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This review is a compilation of proteomic studies on forest tree species published

in the last decade (2012-2022), mostly focused on the most investigated species,

including Eucalyptus, Pinus, and Quercus. Improvements in equipment,

platforms, and methods in addition to the increasing availability of genomic

data have favored the biological knowledge of these species at the molecular,

organismal, and community levels. Integration of proteomics with physiological,

biochemical and other large-scale omics in the direction of the Systems Biology,

will provide a comprehensive understanding of different biological processes,

from growth and development to responses to biotic and abiotic stresses. As

main issue we envisage that proteomics in long-living plants will thrive light on

the plant responses and resilience to global climate change, contributing to

climate mitigation strategies and molecular breeding programs. Proteomics not

only will provide a molecular knowledge of the mechanisms of resilience to

either biotic or abiotic stresses, but also will allow the identification on key gene

products and its interaction. Proteomics research has also a translational

character being applied to the characterization of the variability and

biodiversity, as well as to wood and non-wood derived products, traceability,

allergen and bioactive peptides identification, among others. Even thought, the

full potential of proteomics is far from being fully exploited in forest tree

research, with PTMs and interactomics being reserved to plant model systems.

The most outstanding achievements in forest tree proteomics in the last decade

as well as prospects are discussed.

KEYWORDS
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1 Introduction

Forest species are important from an ecological, social, and economic point of view.

The total forest area covers 4.06 billion hectares around the world (https://www.fao.org/

state-of-forests/en/), contributing to the soil and water resources conservation, global

carbon uptake and storage and is largely responsible for the consistency of the global
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carbon sink (Hurteau, 2021). Besides, forests harbor much of the

world’s terrestrial biodiversity and are an inexhaustible source of

pharmaceuticals, and other important wood and food derived goods

to people. Deforestation and forest degradation threaten the

survival of many species and reduce the ability of forests to

provide goods and essential services. Among the main causes

behind the loss of forests are pathogens attack, forest fires, and

others of anthropogenic origins. Halting the loss and degradation of

forest ecosystems and promoting their restoration to mitigate global

climate change are among the main objectives of scientists for the

2030 Paris Agreement on climate change. We quote the recent

message from the FAO on the current situation of the forests:

“Trees, forests, and sustainable forestry can help the world combat

looming environmental crises such as climate change and

biodiversity loss” (FAO, 2022).

In this sense, research about the biology of forest species, life

cycle, biodiversity, and responses to environmental stresses, among

others, will help predict how these species will behave in a context of

climate change, for the selection of the best-adapted species or

individuals that can be used in afforestation and reforestation

programs, as well as to the natural regeneration of forest

ecosystems. Despite its importance, research in forest trees is

underrepresented compared to other plant species, such as crops.

Thus, a Pubmed (https://pubmed.ncbi.nlm.nih.gov) search covering

the period 2012-2022 returned 9,846 hits using as a search string

“forest-tree” (3,248 for Eucalyptus, 4,759 for Pinus, and 2,733 for

Quercus), and 50,325 using “crop”. Molecular research in forest

species is even more limited, mainly caused by the high genetic

variability, longevity, long regeneration periods, allogamy, seed

recalcitrance, and lack of genomic tools (Rodrigues et al., 2021;

Maldonado-Alconada et al., 2022). Previous reviews have already

been published collecting works carried out on forest species at the

molecular level, focused on the species (Rey et al., 2019; Escandón

et al., 2021a; Maldonado-Alconada et al., 2022), the stress (Naidoo

et al., 2019; Rey et al., 2019; Amaral et al., 2022; Modesto et al.,

2022) or the technique used (Abril et al., 2011; Du et al., 2018; Rey

et al., 2019; Rodrigues et al., 2021).

Most of the forest tree proteomic works aimed to study

biological processes such as growth and development, responses

to stress, prototyping, and the characterization of natural variability

for the identification of proteins that could be used as markers in

breeding programs. Lately, proteomics has been applied to the study

of seed recalcitrance (Romero-Rodrıǵuez et al., 2019; Sghaier-

Hammami et al., 2021; Escandón et al., 2022) and traceability,

proving the nutraceutical value of seeds and derived products, with

a clear translational potential in relation to the identification of

allergens and bioactive peptides (Pedrosa et al., 2020; Maldonado-

Alconada et al., 2022). The development of techniques and

databases of non-model organisms has meant a qualitative leap

for the advancement of proteomics in forest species.

In the last 10 years, proteomics techniques moved from gel-

based strategies to gel-free shotgun and lately to targeted

approaches. This mini-review attempts to compile proteomic

research articles and reviews published in the last decade focusing

on the genera Quercus, Pinus, and Eucalyptus with an emphasis on

the species of the authors’ research work. The relevance as a
Frontiers in Plant Science 02
biological system and the methodology used is reviewed in

sections devoted to each species. Table S1 provides a list of the

main proteomics works addressed in the last 10 years, which

describes the species, organ/tissue, objective, methodological

strategy used and the main results obtained.
2 Proteomics survey (2012-2022):
Where are we now?

In the last decade we have witnessed a gradual transition from

the use of gel-based to gel-free techniques in plant proteomics,

which are often combined. Two-dimensional gel electrophoresis

(2DE) coupled to MALDI-TOF is the star proteomics technique

that undoubtedly has been used until 2016-2017 in Eucalyptus and

Pine, and a bit later (2019) for Holm oak. As of 2017 in the first two,

and as of 2020 in the last one is when the use of gel-free techniques

(LC-MSMS) DDA and DIA based, or targeted was chosen. Next, a

tour of the greatest achievements in proteomics and the techniques

used in each of these species is presented (Figure 1; Supplemental

Table S1).
2.1 Eucalyptus spp.

Eucalyptus are fast-growing trees comprising approximately

700 species and hundreds of different commercial hybrids. Native

to Australia, Indonesia, the Philippines, and New Guinea (Paine

et al., 2011), Eucalyptus plants were successfully introduced in

several countries, where they are mostly used for the pulp and

paper industry. Currently, the total Eucalyptus plantation area

exceeds 22 million hectares worldwide (Zhang and Wang, 2021).

Understanding the biochemical and molecular basis that leads to

plant growth and adaptation may contribute to the enormous

challenges posed by future climate scenarios. Proteome differences

in two ecophysiologically different Eucalyptus genotypes were

investigated in field conditions to identify metabolic changes

induced by water stress using a 2DE coupled LC-MSMS approach

(Bedon et al., 2012). The same strategy was employed to study

adaptative responses to drought stress in seeds from native

populations with contrasting drought sensitivities in E. globulus

(Valdés et al., 2013) and plantlets of E. saligna and E. tereticornis for

water stress (Martins et al., 2020). From all environmental

responses studied in Eucalyptus plants to our knowledge, the

thermal stimulus appears to be the most representative one,

although none of those studies was carried out in field trials.

Finding potential molecular markers and studying global

metabolic changes induced by alterations in the growth

temperature was investigated in several different Eucalyptus

species using mainly gel-free strategies (Aspinwall et al., 2019; de

Santana Costa et al., 2017; Costa et al., 2020, Leonardi et al., 2015;

Oberschelp et al., 2020). Chloroplast proteome was also investigated

in E. urophylla in order to identify changes in the abundance of

Calvin-Benson and antioxidant enzymes induced by growth in CO2

enriched atmosphere using a GeLC-MSMS analysis (Santos and

Balbuena, 2017; Baldassi and Balbuena, 2022). In face of the climate
frontiersin.org
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change challenge, proteomics can be used to predict real changes

from experimentally induced scenarios. Since most climate

predictions were confirmed in the last decades, investigating the

proteome changes induced by combined stimulus appears to be the

right choice for screening more realistic responses. Recently,

Correia et al. (2018) aimed at mimicking a more realistic future

scenario by challenging E. globulus plantlets against combined

drought and heat stress.

Understanding how Eucalyptus species interact with the

environment opens new biotechnological perspectives for these

perennial plants, such as bioremediation. It has been observed that

E. camaldulensis plants have the potential to phytoremediate

cupper-specific and heavy metal contaminated sites (Guarino

et al., 2014; Alotaibi et al., 2019). Using gel-based proteomics

differentially abundant proteins were suggested as key molecules

in the formation of chelating complexes; however, the causal

relationship is still to be defined. Plant-pathogen interaction is

another theme of great importance for Eucalyptus plantations.

Multi-omics approaches have been used to understand the defense

response in E. grandis against rust infection (Sekiya et al., 2021)

and Calonectria pseudoreteaudii (Chen et al., 2015), the biological

agent of the Calonectria leaf blight disease. Although strictly

descriptive, these studies provide the molecular basis for a

future mechanistic overview and functional characterization of

the molecular players involved in pathogen-related responses in

Eucalyptus. Seasonal variations (Budzinski et al., 2016a; Budzinski

et al., 2016b; Baldassi and Balbuena, 2022), direct agricultural

application in intercropping systems (Yao et al., 2021), and

cellular signaling (Plett et al., 2017) were also investigated in the

last decade from different approaches, LC-MSMS, targeted

(Parallel Reaction Monitoring) proteomics, independent or

combined with transcriptomics or metabolomics analysis. Last

but not least, a proteogenomics approach, refers to the strategy of

searching for peptide identities derived from spectrometric data

using custom databases, and de novo peptide sequencing analysis

was recently used for the identification of novel protein-coding
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paving the way for a more comprehensive overview of the

Eucalyptus proteome through a combinatorial bioinformatics

data mining approach.
2.2 Pinus spp.

The P inu s g enu s inc l ude s 187 spe c i e s (h t t p : / /

www.worldfloraonline.org/) most commonly found in the

northern hemisphere. Pinus are fast-growing trees widely used for

several economical purposes, timber production being one of the

main ones. Pines account for 29.6% of the growing stock in

European forests. Moreover, around one-third of European forests

are dominated by a single tree species, very commonly a pine (Forest

Europe, 2020). Therefore, pine species have great ecological and

economical value, and understanding the molecular mechanisms

governing development and adaptation is of great interest. In this

regard, the contribution of proteomics has been remarkable (Jorrıń-

Novo et al., 2015). The last decade has witnessed a huge advance in

pine proteomics research that has continued the transition from gel-

based to gel-free systems based on mass spectrometry thanks to

important methodological developments, such as those of databases

(Nystedt et al., 2013; Zimin et al., 2014; Stevens et al., 2016; Zimin

et al., 2017) and their use (Romero-Rodrıǵuez et al., 2014). In

addition, the development of new protein isolation protocols

(Valledor et al., 2014; Colina et al., 2020) and fractionation

methods has allowed studying subcellular proteomes (Alegre et al.,

2016; Lamelas et al., 2020a). Noteworthy, proteomic analysis has

been very commonly performed in combination with other omics,

like transcriptomics or metabolomics, which has needed new

computational strategies and algorithms to allow the integration of

different omic layers effectively, and comprehensively (Escandón

et al., 2020; Sundararaman et al., 2020).

Proteomics has been especially used for studying stress response

(Supplemental Table S1). Abiotic stress studies have aimed at
FIGURE 1

Main milestone in research on forest species in the last decade.
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mimicking near-future conditions pines will face because of the

ongoing climate change to get insight into their adaptation capacity.

Acid rain and especially UV and heat stress have been intensively

studied. Proteomics by 2DE coupled to MALDI-TOF/TOF has been

used to study the effects of acid rain in P. massoniana (Hu et al.,

2014a) and the role of calcium in the stress response it induces (Hu

et al., 2014b). An integrated physiological, proteomic, and

metabolomic analysis of P. radiata seedling needles’ response to

UV and recovery using shotgun proteomics revealed a remodeling

of the proteome associated with metabolism rearrangement to deal

with oxidative stress (Pascual et al., 2017). Protein kinases and

proteases were associated with signaling and regulatory processes

during the UV stress response. A complementary study, analyzing

changes in the needle nuclear proteome by shotgun proteomics,

identified the main transcription factor families governing UV

stress response (Pascual et al., 2016). A similar approach was also

used in a system-wide analysis of short-term response to high

temperatures in P. radiata seedlings (Escandón et al., 2018). This

approach uncovered the importance of proteins related to hormone

signaling and lipid and flavonoid metabolism. Phosphate

transporter 1 (PHO1) and the transcription factor APFI were

identified as potential heat-stress resistance biomarkers. The

accumulation of small heat shock proteins (sHSPs) was also

reported. The response to prolonged heat stress was also studied

in P. radiata at the nuclear proteome level (Lamelas et al., 2020b).

The use of a two-phase stress experimental design further

confirmed the importance of sHSPs after initial heat stress and

found changes in activated methyl cycle enzymes and H2A-H2B

histone dimers associated with stress memory. Lamelas et al.

(2020b) also described changes in spliceosome-related proteins

during heat stress and recovery, suggesting alternative splicing as

an important mechanism mediating stress response and memory,

which was further characterized by Roces et al. (2022).

Furthermore, the combined study of nuclear and chloroplast

proteomes revealed the importance of proteins related to

retrograde and anterograde signaling and to RNA metabolism

rearrangement mediated by microRNAs, revealing a new layer of

regulation in heat stress response (Lamelas et al., 2022). Proteomic

studies on heat stress in somatic embryos have found some

commonalities in the proteins and processes involved, opening

the door to the production of thermo-primed plants (Castander-

Olarieta, 2021; Castander-Olarieta et al., 2022).

Most recent studies have used genetic variation-based

approaches to study stress memory and cross-tolerance, and to

define stress resistance markers. Baniulis et al. (2020) identified

constitutive differences in protein abundance associated with cold

acclimation capacity in different P. sylvestris populations. Garcıá-

Campa et al. (2022) identified proteins related to photorespiration,

redox homeostasis, and secondary metabolism associated with

transgenerational stress cross-tolerance and priming analyzing the

chloroplast proteome of the progeny of two P. radiata populations

with the same genetic background but from environmentally

contrasting locations.

Biotic stress research has also used genetic variance and

proteomics aiming in this case at identifying the proteins

responsible for resistance/susceptibility to two main pathogens
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circinatum, responsible for the pine pitch canker (Wingfield et al.,

2008; Amaral et al., 2021; Amaral et al., 2022), and the pine wood

nematode Bursaphelencus xylophilus, causing pine wilt (Espada

et al., 2022). Comparative proteome analysis of the differential

response of pine species upon F. cicinatum inoculation revealed

that susceptibility was associated with proteins involved in negative

regulation of plant immunity, and increased energy production

and amino acid synthesis pathways related to changes in plant

secondary metabolism and chloroplast redox balance. In turn,

proteins related to vesicle trafficking and the crosstalk between

ABA and epigenetic regulation were associated with pathogen

resistance (Amaral et al., 2021). Similar approaches have been

used to study the interaction between pine species and the pine

wood nematode, B. xylophilus. Proteomics has been used to

characterize the nematode secretome. These works have revealed

the importance of peptidases, hydrolases, and antioxidant proteins

in overcoming the defense mechanisms deployed by different hosts

(Silva et al., 2021; Cardoso et al., 2022). A recent study used Masson

pine (P. massoniana) clones selected through traditional breeding

over 20 years and screened for different resistance to pine wilt (Gao

et al., 2022). Comparative Tandem Mass Tagged (TMT) based

quantitative proteomic analysis combined with parallel reaction

monitoring (PRM) identified proteins related to SA metabolism, the

antioxidant system, polysaccharide degradation, and lipid

biosynthesis to change significantly during the infestation process.

This study showed that the capacity of the plant to degrade

nematode-related proteins and to downregulate its carbon

metabolism to limit carbon availability for the nematode might

diminish the infestation capacity of the nematode.
2.3 Quercus spp.

Quercus genus (family Fagaceae) includes 464 spp. distributed

throughout the Northern Hemisphere to Malaysia and Colombia

(Kew Royal Botanic Garden: https://powo.science.kew.org/results?

q=Quercus). Playing an important role in human life since the

prehistoric period, oaks are the most important woody species in

terms of diversity, ecological dominance, and economic value, being

a source of a wide variety of goods and services for humans and

animals (Leroy et al., 2020; Backs and Ashley, 2021). Among them

Q. suber and Q. ilex are the dominant species in natural forest

ecosystems over a large area of the Western Mediterranean Basin,

and in the agrosilvopastoral Spanish “dehesa” (Olea and San

Miguel-Ayanz, 2006; De Rigo and Gaudullo, 2016; Surová et al.,

2017). With a high ecological, social, and economic value due to the

cork, for the former, and acorns, for the latter, these species have

been the best characterized at the proteomic level (Abril et al., 2011;

Ricardo et al., 2011; Rey et al., 2019; Maldonado-Alconada et al.,

2022; Saiz-Fernández et al., 2022). In the case of Q. ilex, there is also

a current and renewed interest in the use of acorns for dietary

diversification and sustainable food production. However, the

survival of these species is threatened by various anthropogenic

and environmental factors, among which the pathogens attack such

as Phytophthora cinnamomi, together long drought periods, are the
frontiersin.org
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main cause of the decline and tree mortality (Brasier, 1996; Ruiz‐

Gómez et al., 2018; San‐Eufrasio et al., 2021b; Maldonado-Alconada

et al., 2022). For the preservation of these species in the face of

imminent climate change that will worsen the situation, urgent

measures must be taken, among which biotechnology has a place.

The contribution of proteomics to the study of Q. ilex has been

remarkable, as stated in several works and reviews (Table S1).

One of the major limitations reported when working with

samples of Q. ilex trees from the field is the huge biological

variability inter- and intra-population (Jorge et al., 2005; Jorge

et al . , 2006), to which must be added no-control led

environmental conditions, such as those of field. For this

reason, most of the studies of the last decade have been carried

out on seedlings, under greenhouse-controlled conditions,

introducing a representative number of replicates per

experimental condition. Another limitation when working with

Q. ilex has been the scarce genomic information, such as for other

orphan tree species, which forced a long time to work with

orthologous sequences (Romero-Rodriguez et al., 2014; Rey

et al., 2019). The creation of a reference transcriptome database

of Q. ilex by Guerrero-Sanchez et al. (2017) markedly improved

protein identification success (Gómez-Gálvez et al., 2020;

Escandón et al., 2021b). In addition, the integration of multi-

omic (transcriptomics, proteomics and metabolomics) data

allowed the partial reconstruction of the metabolism of Q. ilex,

in which TCA cycle was the most represented pathway in the

three levels of regulation (López-Hidalgo et al., 2018). Recent

advances in genome sequencing have allowed for the first draft of

the Q. ilex genome (Maldonado-Alconada et al., 2022), which will

mean a significant improvement in molecular studies of

this species.

Beyond the experimental limitations, the first proteomics works

on Q. ilex aimed to characterize and catalog Andalusian Q. ilex

populations and provenances based on the leaf 2-DE profile (Jorge

et al., 2005; Jorge et al., 2006), seeds (Valero-Galván et al., 2011) and

pollen (Valero-Galván et al., 2012). The topic that has aroused the

greatest interest due to the number of publications is the study of

the response to biotic and abiotic stresses. Specifically, the response

to drought and to the soil pathogen P. cinnamomi, the main causes

of the decline syndrome, has been the subject of numerous

proteomic studies on holm oak. Valero-Galván et al. (2013)

observed a reduction of proteins related to ATP synthesis and

photosynthesis in seedlings leaves of two Q. ilex Andalusian

provenances in response to drought by using a gel-based coupled

to MALDI-TOF strategy. A decrease in proteins of the carbohydrate

metabolism and an increase in ATP synthesis and secondary

metabolism were observed in Q. ilex seedlings roots in response

to water shortage using the same strategy (Simova-Stoilova et al.,

2015). When comparing roots and cotyledons, the same authors

emphasize the importance of sink-source interaction between root

and cotyledon in the time course of stress and recovery (Simova-

Stoilova et al., 2018). More recently, a panel of putative markers of

tolerance to the drought of Q. ilex has been proposed, among which

the protease subtilisin and the chaperone GrpE were considered the

most promising (San-Eufrasio et al., 2021a). For that, the leaves

proteome of seedlings from 4 Andalusian Q. ilex populations was
Frontiers in Plant Science 05
analyzed using a shotgun (LC-MSMS) proteomic strategy combined

with proteotypic peptides quantification.

Studies of response to P. cinnamomi on Quercus species are

more limited. Sghaier-Hammami et al. (2013) observed an increase

of proteins related to starch biosynthesis, glycolysis, and stress-

related peroxiredoxin upon inoculation in Q. ilex seedlings leaves

using 2DE coupled to MALDI-TOF strategy. A shotgun analysis

was performed by Saiz-Fernández et al . (2022) using

micropropagated clonal Q. suber and Q. variabilis plants to study

the response to P. cinnamomi. Q. variabilis displayed a greater

upregulation of stress-related proteins in leaves compared to Q.

suber, namely peroxidases, superoxide dismutases, and glutathione

S-transferases, together with proteins related to jasmonic acid

metabolism. The authors stated that these differences could be

responsible for the higher susceptibility of Q. suber to P.

cinnamomi attack. To our knowledge, the only proteomic work

combining drought stress and P. cinnamomi inoculation was

performed by San-Eufrasio et al. (2021b) in seedlings from two

Andalusian Q. ilex populations. Using a shotgun proteomics

strategy, authors proposed the proteins aldehyde dehydrogenase,

glucose-6-phosphate isomerase, 50S ribosomal protein L5, and

a-1,4-glucan-protein synthase [UDP-forming] as putative markers

for resilience.

The translational potential of proteomics is reflected in recent

studies carried out onQ. ilex seeds. To understanding the recalcitrant

character of these non-orthodox seeds the maturation and

germination stages have been studied using different proteomics

platforms. Results obtained demonstrated that mature seeds have all

the machinery necessary for rapidly resuming metabolic activities

and starting the germination process, while post-germination events

were similar to that of the orthodox seeds (Romero-Rodrıǵuez et al.,

2019; Sghaier‐Hammami et al., 2020). A targeted strategy based on

the identification of proteases and proteases inhibitors was carried

out using a combination of shotgun and protease activity, giving

clues about proteins that may be related to seed quality and viability

(Escandón et al., 2022). On the other hand, but not least, proteomics

has contributed to the characterization of allergens. The first allergen

fromQ. ilex pollen has been identified by using a targeted proteomics

and transcriptomics strategy (Pedrosa et al., 2020), whose interest

can be transferred to the pharmaceutical sector. This strategy is being

used in the identification of bioactive peptides, probing its

nutraceutical value, that will give an added value to holm oak and

its use in human nutrition (Maldonado-Alconada et al., 2022).
3 Future directions

Proteomics has great potential, constituting priority research

for any organism, since the number of protein species differs from

the number of genes and transcripts, approaching the phenotype

more than the genotype. In the case of forest species, proteomics has

been limited by the characteristics of the biological system itself.

Therefore, it is imperative to integrate proteomics with other

disciplines and omic techniques from a Systems Biology

perspective. Future approaches should also consider different

perspectives for bridging single organism data to population
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studies, as well as targeted studies that allow selecting elite

genotypes/individuals based on molecular markers.
3.1 From single organisms to
population-wide studies

Proteomics has been used for studying protein diversity and its

cross-functional roles in complex microbial communities isolated

from environmental samples (Muth et al., 2016). However, little

attention has been paid to understanding protein variability and the

molecular events that lead to ecological/environmental adaptation

in tree populations. Using proteomics in order to unveil ecological

and evolutionary processes pulls the gene-centered approach out

and brings a key element into the game: proteins. One of the

pioneering studies was carried out by Valero-Galván et al. (2011) in

which the biodiversity from ten populations of holm oak distributed

throughout the Andalusia region was estimated based on the acorn

proteome profile. A similar study was later carried out by Loewe

et al. (2018), in which thirty Pinus taeda Chilean populations were

investigated with the aim of detecting variability across three

Chilean macrozones and to provide the molecular basis for

conservation purposes in this species. Understanding genetic

biodiversity from proteomics may also shed a light on the

molecular and phenotype responses of populations to climate

change. Small and large range size Eucalyptus co-occurring

populations were investigated to predict environmental responses

upon heatwaves (Aspinwall et al., 2019). Experimental data showed

different environmental responses across the populations studied,

highlighting the influence of range size and growth temperature in

the responses of Eucalyptus species. A comprehensive proteomic

study of E. grandis from six different populations provided evidence

of adaptive variation in protein response to temperature extremes at

the population level (Maher et al., 2019). This result has a direct

impact on conservation biology as it illustrated the importance of

taking into consideration the molecular responses to environmental

scenarios when elaborating local restoration programs. Those

studies do illustrate the potential of population proteomics in

order to reveal cryptic diversity and to better represent field

responses to environmental changes. However, there is a clear

lack in population-wide studies of tree species though they are

unequivocally embraced in different ecological niches and represent

the most iconic species in the forest biome.
3.2 Proteomics as a driver for
molecular breeding

Since its conception, proteomics has played a major role in

characterizing natural events from a holistic perspective.

Organisms, organs, and tissues have been investigated in a large-

scale fashion through discovery-driven approaches, in which a

massive amount of data is generated. Given the heterogeneous

cell information of individual cells, single-cells expression profiling

of plant tissues is the only holistic way of generating a deeper

understanding of plant developmental processes or environmental
Frontiers in Plant Science 06
adaptation (Clark et al., 2022). From the plant breeding perspective,

understanding the molecular mechanisms underlying the

adaptation of plants to a specific condition may assist in the

selection of plants with genotypes with particular characteristics.

The selection of elite genotypes based on molecular markers is a

plausible biotechnological approach. Proteomics has contributed

greatly to the identification of these markers, which together with

other omics disciplines, and after validation both by genomic

association and by functional genomic analysis, may accelerate

the identification of these genotypes to be used in forest breeding

programs. For instance, large-scale proteomics has revealed the

molecular regulatory mechanisms of resin yield in Pinus plants and

allowed the identification of candidate genes for molecular breeding

(Li et al., 2022). Proteoforms involved in the Calvin-Benson cycle

have been relatively quantified to pinpoint regulatory points in the

carbon assimilation pathway in Eucalyptus (Marques dos Santos

and Balbuena, 2017). A panel of putative molecular markers of

tolerance to drought and against P. cinnamomi has been proposed

on holm oak (San-Eufrasio et al., 2021a; San-Eufrasio et al., 2021b).

These studies represent only a fraction of a myriad of similar

discovery-driven papers currently available that illustrate the

power of proteomics to mine and gather molecular information

for plant breeding. Despite all the available toolboxes for genetic

transformation and potential targets unveiled by proteomics

experiments, there is a clear gap in the use of proteomics to study

genetic engineering events in tree species, either by regular

discovery-driven approaches (i.e. data dependent−DDA or data

independent acquisition−DIA) or by targeted data analysis (i.e.

selected/multiple/parallel reaction monitoring: SRM, MRM, PRM).

Besides playing an important role in the selection of gene targets,

proteomics in plant species usually reveal a large number of

proteins with unknown functions. This phenomenon is intensified

in forest trees as annotations from public databases lag their crop’s

peer species such as maize and soybean. Therefore, more attention

should be paid to genome annotation and sequencing as a way to

improve confident gene product identification and quantification.

Using proteomics as a scanning method to detect changes in the

abundance of proteins to be further characterized as their molecular

functions may assist in the improvement of commercially

important traits or assist in molecular breeding aiming at climate

change mitigation strategies.

Author contributions

MAC and JVJN: conceptualization. MAC, JP, and TSB: writing-

original draft preparation. MC, JP, TSB, and JVJN: writing-review

and editing. All authors contributed to the article and approved the

submitted version.

Funding

This research was funded by the Spanish Ministry of Economy

and Competitiveness in the framework of Projects PID2019-

109038RB-I00, PID2020-113896GB-I00 and the contract

(Ref.12020185) UCO (OTRI)-Tragsa (Spanish Ministry of

Agriculture, Fisheries and Food).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1130665
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Castillejo et al. 10.3389/fpls.2023.1130665
Acknowledgments

MAC and JP are grateful for award of a Ramón y Cajal (RYC-

2017-23706) and Juan de la Cierva Incorporación (IJC-2019-040330-

I) contracts, respectively, by the Spanish Ministry of Science,

Innovation and Universities. TSB would like to acknowledge the São

Paulo Research Foundation – FAPESP (grant number 2018/15035-8)

and the Brazilian National Council for Scientific and Technological

Development – CNPq (scholarship number 304479/2020-9).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Plant Science 07
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1130665/

full#supplementary-material
References
Abril, N., Gion, J. M., Kerner, R., Muller-Starck, G., Cerrillo, R. M., Plomion, C., et al.
(2011). Proteomics research on forest trees, the most recalcitrant and orphan plant
species. Phytochemistry 72, 1219–1242. doi: 10.1016/j.phytochem.2011.01.005

Alegre, S., Pascual, J., Nagler, M., Weckwerth, W., Canal, M. J., and Valledor, L.
(2016). Dataset of UV induced changes in nuclear proteome obtained by GeLC-
Orbitrap/MS in Pinus radiata needles. Data Brief 7, 1477–1482. doi: 10.1016/
j.jprot.2016.03.003

Alotaibi, M. O., Mohammed, A. E., Almutairi, T. A., and Elobeid, M. M. (2019).
Morpho-physiological and proteomic analyses of Eucalyptus camaldulensis as a
bioremediator in copper-polluted soil in Saudi Arabia. Plants (Basel) 8, 43.
doi: 10.3390/plants8020043

Amaral, J., Lamelas, L., Valledor, L., Castillejo, M. A., Alves, A., and Pinto, G. (2021).
Comparative proteomics of pinus-Fusarium circinatum interactions reveal metabolic
clues to biotic stress resistance. Physiol. Plant 173, 2142–2154. doi: 10.1111/ppl.13563

Amaral, J., Valledor, L., Alves, A., Martin-Garcia, J., and Pinto, G. (2022). Studying
tree response to biotic stress using a multi-disciplinary approach: The pine pitch canker
case study. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.916138

Aspinwall, M. J., Pfautsch, S., Tjoelker, M. G., Varhammar, A., Possell, M., Drake, J.
E., et al. (2019). Range size and growth temperature influence Eucalyptus species
responses to an experimental heatwave.Glob. Change Biol. 25, 1665–1684. doi: 10.1111/
gcb.14590

Backs, J. R., and Ashley, M. V. (2021). Quercus genetics: Insights into the past,
present, and future of oaks. Forests 12, 1628. doi: 10.3390/f12121628

Baldassi, A. C., and Balbuena, T. S. (2022). The Eucalyptus grandis chloroplast
proteome: Seasonal variations in leaf development. PloS One 17, e0265134.
doi: 10.1371/journal.pone.0265134
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