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Abstract
Phytoremediation is a cost-effective nature-based solution for brownfield reclamation. The choice of phytoextraction 
or phytostabilization strategies is highly relevant when planning full-scale treatments. A suitable approach to identify 
such species involves the evaluation of plants that grow spontaneously on the contaminated sites. Here, we sought to 
determine the phytoremediation potential of three spontaneous plant species, namely the trees Acer pseudoplatanus L (A. 
pseudoplatanus) and Betula celtiberica Rothm. & Vasc (B. celtiberica), and the shrub Buddleja davidii Franch (B. davidii), 
for the recovery of an urban brownfield. To determine the response of the species to the degree of contamination, we 
conducted soil and vegetation sampling inside and outside the site. The concentrations of As, Cu, and Zn in soil and plant 
samples were measured, and then various indexes related to phytoremediation were calculated. The translocation factor 
and transfer coefficient indicated that vegetation outside the brownfield had phytoextraction capacity while the same plants 
inside the brownfield revealed phytostabilization properties. Given our results, we propose that the selected species are 
suitable for phytostabilization strategies in areas with high concentrations of contaminants, whereas they could be used for 
phytoextraction only in soils with low or moderate levels of pollution.
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Introduction

Urban brownfields are abandoned industrial sites close 
to inhabited areas. These brownfields may contain 
pollutants, thus significantly restricting land-use planning 
(O’Connor et al. 2019). However, they also offer strategic 
opportunities for the sustainable transition of metropolitan 

territories (Rey et al. 2022) as their remediation is essential 
to create new green zones. Reclamation of brownfield 
sites eliminates environmental risks and helps to reduce 
greenhouse gas emissions (Hou et al. 2018). In this context, 
phytoremediation has proved to be a cost-effective and 
environmentally friendly alternative to conventional 
soil remediation methods and it is included in the new 
trend of nature-based solutions (NBS) for environmental 
remediation (Guidi Nissim and Labrecque 2021). The use of 
phytoremediation for brownfield remediation enhances soil 
health helps to regulate urban temperature, improves urban 
hydrology, supports greater biodiversity, and attenuates air 
and noise pollution (Guidi Nissim and Labrecque 2021). 
The two most common phytoremediation options are 
phytostabilization and phytoremediation.

Plant species vary in their capacities to accumulate or 
tolerate metal(loid)s in aerial structures and roots, and this 
capacity is determined by the concentration of metal(loid)s 
present in the soil, by the physiological features of the species 
and by their selectivity for specific metal(loid)s (Massenet 
et al. 2021; Pilon-Smits 2005). Phytostabilization is a type 
of phytoremediation aimed at immobilizing pollutants in a 
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contaminated substrate, by establishing vegetation on top of 
the polluted material (Forján et al. 2018). On the other hand, 
phytoextraction is a phenomenon in which hyperaccumulator 
plants absorb metals from the soil through the root system and 
translocate them to the harvestable shoot, making it possible 
to recover metals from the harvestable parts of plants (Forján 
et al 2017; Rodríguez-Vila et al. 2016).

A key aspect when implementing phytoremediation is 
the selection of the appropriate species. A common strat-
egy is to use a plant that grows spontaneously and abun-
dantly in the contaminated soil (Ali et al. 2013). Authors 
such as Mukhopadhyay et al. (2017) and Midhat et al. 
(2016) have shown that species that grow spontaneously 
in contaminated soils exhibited good phytoremediation 
behavior. Subsequently, the phytoremediation capacity, 
i.e., phytoextraction or phytostabilization properties of 
the potential candidates, should be evaluated (Forján et al. 
2018). Indeed, several studies have shown that species and 
ecotypes present in metal(loid)-polluted sites tolerate high 
concentrations of soil pollutants and often show tolerance 
mechanisms that allow them to grow under these stress 
conditions (Schat et al. 2020).

Langreo (Spain) is an example of an area severely affected by 
heavy industry and mining activities. One of the most important 
activities of this area for decades was the production of fertiliz-
ers, which lead to the development of a 20 ha urban brownfield 
site named Nitrastur (Gallego et al. 2016; Gil-Díaz et al. 2016). 
Previous studies on this site revealed the presence of native her-
baceous plants useful for phytostabilization purposes (Matanzas 
et al. 2021), whereas Mesa et al. (2017) focused on a specific 
study of enhanced phytoextraction via bioaugmentation; how-
ever, in those works, the main criteria that could be followed to 
design a real-scale phytoremediation were not addressed.

Following the previous considerations, the aim of this work 
was the study of the phytoremediation capacities and strategies 
followed by Buddleja davidii Franch (B. davidii), Betula celti-
berica Rothm. & Vasc (B. celtiberica), and Acer pseudoplatanus 
L (A. pseudoplatanus), all of them growing abundantly in the 
study site and in the neighboring area. Of note, we addressed the 
different behaviors of these plants at different levels of soil pol-
lution (very high inside the polluted site and much lower in the 
surroundings). Results will be helpful in the species selection for 
real-scale treatments, depending on the degree of soil pollution 
and the phytoremediation strategy to be followed (phytoextrac-
tion or phytostabilization).

Material and methods

Study area

The study area includes the urban brownfield of Nitrastur 
(20 ha)—which is colonized by a range of pollution-tolerant 

plants—and its surroundings, where some of the same spe-
cies are also abundant (Fig. 1). Nitrastur was one of the main 
fertilizer plants in Spain; it is located in Langreo (Asturias) 
that has been an important industrial area since the nine-
teenth century, hosting activities such as coal mining and a 
coal-fired power plant, steel, and chemical industries. Most 
of these industrial and mining activities were abandoned in 
the last three decades leaving behind large amounts of waste 
that were disposed of in natural soil (see Gallego et al. 2016 
and references therein).

Nitrastur is currently one of the largest brownfields in 
Spain and was included in the national inventory of polluted 
areas in 2001 and recently again in 2018. A detailed study 
(Gallego et al. 2016) revealed pyrite ashes, resulting from 
the roasting of pyrites for sulfuric acid production, as the 
main source of pollution whereas an assessment of site-spe-
cific human health risks (Wcislo et al. 2016) demonstrated 
the need for remediation, and thus, several attempts have 
been made (Baragaño et al. 2021). Within the brownfield, 
the values of pseudototal concentrations of As, Cu, Zn, and 
other elements usually exceed the limits established by the 
Spanish regulation in force (BOPA 2014), peaking up nowa-
days to thousands of mg·kg−1 in some areas.

Soil and plant sampling design

Three of the predominant species were Acer pseudoplatanus 
L (A. pseudoplatanus), Betula celtiberica Rothm. & Vasc 
(B. celtiberica), and Buddleja davidii Franch (B. davidii). 
Clusters of these plants were found in surrounding areas of 
the brownfield. The sampling was based on the simultane-
ous sampling of vegetation and soil (Fig. 1). The sampling 
stations were selected in locations in which several indi-
viduals of one of the target plants were found within a few 
square meters. The sampling locations were labelled M1, 
M2, and M3 (inside Nitrastur), and M4, M5, and M6 (out-
side). To build a composite sample for vegetation, six sam-
ples were taken from the aerial part and roots of individual 
plants belonging to the same species. For soil sampling, 
each sample consisted of four increments (1 kg) of the first 
20 cm of soil, which was collected using a Dutch Edelman 
probe at each sampling point. This soil corresponded to the 
rhizosphere of the sampled vegetation. Soil samples were 
preserved in sterilized plastic bags and stored at 4 °C until 
preparation and analysis.

Soil analysis

Soil pH was determined using a Mettler Toledo Seven-
Compact multimeter (1:2.5 water/soil). The organic matter 
content (OM) was determined by ignition (24 h–540 °C). 
Pseudototal metal(loid) concentrations were extracted with 
aqua regia (HCl +  HNO3) in an Anton Paar 3000 microwave 
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Fig. 1  Study sites and sampling 
areas

Table 1  Relation of soil/
vegetation factors calculated

Ca, concentration of meta(loid)s in aerial part (mg  kg−1); Cr, concentration of meta(loid)s in roots (mg 
 kg−1); Cs, pseudo-total concentration of meta(loid)s in soil (mg  kg−1); Cex, concentration of meta(loid)s 
extracted with  (NH4)2SO4 (mg  kg−1)

Factor Expression Classification Reference

Translocation factor (TF) C
a

C
r

TF > 1; plant translo-
cation of metal(loid)
s

TF < 1; no plant 
translocation of 
metal(loid)s

Baker and Brooks 1989

Transfer coefficient (TC) C
a

C
s

TC > 1; accumula-
tor biosystem of 
metal(loid)s

TC < 1; no accumula-
tor biosystem of 
metal(loid)s

Busuioc et al. 2011; 
Peijnenburg and Jager 
2003

Bioconcentration factor (BF) C
a

C
ex

–– McGrath and Zhao 2003; 
Rodríguez-Vila et al. 
2015

C
r

C
ex

Rodríguez-Vila et al. 2015
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and measured by ICP-MS (Inductive Coupled Plasma Mass 
Spectrometer; ICP-MS 7700, Agilent Technologies). Phy-
toavailable concentrations of metal(loids)s were extracted 
by two methods to obtain more reliable data (Asensio et al. 
2018; Lebourg et al. 2010; Menzies et al. 2007). In this 
regard, we performed one extraction with 0.01 M  CaCl2 

(Houba et al. 2008) and another with 0.1 M  (NH4)2SO4 
(Fresno et al. 2016). Metal(loid) concentrations were deter-
mined using the same ICP-MS device described above, and 
Standard Reference Material 1515 Apple leaves from NIST 
(National Institute of Standards and Technology) were used.

Plant analysis and accumulation of metal(loid)s 
in plant tissues

Biomass was washed with deionized water, and fresh 
biomass was weighed. Dry biomass was assessed after 
oven-drying for 48 h at 80 °C and cooling at room tem-
perature. Metal(loid) concentrations were quantified by 
Inductively ICP-MS (7700; Agilent Technologies, USA) 
after acid digestion  (H2O2 and  HNO3 (1:2 v/v)) in a micro-
wave oven (Milestone ETHOS 1, Italy). The behavior of 
the metal(loid)s in the soil/plant system was addressed by 
examining the following parameters (Table 1):

– The translocation factor (TF), where a high value indicates 
a relatively high shoot metal concentration compared to its 
root concentration (Forján et al. 2018).

Table 2  General soil characteristics: inside and outside the urban 
brownfield

Different letters for different samples indicate significant differ-
ences (n = 3, ANOVA; P < 0.05). Typical deviation is represented 
by ± . < u.l. under detection limit

Zone Sample area Plant species pH OM (%)

Inside M1 B. davidii 6.08 ± 0.36b 5.17 ± 1.28c
M2 B. celtiberica 6.82 ± 0.99ab 5.17 ± 1.84c
M3 A. pseudopla-

tanus
7.41 ± 0.95a 5.33 ± 0.23c

Outside M4 B. davidii 7.17 ± 0.08a 32.71 ± 0.88a
M5 A. pseudopla-

tanus
7.92 ± 0.62a 3.91 ± 0.23c

M6 B. celtiberica 7.79 ± 0.25a 17.31 ± 0.75b

Fig. 2  Graphical representation 
of pseudo-total concentrations 
of Cu, Zn, and As
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– The transfer coefficient (TC) in the studied plants meas-
ured their efficiency to take up metals from the soil 
(Rodríguez-Vila et al. 2014).

– The bioconcentration factor (BF) describes the ratio of 
available metal(loid) concentration that is taken up into 
shoots or roots. High BF values indicate a high concen-
tration of elements in shoots or roots compared to the 
available concentration of the metal(loid)s (Rodríguez-
Vila et al. 2015).

A high TF value indicates a relatively high shoot metal(loid) 
concentration compared to its root concentration; i.e., a plant 
species moves metal(loid)s effectively from the roots to shoots 
when the TF > 1. In contrast, TF values below 1 may indicate 
that the plant accumulates the contaminants in the root and thus 
acts as a phytostabilizer (Forján et al. 2018). In this regard, the 
ideal plant species for phytostabilization purposes are the “metal 
excluders,” which show a very low root-to-shoot TC (Kidd et al. 
2009). This coefficient indicates efficiency to take up metals 

Table 3  Pseudo-total 
concentrations of Cu, Zn, and 
As (mg.kg−1) in soils inside and 
outside the urban brownfield

Different letters for distinct samples indicate significant differences (n = 3, ANOVA; P < 0.05). Typical 
deviation is represented by ± . < u.l. under the detection limit

Zone Sample area Plant species Cu-pseudo-total Zn-pseudo-total As-pseudo-total

Inside M1 B. davidii 1401.57 ± 33.82b 2202.65 ± 310.69b 4745.53 ± 95.87a
M2 B. celtiberica 1615.17 ± 37.54a 2545.23 ± 147.82a 343.36 ± 9.59b
M3 A. pseudoplatanus 546.86 ± 38.22c 1055.53 ± 48.95c 143.84 ± 7.63c

Outside M4 B. davidii 151.71 ± 13.95d 481.87 ± 83.94d 51.35 ± 3.96d
M5 A. pseudoplatanus 9.22 ± 0.70e 77.46 ± 5.53e 26.18 ± 1.93d
M6 B. celtiberica 16.06 ± 3.33e 161.90 ± 35.95e 23.53 ± 0.22d

Fig. 3  Graphical representation 
of phytoavailable concentrations 
of Cu, Zn, and As ((NH4)2SO4 
extracted) in soil
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from the soil, and a plant is considered to be an accumulator 
biosystem whenever TC is higher than 1 (Busuioc et al. 2011). 
Finally, as regards BF, this parameter relates the extractable 
metal(loid) concentration in the soil to the concentrations in 
the aerial and root parts of the plant; BF is highly dependent 
on the method used to measure the extractable metal(loid) 
concentration (Karami et al. 2011), and thus, we have applied 
two different extractants ((NH4)2SO4 and  CaCl2) to obtain the 
extractable metal(loid) concentration.

Statistical analysis

The analytical determinations were performed in triplicate. 
Analysis of variance (ANOVA) and test of homogeneity of vari-
ance were carried out. In the case of homogeneity, a post hoc 
least significant difference (LSD) test was performed. If there 
was no homogeneity, Dunnett’s T3 test was performed. The Stu-
dent’s t-test was used to compare the results of two samples at a 
time. A correlated bivariate analysis was also carried out using 
Pearson’s correlation. All data were processed with the statistical 
program SPSS (V.19).

Results and discussion

General characteristics of soils

The difference in pH between the samples taken inside and 
outside the urban brownfield was not relevant (Table 2). The 
soil with the lowest pH was M1, (pH 6.08), followed by 
M2. In this context, acidic pH values inside Nitrastur may 
have been caused by the presence of pyrite ash residues 
mixed with soil (Gallego et al. 2016). The rest of the pH 
values coincided with previous reports of slightly alkaline 
values (Baragaño et al. 2021). Regarding vegetation, the 
lowest pH values were observed in the soils hosting B. 
davidii, followed by B. celtiberica and A. pseudoplatanus 
(Table 2). As regards organic content, the soils inside the 
urban brownfield (M1, M2, M3) had a similar OM content, 
which was generally lower than that recorded outside the 
site. The soils M4 and M6 had the highest OM content, 
possibly because they had well-defined O and A horizons. 
In turn, these points were associated with B. davidii and B. 
celtiberica (Table 2).

Fig. 4  Graphical representation 
of the phytoavailable concentra-
tions of Cu, Zn, and As (CaCl2 
extracted) in soil
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As expected, soils M1, M2, and M3 showed significantly 
higher pseudo-total concentrations of Cu, Zn, and As 
than M4, M5, and M6 (Fig.  2, Table  3). These higher 
concentrations are attributed to the disposal, erosion, and 
blend of different types of waste, such as slag, coal waste, 
and pyrite ash, found throughout the brownfield with natural 
soil aggregates (Baragaño et al. 2020; Gallego et al. 2016).

Inside the brownfield, the highest concentrations of Cu and Zn 
were detected in soils encompassing the B. celtiberica sampling 
area, whereas As concentrations were the highest in the soils in 
which B. davidii was growing (Fig. 2). B. celtiberica can grow in 
soils with high concentrations of Cu and Zn (Fernández-Fuego 
et al. 2017a, 2017b). Other authors (Chaoyang et al. 2011) have 
also described B. davidii growth in soils with high concentrations 
of As, and, in general terms, it can grow in soils with considerable 
metal(loid) concentrations (Ge & Zhang 2014; Zhu et al. 2018). 
Coherently, outside the urban brownfield, the soils with the 
highest pseudototal concentrations of Cu, Zn, and As coincided 
with those in which B. davidii was growing (Fig. 2).

Phytoavailable concentrations of Cu, Zn, and As

Phytoavailable concentrations of Cu, Zn, and As were 
higher inside the brownfield (M1, M2, M3 samples) irre-
spective of the extractants used (Figs. 3, 4). These high 
concentrations may be explained by the different types of 

residues, mainly pyrite ash, that were accumulated over 
time at this site (Gallego et al. 2016). In addition, the 
lower OM content and pH values within the brownfield soil 
(Table 2) may cause reduced sorption capacity compared to 
the natural soils outside the brownfield (Forján et al. 2016).

Regarding the proportions of extractable contaminants 
(Table 4), in general terms, the values were higher for Cu and 
Zn inside the brownfield, as was the case for As, although 
the latter showed very low values. The same, but to a greater 
extent, was observed for Pb. In this regard, notable pseudo-
total Pb concentrations were previously reported (Gallego 
et al. 2016), but in the present study, we found that phytoavail-
able Pb was below the detection limit in all the samples exam-
ined, and thus, Pb data were not considered in this study. For 
more information, consult Table S1 (Supplementary material).

Phytoavailable concentrations of metal(loid)s inside the 
brownfield could be attributed to the presence of soils mixed 
with the residues mentioned above, specifically pyrite ash, 
which is largely composed of oxides, hydroxides, and also 
sulfides of iron and other metal(loid)s, which were produced 
as by-products of the sulfide ore roasting process (Gallego 
et al. 2016; Mesa et al. 2017). As an exception, Zn in sample 
M6 (outside) showed a higher phytoavailable percentage, both 
with  (NH4)2SO4 (7.93%) (Fig. 3) and  CaCl2 extractants (5.15%) 
(Fig. 4), than that of any other sample inside the brownfield 
(< 2.10% for both extractants, Table 4). There could be various 

Table 4  Phytoavailable concentrations of Cu, Zn, and As (mg.kg−1) and their percentage vs pseudo-total concentrations in soils, inside and out-
side the urban brownfield

Different letters for different samples indicate significant differences (n = 3, ANOVA; P < 0.05). Typical deviation is represented by ± . < u.l. rep-
resent under the detection limit

Element Zone Soil sample Plant species Extractable- 
 (NH4)2SO4

Extractable-CaCl2 %extractable-
(NH4)2SO4

%extractable-CaCl2

Cu Inside M1 B. davidii 3.34 ± 0.37b 1.87 ± 0.20b 0.23 ± 0.02bc 0.13 ± 0.01a
M2 B. celtiberica 4.84 ± 1.80a 2.40 ± 0.64a 0.30 ± 0.11b 0.15 ± 0.04a
M3 A. pseudoplatanus 0.61 ± 0.27c 0.21 ± 0.01c 0.11 ± 0.06c 0.04 ± 0.00b

Outside M4 B. davidii 0.89 ± 0.26c u.l 0.58 ± 0.13a u.l
M5 A. pseudoplatanus u.l u.l u.l u.l
M6 B. celtiberica u.l u.l u.l u.l

Zn Inside M1 B. davidii 27.97 ± 5.29b 36.89 ± 3.86b 1.27 ± 0.18b 1.69 ± 0.26b
M2 B. celtiberica 45.91 ± 1.76a 51.36 ± 2.83a 1.81 ± 0.17b 2.02 ± 0.02b
M3 A. pseudoplatanus 0.70 ± 0.13d 0.50 ± 0.02d 0.06 ± 0.01c 0.04 ± 0.00c

Outside M4 B. davidii 0.41 ± 0.07d 0.31 ± 0.09d 0.08 ± 0.02c 0.06 ± 0.02c
M5 A. pseudoplatanus u.l u.l u.l u.l
M6 B. celtiberica 12.44 ± 2.19c 8.05 ± 0.22c 7.93 ± 2.01a 5.15 ± 1.15a

As Inside M1 B. davidii 4.66 ± 0.51a 1.40 ± 0.13a 0.09 ± 0.01a 0.00
M2 B. celtiberica u.l u.l u.l u.l
M3 A. pseudoplatanus u.l u.l u.l u.l

Outside M4 B. davidii u.l u.l u.l u.l
M5 A. pseudoplatanus u.l u.l u.l u.l
M6 B. celtiberica u.l u.l u.l u.l
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explanations for this observation, including the location of the 
different industries that have been operating in Langreo for 
more than a century and that left a heavy pollution footprint in 
the environmental compartments (Boente et al. 2022).

Specifically for the sampling stations of plants clusters, 
Zn presented the highest phytoavailable concentrations, both 
inside (0.11% with  (NH4)2SO4 and 0.04% with  CaCl2) and 
outside (7.93% with  (NH4)2SO4 and 5.15% with  CaCl2) the 
brownfield, coinciding with soils where B. celtiberica grew 
(Fig. 4, Table 4). Therefore, in the outside station, the percent-
age of extractable concentration versus pseudototal concentra-
tion was higher than inside the brownfield (Table 4) irrespec-
tive of the higher pseudototal concentration observed inside. 
This suggests that the mobility of Zn inside the brownfield is 
very low due to the pollution source (pyrite ash) as previously 
observed by Baragaño et al. (2020). A similar pattern was 
observed for phytoavailable concentrations of Cu inside the 
brownfield in the case of B. davidii with  (NH4)2SO4 extraction 
(Fig. 3, Table 4). In contrast, the soils outside where B. davi-
dii grew presented the highest concentrations of Cu, whereas 
phytoavailable As exceeded the detection limit values only 
in the inside area in which B. davidii grew (Fig. 4, Table 4).

Metal(loid) concentrations in plants and plant/soil 
system

In general, all the plant species presented higher concentra-
tions of the metal(loids)s inside the brownfield than outside, 
both in the root and aerial part, with As presenting the low-
est values and Zn the highest in all species (Fig. 5, Table S2 
(Supplementary material)).

B. davidii sampled inside the urban brownfield had higher 
concentrations of Cu, Zn, and As (in roots and aerial part) 
compared to B. davidii sampled outside the urban brownfield 
(Fig. 5, Table S2). The area where B. davidii was collected 
revealed phytoavailable concentrations of Cu, Zn, and As that 
were significantly positively correlated (p < 0.01) with the 
contents of Cu, Zn, and As in the root and leaves of B. davidii.

Inside the urban brownfield, B. celtiberica presented 
higher contents of Cu, Zn, and As in both the root and aerial 
part than B. celtiberica outside the brownfield, except for As 
in the aerial part, although no significant differences were 
found (Fig. 5, Table S2). Phytoavailable Zn concentrations 
were significantly positively correlated with Zn contents 
in the root and aerial part of B. celtiberica. However, in 
the case of Cu, significant positive correlations were found 
only between phytoavailable Cu concentrations and root Cu 
content.
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A. pseudoplatanus followed the same pattern as B. 
davidii and B. celtiberica. Inside the brownfield, A. 
pseudoplatanus had the highest concentrations of Cu, Zn, 
and As, both in the root and aerial part (Fig. 5, Table S2). 
These results are in concordance with those reported by 
authors such as Mleczek et al. (2017). Phytoavailable Zn 
concentrations were significantly positively correlated with 
Zn contents in the root and aerial part, and also with the 
BF values.

Soil/vegetation indexes

The species studied inside the urban brownfield can be 
classified as accumulators or hyperaccumulators of metal(loid)
s, presenting, in general, TC > 1 or proximal values according 
to Busuioc et al. (2011) (Table 5). In contrast, following the 
study by Baker and Brooks (1989), the species outside the 
brownfield present a high degree of meta(loid) translocation 
between soil and vegetation (Table 5).

B. davidii outside the urban brownfield had a TF > 1 for 
Cu and Zn (Table 5). In addition, the BF-aerial value for Cu 
and Zn was higher than the BFroot value, and the opposite 
was true inside the brownfield (Table 5). These values 
indicate that the behavior of B. davidii is distinct when 
inside and outside the urban brownfield. Outside the area, 
B. davidii has a high capacity to accumulate Cu and Zn in 
the aerial part, whereas inside the site, it accumulates these 
elements in the root, thereby suggesting phytostabilization 

capacity (Baker and Brooks 1989; Karami et al. 2011). The 
behavior of B. davidii that we observed in the soils with high 
concentrations of Cu and Zn is consistent with data reported 
by Zhu et al. (2018).

B. celtiberica inside the urban brownfield did not show 
TF or TC > 1 for any of the metal(oid)s analyzed. However, 
outside the area, it showed TF and TC > 1 for Cu and TF 
values higher than 1 for Zn. As in the case of B. davidii, the 
TF and TC values indicate two very different phytoremediation 
behaviors of B. celtiberica. Inside the brownfield, where 
phytoavailable concentrations are higher, B. celtiberica behaves 
as a phytostabilizing species, but outside, where concentrations 
are lower, it is a phytoextractive species. In fact, B. celtiberica is 
a fast-growing, deciduous, and pseudometallophilic tree. It has a 
high biomass and a well-developed root system. Although it has 
colonized the study area, it is usually found in restricted areas of 
the Iberian Peninsula (Shaw et al. 2014). Thus, the autoecology 
of this species suggests that it might be a suitable candidate 
to phytoremediate contaminated soils in Asturias (Mesa et al. 
2017), like the urban brownfield examined herein. Authors such 
as Kříbek et al. (2020) concluded that B. celtiberica can grow on 
substrates with extremely high concentrations of trace elements 
and can therefore be used for phytoremediation purposes, 
especially on Zn-contaminated sites. In this regard, it should 
be noted that, in the urban brownfield studied here, Zn was 
the element with the highest pseudo-total and phytoavailable 
concentrations. Consequently, Zn was the metal that B. 
celtiberica accumulated the most (Table 5).

Table 5  Cu, Zn, and As soil/vegetation factors (TF, TC, BFroot, BFaerial) in areas inside and outside the urban brownfield

Different letters indicate significant differences (n = 3, ANOVA; P < 0.05). Typical deviation is represented by ± . < u.l. under the detection limit. 
Bolded values indicate values higher than 1

Element Zone Soil sample Plant species TF TC BTFroot BTFaerial

Cu Inside M1 B. davidii 0.84 ± 020 0.04 ± 0.00 23.88 ± 2.50 19.93 ± 4.51
M2 B. celtiberica 0.21 ± 00 0.01 ± 0.00 20.06 ± 7.74 3.25 ± 0.46
M3 A. pseudoplatanus 0.09 ± 0.00 0.02 ± 0.00 230.32 ± 55.52 34.65 ± 7.82

Outside M4 B. davidii 1.55 ± 0.17 0.11 ± 0.01 10.90 ± 1.93 17.25 ± 1.79
M5 A. pseudoplatanus 0.18 ± 0.001 0.88 ± 0.03 u.l u.l
M6 B. celtiberica 1.05 ± 0.07 1.01 ± 0.01 u.l u.l

Zn Inside M1 B. davidii 0.63 ± 0.09 0.07 ± 0.01 9.20 ± 1.36 5.91 ± 1.17
M2 B. celtiberica 0.61 ± 0.03 0.03 ± 0.00 3.52 ± 0.07 2.15 ± 0.12
M3 A. pseudoplatanus 0.89 ± 0.02 0.55 ± 0.02 1,063.08 ± 25.86 956.91 ± 36.26

Outside M4 B. davidii 2.46 ± 0.10 0.08 ± 0.01 36.13 ± 0.53 86.13 ± 0.36
M5 A. pseudoplatanus 1.93 ± 0.10 3.68 ± 0.25 u.l u.l
M6 B. celtiberica 2.58 ± 0.28 0.39 ± 0.08 2.00 ± 0.41 5.15 ± 0.80

As Inside M1 B. davidii 0.82 ± 0.26 0.01 ± 0.00 14.43 ± 1.61 11.72 ± 3.26
M2 B. celtiberica u.l u.l u.l u.l
M3 A. pseudoplatanus 0.12 ± 0.04 u.l u.l u.l

Outside M4 B. davidii u.l u.l u.l u.l
M5 A. pseudoplatanus u.l 0.01 ± 0.00 u.l u.l
M6 B. celtiberica u.l u.l u.l u.l
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The TF and TC values exceeded 1 only in A. pseudoplatanus 
outside the brownfield, although it should be noted that these 
values did not exceed 1 for Cu in this species either inside or 
outside the brownfield (Table 5). For Zn, the BF values inside the 
site and the TF and TC values outside indicate the high capacity 
of A. pseudoplatanus to phytoremediate Zn-contaminated soils. 
In addition, A. pseudoplatanus can enhance the reduction of 
metal(loid) concentrations in the soil as it has good litter quality, 
which promotes rapid decomposition, lower production of acids, 
and the formation of stable humus (Reich et al. 2005). Another 
positive feature of A. pseudoplatanus is that lower amounts 
of Zn are found in the litter it produces compared to other 
phytoremediation species (Mertens et al. 2007).

Conclusions

Spontaneously growing species showed a high capacity for 
adaptation to the environmental conditions. The phytoavailable 
concentrations of metal(loid)s showed that concentrations were 
higher inside the brownfield than outside. However, the TF and 
TC indicated that the species studied outside the brownfield, 
on average, had phytoextractive capacity and that those inside 
the brownfield had phytostabilization capacity. Thus, on 
the basis of the results obtained from the indexes related to 
phytoremediation, A. pseudoplatanus, B. celtiberica, and B. 
davidii follow different phytoremediation strategies depending 
on the degree of contamination of the soil. Therefore, for real-
scale treatments, the three species studied herein emerge as 
candidates for phytostabilization actions in areas with high 
levels of contaminants, whereas their phytoextraction capacity 
is suitable only for soils with low levels of pollution.
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