 of 60

clustering performance improvements are hard to appreciate, with the most notable
difference between sweeps values being that the worst results of sweeps = 3 are
better than the worst results of sweeps = 1.

Figure 5.22: Fashion-MNIST AP vs LAP times

In line with other datasets benchmarked, Figure 5.23 shows how peak memory
consumption remains better in LAP over AP regardless of the parameters chosen.

Figure 5.23: Fashion-MNIST AP vs LAP peak memory usage

Figure 5.24: Fashion-MNIST AP vs LAP AMI

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 43 of 60

Figure 5.25: Fashion-MNIST LAP peak memory usage for different configurations

Figure 5.26: Fashion-MNIST LAP time taken for different configurations. Note the
logarithmic scale on the y-axis.

Figure 5.27: Fashion-MNIST LAP peak adjusted mutual information for different
configurations

Figure 5.28: Fashion-MNIST LAP homogeneity for different configurations

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 44 of 60

Figure 5.29: Fashion-MNIST LAP silhouette score for different configurations

As to exemplify how Fashion MNIST provides challenging image classification tasks,
Figure 5.30 shows the results of the best performing LAP run for the largest sub-
sample tested (fraction=0.1, sweeps=3, seed=2, n samples=5000).

Figure 5.30: Fashion-MNIST LAP first identified cluster. This cluster identified by
LAP contains four true categories: 0 (T-shirt/top), 2 (Pullover), 3 (Dress), and 6
(Shirt). Additionally, the long-sleeved pullover is not the only pullover in the cluster,
as there is another one.

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 45 of 60

5.2.4 Amazon

The Amazon Berkeley Objects (ABO) Dataset [17], also known as the Amazon
EC2/S3 Berkeley Segmentation Dataset, is a dataset designed for image segmenta-
tion and object recognition tasks. It was created in collaboration between Amazon
and the University of California, Berkeley.

The metadata associated with each image can also be useful for various NLP (Nat-
ural Language Processing) and unsupervised learning tasks by providing additional
contextual information. It can also be used as a large collection of real-world data
when a very large sample is needed. A large open dataset like ABO is extremely
useful when benchmarking memory or CPU-intensive unsupervised learning algo-
rithms. It facilitates thorough testing, performance evaluation, stress testing, algo-
rithm comparison, and resource optimization.

This dataset was chosen to showcase Leveraged Affinity Propagation flexibility and
scalability, going from image processing in the two previous benchmarks to Natural
Language Processing with more than 120k samples. While it is also a dataset
where a target variable could be considered, mainly type, extracting new patterns of
related products is much more interesting, and benefits from Affinity Propagation
not needing to specify the number of clusters to find.

5.2.4.1 Methodology

The ABO metadata was used to run all the testing in this section. First, all the
separate metadata files that compose the original dataset were merged. Then the
data was cleaned and only items with a name in English were kept. Afterward, a
TFIDF vectorizer was trained on the keywords, using at most 5000 features and
removing all English stopwords.

The TFIDF values are then used as input to the clustering algorithms. Unless
specified otherwise, Affinity Propagation and Leveraged Affinity Propagation will
both use cosine similarity as their similarity function. Due to a large number of data
points and failure to converge during initial exploration, the maximum number of
iterations was set higher than default along with the damping value.

Table 5.6 shows five different metadata entries for the ABO dataset, only including
the relevant columns. Note that what is being tested is not the ability of the
algorithms to classify any given object to a type, but rather their capability to
extract new patterns that were not encoded by the type column. In this particular
dataset, the patterns extracted could be used to build product recommendation
systems, for example.

University of Oviedo Héctor Dı́az Beltrán

C
H
A
P
T
E
R

5.
V
A
L
ID

A
T
IO

N
46

of
60

id name keywords type

B01MTEI8M6
Brand Fix US The 6.5 Floral Slide French
Embroidery Havana Tan, Amazon Slipon
Loafer, Women’s B

gifts spring her zapatos mocasines fashion
for wear designer business cocktail office
para work fall shoe de ladies moda sexy
mujer womans

SHOES

B0853X2F4M
Brand Hard Back for 3D Redmi Designer
Case Cover Mi Go Printed Autumn Mobile
Amazon Solimo Girl

Back phonecase Redmi Designer mobile
phonecover Go cover fashion Cover case
backcover cellphonecover cellphonecase
mobileguard covers phoneguard Hard mo-
bilecover Case protectivecase polycarbon-
ate backcase Mi Autumn cases and mobile-
case Printed Mobile protectivecover Girl

CELLULAR
PHONE CASE

B07R91S92W
Brand Hard Back for Redmi (D187) De-
signer Butterflies Case Cover Y2 Printed
Mobile Xiaomi Amazon Solimo

printed new Redmi slim back case girls de-
signer Xiaomi cover Y2 transparent stylish
Mobile boys

CELLULAR
PHONE CASE

B07CTPR73M Swatch, & Stone 2502003901 Beam Brown

living windmill seat farmhouse tufted van-
ity outdoor loveseat sofa savonburg arm
size couches sets silver daybed rolled up-
holstered fountain leather red reclining and
room with button set love fabric wind trun-
dle sofas chesterfield homelegance spinners
couch loveseats queen a for power

SOFA

B07H9GMYXS
1.75mm, 3D 1.75mm PETG Filament,
AMG1052851610 AmazonBasics Printer 1
Spool kg

printer 3D 3d yellow 1.75mm 1kg filament
spool translucent petg

MECHANICAL
COMPONENTS

Table 5.6: Amazon Berkeley Objects (ABO) metadata example, limited to the id, name, keywords, and type columns. Minimal
processing was done to show multiple name or keyword English entries in a single cell.

U
n
iv
e
rsity

o
f
O
v
ie
d
o

H
é
cto

r
D
ı́a
z
B
e
ltrá

n

CHAPTER 5. VALIDATION 47 of 60

5.2.4.2 Evaluation

As shown in table 5.7, Affinity Propagation is extremely expensive when compared
to LAP, it is so expensive, that the benchmarking machine runs out of memory when
attempting to run AP with the entirety of the ABO dataset.

n samples algorithm peak memory time

20000 AP 15.19GB 37min

20000 LAP 0.02× 10 458.84MB 3m 6s

122734 LAP 0.01× 10 5.78GB 216m 26s

Table 5.7: Performance profile of AP and LAP for a subsample of the ABO Dataset
and the performance profile of LAP for the whole dataset.

It should be mentioned that the similarity matrix for 20000 data points accounts
for 2.98GB of the process’ total memory usage. Also, the whole ABO Dataset’s
TF-IDF values consume a total of 10.72MB due to being stored as a sparse matrix,
even if it is a 122734 by 5000 matrix.

The subsample was needed to compare clustering results between AP and LAP.
The exact number of data points (20000) to consider was chosen due to Affinity
Propagation’s memory consumption being very close to 16GB of RAM, the maxi-
mum memory commonly found in modern commodity hardware. Just the similarity
matrix for 40000 datapoints took a total of 11.92GB of memory and what’s more,
peak process memory consumption for the cosine similarity computation surpassed
16GB, reaching 17.90GB of memory.

The clustering results from LAP were compared to those of the 20000-element AP
subsample. For the LAP run that only used the first 20000 elements (LAP 20k)
there is no additional processing required, for the LAP run that used the entire
ABO dataset (LAP 122k), only the labels of the first 20000 elements are taken into
account. The results are available in Table 5.8.

From the selected parameters for LAP, we know that the maximum number of
clusters that LAP 20k can find is n × α = 20000 ∗ 0.02 = 400 and the maximum
number of clusters for LAP 122k is n × α = 122734 ∗ 0.01 = 1223. Neither LAP
run reached the maximum number of exemplars in the selection, meaning that both
algorithms explored new exemplar candidates each sweep. AP found 473 clusters in
the dataset subsample.

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 5. VALIDATION 48 of 60

metric LAP 20k LAP 122k

Clusters found 333 1048

V-measure 0.819 0.837

AMI 0.738 0.719

Rand Index 0.997 0.998

Adjusted Rand Index 0.687 0.629

Fowlkes-Mallows 0.693 0.652

Table 5.8: Clustering performance of LAP compared to the clustering results of AP
as if those were the true labels.

The clustering results from both LAP runs were close to those of traditional AP,
with very high Rand Index scores. The V-measure score and AMI can be used
to measure agreement between different clustering strategies on the same dataset.
Both scores have an upper limit of 1 and they are close to it. This means that the
clusters generated by the LAP runs are similar to those produced by AP.

Rand Index has a value between 0 and 1, with 0 indicating that the two data clus-
terings do not agree on any pair of points and 1 indicating that the data clusterings
are exactly the same. The Adjusted Rand Index takes the raw value from the Rand
Index and adjusts it for chance. Both scores are high for the two LAP runs, so the
results from the clustering of AP and LAP are similar.

From these results, it can be assumed that LAP 22k and LAP 122k mostly agree
with the clustering from AP. In LAP 20k case, it shows how we can use LAP to
obtain clusters close to those that would be generated by AP at a much lower peak
memory consumption. In this particular example which also had run-time gains, it
does so in less than a thirtieth of the peak memory consumption and a tenth of the
time that AP took.

University of Oviedo Héctor Dı́az Beltrán

CHAPTER 6. CONCLUSIONS 49 of 60

Chapter 6

Conclusions

This work successfully implemented a lightweight variant of the Affinity Propaga-
tion (AP) clustering algorithm in Python, known as Leveraged Affinity Propagation,
achieving the objective of making LAP available to Python developers. The imple-
mentation of the lightweight variant of AP contributes to the Python ecosystem by
addressing the critical challenge of memory consumption, particularly in scenarios
with limited resources or large datasets.

The implemented LAP algorithm demonstrated notable improvements in memory
efficiency while maintaining comparable clustering quality to the standard AP algo-
rithm for large sample sizes. Through experimental evaluation and benchmarking,
it was confirmed that the lightweight variant consistently exhibited reduced memory
usage, and different dataset sample sizes were tested, identifying situations where
the memory gains of applying LAP were minimal, while runtime and clustering
performance suffered when compared to AP.

The Python package is also available to the larger Python community as it has
been published on PyPI, the Python Package Index, the most commonly used and
available repository to distribute and download Python packages.

6.1 Future work

The package currently implements LAP as its only AP variant, but it may be possible
to provide further optimizations for LAP when it comes to runtime, as they were
already introduced in [14], or explore other memory optimizations not currently
available for AP in Python.

University of Oviedo Héctor Dı́az Beltrán

Glossary 50 of 60

Glossary

availability A value indicating the accumulated evidence for a data point to choose
another data point as its exemplar

cluster A group of data points that are similar to each other and dissimilar to
points in other clusters

convergence The state where the responsibility and availability matrices reach a
stable configuration, indicating the end of the AP algorithm

exemplar A data point selected as a representative of a cluster in AP

outlier A data point that significantly deviates from the patterns or characteristics
of other points

responsibility A value indicating the suitability of a data point to be an exemplar
for another data point

similarity A measure indicating how alike two data points are in terms of their
features

similarity matrix A square matrix that represents the pairwise similarities be-
tween data points in a dataset

University of Oviedo Héctor Dı́az Beltrán

Acronyms 51 of 60

Acronyms

AMI Adjusted Mutual Information

AP Affinity Propagation

ARI Adjusted Rand Index

IDF Inverse Document Frequency

LAP Leveraged Affinity Propagation

NMI Normalized Mutual Information

RI Rand Index

TF Term Frequency

University of Oviedo Héctor Dı́az Beltrán

BIBLIOGRAPHY 52 of 60

Bibliography

[1] D. Xu and Y. Tian, “A Comprehensive Survey of Clustering Algorithms,”
Annals of Data Science, vol. 2, no. 2, pp. 165–193, Jun. 2015, issn: 2198-
5804, 2198-5812. doi: 10.1007/s40745- 015- 0040- 1. [Online]. Available:
http://link.springer.com/10.1007/s40745-015-0040-1.

[2] B. J. Frey and D. Dueck, “Clustering by Passing Messages Between Data
Points,” Science, vol. 315, no. 5814, pp. 972–976, Feb. 16, 2007, issn: 0036-
8075, 1095-9203. doi: 10.1126/science.1136800. [Online]. Available: https:
//www.science.org/doi/10.1126/science.1136800.

[3] U. Bodenhofer, A. Kothmeier, and S. Hochreiter, “APCluster: An R package
for affinity propagation clustering,” Bioinformatics, vol. 27, no. 17, pp. 2463–
2464, Sep. 1, 2011, issn: 1367-4803. doi: 10.1093/bioinformatics/btr406.
[Online]. Available: https://doi.org/10.1093/bioinformatics/btr406.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine Learn-
ing in Python,” Journal of Machine Learning Research, vol. 12, no. 85, pp. 2825–
2830, 2011, issn: 1533-7928. [Online]. Available: http://jmlr.org/papers/
v12/pedregosa11a.html.

[5] S. Weng, J. Shang, Y. Cheng, et al., “Genetic differentiation and diversity of
SARS-CoV-2 Omicron variant in its early outbreak,” Biosafety and Health,
vol. 04, no. 03, pp. 171–178, Jun. 25, 2022. doi: 10.1016/j.bsheal.2022.
04.004. [Online]. Available: https://mednexus.org/doi/full/10.1016/j.
bsheal.2022.04.004.

[6] S. Ligthart, A. Vaez, U. Võsa, et al., “Genome Analyses of >200,000 Indi-
viduals Identify 58 Loci for Chronic Inflammation and Highlight Pathways
that Link Inflammation and Complex Disorders,” The American Journal of
Human Genetics, vol. 103, no. 5, pp. 691–706, Nov. 1, 2018, issn: 0002-9297.
doi: 10.1016/j.ajhg.2018.09.009. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0002929718303203.

[7] J. Saltz, R. Gupta, L. Hou, et al., “Spatial Organization and Molecular Corre-
lation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology
Images,” Cell Reports, vol. 23, no. 1, 181–193.e7, Apr. 2018, issn: 22111247.
doi: 10 . 1016 / j . celrep . 2018 . 03 . 086. [Online]. Available: https : / /
linkinghub.elsevier.com/retrieve/pii/S2211124718304479.

[8] R. Guan, X. Shi, M. Marchese, C. Yang, and Y. Liang, “Text Clustering
with Seeds Affinity Propagation,” IEEE Transactions on Knowledge and Data
Engineering, vol. 23, no. 4, pp. 627–637, Apr. 2011, issn: 1558-2191. doi:
10.1109/TKDE.2010.144.

[9] D. M. Rose, J. M. Rouly, R. Haber, N. Mijatovic, and A. M. Peter. “Parallel
Hierarchical Affinity Propagation with MapReduce.” arXiv: 1403.7394 [cs].
(Mar. 28, 2014), [Online]. Available: http://arxiv.org/abs/1403.7394,
preprint.

University of Oviedo Héctor Dı́az Beltrán

https://doi.org/10.1007/s40745-015-0040-1
http://link.springer.com/10.1007/s40745-015-0040-1
https://doi.org/10.1126/science.1136800
https://www.science.org/doi/10.1126/science.1136800
https://www.science.org/doi/10.1126/science.1136800
https://doi.org/10.1093/bioinformatics/btr406
https://doi.org/10.1093/bioinformatics/btr406
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1016/j.bsheal.2022.04.004
https://doi.org/10.1016/j.bsheal.2022.04.004
https://mednexus.org/doi/full/10.1016/j.bsheal.2022.04.004
https://mednexus.org/doi/full/10.1016/j.bsheal.2022.04.004
https://doi.org/10.1016/j.ajhg.2018.09.009
https://www.sciencedirect.com/science/article/pii/S0002929718303203
https://www.sciencedirect.com/science/article/pii/S0002929718303203
https://doi.org/10.1016/j.celrep.2018.03.086
https://linkinghub.elsevier.com/retrieve/pii/S2211124718304479
https://linkinghub.elsevier.com/retrieve/pii/S2211124718304479
https://doi.org/10.1109/TKDE.2010.144
https://arxiv.org/abs/1403.7394
http://arxiv.org/abs/1403.7394

BIBLIOGRAPHY 53 of 60

[10] juhis,Affinity-propagation, Nov. 27, 2017. [Online]. Available: https://github.
com/juhis/affinity-propagation.

[11] “The Comprehensive R Archive Network.” (), [Online]. Available: https :
//cran.r-project.org/.

[12] E. Schubert, “Automatic Indexing for Similarity Search in ELKI,” in Simi-
larity Search and Applications, T. Skopal, F. Falchi, J. Lokoč, M. L. Sapino,
I. Bartolini, and M. Patella, Eds., ser. Lecture Notes in Computer Science,
Cham: Springer International Publishing, 2022, pp. 205–213, isbn: 978-3-031-
17849-8. doi: 10.1007/978-3-031-17849-8_16.

[13] Clustering.jl, Julia Statistics, Jun. 2, 2023. [Online]. Available: https : / /
github.com/JuliaStats/Clustering.jl.

[14] C. Melkonian, “Similarity-based clustering of big data: A parallel ensemble
variant of leveraged affinity propagation,”

[15] Python -> R bridge, rpy2, Jun. 10, 2023. [Online]. Available: https : / /

github.com/rpy2/rpy2.
[16] H. Xiao, K. Rasul, and R. Vollgraf. “Fashion-MNIST: A Novel Image Dataset

for Benchmarking Machine Learning Algorithms.” arXiv: 1708.07747 [cs,

stat]. (Sep. 15, 2017), [Online]. Available: http://arxiv.org/abs/1708.
07747, preprint.

[17] J. Collins, S. Goel, K. Deng, et al. “ABO: Dataset and Benchmarks for Real-
World 3D Object Understanding.” version 2. arXiv: 2110.06199 [cs]. (Jun. 24,
2022), [Online]. Available: http://arxiv.org/abs/2110.06199, preprint.

University of Oviedo Héctor Dı́az Beltrán

https://github.com/juhis/affinity-propagation
https://github.com/juhis/affinity-propagation
https://cran.r-project.org/
https://cran.r-project.org/
https://doi.org/10.1007/978-3-031-17849-8_16
https://github.com/JuliaStats/Clustering.jl
https://github.com/JuliaStats/Clustering.jl
https://github.com/rpy2/rpy2
https://github.com/rpy2/rpy2
https://arxiv.org/abs/1708.07747
https://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://arxiv.org/abs/2110.06199
http://arxiv.org/abs/2110.06199

APPENDIX A. ASV BENCHMARKS 54 of 60

Appendix A

ASV Benchmarks

fraction sweeps seed n time fit

0.005 1 0 10 0.0023

0.005 1 0 1000 0.0140

0.005 1 0 2000 0.0449

0.005 1 0 5000 0.1836

0.005 1 1 10 0.0023

0.005 1 1 1000 0.0159

0.005 1 1 2000 0.0348

0.005 1 1 5000 0.2234

0.005 1 3 10 0.0023

0.005 1 3 1000 0.0201

0.005 1 3 2000 0.0355

0.005 1 3 5000 0.2028

0.005 2 0 10 0.0022

0.005 2 0 1000 0.0150

0.005 2 0 2000 0.0781

0.005 2 0 5000 0.4692

0.005 2 1 10 0.0023

0.005 2 1 1000 0.0302

0.005 2 1 2000 0.0749

0.005 2 1 5000 0.3794

0.005 2 3 10 0.0023

0.005 2 3 1000 0.0198

0.005 2 3 2000 0.0774

0.005 2 3 5000 0.3975

0.005 5 0 10 0.0023

0.005 5 0 1000 0.0152

0.005 5 0 2000 0.1900

0.005 5 0 5000 1.0479

0.005 5 1 10 0.0023

0.005 5 1 1000 0.0297

0.005 5 1 2000 0.1207

0.005 5 1 5000 1.1103

0.005 5 3 10 0.0024

0.005 5 3 1000 0.0199

0.005 5 3 2000 0.1925

0.005 5 3 5000 1.0764

0.02 1 0 10 0.0024

0.02 1 0 1000 0.0293

0.02 1 0 2000 0.0970

0.02 1 0 5000 0.7035

0.02 1 1 10 0.0024

0.02 1 1 1000 0.0327

0.02 1 1 2000 0.1101

0.02 1 1 5000 0.6982

0.02 1 3 10 0.0023

0.02 1 3 1000 0.0385

0.02 1 3 2000 0.1260

0.02 1 3 5000 0.8684

0.02 2 0 10 0.0023

0.02 2 0 1000 0.0683

0.02 2 0 2000 0.2329

0.02 2 0 5000 1.6280

0.02 2 1 10 0.0023

0.02 2 1 1000 0.0653

.

.

.

.

.

.

.

.

.

.

.

.

fraction sweeps seed n time fit

.

.

.

.

.

.

.

.

.

.

.

.

0.02 2 1 2000 0.2159

0.02 2 1 5000 1.5700

0.02 2 3 10 0.0022

0.02 2 3 1000 0.0581

0.02 2 3 2000 0.2150

0.02 2 3 5000 1.2414

0.02 5 0 10 0.0023

0.02 5 0 1000 0.1840

0.02 5 0 2000 0.5888

0.02 5 0 5000 3.6802

0.02 5 1 10 0.0023

0.02 5 1 1000 0.1635

0.02 5 1 2000 0.6223

0.02 5 1 5000 3.2479

0.02 5 3 10 0.0023

0.02 5 3 1000 0.1762

0.02 5 3 2000 0.5429

0.02 5 3 5000 3.5708

0.1 1 0 10 0.0023

0.1 1 0 1000 0.1447

0.1 1 0 2000 0.4786

0.1 1 0 5000 3.8689

0.1 1 1 10 0.0024

0.1 1 1 1000 0.1374

0.1 1 1 2000 0.5148

0.1 1 1 5000 5.0410

0.1 1 3 10 0.0022

0.1 1 3 1000 0.2143

0.1 1 3 2000 0.4848

0.1 1 3 5000 4.2602

0.1 2 0 10 0.0024

0.1 2 0 1000 0.2725

0.1 2 0 2000 1.2903

0.1 2 0 5000 8.6382

0.1 2 1 10 0.0024

0.1 2 1 1000 0.3839

0.1 2 1 2000 1.0479

0.1 2 1 5000 8.3682

0.1 2 3 10 0.0026

0.1 2 3 1000 0.2764

0.1 2 3 2000 1.0658

0.1 2 3 5000 8.2853

0.1 5 0 10 0.0024

0.1 5 0 1000 0.6919

0.1 5 0 2000 2.7097

0.1 5 0 5000 20.9603

0.1 5 1 10 0.0024

0.1 5 1 1000 0.6491

0.1 5 1 2000 2.9177

0.1 5 1 5000 20.7587

0.1 5 3 10 0.0022

0.1 5 3 1000 0.7756

0.1 5 3 2000 2.8333

0.1 5 3 5000 22.9864

Table A.1: Results from the runs of asv-benchmark on the synthetic dataset

University of Oviedo Héctor Dı́az Beltrán

APPENDIX A. ASV BENCHMARKS 55 of 60

fraction sweeps seed n samples time peakmem peakmem silhouette homogeneity AMI

0.005 1 0 10 0.0023 142606336 136.00MB NaN 0.0000 0.0000

0.005 1 0 100 0.0033 143110144 136.48MB 0.1211 0.1269 0.1668

0.005 1 0 1000 0.0199 149991424 143.04MB 0.0951 0.2981 0.3600

0.005 1 0 5000 0.2592 181420032 173.02MB 0.0423 0.5141 0.4625

0.005 1 1 10 0.0023 142979072 136.36MB NaN 0.0000 0.0000

0.005 1 1 100 0.0031 143298560 136.66MB 0.1723 0.1321 0.1864

0.005 1 1 1000 0.0199 150155264 143.20MB 0.0915 0.2241 0.2795

0.005 1 1 5000 0.2136 181460992 173.05MB 0.0370 0.5248 0.4544

0.005 1 2 10 0.0022 142733312 136.12MB NaN 0.0000 0.0000

0.005 1 2 100 0.0035 143101952 136.47MB 0.1234 0.0981 0.1214

0.005 1 2 1000 0.0204 150151168 143.20MB 0.0614 0.1748 0.2248

0.005 1 2 5000 0.2057 181583872 173.17MB 0.0536 0.5135 0.4530

0.005 2 0 10 0.0023 142635008 136.03MB 0.1728 0.2843 0.1351

0.005 2 0 100 0.0031 143081472 136.45MB 0.1211 0.1269 0.1668

0.005 2 0 1000 0.0190 150200320 143.24MB 0.0951 0.2981 0.3600

0.005 2 0 5000 0.2090 181854208 173.43MB 0.0336 0.5300 0.4608

0.005 2 1 10 0.0023 142921728 136.30MB NaN 0.0000 0.0000

0.005 2 1 100 0.0031 143114240 136.48MB 0.1723 0.1321 0.1864

0.005 2 1 1000 0.0182 149872640 142.93MB 0.0915 0.2241 0.2795

0.005 2 1 5000 0.2085 181387264 172.98MB 0.0370 0.5248 0.4544

0.005 2 2 10 0.0023 142569472 135.96MB NaN 0.0000 0.0000

0.005 2 2 100 0.0032 143200256 136.57MB 0.1234 0.0981 0.1214

0.005 2 2 1000 0.0182 149864448 142.92MB 0.0614 0.1748 0.2248

0.005 2 2 5000 0.4097 183955456 175.43MB 0.0501 0.5225 0.4569

0.005 3 0 10 0.0022 142798848 136.18MB 0.1728 0.2843 0.1351

0.005 3 0 100 0.0035 143265792 136.63MB 0.1211 0.1269 0.1668

0.005 3 0 1000 0.0175 149848064 142.91MB 0.0951 0.2981 0.3600

0.005 3 0 5000 0.4578 183828480 175.31MB 0.0339 0.5321 0.4566

0.005 3 1 10 0.0023 142589952 135.98MB NaN 0.0000 0.0000

0.005 3 1 100 0.0036 143089664 136.46MB 0.1723 0.1321 0.1864

0.005 3 1 1000 0.0198 150028288 143.08MB 0.0915 0.2241 0.2795

0.005 3 1 5000 0.2083 181444608 173.04MB 0.0370 0.5248 0.4544

0.005 3 2 10 0.0023 142479360 135.88MB 0.0800 0.2025 -0.0357

0.005 3 2 100 0.0032 143159296 136.53MB 0.1234 0.0981 0.1214

0.005 3 2 1000 0.0202 149762048 142.82MB 0.0614 0.1748 0.2248

0.005 3 2 5000 0.4046 183287808 174.80MB 0.0501 0.5225 0.4569

0.02 1 0 10 0.0021 142819328 136.20MB NaN 0.0000 0.0000

0.02 1 0 100 0.0035 143212544 136.58MB 0.1211 0.1269 0.1668

0.02 1 0 1000 0.0465 150462464 143.49MB 0.0752 0.5612 0.4838

0.02 1 0 5000 0.8075 188076032 179.36MB 0.0353 0.6567 0.4599

0.02 1 1 10 0.0023 142536704 135.93MB NaN 0.0000 0.0000

0.02 1 1 100 0.0034 143220736 136.59MB 0.1723 0.1321 0.1864

0.02 1 1 1000 0.0435 150253568 143.29MB 0.0792 0.5264 0.4604

0.02 1 1 5000 0.7780 187973632 179.27MB 0.0302 0.6556 0.4576

0.02 1 2 10 0.0023 142827520 136.21MB NaN 0.0000 0.0000

0.02 1 2 100 0.0030 143122432 136.49MB 0.1234 0.0981 0.1214

0.02 1 2 1000 0.0400 150437888 143.47MB 0.0429 0.4475 0.3916

0.02 1 2 5000 0.8039 188121088 179.41MB 0.0361 0.6668 0.4615

0.02 2 0 10 0.0021 142741504 136.13MB 0.1728 0.2843 0.1351

0.02 2 0 100 0.0034 143454208 136.81MB 0.1211 0.1269 0.1668

0.02 2 0 1000 0.0885 151584768 144.56MB 0.0678 0.5647 0.4811

0.02 2 0 5000 2.0903 193159168 184.21MB 0.0333 0.6680 0.4558

0.02 2 1 10 0.0024 142839808 136.22MB NaN 0.0000 0.0000

0.02 2 1 100 0.0033 143200256 136.57MB 0.1723 0.1321 0.1864

0.02 2 1 1000 0.0820 151298048 144.29MB 0.0711 0.5348 0.4615

0.02 2 1 5000 1.7501 192667648 183.74MB 0.0341 0.6687 0.4544

0.02 2 2 10 0.0023 142966784 136.34MB NaN 0.0000 0.0000

0.02 2 2 100 0.0033 143364096 136.72MB 0.1234 0.0981 0.1214

0.02 2 2 1000 0.0872 151715840 144.69MB 0.0639 0.4904 0.4191

0.02 2 2 5000 1.8096 193093632 184.15MB 0.0390 0.6829 0.4626

0.02 3 0 10 0.0022 142512128 135.91MB 0.1728 0.2843 0.1351

0.02 3 0 100 0.0033 143208448 136.57MB 0.1211 0.1269 0.1668

0.02 3 0 1000 0.1406 151691264 144.66MB 0.0678 0.5647 0.4811

0.02 3 0 5000 3.0979 193417216 184.46MB 0.0310 0.6764 0.4555

0.02 3 1 10 0.0024 142667776 136.06MB NaN 0.0000 0.0000

0.02 3 1 100 0.0033 143347712 136.71MB 0.1723 0.1321 0.1864

0.02 3 1 1000 0.1287 151523328 144.50MB 0.0711 0.5348 0.4615

0.02 3 1 5000 2.7269 193150976 184.20MB 0.0341 0.6722 0.4537

0.02 3 2 10 0.0023 142434304 135.84MB 0.0800 0.2025 -0.0357

0.02 3 2 100 0.0033 143380480 136.74MB 0.1234 0.0981 0.1214

0.02 3 2 1000 0.1198 151617536 144.59MB 0.0639 0.4904 0.4191

0.02 3 2 5000 2.8999 193277952 184.32MB 0.0356 0.6873 0.4592

Continued on next page

University of Oviedo Héctor Dı́az Beltrán

APPENDIX A. ASV BENCHMARKS 56 of 60

fraction sweeps seed n samples time peakmem peakmem silhouette homogeneity AMI

0.1 1 0 10 0.0023 142856192 136.24MB NaN 0.0000 0.0000

0.1 1 0 100 0.0056 143781888 137.12MB 0.0789 0.4935 0.4483

0.1 1 0 1000 0.1973 152129536 145.08MB 0.0631 0.6459 0.4746

0.1 1 0 5000 5.8787 269086720 256.62MB 0.0390 0.7156 0.4425

0.1 1 1 10 0.0023 142741504 136.13MB NaN 0.0000 0.0000

0.1 1 1 100 0.0055 143618048 136.96MB 0.1198 0.4482 0.3977

0.1 1 1 1000 0.1539 152203264 145.15MB 0.0650 0.6545 0.4949

0.1 1 1 5000 6.0741 269299712 256.82MB 0.0381 0.7209 0.4465

0.1 1 2 10 0.0024 142573568 135.97MB NaN 0.0000 0.0000

0.1 1 2 100 0.0056 143765504 137.11MB 0.0677 0.4484 0.3716

0.1 1 2 1000 0.1672 152211456 145.16MB 0.0566 0.6629 0.4825

0.1 1 2 5000 6.3318 269139968 256.67MB 0.0396 0.7235 0.4501

0.1 2 0 10 0.0022 142929920 136.31MB 0.1728 0.2843 0.1351

0.1 2 0 100 0.0115 143532032 136.88MB 0.1256 0.5343 0.4651

0.1 2 0 1000 0.3236 154058752 146.92MB 0.0606 0.6623 0.4756

0.1 2 0 5000 13.9018 269664256 257.17MB 0.0446 0.7242 0.4466

0.1 2 1 10 0.0022 142745600 136.13MB NaN 0.0000 0.0000

0.1 2 1 100 0.0114 143704064 137.05MB 0.1049 0.4668 0.3900

0.1 2 1 1000 0.3299 153812992 146.69MB 0.0751 0.6632 0.4941

0.1 2 1 5000 15.2352 270114816 257.60MB 0.0428 0.7285 0.4440

0.1 2 2 10 0.0024 142327808 135.73MB NaN 0.0000 0.0000

0.1 2 2 100 0.0120 143716352 137.06MB 0.0864 0.4781 0.3794

0.1 2 2 1000 0.3119 153735168 146.61MB 0.0675 0.6770 0.4956

0.1 2 2 5000 13.8068 270143488 257.63MB 0.0414 0.7241 0.4452

0.1 3 0 10 0.0024 142516224 135.91MB 0.1728 0.2843 0.1351

0.1 3 0 100 0.0182 143876096 137.21MB 0.1256 0.5343 0.4651

0.1 3 0 1000 0.4731 153878528 146.75MB 0.0646 0.6756 0.4804

0.1 3 0 5000 18.5410 270000128 257.49MB 0.0472 0.7344 0.4512

0.1 3 1 10 0.0024 142880768 136.26MB NaN 0.0000 0.0000

0.1 3 1 100 0.0183 143515648 136.87MB 0.1130 0.5180 0.4225

0.1 3 1 1000 0.4832 154238976 147.09MB 0.0715 0.6693 0.4872

0.1 3 1 5000 20.2452 269885440 257.38MB 0.0442 0.7277 0.4489

0.1 3 2 10 0.0024 142589952 135.98MB 0.0800 0.2025 -0.0357

0.1 3 2 100 0.0183 143339520 136.70MB 0.0864 0.4781 0.3794

0.1 3 2 1000 0.5251 153649152 146.53MB 0.0671 0.6816 0.4921

0.1 3 2 5000 20.3047 269799424 257.30MB 0.0403 0.7266 0.4460

Table A.2: Results from the runs of asv-benchmark on the Fashion-MNIST dataset

fraction sweeps seed time peakmem peakmem silhouette homogeneity AMI

0.1 1 0 0.0390 114712576 109.40MB 0.0760 0.6266 0.4864

0.1 1 1 0.0424 114864128 109.54MB 0.0582 0.5515 0.4184

0.1 1 2 0.0407 114900992 109.58MB 0.0636 0.5562 0.4298

0.1 1 3 0.0400 114823168 109.50MB 0.0732 0.5875 0.4744

0.1 1 4 0.0450 114581504 109.27MB 0.0526 0.5608 0.4214

0.1 2 0 0.0881 115523584 110.17MB 0.0822 0.6453 0.4881

0.1 2 1 0.0872 115499008 110.15MB 0.0612 0.5925 0.4365

0.1 2 2 0.0789 116002816 110.63MB 0.0735 0.6170 0.4767

0.1 2 3 0.0798 115343360 110.00MB 0.0688 0.6059 0.4791

0.1 2 4 0.0803 115220480 109.88MB 0.0649 0.6160 0.4554

0.1 3 0 0.1250 115228672 109.89MB 0.0845 0.6608 0.5019

0.1 3 1 0.1254 116105216 110.73MB 0.0717 0.6583 0.4796

0.1 3 2 0.1228 115150848 109.82MB 0.0907 0.6614 0.5175

0.1 3 3 0.1165 115494912 110.14MB 0.0723 0.6322 0.4816

0.1 3 4 0.1291 115675136 110.32MB 0.0692 0.5945 0.4362

0.1 4 0 0.1791 115515392 110.16MB 0.0899 0.6643 0.5003

0.1 4 1 0.1769 116015104 110.64MB 0.0717 0.6583 0.4796

0.1 4 2 0.1589 115355648 110.01MB 0.0937 0.6717 0.5223

0.1 4 3 0.1623 115429376 110.08MB 0.0752 0.6418 0.4782

0.1 4 4 0.1661 115089408 109.76MB 0.0727 0.6306 0.4697

0.2 1 0 0.0666 117153792 111.73MB 0.1068 0.7057 0.5318

0.2 1 1 0.0685 116674560 111.27MB 0.0845 0.6372 0.4620

0.2 1 2 0.0673 117035008 111.61MB 0.1062 0.6776 0.5155

0.2 1 3 0.0726 116695040 111.29MB 0.0937 0.6346 0.4876

0.2 1 4 0.0615 116817920 111.41MB 0.0831 0.6707 0.4956

0.2 2 0 0.1569 118177792 112.70MB 0.1229 0.7509 0.5649

0.2 2 1 0.1399 118149120 112.68MB 0.1040 0.7024 0.5331

0.2 2 2 0.1292 117825536 112.37MB 0.1229 0.7321 0.5464

0.2 2 3 0.1321 118394880 112.91MB 0.1145 0.7013 0.5400

Continued on next page

University of Oviedo Héctor Dı́az Beltrán

APPENDIX A. ASV BENCHMARKS 57 of 60

fraction sweeps seed time peakmem peakmem silhouette homogeneity AMI

0.2 2 4 0.1547 117956608 112.49MB 0.1190 0.7512 0.5583

0.2 3 0 0.2057 118267904 112.79MB 0.1224 0.7549 0.5683

0.2 3 1 0.1930 118288384 112.81MB 0.1092 0.7224 0.5630

0.2 3 2 0.2245 118390784 112.91MB 0.1214 0.7441 0.5728

0.2 3 3 0.1979 118562816 113.07MB 0.1270 0.7353 0.5566

0.2 3 4 0.1991 118669312 113.17MB 0.1233 0.7617 0.5728

0.2 4 0 0.2502 118349824 112.87MB 0.1250 0.7396 0.5451

0.2 4 1 0.2602 118661120 113.16MB 0.1243 0.7278 0.5456

0.2 4 2 0.2496 118456320 112.97MB 0.1336 0.7664 0.5864

0.2 4 3 0.2553 118464512 112.98MB 0.1276 0.7507 0.5617

0.2 4 4 0.2610 118665216 113.17MB 0.1401 0.7932 0.6003

0.3 1 0 0.1030 118759424 113.26MB 0.1126 0.7483 0.5455

0.3 1 1 0.1038 118685696 113.19MB 0.1058 0.6949 0.5119

0.3 1 2 0.0885 118730752 113.23MB 0.1283 0.7161 0.5732

0.3 1 3 0.0879 119091200 113.57MB 0.1178 0.7041 0.5146

0.3 1 4 0.1029 118870016 113.36MB 0.1088 0.7563 0.5740

0.3 2 0 0.1872 120717312 115.12MB 0.1336 0.7810 0.5784

0.3 2 1 0.1945 120532992 114.95MB 0.1365 0.7737 0.5730

0.3 2 2 0.1809 120709120 115.12MB 0.1327 0.7488 0.5865

0.3 2 3 0.1789 119623680 114.08MB 0.1410 0.7825 0.5840

0.3 2 4 0.1870 120524800 114.94MB 0.1075 0.7781 0.5977

0.3 3 0 0.2797 120696832 115.11MB 0.1395 0.7924 0.5938

0.3 3 1 0.2721 120823808 115.23MB 0.1439 0.8039 0.6280

0.3 3 2 0.2517 120717312 115.12MB 0.1401 0.7634 0.5881

0.3 3 3 0.3222 119455744 113.92MB 0.1423 0.7800 0.5839

0.3 3 4 0.2731 120623104 115.04MB 0.1244 0.7878 0.6048

0.3 4 0 0.3841 120844288 115.25MB 0.1449 0.7936 0.6061

0.3 4 1 0.3622 120672256 115.08MB 0.1465 0.8119 0.6385

0.3 4 2 0.3479 119844864 114.29MB 0.1399 0.7646 0.5935

0.3 4 3 0.3623 120655872 115.07MB 0.1451 0.7808 0.6041

0.3 4 4 0.3896 121126912 115.52MB 0.1281 0.7896 0.6115

Table A.3: Results from the runs of asv-benchmark on the Olivetti faces dataset

University of Oviedo Héctor Dı́az Beltrán

APPENDIX B. FASHION-MNIST BENCHMARKS 58 of 60

Appendix B

Fashion-MNIST Benchmarks

The following appendix details the results of an additional run of LAP for a bigger
set of fractions and sweeps than that used in the asv-benchmarks. In particular,
fraction values of [0.02, 0.05, 0.1, 0.2, 0.3, 0.5] are tested with sweeps [1, 2, 3, 4,
5, 6, 8, 10]. The test was performed several times, using different random seeds [1,
10, 100, 123, 999], as it affects the candidate exemplar selection process. Runs were
omitted if the value of fraction * sweeps was greater than 1.

The test was made in order to compare different configurations of LAP parameters,
and how it affects the results on a subset of the Fashion-MNIST dataset. Standard
clustering metrics were recorded, treating the original classification of images as the
true values, along with the number of clusters generated by each configuration.

University of Oviedo Héctor Dı́az Beltrán

A
P
P
E
N
D
IX

B
.
F
A
S
H
IO

N
-M

N
IS
T

B
E
N
C
H
M
A
R
K
S

59
of

60

V-measure Rand index MIS AMIS NMIS Fowlkes Mallows n clusters

mean std mean std mean std mean std mean std mean std mean std

frac sweeps

0.02 1 0.282 0.059 0.712 0.124 0.562 0.155 0.275 0.058 0.282 0.059 0.283 0.033 8.800 3.271

2 0.334 0.077 0.754 0.090 0.686 0.183 0.326 0.077 0.334 0.077 0.316 0.056 10.400 1.517

3 0.335 0.069 0.765 0.081 0.692 0.162 0.328 0.070 0.335 0.069 0.310 0.056 9.600 1.140

4 0.329 0.068 0.770 0.085 0.684 0.174 0.323 0.068 0.329 0.068 0.306 0.045 9.400 1.949

5 0.304 0.038 0.749 0.072 0.619 0.111 0.298 0.037 0.304 0.038 0.288 0.032 9.200 1.924

6 0.310 0.037 0.746 0.067 0.622 0.098 0.304 0.037 0.310 0.037 0.304 0.034 8.800 1.789

8 0.320 0.050 0.746 0.066 0.641 0.112 0.314 0.050 0.320 0.050 0.312 0.043 8.800 1.789

10 0.311 0.049 0.747 0.066 0.626 0.114 0.304 0.049 0.311 0.049 0.303 0.039 9.000 0.707

0.05 1 0.288 0.044 0.732 0.068 0.578 0.127 0.281 0.044 0.288 0.044 0.284 0.025 9.200 2.387

2 0.297 0.037 0.749 0.077 0.615 0.123 0.290 0.037 0.297 0.037 0.280 0.024 10.000 2.121

3 0.271 0.035 0.714 0.085 0.549 0.105 0.263 0.035 0.271 0.035 0.271 0.022 10.200 1.483

4 0.272 0.039 0.717 0.084 0.550 0.118 0.264 0.039 0.272 0.039 0.275 0.021 10.000 1.581

5 0.288 0.058 0.706 0.058 0.572 0.134 0.280 0.059 0.288 0.058 0.289 0.041 10.200 0.447

6 0.285 0.057 0.708 0.060 0.572 0.138 0.277 0.057 0.285 0.057 0.285 0.039 10.600 0.548

8 0.319 0.061 0.745 0.061 0.655 0.143 0.311 0.062 0.319 0.061 0.308 0.048 11.000 1.225

10 0.324 0.059 0.751 0.058 0.665 0.135 0.316 0.060 0.324 0.059 0.308 0.049 10.400 1.517

0.10 1 0.308 0.041 0.762 0.072 0.633 0.120 0.302 0.041 0.308 0.041 0.299 0.034 9.400 1.673

2 0.333 0.044 0.781 0.046 0.695 0.088 0.326 0.045 0.333 0.044 0.315 0.042 10.600 1.517

3 0.323 0.057 0.763 0.058 0.663 0.130 0.316 0.058 0.323 0.057 0.308 0.047 9.800 1.304

Continued on next page

U
n
iv
e
rsity

o
f
O
v
ie
d
o

H
é
cto

r
D
ı́a
z
B
e
ltrá

n

A
P
P
E
N
D
IX

B
.
F
A
S
H
IO

N
-M

N
IS
T

B
E
N
C
H
M
A
R
K
S

60
of

60

V-measure Rand index MIS AMIS NMIS Fowlkes Mallows n clusters

mean std mean std mean std mean std mean std mean std mean std

frac sweeps

4 0.323 0.054 0.755 0.051 0.660 0.126 0.316 0.055 0.323 0.054 0.312 0.046 9.800 1.643

5 0.309 0.043 0.738 0.045 0.625 0.096 0.302 0.044 0.309 0.043 0.299 0.041 9.800 1.643

6 0.308 0.042 0.746 0.042 0.631 0.095 0.300 0.043 0.308 0.042 0.297 0.042 10.400 1.817

8 0.322 0.034 0.774 0.030 0.680 0.068 0.315 0.035 0.322 0.034 0.299 0.040 11.000 1.225

10 0.348 0.044 0.799 0.029 0.753 0.107 0.340 0.044 0.348 0.044 0.318 0.041 11.800 1.095

0.20 1 0.322 0.048 0.768 0.066 0.664 0.125 0.316 0.048 0.322 0.048 0.311 0.040 9.400 1.342

2 0.314 0.047 0.762 0.056 0.665 0.128 0.306 0.048 0.314 0.047 0.289 0.036 11.600 0.548

3 0.316 0.045 0.759 0.051 0.669 0.129 0.307 0.045 0.316 0.045 0.285 0.030 11.600 1.673

4 0.310 0.048 0.758 0.043 0.658 0.122 0.302 0.048 0.310 0.048 0.283 0.037 12.000 1.581

5 0.358 0.048 0.803 0.048 0.778 0.122 0.350 0.048 0.358 0.048 0.330 0.038 12.200 1.304

0.30 1 0.311 0.065 0.739 0.072 0.637 0.152 0.303 0.066 0.311 0.065 0.299 0.052 10.600 2.510

2 0.300 0.041 0.733 0.039 0.621 0.093 0.291 0.042 0.300 0.041 0.282 0.036 11.800 0.837

3 0.328 0.053 0.770 0.045 0.704 0.125 0.319 0.055 0.328 0.053 0.299 0.048 13.000 1.581

0.50 1 0.349 0.044 0.786 0.052 0.743 0.111 0.341 0.045 0.349 0.044 0.319 0.040 11.400 0.548

2 0.349 0.048 0.802 0.054 0.770 0.131 0.341 0.049 0.349 0.048 0.313 0.040 12.600 0.548

Table B.1: The table presents the performance comparison of Leveraged Affinity Propagation (LAP) algorithm using different
fraction and sweep parameters. The results are averaged over 5 random seeds, and the mean and standard deviation are reported
for multiple evaluation measures, including V-measure, Rand Index, Info Score, Adjusted Mutual Info Score, Normalized Mutual
Info Score, Fowlkes Mallows Score and the number of clusters.

U
n
iv
e
rsity

o
f
O
v
ie
d
o

H
é
cto

r
D
ı́a
z
B
e
ltrá

n

	1 Introduction
	2 Affinity Propagation (AP)
	2.1 Algorithm
	2.2 Usage
	2.3 Available implementations
	2.3.1 apcluster
	2.3.2 matlab
	2.3.3 scikit-learn
	2.3.4 ELKI
	2.3.5 Clustering.jl

	2.4 Limitations

	3 Leveraged Affinity Propagation
	3.1 Introduction
	3.2 Available implementations
	3.2.1 apcluster
	3.2.2 matlab

	3.3 Implementation
	3.3.1 Performance
	3.3.1.1 Clustering
	3.3.1.2 Memory and runtime considerations

	4 Python package
	4.1 Requirements
	4.1.1 Functional requirements
	4.1.2 Non-functional requirements

	4.2 Design
	4.3 Development
	4.4 Packaging
	4.4.1 Installation

	4.5 Challenges
	4.5.1 Algorithm implementation
	4.5.2 Platform agnostic indexing integers
	4.5.3 Packaging

	5 Validation
	5.1 Design
	5.1.1 Hardware
	5.1.2 Software
	5.1.3 Metrics
	5.1.4 LAP Parameters

	5.2 Datasets
	5.2.1 Synthetic
	5.2.2 Olivetti Faces
	5.2.3 Fashion-MNIST
	5.2.4 Amazon
	5.2.4.1 Methodology
	5.2.4.2 Evaluation

	6 Conclusions
	6.1 Future work

	A ASV Benchmarks
	B Fashion-MNIST Benchmarks

