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Abstract

Interval-valued fuzzy sets are a generalization of classical fuzzy sets where the membership values are intervals. The epistemic 
interpretation of interval-valued fuzzy sets assumes that there is one real-valued membership degree of an element within the 
membership interval of possible membership degrees. Considering this epistemic interpretation, we propose a new measure, called 
IV-embedding, to compare the precision of two interval-valued fuzzy sets. An axiomatic definition for this concept as well as a con-
struction method are provided. The construction method is based on aggregation operators and the concept of interval embedding, 
which is also introduced and deeply studied.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by -nc -nd /4 .0/).
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1. Introduction

Fuzzy sets were originally introduced by Lotfi A. Zadeh as an extension of classical set theory [1], where the 
Boolean characteristic function of a set is replaced with a function into the real unit interval [0, 1]. They represent the 
core of soft computing, since they allow more flexible information processing systems (see, for instance [2]). They 
have been applied in many different areas, such as artificial intelligence, machine learning, information processing, 
statistics and data analysis, control system, decision sciences, economics, medicine or engineering. A complete re-
vision about these applications has been shown in [3,4]. Since there are many real problems where it may not be 
possible to narrow the membership information down to an exact number, more sophisticated extensions of fuzzy sets 
have been proposed where the membership value itself is made less precise by turning it into a collection of possible 
values rather than a single real number in [0, 1]. This idea leads to a more general formulation of fuzzy sets where 
membership values are intervals (interval-valued fuzzy sets) or functions (type-2 fuzzy sets) [5]. Interval-valued fuzzy 
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sets are one of the most important extensions that were independently introduced by Zadeh [6], Grattan-Guiness [7], 
Jahn [8] and Sambuc [9] in the seventies. They are able to jointly work with vagueness and uncertainty.

For interval-valued fuzzy sets, we can consider the epistemic or the ontic interpretation [10]. In our study the first 
one will be the chosen. Thus, we assume that there is one actual, real-valued membership degree of an element within 
the membership interval of possible membership degrees.

Since this generalization of fuzzy sets was introduced, many different properties and relations between interval-
fuzzy sets have been studied. Concepts such as clouds, distance, similarity, inclusion or entropy measures have been 
studied. Neumanier [11] proposed the concept of a cloud, using interval-valued fuzzy sets, as an efficient method 
to represent a family of probabilities. Dubois and Prade [12] studied the connection between clouds, interval-valued 
fuzzy sets and possibility theory. Grzegorzewski [13] studied the concept of distance between interval-valued fuzzy 
sets based on the Hausdorff metric. Bustince and Burillo [14] and Szmidt and Kacprzyk [15] proposed different no-
tions of entropy of interval-valued fuzzy sets from different point of views. Bustince et al. in [16] or Zeng and Guo [17]
introduced axiomatic definitions of inclusion measures for interval-valued fuzzy sets. More recently, Bustince et al. 
in [18] study a new class of similarity measures between interval-valued fuzzy sets based that considers the width 
of intervals so that the uncertainty of the output is strongly related to the uncertainty of the input. The degree of 
inclusion and similarity between interval-valued fuzzy sets is constructed based on the precedence relation, aggre-
gation and uncertainty assessment in [19]. This problem is important in many different frameworks such as medical 
diagnosis [20,21] where the need of some kind of comparison between IVFS is present.

Thus, the study of how to compare and to establish relationships between two interval-valued fuzzy sets is a 
challenging topic. In particular, the precision of the membership of an interval-valued fuzzy set is also important. In 
this work embedding measures will be introduced as a tool to compare whether one interval-valued fuzzy set is a 
less precise description than another interval-valued fuzzy set or not. The rest of this paper is organized as follows: 
Section 2 provides some basic concepts about interval-valued fuzzy sets. Section 3 gives the definitions of embedding 
measure for intervals, as well as some properties and construction methods. Section 4 proposes a coherent axiomatic 
definition for the concept of embedding measure for interval-valued fuzzy sets, studying in detail this concept. Finally, 
Section 6 shows a case study and Section 7 draws conclusions.

2. Basic concepts

Let X denote the universe of discourse. An interval-valued fuzzy set of X is a mapping A : X → L([0, 1]) such 
that A(x) = [A(x), A(x)], where L([0, 1]) denotes the family of closed intervals included in the unit interval [0, 1]. 
Thus, an interval-valued fuzzy set A is totally characterized by two mappings, A and A, from X into [0, 1] such that 
A(x) ≤ A(x) for any x ∈ X. These maps represent the lower and upper bound for the membership function. Thus, A
is a classical fuzzy set if A(x) = A(x) ∀x ∈ X. Obviously, fuzzy sets are particular cases of interval-valued fuzzy sets. 
The collection of all the interval-valued fuzzy sets in X is denoted by IV FS(X).

There are two essential relations in IV FS(X) in which this paper is focused: the inclusion and the embedding. 
Both are based on orders on L([0, 1]), but their meaning is totally different. While the inclusion represents that an 
interval-valued fuzzy set is totally contained in another one, the embedding happens when an interval-valued fuzzy 
set has a more precise information about the real membership-function than another one. Thus, we will consider two 
partial orders on L([0, 1]), defined for any a, b ∈ L([0, 1]) with a = [a, a] and b = [b, b] as follows:

• Contained (a ⊆ b): it is said that a is included in b if and only if b ≤ a ≤ a ≤ b.
• Lattice order (a ≤ b) [22]: it is said that a is lower than or equal to b if and only if a ≤ b and a ≤ b.

From them, we can obtain also two partial orders on IVFS(X) defined, for any A, B ∈ IV FS(X) as follows:

• Embedded: it is said that A is embedded in B , and it is denoted by A � B , if and only if A(x) ⊆ B(x), ∀x ∈ X.
• Included: it is said that A is included in B , and it is denoted by A ⊆ B , if and only if A(x) ≤ B(x), ∀x ∈ X.

Example 2.1. Consider A, B, C, D ∈ IV FS(X) as in Fig. 1. Note that A is embedded in B as the uncertainty about 
the real membership value is lower for A than for B . However, A � B . On the other hand, we have that C ⊆ D, but 
C �� D.
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Fig. 1. Embedding versus inclusion.

Thus, with a simple example it is easy to see that embedding and inclusion are totally different concepts.

Since the membership value of an interval-valued fuzzy set is an interval, in order to study their embedding mea-
sures, we will start by studying the analogous concept for intervals. This will be a first step for defining embeddings 
for interval-valued fuzzy sets. Moreover, we will use the families of embedding for intervals to obtain embeddings in 
IV FS(X).

3. Embedding measures for intervals

In this section the axioms that characterize an embedding for intervals are introduced. More precisely, we will try 
to define a measure of the embedding for one element in L([0, 1]) into another one.

There are several measures in the literature for quantify the degree of subsethood or inclusion between sets [23]. 
However, the embedding degree between two intervals differs axiomatically and philosophically from the inclusion 
degree as consequence of the conditions (axioms) imposed in order to achieve a good representation of the embedding. 
The first requirement is that an interval is totally embedded in another one, that is, all the points of the first interval are 
also points of the second one, just in the case the embedding is the maximum. Moreover, if two intervals do not have 
elements in common, none of the two is embedded into the other one. The third requirement is that the embedding is 
increasing in the second variable. This means that if the interval b is embedded in the interval c, it is logical that the 
embedding of any other interval a in c is always greater than or equal to the embedding in b. Finally, it seems logical 
to require a decreasing property for the embedded in some particular sets.

The four conditions above express the essence of the notion of embedding for intervals and represent the minimal 
requirements for a function to be a embedding being a subset of those proposed by Sinha and Dougherty to measure 
fuzzy set inclusion [24]. The concept of embedding is less restrictive but enough for our purposes. This relationship 
is logical since the ideas under embedding and inclusion are the same for intervals. However, this will not happen in 
the case of interval-valued fuzzy sets. Thus,

Definition 3.1. The function E : L([0, 1]) ×L([0, 1]) → [0, 1] is an embedding on L([0, 1]) if the following properties 
are hold:

A1: E(a, b) = 1 if and only if a ⊆ b.
A2: If a �= ∅ and a ∩ b = ∅, then E(a, b) = 0.
A3: If b ⊆ c, then E(a, b) ≤ E(a, c).
A4: If a ⊆ b ⊆ c, then E(c, a) ≤ E(b, a).

for any a, b, c ∈ L([0, 1]).

Some interesting properties for embeddings on L([0, 1]) are:

Proposition 3.2. For any a, b, c ∈ L(]0, 1]) we have that:

(1) E(a ∩ b, a) = E(a ∩ b, b) = E(a, a ∪ b) = E(b, a ∪ b) = 1.
(2) E(a, b ∩ c) ≤ min{E(a, b), E(a, c)}.

Proof. (1) The demonstration of this property is immediate.
3
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(2) Since b∩c ⊆ b and b∩c ⊆ c, we obtain from Axiom A3 that E(a, b∩c) ≤ E(a, b) and E(a, b∩c) ≤ E(a, c). �
Once the axioms that define the embedding for intervals as well as some important properties are introduced, 

some construction methods are studied. The first one is based on the width of the intervals and the second one on 
implications.

3.1. Construction of an embedding based on interval width

In this subsection, a construction method for interval embedding based on measuring and comparing the width of 
the related intervals is proposed. Apart from obtaining a family of embedding measures, we will use it to analyze the 
converse implications for Axioms A2 and A3 in Definition 3.1. Since it is based on the width of the intervals, we first 
recall this well-known concept and fix the related notation.

Definition 3.3. Let a be an interval in L([0, 1]) with a = [a, a]. The width of the interval a is given by:

w(a) = a − a

Thus, the width of a degenerate interval is zero. By convention this value is also assumed for the width of the empty 
set.
Then, we can use the comparison of the interval width to measure the embedding degree.

Proposition 3.4. Let φ : � → [0, 1] be a map with � = {(x, y, z) ∈ [0, 1] × (0, 1] × [0, 1] | x ≤ y, x ≤ z} such that

• φ(0, y, z) = 0,
• for x �= 0, φ(x, y, z) = 1 ⇔ x = y,
• φ is increasing in the first and third component,
• φ is decreasing in the second component,

the map Eφ : L([0, 1]) × L([0, 1]) → [0, 1] defined by

Eφ(a, b) =
⎧⎨
⎩

1 if w(a) = 0, a ∈ b

0 if w(a) = 0, a /∈ b

φ(w(a ∩ b),w(a),w(b)) otherwise

is an embedding for intervals.

Proof. It is clear that Eφ is well-defined since its values are between 0 and 1. Thus, let us prove that Eφ is an 
embedding for intervals.

• Axiom A1: If a is just one point, Eφ(a, b) = 1 iff a ∈ b, so a ⊆ b. If a is different from a point, Eφ(a, b) =
φ(w(a ∩ b), w(a), w(b)) = 1 iff w(a ∩ b) = w(a) by the second property of φ. As a ∩ b ⊆ a, the only possibility 
to have the same width is that a ∩ b = a and this is equivalent to say that a ⊆ b.

• Axiom A2: If a �= ∅ and a ∩ b = ∅, we will consider again two cases. If a is just one point, Eφ(a, b) = 0 iff a /∈ b, 
which is equivalent to say that a ∩ b = ∅. If a is different from a point, then Eφ(a, b) = φ(0, w(a), w(b)) = 0 by 
the first property of φ. Moreover, if a ∩ b = ∅, then b ∩ a = ∅ and therefore Eφ(b, a) = 0.

• Axiom A3: If b ⊆ c, then we will consider again the two cases. If a is just a point and Eφ(a, b) = 0, then the proof 
of this axiom is trivial. Otherwise Eφ(a, b) = 1 and a ∈ b. Thus, a ∈ c and therefore Eφ(a, c) = 1. If a is not a 
point, as φ is increasing in the first and third component and we have that w(a ∩ b) ≤ w(a ∩ c) and w(b) ≤ w(c), 
then Eφ(a, b) = φ(w(a ∩ b), w(a), w(b)) ≤ φ(w(a ∩ c), w(a), w(c)) = Eφ(a, c).

• Axiom A4: If a ⊆ b ⊆ c, we will consider three cases. If w(c) = 0 then a = b = c. Therefore, Eφ(c, a) =
Eφ(b, a) = 1. If w(c) �= 0 and w(b) = 0 then a = b. Therefore, Eφ(c, a) ≤ Eφ(b, a) = 1. Finally, if w(c) �= 0
and w(b) �= 0 then Eφ(c, a) = φ(w(a), w(c), w(a)) and Eφ(b, a) = φ(w(a), w(b), w(a)). We know that b ⊆ c, 
thus w(b) ≤ w(c). As we are considering functions φ decreasing in the second components, then Eφ(c, a) ≤
Eφ(b, a). �
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Corollary 3.5. If we consider the function Ew : L([0, 1]) × L([0, 1]) → [0, 1] defined by:

Ew(a, b) =
⎧⎨
⎩

1 if w(a) = 0, a ∩ b �= ∅
0 if w(a) = 0, a ∩ b = ∅

w(a∩b)
w(a)

if w(a) �= 0

then Ew is an embedding for intervals.

Proof. It is an immediate consequence of Proposition 3.4, since Ew = Eφ with:

φ(x, y, z) =
{

0 if x = 0
x/y if x �= 0 �

Example 3.6. Let us study if the interval [0.2, 0.5] is embedded in the intervals [0.6, 0.7], [0.4, 0.7] or [0.1, 0.7]. 
Using the function Ew(a, b) it is obtained that

Ew([0.2,0.5], [0.6,0.7]) = 0

0.3
= 0

Ew([0.2,0.5], [0.4,0.7]) = 0.1

0.3
= 1/3

Ew([0.2,0.5], [0.1,0.7]) = 0.3

0.3
= 1

Note that the results make sense since it seems clear that [0.2, 0.5] is not embedded in [0.6, 0.7], it is embedded in 
some degree in [0.4, 0.7] and it is totally embedded in [0.1, 0.7].

In addition, note that Axiom A2 is fulfilled in only one direction. If we consider a = [0.2, 0.5] and b = [0.5, 0.6], 
we have that a ∩ b �= ∅, but Ew(a, b) = 0.

In Proposition 3.4 we have preferred to give the most general result possible. However, it is evident that the previous 
function φ does not depend on the parameter z. Obviously, in other environments it could affect the value of z, for 
example if we consider the function:

φ(x, y, z) =
⎧⎨
⎩

0 if x = 0
1 if x �= 0, x = y
xz
y

otherwise

Another particular family of embeddings for intervals that can be obtained from the construction proposed in 
Proposition 3.4 is introduced in the next proposition.

Proposition 3.7. The function Eλ : L([0, 1]) × L([0, 1]) → [0, 1] defined by:

Eλ(a, b) =
⎧⎨
⎩

1 if a ⊆ b

0 if a ∩ b = ∅
λ otherwise

with λ ∈ [0, 1) is an embedding for intervals.

Proof. It is again a consequence of Proposition 3.4. In this case the map φ is given by:

φ(x, y, z) =
⎧⎨
⎩

0 if x = 0
1 if x = y

λ otherwise �
Although λ cannot be equal to 1 (in that case, it does not fulfill Axiom A1), we have considered that it could be 

equal to zero. In fact, in this case we obtain a lower bound for the family of interval embedding measures as the 
following proposition states.
5
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Proposition 3.8. For any embedding E we have that E0 ≤ E, that is, the previous mapping for the case λ = 0 is the 
minimum embedding function.

Proof. If E0(a, b) = 0, the proof is immediate. Otherwise, we have that a ⊆ b and E0(a, b) = 1. But as E is an 
embedding function we know that E(a, b) = 1 by Axiom A1. Thus, in that case, E0(a, b) = E(a, b). �
3.2. Construction of embedding based on implications

In this section other construction method for embeddings using implications is introduced.
We are mainly interested on fuzzy implications [25], that is, a generalization of classical implications to fuzzy logic 

case. We use the following definition, which is equivalent to the one introduced by Fodor and Roubens [26].

Definition 3.9. An implication function is a function I : [0, 1]2 → [0, 1] verifying:

I1. I is decreasing in the first variable,
I2. I is increasing in the second variable,
I3. I (0, 0) = I (1, 1) = 1 and I (1, 0) = 0.

Note that sometimes property (I3) is replaced by the conditions I (0, x) = 1 and I (x, 1) = 1 for every x ∈ [0, 1], 
yielding an equivalent definition [27]. Some extra properties could be required to implication functions. In particular 
we are going to deal with implication functions fulfilling:

I4. I (x, y) = 1 ⇔ x ≤ y.

This is usually called the ordering property (see, for instance, [27–29]) and it is fulfilled by a lot of examples of basic 
implication functions.

Proposition 3.10. Let I be an implication function fulfilling Property I4, the map EI : L([0, 1]) × L([0, 1]) → [0, 1]
defined by:

EI (a, b) =
{

0 if a ∩ b = ∅
min(I (b, a), I (a, b)) otherwise

is an embedding for intervals.

Proof. EI is well-defined since the values of I are in the interval [0, 1]. Let us check the four axioms defining an 
embedding:

• EI (a, b) = 1 iff I (b, a) = 1 and I (a, b) = 1 iff b ≤ a and a ≤ b iff a ⊆ b.
• If a ∩ b = ∅ then trivially EI (a, b) = EI (b, a) = 0.
• If b ⊆ c and a ∩ c = ∅ then b ∩ c = ∅ and therefore EI (a, b) = EI (a, c) = 0. If b ⊆ c and a ∩ c �= ∅. In the 

case a ∩ b = ∅, then EI (a, b) = 0 ≤ EI (a, c). In the case a ∩ b �= ∅, as c ≤ b and b ≤ c and I is decreasing 
in the first variable and increasing in the second variable, we have I (b, a) ≤ I (c, a) and I (a, b) ≤ I (a, c), then 
EI (a, b) ≤ EI (a, c).

• If a ⊆ b ⊆ c then c ≤ b ≤ a ≤ a ≤ b ≤ c. As I is decreasing in the first variable and increasing in the second 
variable, we have I (c, a) ≤ I (b, a) and I (a, c) ≤ I (a, b). Therefore, EI (c, a) ≤ EI (b, a). �

A family of implication functions that satisfies properties I1, I2, I3 and I4 can be obtained as follows.

Proposition 3.11. Consider � = {(x, y) ∈ [0, 1]2 | x > y}. Let f : � → [0, 1) be a function such that

• f is decreasing in the first variable,
• f is increasing in the second variable,
6
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Table 1
Functions f which define the implications and their respective embedding.

Lukasiewicz:

fLK(x, y) = 1 − x + y ELK(a, b) =
{

0 if a ∩ b = ∅
min(1 − b + a,1 − a + b,1) otherwise

Fodor:

fFD(x, y) = max(1 − x, y) EFD(a, b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if a ∩ b = ∅
1 if a ⊆ b

max(1 − a, b) if b < a ≤ b < a

max(1 − b, a) if a < b ≤ a < b

min{max(1 − a, b),max(1 − b, a)} if b ⊂ a

Gödel:

fGD(x, y) = y EGD(a, b) =

⎧⎪⎪⎨
⎪⎪⎩

0 if a ∩ b = ∅
1 if a ⊆ b

b if b ≤ a ≤ b < a

a otherwise
Goguen:

fGG(x, y) = y/x EGG(a, b) =

⎧⎪⎪⎨
⎪⎪⎩

0 if a ∩ b = ∅
1 if a ⊆ b

b/a if a ∩ b �= ∅ ∧ b = 0
min{b/a, a/b} otherwise

Rescher:

fRS(x, y) = 0 ERS(a, b) =
{

1 if a ⊆ b

0 otherwise

• f (1, 0) = 0,

then the function If : [0, 1]2 → [0, 1] defined as

If (x, y) =
{

1 if x ≤ y

f (x, y) otherwise

is an implication function fulfilling Property I4.

Proof. It is immediate that If fulfills Axioms I1 and I2 and Property I4. For Axiom I3 we have that If (0, 0) =
If (1, 1) = 1 and If (1, 0) = f (1, 0) = 0 by definition. �

It is possible to establish an order among the implication functions introduced in Proposition 3.11 by taking into 
account the order among the functions used to generate them.

Corollary 3.12. Consider f1 and f2 such that f1 ≤ f2, i.e. f1(x, y) ≤ f2(x, y) for all (x, y) ∈ �, then If1 ≤ If2 and 
EIf1

≤ EIf2
.

Proof. It is immediate that from f1 ≤ f2 we have that If1 ≤ If2 . For the associated embeddings, we have that:
If a ∩ b = ∅ then EIf1

(a, b) = EIf2
(a, b) = 0 by definition.

In the case a ∩ b �= ∅, as If1(b, a) ≤ If2(b, a) and If1(a, b) ≤ If2(a, b), then EIf1
(a, b) ≤ EIf2

(a, b). �
As a consequence of Proposition 3.11, some well-known implication functions fulfilling Property I4 can be ob-

tained as well as their associated embeddings. We have considered the notation introduced in [28] for naming the 
implication functions. Table 1 shows the function f which define the implications and their corresponding embed-
dings.

Remark 3.13. Note that it is possible to establish an order among the different afore introduced embeddings as a 
consequence of Corollary 3.12. In particular:
7
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ELK

EGG EFD

EGD

ERS

Fig. 2. Order relationships among the different examples of embedding measures based on implications.

ERS ≤ EGD ≤ EFD ≤ ELK

and

ERS ≤ EGD ≤ EGG ≤ ELK.

This is a consequence of the relationship among the functions used to generate these embeddings. Thus, for any 
(x, y) ∈ �, it is clear that:

fRS(x, y) = 0 ≤ y = fGD(x, y),

fGD(x, y)) = y ≤ max(1 − x, y) = fFD(x, y)

and

fFD(x, y) = max(1 − x, y) ≤ 1 − x + y = fLK(x, y).

Apart from that, we have that

fGD(x, y) = y ≤ y/x = fGG(x, y),

since 0 ≤ y < x ≤ 1 and so 1/x ≥ 1. On the other hand, we know that x > y and 1 −x ≥ 0. Thus, y(1 −x) ≤ x(1 −x)

and then y ≤ x(1 − x + y) which is equivalent to say that y/x ≤ 1 − x + y, that is,

fGG(x, y) ≤ fLK(x, y),∀(x, y) ∈ �.

Moreover, we know that there is not an order relation between EGG and EFD since, for instance,

EGG([0.1,1], [0.5,1]) = min(1,0.1/0.5) = 0.2
EFD([0.1,1], [0.5,1]) = min(max(0,1),max(0.5,0.1)) = 0.5

but

EGG([0.3,1], [0.5,1]) = min(1,0.3/0.5) = 0.6
EFD([0.3,1], [0.5,1]) = min(max(0,1),max(0.5,0.3)) = 0.5.

Graphically, this was represented in Fig. 2

The following example shows these relationships.

Example 3.14. Let us consider several combinations for intervals a and b to show the relations existing among the 
different embeddings obtained from implication functions.

In the first example, we consider different intervals b = [0.2, 0.6], b = [0.2, 0.8], b = [0.4, 0.6], b = [0.4, 0.8]. 
Then we obtain the value of the embedding for the preceding b with respect to the interval aα = [α, α + 0.1] for 
α ∈ [0, 0.9] (Fig. 3).

Then, with the same intervals b we consider different intervals aβ = [β, β + 0.5] for β ∈ [0, 0.5] (Fig. 4).
We can see in both examples that although the different examples of embedding measures give us different values 

for the embedding degree, it is the same in all the cases when we are sure that one set is embedded in the other or 
when one set is not embedding at all in the other. They also allow us to see the general order relationship among these 
embedding measures obtained from implication functions established in Fig. 2.
8
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Fig. 3. aα = [α,α + 0.1] for α ∈ [0,0.9]. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4. Embedding measures for interval-valued fuzzy sets

At the previous section we study a measure of the degree in which an interval is embedded in another one. However, 
as we commented, that was just a first step in order to compare two interval-valued fuzzy sets, that is, to measure the 
embedding of an interval-valued fuzzy set in another one. Taking into account the ideas considered for Definition 3.1, 
we can propose the following definition.

Definition 4.1. The mapping:

E : IV FS(X) × IV FS(X) → [0,1]
is a embedding for interval-valued fuzzy sets, in short IV-embedding, if the following properties hold:

P1: E(A, B) = 1 iff A � B .
P2: If A(x) ∩ B(x) = ∅ for all x ∈ X, then E(A, B) = 0.
P3: If E(B, C) = 1 then E(A, B) ≤ E(A, C) for every A ∈ IV FS(X).
P4: If E(A, B) = E(B, C) = 1 then E(C, A) ≤ E(B, A).

A general method to obtain IV-embedding measures based on aggregating the embedding at any point of the 
referential set is introduced. As the notion of aggregation function is a cornerstone of this approach, the concept is 
briefly defined as follows.

Definition 4.2. [30–32] A function M : [0, 1]n → [0, 1] is an aggregation function whenever it is increasing in each 
argument and it satisfies the boundary conditions: M(0, . . . , 0) = 0 and M(1, . . . , 1) = 1.
9
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Fig. 4. aα = [α,α + 0.5] for α ∈ [0,0.5].

Note that an embedding measure is equal to one only when the first set is totally embedded in the second one. Then, 
it is necessary to consider not just any aggregation function, but the ones satisfying the one-strict property ([27]). That 
means that M(x1, x2, . . . , xn) = 1 only if xi = 1 for all i = 1, . . . , n.

Examples of one-strict aggregation functions are the arithmetic mean, the geometric mean and the harmonic mean 
or any t-norm (see, for instance, [33]) generated by their aggregation functions. Thus, any of these functions could be 
considered to obtain embedding measures for interval-valued fuzzy sets as follows.

Proposition 4.3. Let X be a finite referential. If M : [0, 1]n → [0, 1] is a one-strict aggregation function and E :
L([0, 1])2 → [0, 1] is an interval embedding, then the function EM : IV FS(X) × IV FS(X) → [0, 1] given by:

EE
M(A,B) = M

x∈X
E(A(x),B(x))

is an IV-embedding.

Proof. P1: From its definition, EE
M(A, B) = 1 iff M

x∈X
E(A(x), B(x)) = 1. Since M has the one-strict property, this 

is equivalent to say that E(A(x), B(x)) = 1 for all x ∈ X. By Axiom A1 in Definition 3.1, this is equivalent to 
A(x) ⊆ B(x), ∀x ∈ X which means that A � B .

P2: If A(x) ∩ B(x) = ∅ for all x ∈ X, then E(A(xi), B(xi)) = 0 by Axiom A2 in Definition 3.1. Thus, 
M
x∈X

E(A(x), B(x)) = 0 and as consequence EE
M(A, B) = 0.

P3: Let A ∈ IV FS(X). If EE
M(B, C) = 1, then B � C as we just proved in P1. Thus, B(x) ⊆ C(x) for all x ∈ X. 

Therefore, E(A(x), B(x)) ≤ E(A(x), C(x)) for all x ∈ X. Then,

M E(A(x),B(x)) ≤ M E(A(x),C(x))

x∈X x∈X

10
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by the monotonicity of M and therefore EE
M(A, B) ≤ EE

M(A, C).
P4: If EE

M(A, B) = EE
M(B, C) = 1, then A � B � C and A(x) ⊆ B(x) ⊆ C(x) for all x ∈ X. Thus, E(C(x), A(x)) ≤

E(B(x), A(x)) for all x ∈ X by Axiom A4 in Definition 3.1. Then,

M
x∈X

E(C(x),A(x)) ≤ M
x∈X

E(B(x),A(x))

by the monotonicity of M and therefore EE
M(C, A) ≤ EE

M(B, A). �
Remark 4.4. Proposition 4.3 allows to construct different IV-embeddings from the interval embeddings described in 
Subsections 3.1 and 3.2.

The lower bound for the family of IV-embedding measures on IV FS(X) is obtained if E0 (see Proposition 3.7) 
is considered. For this particular measure and the aggregation function M0(x1, x2, . . . , xn) = 0 if there exists at least 
one element xi such that xi �= 1, the following IV-embedding is obtained:

EE0
M0(A,B) =

{
1 if A � B

0 otherwise

This is the smallest IV-embedding on IV FS(X) as it follows from the following proposition.

Proposition 4.5. EE0
M0 ≤ E for any IV-embedding E .

Proof. If A � B , then EE0
M0(A, B) = 1, but as E is an IV-embedding function we know that E(A, B) = 1 by property 

1. Thus, in that case, EE0
M0(A, B) = E(A, B).

On the other hand, if A �� B , then EE0
M0(A, B) = 0 and therefore it is immediate that EE0

M0(A, B) ≤ E(A, B). �
It is clear that EE0

M0 is a very drastic embedding measure. Some richer examples are proposed below.

Example 4.6. Let us consider the embedding for intervals Ew which was introduced in Corollary 3.5 and let us 
consider the embedding measures for interval-valued fuzzy sets obtained from it by the minimum t-norm, the product 
t-norm, the arithmetic mean, the geometric mean and the harmonic mean, which will be denoted by Ew

M , Ew
P , Ew

AM , 
Ew

GM and Ew
HM , respectively.

Let X be the referential defined as X = {x/10 : x ∈ N, x ≤ 100}. In order to see the influence of the aggregation 
function, we consider different possibilities for one set to obtain the embedding in another fix set. Thus, let Aε be the 
family of interval-valued fuzzy sets defined by

Aε(x) =
[

0.25 − (x − 5)2

100
,
(x − 5)2

100
+ ε

]
,

∀x ∈ X, ∀ε ∈ [0.25, 0.75] and let B be the interval-valued fuzzy set defined by

B(x) =
[

0,
x3 − 15x2 + 50x

400
+ 0.87

]
, ∀x ∈ X

Some of the sets Aε are represented by dotted lines in Fig. 5 and B is represented by full lines.
In Fig. 6 we have represented the embedding degree obtained by Ew

M , Ew
P , Ew

AM , Ew
GM and Ew

HM for different values 
of ε.

We can see at this simple example the influence of the chosen aggregation function. From any ε ∈ [0.6141, 0.75], 
Aε is not totally embedded in B and the values for the embedding degree are totally different if we consider the 
product t-norm or the arithmetic mean to aggregate the degrees at any point of X. For the different means, we can 
see the results are in this case similar, but not equal, as we can see on the right part of Fig. 6. More in detail, we 
can see some values of the embedding measures for the cases ε ∈ {0.53, 0.63, 0.73} in Table 2. Note for example that 
A0.53 � B , but A0.63 �� B and we are even more secure that A0.73 �� B .
11
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Table 2
Values of different embedding measures for measuring the degree 
in which A0.73 is embedded in B .

ε Ew
M

Ew
P

Ew
AM

Ew
GM

Ew
HM

0.53 1 1 1 1 1
0.63 0.9796 0.79925 0.9978 0.9978 0.9978
0.73 0.8625 0.0215 0.9642 0.9627 0.9611

5. IV-embedding degree for the main operations in IVFS(X)

In this section it is studied how the above defined IV-embedding behaves when the intersection, union and com-
plement of IV FSs(X) are considered. Thus, these concepts are first introduced. Trying to be as general as possible, 
we will define the intersection by means of t-norms on L([0, 1]) and the union by means of t-conorms on L([0, 1]). 
Bedregal et al. [34,35] proposed a generalization of the concept of t-norm for interval values based on the definition 
of a t-norm on [0, 1]. It was given as follows:

Definition 5.1. The mapping T : L([0, 1]) × L([0, 1]) → L([0, 1]) is an interval-valued t-norm, IV t-norm for short, 
if it satisfies the following properties:
12
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T1. Symmetry: T (a, b) = T (b, a) for each a, b ∈ L([0, 1]);
T2. Associativity: T (a, T (b, c)) = T (T (a, b), c) for each a, b, c ∈ L([0, 1]);
T3. ≤-Monotonicity: T (a1, b1) ≤ T (a2, b2) for each a1, a2, b1, b2 ∈ L([0, 1]) such that a1 ≤ a2 and b1 ≤ b2;
T4. ⊆-Monotonicity: T (a1, b1) ⊆ T (a2, b2) for each a1, a2, b1, b2 ∈ L([0, 1]) such that a1 ⊆ a2 and b1 ⊆ b2;
T5. 1-Identity: T ([1, 1], a) = a for each a ∈ L([0, 1]).

Thus, in general, we could use the IV t-norms to define the intersection between two interval-valued fuzzy sets.

Definition 5.2. Let A and B be two elements in IV FS(X). For any IV t-norm T we can define its T -intersection as 
the interval-valued fuzzy set given by

A ∩T B(x) = T (A(x),B(x))

Since this concept should keep the original idea of intersection for classical sets, the intersection should be included 
in both intersected sets.

Proposition 5.3. Let A, B ∈ IV FS(X) and T an IV t-norm. Then A ∩T B ⊆ A and A ∩T B ⊆ B .

Proof. The proof is straightforward. �
Bedregal considered a particular case of IV t-norms, called representable. Thus, they proved (see Theorem 4.1 

in [34]) that if we consider two t-norms t, t ′ : [0, 1]2 → [0, 1] with t (x, y) ≤ t ′(x, y) for every x, y ∈ [0, 1] then

T (a, b) = [t (a, b), t ′(a, b)]
is an IV representable t-norm and T was said to be derived from t and t ′.

In particular, and in order to recover always an interval from a representable IV t-norm T , it is necessary that t ≤ t ′. 
Especially, if we take t equal to the minimum, and taking into account that the minimum is the greatest t-norm, the 
only possible choice for t ′ is also the minimum, and hence, in this case, we recover the representable IV t-norm:

TM(a, b) = [min(a, b),min(a, b)]
for any a, b ∈ L([0, 1]). It is then straightforward that

A ∩TM
B(x) = [min(A(x),B(x)),min(A(x),B(x))], ∀x ∈ X

which is, in fact, the usual definition for the intersection of two interval-valued fuzzy sets (see [36]). As we will focus 
on this IV t-norm, we will use the notation ∩ for ∩TM

for sake of simplicity.
Note that for this particular case of representable IV t-norm, the intersection is not only included in both sets (see 

Proposition 5.3) but also the “greatest” set fulfilling this property.

Proposition 5.4. Consider A, B ∈ IV FS(X). For any C ∈ IV FS(X) such that C ⊆ A and C ⊆ B , we have that 
C ⊆ A ∩ B .

Proof. If C ⊆ A, then C(x) ≤ A(x) for any x ∈ X. Analogously we obtain that C(x) ≤ B(x) for any x ∈ X. Thus, 
for any x ∈ X we have that

C(x) = TM(C(x),C(x)) ≤ TM(A(x),B(x)) = A ∩ B(x)

by applying Axiom T3 in Definition 5.1. Thus, C ⊆ A ∩ B . �
Proposition 5.3 shows that the intersection is included in any of the sets. However it is not embedded. This is again 

a consequence of the different ideas behind inclusion and embedding in IVFS(X).
13
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Fig. 7. Membership values for A ⊗ B .

Example 5.5. Consider A, B, C ∈ IV FS(X),

A ∩ B(x) = [min(A(x),B(x)),min(A(x),B(x))], ∀x ∈ X

we have that

X x y

A [0.2,0.8] [0.3,0.4]
B [0.3,0.7] [0.1,0.5]
C [0.4,0.5] [0.2,0.4]

A ∩ B [0.2,0.7] [0.1,0.4]
B ∩ C [0.3,0.5] [0.1,0.4]

then A ∩ B �� A and A ∩ B �� B but B ∩ C � B and B ∩ C �� C.

Thus, it is not possible to obtain properties in general for the embedding of the intersection of two IVFS(X).
However, consider the interval-valued fuzzy set defined by the collection of fuzzy sets that could be the real 

membership value in accordance to both sets, defined as follows

A ⊗ B(x) = A(x) ∩ B(x),∀x ∈ X

Since we require A ⊗ B to belong to IV FS(X) this set can be only considered if A(x) ∩ B(x) �= ∅, ∀x ∈ X. An 
example of this operation is shown in Fig. 7.

Thus A ⊗ B represents the “greatest” interval-valued fuzzy set embedded in A and B , in the sense that A ⊗ B

is embedded in both sets and any other IVFS fulfilling this property is also embedded in A ⊗ B . The following 
proposition shows this idea.

Proposition 5.6. Consider A, B ∈ IV FS(X). For any C ∈ IV FS(X) such that C � A and C � B , we have that 
C � A ⊗ B .

Proof. If C � A and C � B , for any x ∈ X we have that C(x) is an interval included in the interval A(x) and 
B(x), respectively. But the intersection of two crisp sets is the greatest set included in both and, therefore, C(x) ⊆
A(x) ∩ B(x). Thus, C � A ⊗ B . �

In addition, for these operations we can prove the following properties.

Proposition 5.7. Let E be an IV-embedding. For any A, B, C ∈ IV FS(X) we have that:

(1) If A(x) ∩ B(x) �= ∅, ∀x ∈ X, then E(A ⊗ B, A) = E(A ⊗ B, B) = 1.
(2) If A(x) ∩ B(x) �= ∅, ∀x ∈ X, then E(C, A ⊗ B) ≤ min(E(C, A), E(C, B)).
(3) If A � B , then E(A, A ∩ B) = E(A ∩ B, B) = 1.
(4) If A � B , then E(C, A) ≤ E(C, A ∩ B) ≤ E(C, B).
14
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Proof. (1) If A(x) ∩ B(X) �= ∅ ∀x ∈ X, A ⊗ B is well defined and it is immediate from its definition that A ⊗B � A

and A ⊗ B � B . Thus, E(A ⊗ B, A) = E(A ⊗ B, B) = 1 from Axiom P1.
(2) Since A ⊗ B � A and A ⊗ B � B , from Axiom P3 we have that E(C, A ⊗ B) ≤ E(C, A) and E(C, A ⊗ B) ≤

E(C, B)).
(3) If A � B , then for any x ∈ X, we have that

min(A(x),B(x)) ≤ A(x) ≤ A(x) = min(A(x),B(x))

and

B(x) = min(A(x),B(x)) ≤ min(A(x),B(x)) ≤ B(x)

This means that A � A ∩B and A ∩B � B . Then, from Axiom P1, we have that E(A, A ∩B) = E(A ∩B, B) = 1.
(4) As it was proved before, A � A ∩ B and A ∩ B � B and then this property is a direct consequence of Axiom 

P3. �
Now, we are going to do a parallel study for the union. In a similar way, the definition of t-conorm is necessary 

for introducing the concept of union between two interval-valued fuzzy sets. A t-conorm is a symmetric, associative, 
monotonic map from [0, 1]2 into [0, 1] with zero as neutral element. Taking into account its strong relationship with 
t-norms and Definition 5.1, we can consider the following definition for a t-conorm on L([0, 1]).

Definition 5.8. The mapping S : L([0, 1]) × L([0, 1]) → L([0, 1]) is an interval-valued t-conorm, IV t-conorm for 
short, if it satisfies Axioms T1, T2, T3 and T4 and the axiom

S5. 0-Identity: S([0, 0], a) = a for each a ∈ L([0, 1]).

IV t-conorms allow us to generalize the definition of union of interval-valued fuzzy sets as follows.

Definition 5.9. Let A and B be two elements in IV FS(X). For any IV t-conorm S we can define its S-union as the 
interval-valued fuzzy set given by

A ∪S B(x) = S(A(x),B(x)),∀x ∈ X

As well as it happened for the intersection, the union fulfills the following natural requirement.

Proposition 5.10. Let A, B ∈ IV FS(X) and S an IV t-conorm. Then A ⊆ A ∪S B and B ⊆ A ∪S B .

Proof. The proof is immediate. �
Now, we are going to characterize the representable IV t-conorms. It is easy to prove that for any two t-conorms s

and s′ in [0, 1] with s ≤ s′, the map

S(a, b) = [s(a, b), s′(a, b)]
is an IV t-conorm. In the particular case that s′ is the maximum t-conorm, the union of two interval-valued fuzzy sets 
is given by:

A ∪SM
B(x) = [max(A(x),B(x)),max(A(x),B(x))]

since the maximum is the lowest t-conorm. This is the usual union for interval-valued fuzzy sets considered in the 
literature (see again [36]) and then it is just denoted as ∪. For this union, we can assure that the union is the lowest 
interval-valued fuzzy set including the two joined sets.

Proposition 5.11. Let A, B ∈ IV FS(X). For any C ∈ IV FS(X) such that A ⊆ C and B ⊆ C, we have that A ∪ B ⊆
C.
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Proof. The proof is straightforward. �
If we consider again the sets considered in Example 5.5, we have that A �� A ∪ B , B �� A ∪ B and B �� B ∪ C, but 

C �� B ∪ C. However, we can consider the interval-valued fuzzy set representing the fuzzy sets which are in A or B , 
that is,

A ⊕ B(x) = A(x) ∪ B(x),∀x ∈ X.

Since A ⊕B must belong to IV FS(X), A(x) ∩B(x) �= ∅ for any x ∈ X. It is immediate to prove that A � A ⊕B and 
B � A ⊕ B .

Proposition 5.12. Let E be an IV-embedding. For any A, B, C ∈ IV FS(X) we have that:

(1) If A(x) ∩ B(x) �= ∅, ∀x ∈ X, then E(A, A ⊗ B) = E(B, A ⊗ B) = 1.
(2) If A(x) ∩ B(x) �= ∅, ∀x ∈ X, then max(E(C, A), E(C, B)) ≤ E(C, A ⊗ B).
(3) If A � B , then E(A, A ∪ B) = E(A ∪ B, B) = 1.
(4) If A � B , then E(C, A) ≤ E(C, A ∩ B) ≤ E(C, B).

Proof. The proof of the properties is immediate from Axioms P1 and P3. �
In order to define the complement of any IVFS, we need to introduce the negations on L([0, 1]) based on the 

classical fuzzy negations (see, among others, [37–40]). Thus, Bedregal et al. introduced the following negation for 
intervals.

Definition 5.13. [35] An IV negation is a mapping N : L([0, 1]) → L([0, 1]) which is decreasing and such that 
N([0, 0]) = [1, 1] and N([1, 1]) = [0, 0]. An IV negation N is strong if N(N(a)) = a for every a ∈ L([0, 1]).

Note that if n : [0, 1] → [0, 1] is a negation, then N(a) = [n(a), n(a)] is an IV negation.
IV negation allows us to generalize the definition of complement of interval-valued fuzzy sets as follows:

Ac(x) = N(A(x)),∀x ∈ X

for any A ∈ IV FS(X).
Henceforth, we will consider n as the standard fuzzy negation, that is,

Ac(x) = [1 − A(x),1 − A(x)],∀x ∈ X

From this definition, it is clear that, in general, A is neither embedded in Ac nor Ac is embedded in A. Therefore, 
we can obtain properties for these embeddings just in some specific cases.

Proposition 5.14. Let E be an IV-embedding. For any A ∈ IV FS(X), we have that:

(1) If 0.5 /∈ A(x) ∀x ∈ X, then E(A, Ac) = E(Ac, A) = 0.
(2) If A(x) + A(x) = 1 ∀x ∈ X, then E(A, Ac) = E(Ac, A) = 1.

Proof. (1) If 0.5 /∈ A(x) ∀x ∈ X, then A(x) ∩ Ac(x) = ∅ for any x ∈ X, it is straightforward from Axiom P2.
(2) If A(x) + A(x) = 1 ∀x ∈ X, then A = Ac and therefore E(A, Ac) = E(Ac, A) = 1 by Axiom P1. �
6. Case study

The aim of this case study is to test the effectiveness of a medical treatment for a diabetic patient. This treatment 
would be based on an “intelligent system” that continuously and automatically measures glucose levels in blood 
(in milligrams per deciliter) and injects the patient with the appropriate dose of medication. A “normality band” 
for glucose levels has been previously established throughout the day, particularly in relation to meal time. These 
16
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Fig. 8. Normality band of glucose levels in 24 hours.

Fig. 9. Embedding of A in B.

values are scaled in [0, 1] by an affine application f : [40, 440] → [0, 1], f (t) = t−40
400 . In the same line, the 24 hours 

interval time is scaled also to [0, 1]. The “normality band” can be modeled as a [B(x), B(x)] set where X is the 
variable representing the different moments of the day where glucose levels are measured. Glucose level at a moment 
x is “appropriate” if it is within B(x) and B(x). Suppose that during several days the glucose level is measured at 
different moments of the day, being xij the glucose level at moment i of day j . Consider the IVFS [A(x), A(x)]
such that A(xi) = minj {xij } and A(xi) = maxj {xij } for every time i. Note that we intend to compare the values of 
glucose of the patients to the interval of values which are considered acceptable. Therefore, the embedding degree of 
A in B could be useful to measure the effectiveness of the medication proposed. This comparison is obtained using 
the membership degree of the interval of the patient to the interval of acceptable values. In this way, it is possible to 
evaluate the efficiency of the treatment considered for regulating the values of glucose in blood of the patient. Consider 
that glucose level is measure every 15 minutes starting at 00:00. Thus X takes 96 different values (it is worth noting 
that if the reference set X is uniformly distributed and its cardinal increases, the embedding function, E, approaches 
a continuous function on [0, 1] and the value of the embedding tends to be obtained by means of an integral). Note 
that it is also necessary to select an aggregation function. Such aggregation should give more weight to values that are 
farther away from the normality values. This “distancing” should be measured in relative terms: if normality levels at 
8h are to be between 60 and 100, it is much more alarming to have 50 than to have 120.

Let us consider that normality value at 00:00 is within 80 and 120 milligrams per deciliter (between 0.1 and 0.2 in 
[0, 1] scale). The [B(x), B(x)] associate to normality values during a day is represented in Fig. 8.

In Fig. 9, [A(x), A(x)] is represented together with the IVFS(X) [B(x), B(x)] representing the normality level. 
Noting x0 as the measurement at 00 : 00 hours; for each i in 1 and 95, i = 4t + s with s ∈ {0, 1, 2, 3}, then xi is the 
measurement at t hours and 15s minutes.

Note that A(xi) is between 0.12 and 0.15 for the 40 first measurements in a day. A(x41) = 0.11, A(x42) = 0.10, 
A(x43) = 0.09, A(x44) = 0.08, A(x45) = 0.07, A(x46) = 0.07, A(x47) = 0.06, A(x48) = 0.05, A(x49) = 0.08, 
A(x50) = 0.1; A(xi) is within normality levels for all the other xi .
17
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On the other hand, A(xi) = 0.25 for i ∈ {0, 1, . . . , 32}; A(x33) = 0.26, A(x34) = 0.28, A(x35) = 0.30, A(x36) =
0.30, A(x37) = 0.28, A(x38) = 0.26, A(x39) = 0.24, A(x40) = 0.22; Finally A(x) is within normality levels until 
23 : 00 hours; Finally, A(x93) = 0.24, A(x94) = 0.24 and A(x95) = 0.25.

For each xi ∈ X the embedding degree of A(x) in B(x) is defined as:

E
(
A(x),B(x)

) = 1 −
⎛
⎝max

⎧⎨
⎩

A(x) − max
{
B(x),A(x)

}
A(x) − A(x)

,0

⎫⎬
⎭ + max

⎧⎨
⎩

−A(x) + min
{
B(x),A(x)

}
A(x) − A(x)

,0

⎫⎬
⎭

⎞
⎠

Using different aggregation functions, different embedding values are obtained, showing the ability of embeddings 
to indicate glucose behavior.

(1) When the aggregation function is mean, Ma , then:

EE
Ma

(A,B) =
∑

x∈X E
(
A(x),B(x)

)
96

≈ 0.935

(2) If we consider the mean Mb considering only the set Xb composed by the 51 xi with E
(
A(x1), B(xi)

) �= 1:

EE
Mb

(A,B) =
∑

x∈Xb
E

(
A(x),B(x)

)
51

≈ 0.877

(3) If the aggregation function is the mean Mc considering only the set Xc = {xi |i = 31, 42, 43, 44, 45, 46, 47, 48,

49, 50} associated to the 10 highest values of E
(
A(xi), B(xi)

)
, then:

EE
Mc

(A,B) =
∑

x∈Xc
E

(
A(x),B(x)

)
10

≈ 0.674

Thus, the notion of embedding could be useful to model such situations.

7. Conclusions

In this work we have introduced the concept of embedding for interval valued fuzzy sets as functions that takes 
values on [0, 1]. In addition it is also provided a construction method to obtain IV-embedding measures based on 
aggregating the embedding at any point of the referential set. Thus, an axiomatic definition to characterize interval 
embeddings is also presented, highlighting its difference with regard to the concept of inclusion. Some construction 
methods for interval embeddings are also presented mainly based on the interval width as well as on implication 
operators. The proposed IV-embeddings are an efficient tool to compare the precision of two different interval-valued 
fuzzy sets that is a relevant topic in many applications such as image processing for example. In the future we plan to 
extend the definition of E to provide IV-embeddings measured in terms of intervals instead of a number in [0, 1] and 
to apply them to solve real problems. In addition, we plan to study these measures to any interval [a, b] ∈R.
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