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Abstract: We calculate some infinite sums containing the digamma function in closed form. These
sums are related either to the incomplete beta function or to the Bessel functions. The calculations
yield interesting new results as by-products, such as parameter differentiation formulas for the
beta incomplete function, reduction formulas of 3F2 hypergeometric functions, or a definite integral
which does not seem to be tabulated in the most common literature. As an application of certain
sums involving the digamma function, we calculated some reduction formulas for the parameter
differentiation of the Mittag–Leffler function and the Wright function.
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1. Introduction

In the existing literature [1,2], we found some compilations of series and finite sums
involving the digamma function. Some authors contributed to these compilations, such as
Doelder [3], Miller [4], and Cvijović [5]. More recently, the authors published some novel
results in this regard [6].

Sums involving the digamma function occur in the expressions of the derivatives
of the Mittag–Leffler function and the Wright function with respect to parameters [7,8].
In addition, they occur in the derivation of asymptotic expansions for Mellin–Barnes
integrals [9,10]. Further, Doelder [3] calculate sums involving the digamma function in
connection to the dilogarithm function [11]. As an application in physics, this type of sums
arises in the evaluation of Feynman amplitudes in quantum field theory [12].

The aim of this paper is the derivation of some new sums involving the digamma
function by using the derivative of the Pochhammer symbol and some reduction formulas
of the generalized hypergeometric function. As a consistency test, for many particular
values of the results obtained, we recover expressions given in the existing literature.
In addition, we developed a MATHEMATICA program to numerically check all the new
expressions derived in the paper. This program is available at https://bit.ly/3LG2gej
(accessed on 19 April 2023).

This paper is organized as follows. In Section 2, we present some basic properties of
the Pochhammer symbol, the beta and the digamma functions, as well as the definitions of
the generalized hypergeometric function and the Meijer-G function. In Section 3, we derive
some sums connected to the parameter differentiation of the incomplete beta function.
In Section 4, we calculate, in a similar way, some other sums connected to the order
derivatives of the Bessel and the modified Bessel functions. Section 5 is devoted to the
application of some sums involving the digamma function to reduction formulas for the
parameter differentiation of the Wright and Mittag–Leffler functions. Finally, we compile
our conclusions in Section 6.
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2. Preliminaries

The Pochhamer symbol is defined as [13], Equation 18:12:1

(x)n =
Γ(x + n)

Γ(x)
, (1)

where Γ(x) denotes the gamma function with the following basic properties [13] (Ch. 43):

Γ(z + 1) = z Γ(z), (2)

22z−1Γ(z)Γ
(

z +
1
2

)
=
√

π Γ(2z). (3)

In addition, the beta function, defined as [14] (Equation 1.5.3)

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt,

Re x, Re y > 0,

satisfies the property [14] (Equation 1.5.5)

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

. (4)

Further, the incomplete beta function is defined as [15] (Equation 8.17.1):

Bz(x, y) =
∫ z

0
tx−1(1− t)y−1dt, (5)

which satisfies the property [13] (Equation 58:5:1),

Bz(a, b) + B1−z(b, a) = B(a, b). (6)

A function related to the incomplete beta function is the Lerch function, defined as

Φ(z, a, b) =
∞

∑
k=0

zk

(k + b)a . (7)

According to (1), we have

d
dx

[(x)n] = (x)n[ψ(x + n)− ψ(x)], (8)

and
d

dx

[
1

(x)n

]
=

1
(x)n

[ψ(x)− ψ(x + n)], (9)

where ψ(x) denotes the digamma function [13] (Ch. 44)

ψ(x) =
Γ′(x)
Γ(x)

, (10)

with the following properties [14] (Equations 1.3.3-4&8)

ψ

(
1
2

)
= −γ− 2 ln 2, (11)

ψ(z + 1) =
1
z
+ ψ(z), (12)

ψ(1− z)− ψ(z) = π cot(πz), (13)
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with γ being the Euler–Mascheroni constant.
Finally, pFq(z) denotes the generalized hypergeometric function, usually defined by

means of the hypergeometric series [15] (Section 16.2):

pFq

(
a1, . . . , ap
b1, . . . bq

∣∣∣∣z) =
∞

∑
k=0

(a1)k · · ·
(
ap
)

k
(b1)k · · ·

(
bq
)

k

zk

k!
, (14)

whenever this series converges and elsewhere by analytic continuation.
In addition, the Meijer-G function is defined via the Mellin–Barnes integral representa-

tion [15] (Equation 16.17.1):

Gm,n
p,q

(
z
∣∣∣∣ a1, . . . , ap

b1, . . . bq

)
=

1
2πi

∫
L

∏m
`=1 Γ(b` − s)∏m

`=1 Γ(1− a` + s)

∏
q−1
`=m Γ(1− b`+1 + s)∏

p−1
`=n Γ(a`+1 − s)

zsds,

where the integration path L separates the poles of the factors Γ(b` − s) from those of the
factors Γ(1− a` + s).

3. Sums Connected to the Incomplete Beta Function
3.1. Derivatives of the Incomplete Beta Function with Respect to the Parameters

Theorem 1. The following parameter derivative holds true:

∂

∂a
Bz(a, b) = ln z Bz(a, b)− za

a2 3F2

(
1− b, a, a

a + 1, a + 1

∣∣∣∣z). (15)

Proof. According to the definition of the incomplete beta function (5), we have

∂

∂a
Bz(a, b) =

∫ z

0
ta−1(1− t)b−1 ln t dt. (16)

Now, apply the formulas [13] (Equation 18:3:4),

1
(1− t)ν =

∞

∑
k=0

(ν)k
tk

k!
, (17)

and [16] (Equation 1.6.1(18))

∫
xp ln x dx = xp+1

[
ln x

p + 1
− 1

(p + 1)2

]
, (18)

in order to rewrite (16) as

∂

∂a
Bz(a, b) = za

{
ln z

∞

∑
k=0

(1− b)k zk

k!(a + k)
−

∞

∑
k=0

(1− b)k zk

k!(a + k)2

}
. (19)

Taking into account the property

1
α + k

=
(α)k

α(α + 1)k
,

and the definition of the generalized hypergeometric function (14), we may recast the the
sums given in (19) as

∂

∂a
Bz(a, b) = za

{
ln z

a 2F1

(
1− b, a
a + 1

∣∣∣∣z)− 1
a2 3F2

(
1− b, a, a

a + 1, a + 1

∣∣∣∣z)}. (20)
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Finally, apply to (20) the reduction formula [17] (Equation 7.3.1(28))

2F1

(
α, β

β + 1

∣∣∣∣z) = β z−β Bz(β, 1− α), (21)

in order to arrive at (15), as we wanted to prove.

As a consequence of the last theorem, we calculate the next integral, which does not
seem to be tabulated in the most common literature.

Theorem 2. For Re α > −1 and Re z > 0, the following integral holds true:

∫ z

0

uα

1− u2 ln u du =
1
2

ln z Bz2

(
1 + α

2
, 0
)
− zα+1

4
Φ
(

z2, 2,
1 + α

2

)
. (22)

Proof. According to [13] (Equation 58:14:7), we have

Btanh2(x)(λ, 0) = 2
∫ x

0
tanh2λ−1 t dt.

Performing the substitutions z = tanh x and u = tanh t, we obtain

Bz2(λ, 0) = 2
∫ z

0

u2λ−1

1− u2 du. (23)

On the one hand, calculate the derivative of the LHS of (23) with respect to the parameter
λ, taking into account (15),

∂

∂λ
Bz2(λ, 0) = 2 ln z Bz2(λ, 0)− z2λ

λ2 3F2

(
1, λ, λ

λ + 1, λ + 1

∣∣∣∣z2
)

. (24)

In order to calculate the 3F2 function given in (24), we apply the reduction formula [17]
(Equation 7.4.1(5))

3F2

(
a, b, c

a + 1, b + 1

∣∣∣∣x) =
1

b− a

[
b 2F1

(
a, c

a + 1

∣∣∣∣x)− a 2F1

(
b, c

b + 1

∣∣∣∣x)].

Thus, taking c = 1 and applying the reduction formula [17] (Equation 7.3.1(122))

2F1

(
1, b

b + 1

∣∣∣∣x) = b Φ(x, 1, b),

as well as the definition of the Lerch function (7), we have

3F2

(
1, a, b

a + 1, b + 1

∣∣∣∣x) =
ab

b− a
[Φ(x, 1, a)−Φ(x, 1, b)]

=
ab

b− a

∞

∑
k=0

xk
(

1
k + a

− 1
k + b

)
= ab

∞

∑
k=0

xk

(k + a)(k + b)
.

Therefore, taking a = λ, b = λ + ε, we have

3F2

(
1, λ, λ

λ + 1, λ + 1

∣∣∣∣z2
)

= lim
ε→0

λ(λ + ε)
∞

∑
k=0

z2k

(k + λ)(k + λ + ε)

= λ2 Φ
(

z2, 2, λ
)

. (25)
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Insert (25) in (24) to obtain

∂

∂λ
Bz2(λ, 0) = 2 ln z Bz2(λ, 0)− z2λ Φ

(
z2, 2, λ

)
. (26)

On the other hand, calculate the derivative of the RHS of (23) as

2
∂

∂λ

∫ z

0

u2λ−1

1− u2 du = 4
∫ z

0

u2λ−1

1− u2 ln u du. (27)

Finally, equate (26) to (27) and perform the substitution α = 2λ − 1 to complete the
proof.

Lemma 1. For α 6= 1, Re α < 2, the following reduction formula holds true:

3F2

(
α, β, β

β + 1, β + 1

∣∣∣∣1) = β2 B(1− α, b)[ψ(1 + β− α)− ψ(β)]. (28)

Proof. Take a = β + ε, b = β, c = α and calculate the limit ε→ 0 in the following reduction
formula [17] (Equation 7.4.4(16))

3F2

(
a, b, c

a + 1, b + 1

∣∣∣∣1) =
a b

a− b
Γ(1− c)

{
Γ(b)

Γ(1 + b− c)
− Γ(a)

Γ(1 + a− c)

}
,

a 6= b, c 6= 1, Re c < 2,

to obtain:

3F2

(
α, β, β

β + 1, β + 1

∣∣∣∣1) (29)

= lim
ε→0

β(β + ε) Γ(1− α)
Γ(β) Γ(1 + β− α + ε)− Γ(1 + β− α) Γ(β + ε)

ε Γ(1 + β− α) Γ(1 + β− α + ε)
.

Apply the Taylor series expansion

Γ(x + ε) = Γ(x) + Γ(x)ψ(x) ε + O
(

ε2
)

,

to calculate (29). After simplification, we arrive at (28), as we wanted to prove.

Theorem 3. The following parameter derivative holds true:

∂

∂b
Bz(a, b) =

(1− z)b

b2 3F2

(
1− a, b, b

b + 1, b + 1

∣∣∣∣1− z
)

(30)

− ln(1− z)B1−z(b, a)− B(a, b)[ψ(a + b)− ψ(b)].

Proof. According to the definition of the incomplete beta function (5), we have

∂

∂b
Bz(a, b) =

∫ z

0
ta−1(1− t)b−1 ln(1− t)dt.
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Perform the substitution τ = 1− t and apply the Formulas (17) and (18) to obtain

∂

∂b
Bz(a, b) (31)

= (1− z)b

{
∞

∑
k=0

(1− a)k(1− z)k

k!(b + k)2 − ln(1− z)
∞

∑
k=0

(1− a)k(1− z)k

k!(b + k)

}

−
∞

∑
k=0

(1− a)k

k!(b + k)2 .

Finally, write the sums given in (31) as hypergeometric functions and apply the results
given in (21) and (28) to arrive at (30), as we wanted to prove.

Proof. (Alternative). Consider (15) perform the substitutions a↔ b and z→ 1− z to obtain

∂

∂b
B1−z(b, a) = ln(1− z)B1−z(b, a)− (1− z)b

b2 3F2

(
1− a, b, b

b + 1, b + 1

∣∣∣∣1− z
)

. (32)

Take into account (6) in order to rewrite (32) as

∂

∂b
Bz(a, b)

=
(1− z)b

b2 3F2

(
1− a, b, b

b + 1, b + 1

∣∣∣∣1− z
)
− ln(1− z)B1−z(b, a)− ∂

∂b
B(a, b). (33)

According to (4) and (10), note that

∂

∂b
B(a, b) =

∂

∂b

(
Γ(a) Γ(b)
Γ(a + b)

)
= B(a, b)[ψ(b)− ψ(a + b)]. (34)

Insert (34) in (33) to complete the proof.

3.2. Calculation of Sums Involving the Digamma Function

Theorem 4. For b 6= c + 1 and z ∈ C, |z| < 1 the following sum holds true:

∞

∑
k=0

(b)k
(c)k

ψ(b + k) zk (35)

= (c− 1)z1−c

{
1

(b− c + 1)2 3F2

(
2− c, b− c + 1, b− c + 1

b− c + 2, b− c + 2

∣∣∣∣1− z
)

+(1− z)c−b−1[(ψ(b− c + 1)− ln(1− z))B(b− c + 1, c− 1) + ψ(b)B1−z(b− c + 1, c− 1)]
}

Proof. On the one hand, applying the ratio test, we see that the sum given in (35) converges
for |z| < 1 and diverges for |z| > 1. Indeed, taking

ak =
(b)k
(c)k

ψ(b + k)zk,

and taking into account (12), we have

lim
k→∞

∣∣∣∣ ak+1
ak

∣∣∣∣ = lim
k→∞

∣∣∣∣ (b + k)ψ(b + k + 1)
(c + k)ψ(b + k)

z
∣∣∣∣

= lim
k→∞

∣∣∣∣ b + k
c + k

(
1

(b + k)ψ(b + k)
+ 1
)

z
∣∣∣∣ = |z|.
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On the other hand, let us differentiate both sides of the reduction formula [17] (Equation
7.3.1(119)) with respect to parameter b:

∞

∑
k=0

(b)k
(c)k

zk = 2F1

(
1, b
c

∣∣∣∣z) (36)

= z1−c(1− z)c−b−1(c− 1)Bz(c− 1, b− c + 1).

Apply (8) and (36) to the LHS of (36), to obtain:

∂

∂b

∞

∑
k=0

(b)k
(c)k

zk =
∞

∑
k=0

(b)k
(c)k

[ψ(b + k)− ψ(b)]zk (37)

=
∞

∑
k=0

(b)k
(c)k

[ψ(b + k)]zk − ψ(b) z1−c(1− z)c−b−1(c− 1)Bz(c− 1, b− c + 1).

On the RHS of (36), we obtain

(c− 1)z1−c ∂

∂b

[
(1− z)c−b−1 Bz(c− 1, b− c + 1)

]
(38)

= (c− 1)z1−c(1− z)c−b−1
[
− ln(1− z)Bz(c− 1, b− c + 1) +

∂

∂b
Bz(c− 1, b− c + 1)

]
.

According to (30), we have

∂

∂b
Bz(c− 1, b− c + 1) (39)

=
(1− z)b−c+1

(b− c + 1)2 3F2

(
2− c, b− c + 1, b− c + 1

b− c + 2, b− c + 2

∣∣∣∣1− z
)

− ln(1− z)B1−z(b− c + 1, c− 1) + B(c− 1, b− c + 1)[ψ(1 + b− c)− ψ(b)].

Now, insert (39) in (38) and apply the Formula (6) to arrive at

(c− 1)z1−c ∂

∂b

[
(1− z)c−b−1 Bz(c− 1, b− c + 1)

]
(40)

= (c− 1)z1−c
{
(1− z)c−b+1B(c− 1, b− c + 1)[ψ(1 + b− c)− ψ(b)− ln(1− z)]

+
1

(b− c + 1)2 3F2

(
2− c, b− c + 1, b− c + 1

b− c + 2, b− c + 2

∣∣∣∣1− z
)}

.

Finally, equate the results given in (37) and (40) and apply (6) again to complete the proof.

Remark 1. It is worth noting that for z = 1, the sum given in (35) can be calculated taking a = 1
in [6] (Equation (23)):

∞

∑
k=0

(a)k(b)k
k!(c)k

ψ(b + k) (41)

=
Γ(c)Γ(c− a− b)
Γ(c− b)Γ(c− a)

[ψ(c− b)− ψ(c− a− b) + ψ(b)],

Re(c− a− b) > 0,

thus

∞

∑
k=0

(b)k
(c)k

ψ(b + k) =
c− 1

c− b− 1

[
1

c− b− 1
+ ψ(b)

]
,

Re(c− b) > 1.
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Corollary 1. For z ∈ C and |z| < 1 the following formula holds true:

∞

∑
k=1

ψ(b + k)zk (42)

= (b− 1)z1−b
3F2

(
1, 1, 2− b

2, 2

∣∣∣∣1− z
)
+

z1−b

z− 1
[γ + ln(1− z)] +

z1−b

z− 1
ψ(b).

Proof. Put apart the term for k = 0 in (35) and take b = c.

Corollary 2. For z ∈ C, and a 6= 1, the following reduction formula holds true:

3F2

(
1, 1, a
2, 2

∣∣∣∣z) =
ψ(2− a) + γ + ln z + B1−z(2− a, 0)

(1− a)z
. (43)

Proof. Taking into account (36) for c = b + 1, compare (42) to the result found in the
existing literature [4] (Equation (1.2)):

∞

∑
k=1

ψ(b + k)zk =
z

1− z

[
ψ(b) +

1
b 2F1

(
1, b

b + 1

∣∣∣∣z)]
=

z
1− z

[
ψ(b) +

Bz(b, 0)
zb

]
,

and solve for the 3F2 function with a = 2− b to obtain the desired result.

Remark 2. It is worth noting that for (2− a) ∈ Q− {−1,−2, . . .}, the incomplete beta function
B1−z(2− a, 0) given in (43) can be expressed in terms of elementary functions [18]. For instance,
taking a = 3/2 in (43) and considering (11) and the formula for n = 0, 1, . . . [18]

Bz

(
n +

1
2

, 0
)
= 2

(
tanh−1√z−

n−1

∑
k=0

zk+1/2

2k + 1

)
,

we arrive at

3F2

(
1, 1, 3

2
2, 2

∣∣∣∣z) =
4
z

ln

(
2
(
1−
√

1− z
)

z

)
,

which is given in the existing literature [17] (Equation 7.4.2(365)).

Remark 3. As a consistency test, we can recover a known formula by taking the limit a → 1
in (43). Indeed,

3F2

(
1, 1, 1
2, 2

∣∣∣∣z) = lim
a→1

ψ(2− a) + γ + ln z + B1−z(2− a, 0)
(1− a)z

.

Perform the substitution b = 1− a, take into account (5) and the Formula [15] (Equation 5.9.16):

ψ(z) + γ =
∫ 1

0

1− tz−1

1− t
dt,

to obtain

3F2

(
1, 1, 1
2, 2

∣∣∣∣z) = lim
b→0

ψ(1 + b) + γ + ln z + B1−z(1 + b, 0)
b z

= lim
b→0

1
b z

[
ln z +

∫ 1

0

1− tb

1− t
dt +

∫ 1−z

0

tb

1− t
dt

]
.
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Now, perform the susbstitution τ = 1− t, and apply the Taylor series:

(1− τ)b =
∞

∑
n=0

lnn(1− τ)

n!
bn,

to arrive at

3F2

(
1, 1, 1
2, 2

∣∣∣∣z)
= lim

b→0

1
b z

[
ln z−

∫ 1

0

1− (1− τ)b

τ
dτ +

∫ z

1

(1− τ)b

τ
dt

]

= lim
b→0

1
b z

[
ln z−

∫ 1

0

ln(1− τ)

τ
b dτ −

∫ z

1

(
1
τ
+

ln(1− τ)

τ
b
)

dt
]

= −1
z

∫ z

0

ln(1− τ)

τ
dτ.

From the following formula of the dilogarithm function [15] (Equation 25.12.2)

Li2(z) = −
∫ z

0

ln(1− τ)

τ
dτ,

we recover the following result found in the existing literature [17] (Equation 7.4.2(355)):

3F2

(
1, 1, 1
2, 2

∣∣∣∣z) =
Li2(z)

z
.

Theorem 5. For a 6= 1 and z ∈ C, |z| < 1, the following sum holds true:

∞

∑
k=0

(a)k(b)k
k!(b + 1)k

ψ(a + k)zk (44)

= b z−b{[ln(1− z)− ψ(a)]B1−z(1− a, b) + [ψ(1 + b− a)− π cot(πa)]B(b, 1− a)

− (1− z)1−a

(1− a)2 3F2

(
1− b, 1− a, 1− a

2− a, 2− a

∣∣∣∣1− z
)}

.

Proof. On the one hand, applying the ratio test, we see that the sum given in (44) converges
for |z| < 1 and diverges for |z| > 1. Indeed, taking

ck =
(a)k(b)k

k!(b + 1)k
ψ(a + k)zk

and taking into account (12), we have

lim
k→∞

∣∣∣∣ ck+1
ck

∣∣∣∣ = lim
k→∞

∣∣∣∣ (a + k)(b + k)ψ(a + k + 1)
(k + 1)(b + 1 + k)ψ(a + k)

z
∣∣∣∣

= lim
k→∞

∣∣∣∣ (a + k)(b + k)
(k + 1)(b + 1 + k)

(
1

(a + k)ψ(a + k)
+ 1
)

z
∣∣∣∣ = |z|.

On the other hand, taking into account (8), differentiate the reduction Formula (21), i.e.,

2F1

(
a, b

b + 1

∣∣∣∣z) =
∞

∑
k=0

(a)k(b)k
k!(b + 1)k

zk = b z−b Bz(b, 1− a),
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with respect to the parameter a to obtain

∞

∑
k=0

(a)k(b)k
k!(b + 1)k

[ψ(a + k)− ψ(a)]zk = b z−b ∂

∂a
Bz(b, 1− a). (45)

Apply (21) on the LHS of (45) and (30) on the RHS of (45) to arrive at

∞

∑
k=0

(a)k(b)k
k!(b + 1)k

ψ(a + k)zk (46)

= b z−b{ln(1− z)B1−z(1− a, b) + B(b, 1− a)[ψ(1 + b− a)− ψ(1− a)]

+ψ(a)Bz(b, 1− a)− (1− z)1−a

(1− a)2 3F2

(
1− b, 1− a, 1− a

2− a, 2− a

∣∣∣∣1− z
)}

.

Finally, apply (6) and (13) in order to reduce (46) to (44), as we wanted to prove.

Remark 4. It is worth noting that for z = 1, the sum given in (44) can be calculated taking
c = b + 1 in (41) and applying (2), (4) and (13), to obtain:

∞

∑
k=0

(a)k(b)k
k!(b + 1)k

ψ(b + k) = b B(b, 1− a)[ψ(1 + b− a)− π cot(πa)] ,

Re a < 1.

Corollary 3. For a 6= 1, and z ∈ C, |z| < 1 the following formula holds true:

∞

∑
k=0

(a)k
(k + 1)!

ψ(a + k)zk =
1

(1− a)z
(47){

(1− z)1−a
[

ln(1− z)− ψ(a) +
1

a− 1

]
+ ψ(2− a)− π cot(πa)

}
.

Proof. Take b = 1 in (44) and consider that for a 6= 1 we have

B1−z(1− a, 1) =
(1− z)1−a

1− a
,

B(1, 1− a) =
1

1− a
.

4. Sums Connected to Bessel Functions

If we differentiate the following sum formulas [17] (Equation 7.13.1(1)):

0F1

(
−
b

∣∣∣∣− z
)
=

∞

∑
k=0

(−z)k

k!(b)k
= Γ(b) z(1−b)/2 Jb−1

(
2
√

z
)
,

and

0F1

(
−
b

∣∣∣∣z) =
∞

∑
k=0

zk

k!(b)k
= Γ(b) z(1−b)/2 Ib−1

(
2
√

z
)
,

with respect to parameter b, taking into account (9), we obtain:

∞

∑
k=0

(−z)kψ(k + b)
k!(b)k

(48)

= z(1−b)/2Γ(b)

[
Jb−1

(
2
√

z
)

ln
√

z−
∂Jb−1

(
2
√

z
)

∂b

]
,
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and

∞

∑
k=0

zkψ(k + b)
k!(b)k

(49)

= z(1−b)/2Γ(b)

[
Ib−1

(
2
√

z
)

ln
√

z−
∂Ib−1

(
2
√

z
)

∂b

]
,

which are found in an equivalent form in [1] (Equations 55.7.11-12). For b = n ∈ N, we
found a closed-form expression for (49) in [4] (Equation (5.11)). We can obtain closed-form
expressions for other values of b using the following formulas [19] (Equations (93) and (99))
for ν ≥ 0, Re z > 0:

∂Jν(z)
∂ν

=
π

2

[
Yν(z)(z/2)2ν

Γ2(ν + 1) 2F3

(
ν, ν + 1

2
2ν + 1, ν + 1, ν + 1

∣∣∣∣− z2
)

(50)

− νJν(z)√
π

G3,0
2,4

(
z2
∣∣∣∣ 1

2 , 1
0, 0, ν,−ν

)]
,

and

∂Iν(z)
∂ν

=
−νIν(z)

2
√

π
G3,1

2,4

(
z2
∣∣∣∣ 1

2 , 1
0, 0, ν,−ν

)
(51)

−Kν(z)(z/2)2ν

Γ2(ν + 1) 2F3

(
ν, ν + 1

2
2ν + 1, ν + 1, ν + 1

∣∣∣∣z2
)

.

Theorem 6. For b ≥ 1 and Re z > 0, the following sum holds true:

∞

∑
k=0

(−z)kψ(k + b)
k!(b)k

(52)

=
z−(1+b)/2

8 Γ(b){
Γ2(b)Jb−1

(
2
√

z
)[√

π(b− 1)G3,0
2,4

(
4z
∣∣∣∣ 3

2 , 2
1, 1, b, 2− b

)
+ 4z ln z

]
−4π zbYb−1

(
2
√

z
)

2F3

(
b− 1, b− 1

2
b, b, 2b− 1

∣∣∣∣− 4z
)}

.

Proof. Calculate (48) taking into account (50) to arrive at the desired result.

Theorem 7. For b ≥ 1 and Re z > 0, the following sum holds true:

∞

∑
k=0

zkψ(k + b)
k!(b)k

(53)

=
z−(1+b)/2

8
√

πΓ(b){
Γ2(b)Ib−1

(
2
√

z
)[
(b− 1)G3,1

2,4

(
4z
∣∣∣∣ 3

2 , 2
1, 1, b, 2− b

)
+ 4
√

πz ln z
]

+8
√

π zbKb−1
(
2
√

z
)

2F3

(
b− 1, b− 1

2
b, b, 2b− 1

∣∣∣∣4z
)}

.

Proof. Calculate (49) taking into account (51) to arrive at the desired result.

Theorem 8. For b ≥ 1 and Re z > 0, the following sum holds true:
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∞

∑
k=0

zkψ(2k + b)

k!
(

1
2

)
k

(
b
2

)
k

(
b+1

2

)
k

(54)

=
Γ(b)

2bz(b−1)/4ln
(

2 z1/4
)[

Jb−1

(
4 z1/4

)
+ Ib−1

(
4 z1/4

)]
−

∂Jb−1

(
4 z1/4

)
∂b

−
∂Ib−1

(
4 z1/4

)
∂b

,

where the order derivatives of the Bessel functions are calculated using (50) and (51).

Proof. Sum up (48) and (49) using the duplication formula of the gamma function (3)
to arrive at the desired result.

Theorem 9. For b ≥ 1 and Re z > 0, the following sum holds true:

∞

∑
k=0

zkψ(2k + b)

k!
( 3

2
)

k

(
b
2

)
k

(
b+1

2

)
k

(55)

=
Γ(b)

2b+1zb/4ln
(

2 z1/4
)[

Ib−2

(
4 z1/4

)
− Jb−2

(
4 z1/4

)]
−

∂Ib−2

(
4 z1/4

)
∂b

+
∂Jb−2

(
4 z1/4

)
∂b

,

where the order derivatives of the Bessel functions are calculated using (50) and (51).

Proof. Substract (49) from (48) and apply (3) again to arrrive at the desired result.

5. Application to the Parameter Derivative of Some Special Functions
5.1. Application to the Derivative of the Wright Function with Respect to the Parameters

The Wright function is defined as [15] (Equation 10.46.1):

Wα,β(z) =
∞

∑
k=0

zk

k! Γ(αk + β)
, α > −1,

thus,

∂Wα,β(z)
∂α

= −
∞

∑
k=1

k zkψ(αk + β)

k! Γ(αk + β)
, (56)

∂Wα,β(z)
∂β

= −
∞

∑
k=0

zkψ(αk + β)

k! Γ(αk + β)
, (57)

and the following equation is satisfied:

∂Wα,β(z)
∂α

= z
∂

∂z

(
∂Wα,β(z)

∂β

)
. (58)

In reference [20], we found some reduction formulas for the first derivative of the
Wright function with respect to the parameters for particular values of α and β. Next, we ex-
tend these reduction formulas. For this purpose, apply (53) to arrive at the following result:



Mathematics 2023, 11, 1937 13 of 16

Theorem 10. For β ≥ 1 and Re z > 0, we have

∂Wα,β(z)
∂β

∣∣∣∣
α=1

(59)

= z−(1+β)/2
{

Iβ−1
(
2
√

z
)[1− β

8
√

π
G3,1

2,4

(
4z
∣∣∣∣ 3/2, 2

1, 1, β, 2− β

)
− z

2
ln z
]

− zβ

Γ2(β)
Kβ−1

(
2
√

z
)

2F3

(
β− 1, β− 1

2
β, β, 2β− 1

∣∣∣∣4z
)}

.

Remark 5. It is worth noting that for β = 1, Equation (59) is reduced to

∂Wα,β(z)
∂β

∣∣∣∣
α=β=1

= −1
2

ln z I0
(
2
√

z
)
− K0

(
2
√

z
)
,

which is found in [20] (Equation (6.8)).

Further, from (58) and (59) and with the aid of the MATHEMATICA program, we
arrive at the following result:

Theorem 11. For β ≥ 1 and Re z > 0, we have

∂Wα,β(z)
∂α

∣∣∣∣
α=1

=
z−(β+1)/2

2
(60){

β− 1
8
√

π

{
(β− 1)Iβ−1

(
2
√

z
)
−
√

z
[
Iβ−2

(
2
√

z
)
+ Iβ

(
2
√

z
)]}

G3,1
2,4

(
4z
∣∣∣∣ 3/2, 2

1, 1, β, 2− β

)
+

zβ

Γ2(β)

{
(β− 1)Kβ−1

(
2
√

z
)
+
√

z
[
Kβ−2

(
2
√

z
)
+ Kβ

(
2
√

z
)]}

2F3

(
β− 1, β− 1

2
β, β, 2β− 1

∣∣∣∣4z
)

+
Iβ−1

(
2
√

z
)

4
√

π

[
2
√

πz[(β− 1) ln z− 2] + (β− 1)G2,1
1,3

(
4z
∣∣∣∣ 3/2

1, β, 2− β

)]
− z3/2 ln z

2
[
Iβ−2

(
2
√

z
)
+ Iβ

(
2
√

z
)]

+
2(1− β)zβ

Γ2(β)
Kβ−1

(
2
√

z
)

1F2

(
β− 1

2
β, 2β− 1

∣∣∣∣4z
)}

.

Remark 6. It is worth noting that for β = 1, Equation (60) is reduced to

∂Wα,β(z)
∂α

∣∣∣∣
α=β=1

=

√
z
[
K1
(
2
√

z
)
− ln z I1

(
2
√

z
)]
− I0

(
2
√

z
)

2
,

which is also found in [20] (Equation (6.14)).

5.2. Application to the Derivative of the Mittag–Leffler Function with Respect to the Parameters

The two-parameter Mittag–Leffler function is defined as [15] (Equation 10.46.3):

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, α > 0, (61)

thus,

∂Eα,β(z)
∂α

= −
∞

∑
k=0

k zkψ(αk + β)

Γ(αk + β)
, (62)

∂Eα,β(z)
∂β

= −
∞

∑
k=0

zkψ(αk + β)

Γ(αk + β)
, (63)
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and
∂Eα,β(z)

∂α
= z

∂

∂z

(
∂Eα,β(z)

∂β

)
. (64)

For this purpose, consider the following functions:

Definition 1. According to [2] (Equation 6.2.1(63)), define

Q(a, t) =
∞

∑
k=0

tk

(a)k
ψ(k + a) (65)

= ψ(a) + et
[

t1−aψ(a)γ(a, t) +
t

a2 2F2

(
a, a

a + 1, a + 1

∣∣∣∣− t
)]

,

thus

P(a, t) =
∂Q(a, t)

∂t
(66)

= ψ(a) + et{
t− a + 1

a2 2F2

(
a, a

a + 1, a + 1

∣∣∣∣− t
)
+ t−aγ(a, t)[1 + (t− a + 1)ψ(a)]

}
.

In reference [20], we found some reduction formulas of the first derivative of the
Mittag–Leffler function with respect to the parameters for particular values of α and β.
In particular, we found for q = 1, 2, . . . that

∂Eα,β(z)
∂α

∣∣∣∣
α=1/q

(67)

= −
q−1

∑
h=0

h
[
ψ
(

h
q + β

)
+ Q̃

(
h
q + β, zq

)
+ q zq P

(
h
q + β, zq

)]
Γ
(

h
q + β

) zh,

and
∂Eα,β(z)

∂β

∣∣∣∣
α=1/q

= −
q−1

∑
h=0

ψ
(

h
q + β

)
+ Q̃

(
h
q + β, zq

)
Γ
(

h
q + β

) zh, (68)

where
Q̃(a, t) = Q(a, t)− ψ(a).

Next, we extend these reduction formulas to other values of the parameters. For this
purpose, consider the following lemma.

Lemma 2. For n = 1, 2, . . ., the following sum identity holds true:

∞

∑
k=0

ank =
∞

∑
k=0

θn,k ak, (69)

where

θn,k =
1
n

n

∑
m=1

exp
(

2π i m k
n

)
. (70)

Theorem 12. For n = 1, 2, . . ., the following reduction formula holds true:

∂Eα,β(z)
∂β

∣∣∣∣
α=n

= − 1
n Γ(β)

n

∑
m=1

Q
(

β, z1/nei2πm/n
)

. (71)
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Proof. According to (63) and Lemma 2, we have

∂Eα,β(z)
∂β

∣∣∣∣
α=n

= −
∞

∑
k=0

zkψ(nk + β)

Γ(nk + β)

= −
∞

∑
k=0

θn,k
zk/nψ(k + β)

Γ(k + β)

= − 1
n Γ(β)

n

∑
m=1

exp
(

2π i m k
n

) ∞

∑
k=0

zk/nψ(k + β)

(β)k
.

Finally, take into account (65) to arrive at the desired result.

Theorem 13. For n = 1, 2, . . ., the following reduction formula holds true:

∂Eα,β(z)
∂α

∣∣∣∣
α=n

= − z1/n

n2 Γ(β)

n

∑
m=1

ei2πm/nP
(

β, z1/nei2πm/n
)

. (72)

Proof. Apply (64) to (71) and take into account the definition given in (66).

Remark 7. It is worth noting that for α = 1, (72) is equivalent to (67) and (71) is equivalent to (68).

For particular values of α and β, the first derivative of the Mittag–Leffler function with
respect to the parameters are shown in Tables 1 and 2, using the results given in (71) and (72)
with the aid of the MATHEMATICA program.

Table 1. First derivative of the Mittag–Leffler function with respect to α.

α β ∂Eα,β(z)
∂α

1 1 1− ez{z[ln z + Γ(0, z)] + 1}

1 2 1
z {1 + γ− ez[1 + (z− 1)(ln z + Γ(0, z))]}

2 1 1
8 e−
√

z
{√

z
[
ln z− 2 Ei

(√
z
)
− e2

√
z(2 E1

(√
z
)
+ ln z

)]
− 2
(

e
√

z − 1
)2
}

2 2 1
8
√

z e−
√

z
{

e2
√

z[(1−√z
)(

2 E1
(√

z
)
+ ln z

)
− 2
]
+
(
1 +
√

z
)[

2 Ei
(√

z
)
− ln z

]
+ 2
}

Table 2. First derivative of the Mittag–Leffler function with respect to β.

α β ∂Eα,β(z)
∂β

1 1 −ez[ln z + Γ(0, z)]

1 2 − 1
z {ez[ln z + Γ(0, z)] + γ}

2 1 1
4 e−
√

z
{

2 Ei
(√

z
)
− ln z− e2

√
z[ln z + 2 Γ

(
0,
√

z
)]}

2 2 1
4
√

z e−
√

z
{

ln z− 2 Ei
(√

z
)
− e2

√
z[ln z + 2 Γ

(
0,
√

z
)]}

6. Conclusions

We calculated some new infinite sums involving the digamma function. On the
one hand, some of these new sums are connected to the incomplete beta function, i.e.,
Equations (35) and (44). For this purpose, we derived a new 3F2 hypergeometric sum
at argument unity in (28). We also calculated new expressions for the derivatives of the
incomplete beta function Bz(a, b) with respect to the parameters a and b in (15) and (30).
As a consequence of the latter, we obtained a definite integral in (22) that does not seem
to be tabulated in the most common literature. In addition, in (43) we derived a new
reduction formula for a 3F2 hypergeometric function.
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On the other hand, we calculated sums involving the digamma function which are con-
nected to the Bessel functions, i.e., Equations (52)–(55). For this purpose, we used the deriva-
tive of the Pochhammer symbol given in (9), as well as some expressions found in the exist-
ing literature for the order derivatives of Jν(z) and Iν(z), given in (50) and (51) respectively.

Finally, we calculated some reduction formulas for the derivatives of some special
functions with respect to the parameters as an application of the sums involving the
digamma function. In particular, we applied the sum presented in (53) to the calculation of
the reduction Formulas (59) and (60) for the derivatives of the Wright function with respect
to the parameters. Similarly, applying the sum given in (65), we calculated the reduction
Formulas (71) and (72) for the derivatives of the Mittag–Leffler function with respect to
the parameters.
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