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Species distribution models (SDMs) have become a common tool in studies of spe-
cies–environment relationships but can be negatively affected by positional uncer-
tainty of underlying species occurrence data. Previous work has documented the effect 
of positional uncertainty on model predictive performance, but its consequences for 
inference about species–environment relationships remain largely unknown. Here we 
use over 12 000 combinations of virtual and real environmental variables and virtual 
species, as well as a real case study, to investigate how accurately SDMs can recover 
species–environment relationships after applying known positional errors to species 
occurrence data. We explored a range of environmental predictors with various spa-
tial heterogeneity, species’ niche widths, sample sizes and magnitudes of positional 
error. Positional uncertainty decreased predictive model performance for all mod-
eled scenarios. The absolute and relative importance of environmental predictors and 
the shape of species–environmental relationships co-varied with a level of positional 
uncertainty. These differences were much weaker than those observed for overall model 
performance, especially for homogenous predictor variables. This suggests that, at least 
for the example species and conditions analyzed, the negative consequences of posi-
tional uncertainty on model performance did not extend as strongly to the ecological 
interpretability of the models. Although the findings are encouraging for practitioners 
using SDMs to reveal generative mechanisms based on spatially uncertain data, they 
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suggest greater consequences for applications utilizing distributions predicted from SDMs using positionally uncertain data, 
such as conservation prioritization and biodiversity monitoring.

Keywords: birds, ecological modeling, location error, niche models, species–environment relationship

Introduction

Species occurrences are increasingly being recorded in online, 
public, global databases such as GBIF (www.gbif.org), eBird 
(www.ebird.org), or iNaturalist (www.inaturalist.org), where 
scientists and the general public worldwide share field obser-
vations. However, whereas the number of records in these 
databases is constantly growing, many observations are char-
acterized by substantial uncertainty in the occurrence loca-
tion (Moudrý and Devillers 2020). Such uncertainty poses 
problems for analyses aimed at revealing species–environ-
ment relationships because the environmental conditions at 
recorded sites could differ from those at true locations.

Species distribution model (SDMs) are a widely used class 
of ecological models that use occurrence data to estimate spe-
cies–environment relationships (Ferrier et al. 2017) and allow 
researchers to predict the relative probability of occurrence 
across unsampled areas of a study region. SDMs have broad 
utility in ecology (Elith and Leathwick 2009, Franklin 2010, 
Guisan et al. 2013, Zurell et al. 2019) and have been suc-
cessfully used to identify critical habitats (Volis and Tojibaev 
2021), delineate suitable locations for relocations (Segal et al. 
2021), or assess the potential impacts of climate change 
(Santini et al. 2021). SDMs are also frequently used to infer 
the importance of environmental variables defining the species 
niche (Moudrý and Šímová 2013, Bradie and Leung 2017, 
Lecours et al. 2020, Li and Kou 2021, Smith and Santos 
2020) and to determine the shapes of species responses to the 
environment (Austin et al. 2006, Hargreaves et al. 2014, Lee-
Yaw et al. 2016, Dvorský et al. 2017, Bazzichetto et al. 2018). 
However, despite methodological advances improving the 
performance of SDMs over the last two decades (Phillips et al. 
2006, Varela et al. 2014, Graham et al. 2019, Tessarolo et al. 
2021), they remain sensitive to the spatial accuracy of occur-
rence data used in model fitting (Visscher 2006, Moudrý and 
Šímová et al. 2012, Moudrý et al. 2017, Araújo et al. 2019, 
Byaraktarov et al. 2020, Isaac et al. 2020, Etherington et al. 
2021, Gábor et al. 2022, Moudrý et al. 2023).

Maximum Entropy-based SDMs estimate a response curve 
in environmental space which discriminates between observed 
occurrences and ‘background’ samples that do not con-
tain occurrence information (Fig. 1). Positional uncertainty 
describes the magnitude of error in the locations of occur-
rence records. In some cases, it quantifies the likelihood of 
a mismatch between the true environmental variables’ values 
and the assigned value. Even if a spatial error does not lead to 
directional bias in environmental space, increased sampling 
error can decrease predictive model performance and even 
bias the slope of the response curves; or the estimations of 
variable importance (Fig. 1; Johnson and Gillingham 2008, 
Fernandez et al. 2009, Osborne and Leitão 2009, Hefley et al. 

2014, Fernandes et al. 2019). The magnitude of positional 
error in environmental variables measurements may be ampli-
fied in highly heterogeneous or structured landscapes where 
spatial autocorrelation (SAC) in environmental variables is rel-
atively low (Naimi et al. 2011, Naimi et al. 2014). Moreover, 
even uniform spatial error can create persistent bias in mea-
surements of environmental variables, depending on the spa-
tial structure of the relevant variable. For example, uniformly 
distributed spatial error for occurrences of a mountaintop-
dwelling species would always lead to estimates of elevation 
that are biased to lower elevations than reality. Such a bias in 
even one environmental variable could reduce overall model 
predictive performance and bias the estimated response curve 
and variable importance (Fig. 1).

Even more troubling, common strategies for mitigating 
the effects of positional uncertainty on SDMs have recently 
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Figure 1. Heuristic illustration of the effect of positional error 
(depicted in environmental space) on response curve estimation. 
Panel (A) shows the area of species occurrences (orange) relative to 
area of the sampled background points (blue) without positional 
uncertainty. The ‘true’ response curve that would be estimated from 
these data would result in an approximate discrimination threshold 
which is represented by the dashed line. The response curve would 
differ from the ‘true’ response curve when spatial error leads to (B) 
persistent bias in environmental space, (C) persistent bias and unbi-
ased sampling error in environmental space, and even (D) random 
sampling error in environmental space (i.e. without directional 
bias). Arrows in the upper-right of each panel indicate the direc-
tions of shift for the presences (green point).
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been shown to be ineffective. For example, Gábor et al. 
(2020) demonstrated that increased sample sizes do not 
reduce the negative effects of positional uncertainty. Similarly, 
Smith et al. (2023) showed that discarding data with high 
positional uncertainty limits our ability to determine species’ 
distribution and climatic niche tolerances properly. In partic-
ular, they demonstrated that using only accurate data dramati-
cally reduces range size estimates and overestimates exposure 
to climate change. Recently, Gábor et al. (2022) concluded 
that coarsening the analysis grain to compensate for positional 
error did not improve model performance, and recommended 
the development of models with the finest possible analysis 
grain and as close to the response grain as possible, even when 
available species occurrences suffer from positional errors.

Although previous studies confirmed the effect of 
positional error on the model predictive performance 
(Graham et al. 2008, Johnson and Gillingham 2008, 
Fernandez et al. 2009, Osborne and Leitão 2009, Naimi et al. 
2011, 2014, Hefley et al. 2014, Tulowiecki et al. 2015, 
Gueta and Carmel 2016, Mitchell et al. 2017, Soultan and 
Safi 2017, Fernandes et al. 2019, Gábor et al. 2022), espe-
cially when specialist species are modeled (Visscher 2006, 
Gábor et al. 2020), the question about how positional uncer-
tainty in species occurrences affects models’ parameter esti-
mation (species–environment relationships inference) remain 
largely unexplored. Therefore, in this study, we explored the 
extent to which parameter estimation is affected by positional 
uncertainty. Specifically, we investigated the influence of 
positional error on variable importance and the shape of the 
response curves. We hypothesized that increasing positional 
uncertainty would lead to decreased model predictive per-
formance, and imprecise variable importance and response 
curves, with more pronounced effects for species with narrow 
niche and heterogeneous variables.

Material and methods

We used a virtual species approach across two workflows 
(Fig. 2), which allowed us to know the true underlying 
occurrence location and thus enabled us to characterize rela-
tive bias in parameter estimates (Zurell et al. 2010, Moudrý 
2015, Meynard et al. 2019), as well as specify various spatial 
autocorrelation levels (SAC; Naimi et al. 2011, 2014) in the 
environmental variables.

We simulated 12 560 combinations of virtual and real 
environmental data and virtual species to investigate our 
assumptions and fitted over 628 000 models. Simulations 
were divided into two workflows and a third workflow inves-
tigated a real species. In Workflow 1, we combined virtual 
variables with different levels of SAC and virtual species with 
varying widths of niches and number of occurrences. For these 
scenarios, models were fitted with only one variable (Fig. 2). 
Thanks to this, we got a simplified yet detailed insight into 
how various levels of positional uncertainty affects a model’s 
ability to properly detect species response to the environment 
across various SAC, niche width, and sample size.

Additionally, to mimic real SDMs situations, we com-
bined real environmental variables with virtual species with 
different niche widths and sample sizes, and fitted models 
with multiple environmental variables (Workflow 2; Fig. 2). 
This allowed us to explore our assumptions with more model 
complexity. Moreover, using numerous environmental vari-
ables to fit the models, we tested how positional uncertainty 
affects a models’ ability to properly detect the most influen-
tial variables (i.e. those used to generate virtual species).

Finally, we tested our assumptions using real environmen-
tal variables and real species (band-tailed pigeon; Workflow 
3; Fig. 2). Our simulations showed that the model param-
eter estimation is negatively affected across various species 
niches (note, however, that the magnitude varies). Therefore, 
we hypothesized, considering the number of occurrences 
(n = 111) and the fact that the species is widely spread across 
the western part of the USA, that positional uncertainty will 
bias model response curves and variable importance.

In Workflow 1, the artificial study area was given by the 
extent of the virtual landscape (200 × 200 cells; see details 
below). Virtual species in Workflow 2 used Spain (except 
islands) as a study area, whereas the band-tailed pigeon was 
modeled for the USA (Fig. 2; Workflow 3).

Occurrence data

Workflow 1
We generated artificial occurrences using the ‘virtualspecies’ 
package (Leroy et al. 2016, ver. 1.5) in the statistical soft-
ware R (ver. 4.1.0, www.r-project.org) with three steps: 1) 
define (virtual) species–environment relationships, 2) proj-
ect range into geographic space, and 3) sample occurrence 
data from simulated range. We used a normal distribution 
to define the response of virtual species to the virtual envi-
ronmental variable. To simulate species with different niche 
widths, we used the same mean (0.005) and varied standard 
deviation from 0.005 up to 0.2 using a logarithmically spaced 
sequence. In total, we generated 25 species with various niche 
widths. We then projected habitat suitability across our study 
area to define the probability distribution of occurrences. In 
the final step, we used a probabilistic simulation approach 
and logistic function with α = −0.05 (controls the slope of 
the logistic curve) and β = 0.3 (the point of inflection of the 
logistic curve, i.e. the value of the environmental gradient 
at which the probability of occurrence is 50%), as recom-
mended in prior studies, to convert the habitat suitability ras-
ter to a randomized binary presence–absence raster (Meynard 
and Kaplan 2012, 2013, Meynard et al. 2019). This allowed 
us to generate virtual species with gradual responses to the 
environment that mimic the real species, as demonstrated by 
Meynard and Kaplan (2012, 2013). Subsequently, we sam-
pled 20, 100, 300, and 1000 species occurrences.

Workflow 2
To generate virtual species occurrences for Workflow 2, we 
used two environmental variables with various SAC (eleva-
tion – high SAC, aspect – low SAC). To simulate species with 
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Figure 2. General modeling process for all three workflows. Each experiment was repeated 50 times. 

 16000587, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.06358 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [02/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Page 5 of 16

different niche widths, we used normal distributions with a 
mean of 1000 m and standard deviation of 100–500 m for 
elevation, and a mean of 100° and standard deviation of 
10–100° for aspect. This allowed us to generate three species 
with various niche widths (narrow, medium, wide). We then 
projected habitat suitability across our study area to define 
the probability distribution of occurrences. We used a logistic 
function with α = −0.05 and β = 0.3 to convert the habitat 
suitability raster to a randomized binary presence–absence ras-
ter. We sampled 20, 100, 300, and 1000 species occurrences.

Workflow 3
Occurrences for the band-tailed pigeon, a species with 
high detection probability (Keppie and Braun 2000), were 
extracted from the North American Breeding Bird Survey 
(BBS, Sauer et al. 2017), a long-term collection of over 4800 
survey routes distributed across North America. Each sur-
vey route consists of 50 points count locations distributed 
~ 0.8 km apart and sampled for 3 min. We considered only 
routes from the study region (the USA, Fig. 2) and retained 
only those routes where we assumed there was high certainty 
that the species was present. First, we discarded data sampled 
before the year 2000 and then kept only those routes with at 
least ten years of samples post-2000. We considered occur-
rences from a minimum of five years of samples as presences. 
Routes where the species was detected but on fewer occasions, 
and therefore presence status was unsure, were removed from 
the analysis. The final dataset contained 111 presences.

Environmental variables

Naimi et al. (2011, 2014) showed that SAC in environmental 
variables affects the degree to which positional uncertainty 
creates mismatches between true and measured environmen-
tal variables values. Therefore, we generated artificial envi-
ronmental variables and selected real environmental variables 
that spanned different degrees of SAC (see variograms in 
Supporting information).

Workflow 1
We generated artificial environmental variables using the R 
‘gstat’ package (ver. 2.0-9, www.r-project.org) and uncon-
ditional simulation over a regular grid of 200 × 200 cells. 
Unconditional simulation allows for a generation of environ-
mental variables with different SAC, where the level of SAC is 
defined by a variogram (Dungan 2002, Naimi et al. 2011). We 
used an exponential variogram with the same sill parameter of 
0.025 for all simulations. To simulate variables across different 
SAC levels, we scaled the range parameters from 1 (low SAC, 
high heterogeneity) to 49 (high SAC, low heterogeneity) by 
increments of 2 to a total of 25 virtual environmental vari-
ables. Only one variable was used to generate virtual species 
and subsequently model the species distribution (Fig. 2).

Workflow 2
We chose five environmental variables to construct mod-
els for Workflow 2 (Supporting information). Two of the 

variables were related to habitat characteristics: grassland 
coverage and forest coverage (http://centrodedescargas.cnig.
es/; Spain National Center for Geographic Information), and 
three were related to topography: topography wetness index, 
aspect and elevation (http://centrodedescargas.cnig.es/; Spain 
National Center for Geographic Information). We used 
elevation and aspect that serve as a proxy for temperature 
(Müller and Brandl 2009, Coops et al. 2010, Vierling et al. 
2011, Work et al. 2011, Vogeler et al. 2014), and a topog-
raphy wetness index that is a proxy for water availability 
(Petroselli et al. 2013, Reif et al. 2018, Title and Bemmels 
2018). The topography wetness index was derived from the 
elevation model (SAGA-GIS ver. 2.1.4; Conrad et al. 2015). 
All environmental variables were resampled from an original 
resolution of 25 × 25 m (elevation) or 20 × 20 m (all other 
variables) to 50 × 50 m cell resolution using the mean values 
of the original data (Moudrý et al. 2019) for modeling pur-
poses (Supporting information). Only elevation and aspect 
were used to generate virtual species, while all variables were 
used to fit models.

Workflow 3
For the band-tailed pigeon, we selected nine variables that 
reflect fine to coarse scales of spatial and temporal variation. 
Four variables were related to climate: mean annual tem-
perature, seasonality of precipitation, growing season pre-
cipitation (CHELSA ver. 1.2; Karger et al. 2017), and the 
inter-annual variation of cloud cover (EarthEnv; Wilson and 
Jetz 2016). Two variables were related to vegetation produc-
tivity: spatial heterogeneity of enhanced vegetation index 
(EVI) (EarthEnv; Tuanmu and Jetz 2015) and the mean 
enhanced EVI for winter, derived from MODIS (Didan et al. 
2015). Two variables were related to soil characteristics: pro-
portion of soil silt content and soil clay content (SoilGrids 
ver. 2; Poggio et al. 2021). The final variable, the terrain rug-
gedness index (EarthEnv; Amatulli et al. 2018), represented 
topographical variation. All variables were resampled to a 1 × 
1 km cell size from their native projections (see Supporting 
information for further details and provenance).

We used variance inflation factor analysis (VIF; ‘usdm’ 
package, ver. 1.1-18, www.r-project.org) to identify potential 
multicollinearity issues between our environmental variables. 
Multicollinearity between predictors can negatively affect 
SDMs by causing unstable parameter estimates and biased 
test statistics (Belsley 1991, Chatfield 1995, Dormann et al. 
2013). All VIF values indicated low multicollinearity (< 
3). Thus we did not exclude any variables on this basis 
(Zuur et al. 2010).

Simulating positional uncertainty in occurrence data

Positional error in species occurrences may vary depend-
ing on the data source and original collection method (e.g. 
geographic coordinates or written description). Whereas 
for occurrences gathered with GNSS (Global Navigation 
Satellite System) the positional uncertainty may range from a 
couple up to tens of meters, occurrences gathered with older 
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technologies or those georeferenced from museum databases 
may have positional uncertainty of up to tens of kilometers 
(Moudrý and Devillers 2020). Therefore, to mimic the range 
of positional uncertainty in real datasets, we shifted occur-
rences in a (uniform) random direction according to four dif-
ferent scenarios. As the resolution of environmental variables 
used in SDMs was different for both virtual species (1 × 1 
pixel respectively 50 × 50 m) and for band-tailed pigeon (1 
× 1 km), we shifted occurrences in a random direction by 
drawing a shift distance from a uniform distribution from the 
following distances: S1: 1–2 pixels, S2: 2–5 pixels, S3: 5–10 
pixels, S4: 10–30 pixels (Workflow 1); S1: 50–100 m, S2: 
100–250 m, S3: 250–500 m, S4: 500–1500 m (Workflow 
2); S1: 1–2 km, S2: 2–5 km, S3: 5–10 km, S4: 10–30 km 
(Workflow 3; see Supporting information). If the original 
data points were shifted outside of the study area, the shift 
was recalculated until the new coordinates were located 
within the boundaries of the study area.

Model fitting and evaluation

We built SDMs in the statistical software R (package ‘sdm’ 
ver. 1.0-98, www.r-project.org; Naimi and Araújo 2016) 
using the MaxEnt modeling method (Phillips et al. 2006), 
a presence-background method often adopted in ecologi-
cal studies (Rodríguez et al. 2019, Santamarina et al. 2019, 
Ancillotto et al. 2020, El-Gabbas et al. 2021, Boral and 
Moktan 2021, Ellis-Soto et al. 2021, Venne and Currie 2021, 
Zarzo‐Arias et al. 2022). We used 10 000 randomly sampled 
background points and default model settings (Phillips and 
Dudík 2008), except that we set the beta parameter to 0.5 
and restricted used features. Only hinge features were allowed 
for virtual species (Workflows 1 and 2). Although hinge fea-
tures might lead to model overfitting, we used them as our 
virtual species response to the environment was defined using 
a normal distribution (Elith et al. 2010). For band-tailed 
pigeon, we sampled background points only in the extent of 
species occurrences (western coast of USA; VanDerWal et al. 
2009, Barve et al. 2011, Merow et al. 2013) and used qua-
dratic features to avoid overfitting (Austin 2007).

We used a variety of discrimination metrics to evaluate 
predictive model performance. We used the Sorensen index 
(SI), recommended for SDMs evaluation using presence-
only occurrences (Li and Guo 2013, Leroy et al. 2018). SI 
ranges from 0 to 1, where 0 means that none of the predic-
tions matched any observation, and 1 means that predictions 
perfectly fit observations without any false positive or false 
negative (Leroy et al. 2018). We also calculated overpredic-
tion (OPR, Barbosa et al. 2013) and underprediction (UPR, 
Fielding and Bell 1997) rates to explore whether positional 
uncertainty led to a consistent over- or underprediction bias. 
The OPR measures the percentage of predicted presences 
corresponding to false presences, whereas UPR measures the 
percentage of actual presences not predicted by the model 
(Fielding and Bell 1997, Barbosa et al. 2013, Leroy et al. 
2018). In addition, we computed the true skill statistic (TSS, 
Allouche et al. 2006), despite recent criticisms about its use 

due to prevalence dependency (Lobo et al. 2008, Jiménez 
Valverde 2012, Leroy et al. 2018). We explored TSS in addi-
tion to SI as it is still widely applied in ecological studies 
(Fern et al. 2020, Holder et al. 2020, Eduardo et al. 2022, 
Sanguet et al. 2022). TSS ranges from −1 to +1, where +1 
indicates perfect agreement and values of zero or less indicate 
random performance (Allouche et al. 2006).

We ran SDMs using fivefold cross-validation (Merow et al. 
2013), where species occurrences and background points 
were divided randomly into fivefolds, and each fold was 
retained for model testing while the other fourfolds were used 
for model training. We repeated each experiment 50 times, 
and evaluations represent averages of the 50 repetitions.

We evaluated each predictor variable’s importance and 
visualized predicted responses to the environmental variables 
to explore the effect on inference about generative mecha-
nisms. To estimate variable importance, we used a leave-
one-out sensitivity analysis method which calculates the 
improvement in the model performance with the inclusion 
of each variable compared to when the variable is excluded 
(AUCtest; Murray and Conner 2009). Response curves 
were automatically generated by the ‘sdm’ package (Naimi 
and Araújo 2016) using the ‘evaluation strip’ approach. This 
approach visualizes species responses for used environmental 
variables by including data frames that show the distribution 
of observed presence point locations within the environmen-
tal range investigated by the evaluation strips (Kindt 2018; 
detailed in Elith et al. 2005).

Results

Model predictive performance

Note that here we present only results for the SI to simplify 
the presentation of the results, but results for the TSS quali-
tatively followed the same pattern (Supporting information).

In general, in Workflow 1 where points were not shifted 
(hereafter unaltered), models achieved excellent performances 
for species with narrow niche widths (SI > 0.9, OPR and 
UPR < 0.03; Fig. 3, Supporting information). However, pre-
dictive performance generally decreased with increasing spe-
cies niche width (SI decreased on average by 0.53, while OPR 
and UPR increased on average by 0.57, respectively by 0.5). 
Predictive performance generally decreased with increasing 
positional error in occurrence data. Where the level of SAC 
was low and the sample size small, the more pronounced was 
the negative effect of positional error in species occurrences 
(Fig. 3, Supporting information). In Workflow 2, unaltered 
models achieved very good model performances (SI > 0.86, 
OPR < 0.04, UPR < 0.19, Fig. 3, Supporting information). 
Again, performance decreased with increasing niche width 
and with introducing positional error (Fig. 3, Supporting 
information).

Unaltered models for band-tailed pigeon (Workflow 
3) achieved very good model performance (SI achieved on 
average 0.86, OPR 0.13, and UPR 0.15) and, once more, 
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Figure 3. Change in model performance, measured through the Sorensen index, overprediction rate and underprediction rate for Workflows 
1 and 2. See Supporting information for plots of resulting changes for all scenarios. Values represent averages of the 50 repetitions.
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positional uncertainty led to decreases in model performance 
(Fig. 4). Compared to virtual species data, the decrease in 
model performance was, however, lower (SI for Workflow 
2 virtual species decreased on average over 0.3, versus an 
average of 0.03 for the real species; Fig. 3, 4, Supporting 
information).

The general increase in over- and underprediction rates 
across all workflows implies that models fit to data with 
positional error tended to overpredict and, at the same time, 
underpredict species habitat suitability. Therefore, using posi-
tionally uncertain data might be highly risky for some eco-
logical applications (e.g. nature conservation).

Figure 4. Resulting performance metrics (A), response curves (B) and variables’ importance (C) of unaltered and altered models for all 
scenarios with real species and real environmental data. Values represent averages of the 50 repetitions.
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Parameter estimation

Variable importance
For Workflow 2, the models correctly – across all modeled 
scenarios – detected the aspect and elevation, which were 
used to generate virtual species as the most influential vari-
ables (only these variables were used to generate virtual spe-
cies; Fig. 5, Supporting information). Increasing sample size 
increased the estimated importance of aspect and elevation. 
On the other hand, as niche width increased, models esti-
mated the greater importance of other variables.

For band-tailed pigeon (Workflow 3), the most influential 
variables were mean winter EVI (16.5%) and seasonality of 
precipitation (17%), followed by mean annual temperature 
(10.1%), with other variables below 10% (terrain rugged-
ness, soil clay content, growing season precipitation, EVI 
spatial heterogeneity, soil silt content, cloud cover; Fig. 4).

Positional errors led to changes in variable importance. 
Workflow 2 models correctly inferred the most influential 
variables regardless of the degree of positional error, although 
in the high-error scenario, the absolute importance of aspect 
decreased in importance by 41.2% while the importance of 
elevation increased by almost 32% (Fig. 5, Supporting infor-
mation). For variables with minor importance, we generally 
observed only small changes (i.e. < 4.4% change) to their 
importance.

In Workflow 3, models correctly inferred the seasonality 
of precipitation as the most influential variable indepen-
dently of positional error. As error increased, we observed a 
decrease in the importance of mean winter EVI and mean 
annual temperature (by 13.6 and 6.1%, respectively), and an 
increase in the importance of seasonality of precipitation (by 
13.1%), as well as growing season precipitation (by 10.8%), 
becoming the second most influential variable (Fig. 4).

Response curves
In Workflow 1, unaltered models accurately recovered the 
true mean response except for species with wide niches and 
20 occurrences, where models failed to recover the response 
mean (Fig. 6, Supporting information). The estimated stan-
dard deviation, however, varied considerably across different 
scenarios. Where sample size was lowest (20 occurrences), 
models overestimated the standard deviation and thus tended 
to overpredict the probability of suitable habitat. The stan-
dard deviation estimation was significantly improved with 
increasing sample size and was, on average, better for sce-
narios with higher levels of SAC (homogenous variables). 
This pattern was independent of species niche width (Fig. 6, 
Supporting information).

Therefore, where there was positional error and small sam-
ple sizes (20 occurrences), models were unable to accurately 
estimate either the response mean or standard deviation 

Figure 5. Comparison of the change in variables’ importance between models generated with positionally accurate presences (Unaltered) 
and models built with various positional error in the data across various sample sizes. Values represent averages of the 50 repetitions. See 
Supporting information for plots of variables’ importance for all scenarios.
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Figure 6. Variation of selected environmental response curves across models with unaltered and altered data, and various sample sizes for 
Workflows 1 and 2. See Supporting information for plots of resulting response curves for all scenarios. Response curves represent averages 
of the 50 repetitions. 
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across all SAC types. This ability was improved with increas-
ing sample size and level of SAC (Fig. 6, Supporting infor-
mation). Across all species niche widths, where positional 
error was pronounced, models were better able to estimate 
response means and standard deviations when sample sizes 
were large and SAC levels high. However, even with the 
largest sample size (1000 occurrences) and the highest level 
of SAC, the models overestimated the standard deviation 
(Fig. 6, Supporting information).

For Workflow 2, the unaltered models were able to recover 
responses to both aspect and elevation, which were used to 
generate virtual species. This was independent of the modeled 
scenario (Fig. 6, Supporting information). When introducing 
positional error, models could still capture the approximate 
response to the elevation with a relatively high SAC level. 
However, although models recovered the correct shape of the 
response curve, standard deviation increased. In contrast, for 
aspect (low SAC level), the models developed with positional 
uncertainty failed to recover the correct response curve, even 
when larger sample sizes were used (Fig. 6, Supporting infor-
mation). Note that Workflow 2 models could estimate the 
response even with the smallest sample size. This is in contrast 
to Workflow 1, potentially due to greater model complexity. 
These results support our assumptions that models developed 
with data containing positional uncertainty might be able to 
detect species responses for variables with high SAC levels, 
but fail to detect meaningful responses for variables with low 
SAC levels.

The positional error also affected response curves for the 
band-tailed pigeon. The largest changes to response curves 
and over- and underprediction tended to occur with the most 
heterogeneous variables, for example the terrain ruggedness 
index (Fig. 4).

Discussion

In our study, we used combinations of virtual and real envi-
ronmental variables with different SAC levels, sets of virtual 
species with a variety of niche widths, and one real species to 
explore how positional error in species occurrence data can 
affect model performance and its ecological interpretability. 
Specifically, we investigated the ability of SDMs to appro-
priately detect species’ responses to the environment and 
variable importance using various scenarios with artificially 
applied positional error.

Our results show that positional uncertainty in species 
occurrences leads to a decrease in model predictive per-
formance across all combinations of species niche widths, 
sample sizes, and SAC levels of the environmental variables, 
but that the magnitude of the negative impact of posi-
tional uncertainty varied for different combinations and 
depending on the distance that points were shifted. The 
negative influence was most pronounced for species with a 
narrow niche and scenarios with more heterogenous envi-
ronmental variables. This is consistent with previous stud-
ies, which concluded that more accurate occurrence data 

generally yielded better-performing SDMs (Visscher 2006, 
Johnson and Gillingham 2008, Osborne and Leitao 2009, 
Tulowiecki et al. 2015, Mitchell et al. 2017, Soultan and 
Safi 2017, Fernandes et al. 2019). It is important to high-
light that the magnitude of the negative effect of positional 
uncertainty varied across prior studies. This can be explained 
by using environmental variables with different heterogeneity 
(Naimi et al. 2011, 2014) or by using species with varying 
niche width (Gábor et al. 2020).

Our models for real species were less affected by positional 
uncertainty than models for virtual species. This could pos-
sibly be explained by the spatial error already embedded in 
the real species data, meaning the ‘unaltered’ scenario actually 
presents some minimal (but unknown) level of error, as well 
as errors in the environmental layers. Additionally, observa-
tions of transient individuals merely passing through unsuit-
able habitats could contribute to this finding, although we 
attempted to filter out such cases. There may also be spatial 
and/or environmental biases in the data, such as dispropor-
tionate sampling efforts in locations where specific behaviors 
take place (e.g. water sources), where species detectability is 
increased (e.g. open areas), or in areas with greater accessibil-
ity (e.g. near roads, walking trails; Kramer-Schadt et al. 2013, 
Fourcade et al. 2014).

On the other hand, our results showed that models built 
with even positionally inaccurate data may still be ecologi-
cally interpretable. The absolute and relative importance of 
environmental predictors and the shape of species–environ-
mental relationships co-varied with the level of positional 
uncertainty. But these differences were much weaker than 
those observed for overall model performance. This indicates 
that low model performance does not necessarily lead to low 
capacity to infer which variables drive species distributions 
and the strength of those drivers. It is important to note that 
sample size and the SAC level of environmental variables play 
an important role here. In general, the higher the sample size 
and the higher the level of SAC in environmental variables the 
better were models able to recover response curves and detect 
the importance of the environmental variables (Fig. 4–6).

On the other hand, in the case of environmental vari-
ables with low SAC level (high heterogeneity), positional 
error obscured the main patterns (e.g. aspect in Workflow 2 
or terrain ruggedness index in Workflow 3; Fig. 4, 6). Our 
results suggest that, at least for the example species, position-
ally inaccurate records may still prove useful for assessing the 
relative importance of environmental variables in generating 
species distributions and for determination of the shapes of 
species responses. Thus, for some purposes, positionally inac-
curate records need not be discarded (as is common practice; 
Watcharamongkol et al. 2018, Gueta and Carmel 2016). 
This finding is particularly fortuitous because discarding 
positionally uncertain occurrence data can limit our ability 
to estimate range sizes and overestimates exposure to climate 
change (Smith et al. 2023).

Drawing methodological conclusions based on real data is 
difficult since the true underlying population distribution is 
unknown, as are data deficiencies that could potentially affect 
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results (Winner et al. 2018, Meynard et al. 2019, Šímová et al. 
2019, Vollering et al. 2019, Mendes et al. 2020, Somveille et al. 
2020, Yanco et al. 2020, Grimmett et al. 2021, Inman et al. 
2021, Jiménez‐Valverde 2021). On the other hand, simulated 
datasets simplify the real world, and their results should be 
interpreted cautiously (Wunder et al. 2008, Zurell et al. 2010, 
Meynard et al. 2019). Indeed, our results show that a virtual 
species approach may show different results than those using 
a real species. For example, our virtual species simulations 
showed a rapid decrease in model performance with increas-
ing positional error, whereas the band-tailed pigeon showed 
only a slight decrease in model performance. We strongly rec-
ommend that future studies should follow a growing trend 
and combine simulations and real species data when study-
ing methodological questions (Fithian et al. 2015, Guélat and 
Kéry 2018, Mertes and Jetz 2018, Renner et al. 2019).

Although this study provides extensive insights that are 
optimistic about the potential utility of SDMs, caution is 
warranted in generalizing these results, and further research 
is needed. For example, future studies could explore whether 
our findings are robust to different MaxEnt settings, various 
modeling techniques, response, and analysis grain and differ-
ent types of data uncertainty (e.g. spatial bias rather than a 
random error). In addition, within global aggregation data-
bases, spatial uncertainty may not be uniformly distributed. 
Analyses that characterize the patterns of spatial uncertainty 
within these databases would allow researchers to identify 
situations wherein models are likely to fail.
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