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A B S T R A C T   

In this paper the modal mass is considered in the case of general damping where it is well-known 
that the modal mass becomes a complex valued quantity. The aim of this paper is to present a 
definition of the complex modal mass, which leads to an easier physical understanding of this 
modal parameter. It is demonstrated that based on the structural modification theory, the com-
plex modal mass can be expressed as a linear combination of the un-damped modal masses, where 
a complex coefficient matrix can be defined that depends on the general damping matrix and on 
the mode shapes of the damped and the un-damped system. An important finding is that an 
apparent mass can be defined so that the modal mass is always equal to the product between the 
apparent mass and the length squared. The paper includes a 2-DOF example that illustrates the 
influence of the amount of general damping on modal quantities that are normally considered 
non-sensitive to damping.   

1. Introduction 

When the modal model is used to define the dynamic behavior of a structure, the modal parameters (natural frequencies, mode 
shapes and damping ratios) corresponding to each mode are needed [1,2,3,4]. In un-damped and proportional damped models, a mode 
shape (real components) is said to be scaled if it is mass normalized (normalized to the mass matrix) whereas it is defined as un-scaled 
when other kinds of normalization are used [1,2,3,4]. 

The most common normalization techniques used in un-damped and proportional damped models are mass normalization, 
normalization to the unit length of the mode shape (length scaling) and normalization to a component (usually to the largest 
component) equal to unity (DOF scaling) [1,2,3,4,5,6,7]. 

Another parameter, known as modal mass, has to be defined for each mode if un-scaled mode shapes are used. In [1] the modal 
mass is defined as a scaling parameter for the mode shapes, i.e., it is used to convert the original unscaled mode shape vector {ψ} to the 
scaled (mass-normalized) mode shape vector {ϕ}, i.e., the unscaled and the scaled vectors are related by the equation: 

{ϕ} =
1̅
̅̅̅
m

√ {ψ} (1) 

Where m is the modal mass of the unscaled mode shape {ψ}. The modal mass of the mode shape {ϕ} is dimensionless unity. On the 
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other hand, the modal mass of mode shapes normalized to the unit length or to a component equal to unity have units of mass (kg in the 
international system) or inertia (kgm2 in the international system). 

The structural dynamic modification (SDM) theory [2,3,4,8], is a technique that predicts the dynamic behavior of a system 
(perturbed system), which is a modification of a known system (un-perturbed system). From the SDM theory it is derived that the mode 
shapes of the perturbed system can be expressed as a linear combination of the un-perturbed mode shapes [2,3,4,8]. 

In dynamic systems with general damping, the equation of motion has to be formulated in state space format and the mode shapes 
are extracted from the complex eigenvectors [2,3,4,9]. The modal masses are also complex because they contain information of both 
the mass and of the damping of the system, which complicates the interpretation [10,11,12]. An interpretation of the complex 
eigensolution that describes free and resonant vibrations of a generally damped linear structure is given in [10], where all elements of 
the complex solution are related to physical quantities. 

Experimental mode shapes are, in general, complex, but normal modes are needed for comparison with undamped finite element 
models. In [11] a methodology to obtain normal modes from experimental complex modes is proposed. A simple method to normalize 
complex modes so that they are closest to their corresponding classical normal modes is proposed in [12]. 

In this paper we present a better definition of the complex modal mass, which leads to significant improvements in the physical 
understanding of this modal parameter. The SDM theory is used to relate the damped and the un-damped models, i.e., the damped 
model is considered a perturbation of the un-damped model where the modification is given by the damping matrix. It is demonstrated 
that the complex modal masses (and also other modal parameters) can be expressed as a linear combination of the un-damped modal 
masses, where the transformation matrix is complex and depends on the damping matrix and the mode shapes. The concepts and 
equations formulated in the paper are illustrated with an example. 

The paper is organized as follows. After the introduction, the basic theory of general damped models and undamped models is 
presented in section 2. In section 3, the most common normalization techniques used to scale mode shapes and eigenvectors are 
presented. In section 4, the complex mode shapes are projected on the undamped normal mode shapes, from which an analytical 
expression that relates the modal masses of both the damped and the undamped models is derived. A similar procedure is followed in 
section 5, where the complex eigenvectors are projected on the undamped normal eigenvectors. In section 6, the concept of length of 
continuous and discrete mode shapes is extended to the complex modes case, and a new definition of the modal mass is formulated. In 
section 7, the theoretical formulations developed in this paper are illustrated performing simulations on a 2-DOF damped system. The 
paper finishes with the conclusions in section 8. 

2. Basic theory 

In this section, we briefly present the equations of motion of both damped and un-damped systems, their associated eigenvalue 
problems, as well as the modal parameters which are derived from both systems. 

2.1. General damped model 

The equation of motion of an N degree of freedom system is given by [1,2,3,4,5,6,7,9]: 

[K]{u}+ [C]{u̇}+ [M]{ü} = {p} (2) 

Where {p} is the force input vector, {u} is the response vector and [M], [C] and [K] are the mass damping and stiffness matrices, 
respectively. In the case of general damping, the equation of motion has to be defined in a state space model format [1,2,3,4,7,9], i.e.: 

[A]{ẏ}+ [B]{y} = {f} (3) 

where: 

[A] =
[
[0] [M]

[M] [C]

]

[B] =
[
− [M] [0]
[0] [K]

]

{y} =

{
{u̇}
{u}

}

{f} =

{
{0}
{p}

}

Eq. (3) leads to the following complex eigenvalue problem [1,2,3,4,7,9]: 

([B] + [A]λ ){Eψ} = {0} (4) 

Which generates 2 N complex eigenvalues (or poles) λr which appear in complex conjugate pairs: 
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Where superscript ‘*’ indicates complex conjugate. The eigenvalues can be expressed as: 

λr = − ζrωr + jωdr (6) 

Where ωr and ζr are the natural frequency and the damping ratio of the r-th mode, respectively, and ωdr is the damped natural 
frequency given by: 

ωdr = ωr

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
r

√

(7) 

The eigenvectors {Eψr} =

{
λr{ψ r}

{ψ r}

}

associated to the eigenvalues λr also appear in complex conjugate pairs. The 2N × 2N matrix 

of eigenvectors [EΨ] is given by [1,2,3,4,7,9]: 

[Eψ ] =

⎡

⎣
λ1{ψ1} λ*

1{ψ1}
*

.λr{ψr}

{ψ1} {ψ1}
*

.{ψr}

λ*
r{ψr}

*
. λN{ψN}

{ψr}
*

. {ψN}

λ*
N{ψN}

*

{ψN}
*

⎤

⎦ (8) 

Where {ψ r} is the r-th mode shape. 
The eigenvalue problem given by Eq. (4) is equivalent to the eigenvalue problem derived from eq. (2) which is given by [1,2,3,4]: 

(
[M]λ2 + [C]λ+ [K]

)
{ψ} = {0} (9) 

The equations to calculate the modal mass and the modal damping matrices are the same as those used in case of real modes 
[1,2,3,4,7,9,10], i.e: 

[m] = [ψ]T [M][ψ] (10)  

[c] = [ψ]T [C][ψ] (11) 

but matrices [m] and [c] are not diagonal and the terms are complex [4,7]. However, the eigenvectors {Eψr} are orthogonal with 
respect to the matrices [A] and [B] [2,3,4,7,9,10,11], i.e: 

[EΨ]
T
[A][EΨ] = [aψ ] (12) 

and 

[EΨ]
T
[B][EΨ] = [bψ ] (13) 

Which means that the matrices [aψ ] and [bψ ] are diagonal [2,3,4,7,9,10,11]. 
From eq. (12) it is derived that: 

aψr = 2λrmr + cr = 2jωdrmr (14) 

Where aψr is the scaling parameter corresponding to the eigenvector {Eψr}, and mr (modal mass) and cr = 2ζrωrmr (modal damping) 
are the r-th diagonal terms of matrices [m] and [c], respectively. The parameter aψr is complex and it has the units 

(
1
s kg

)
if the mode 

shapes are normalized to the unit length or to a component equal to unity [11,12,13,14]. 
Premultiplication of eq. (4) by [EΨ]

T leads to [2,3,4,7,9]: 
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[bψ ] = − [aψ ][Λ] (15)  

2.2. Undamped model 

The equation of motion of the corresponding un-damped model (same mass [M] and stiffness [K] matrices as the general damped 
model) in state space model format is expressed as [1,2,3,4,7,9]: 

[A0]{ẏ}+ [B0]{y} = {f} (16) 

Where subindex ‘0′ denotes un-damped model and matrices [A0] and [B0] are given by: 

[A0] =

[
[0] [M]

[M] [0]

]

[B0] =

[
− [M] [0]
[0] [K]

]

= [B]

The corresponding eigenvalue problem is expressed as [1,2,3,4,7,9]: 

([B0] + [A0]λ0r )
{

Eψ0r

}
= {0} (17) 

Where the poles λ0r = jω0r are purely imaginary and ω0r is the real un-damped natural frequency. 

The eigenvectors {Eψ0r} =

{
λ0r{ψ0r}

{ψ0r}

}

are also purely imaginary, (but they can be normalized in such a way that they become real) 

[4,7,11,12]. 
The term aψ0r is also purely imaginary and given by: 

aψ0r = 2jm0rω0r (18) 

With m0r being the real valued modal mass. 

3. Normalization of mode shapes and eigenvectors. 

In case of general damped models, both the eigenvectors and the mode shape vectors can be normalized with different techniques 
[12,13,14], which are briefly described in this section. 

3.1. Normalization of eigenvectors 

The best know technique to normalize eigenvectors is normalization to matrix [A]. The eigenvector {Eψr} is said to be normalized to 
matrix [A] (or normalized to modal A), hereafter denoted as 

{
EϕAr

}
, if the parameter aϕAr 

is dimensionless unity, i.e: 

aϕAr =
{
EϕAr

}T
[A]

{
EϕAr

}
= 1 (19) 

The eigenvector 
{
EϕAr

}
and the unscaled eigenvector {Eψr} are related by means of the expression: 

{
EϕAr

}
=

1
̅̅̅̅̅̅̅aψr

√ {Eψr} (20) 

Where aψr = {Eψr}
T
[A]{Eψr} is the scaling factor of the eigenvector {Eψr}.

From eq. (20) it follows that the term aψr plays the same role as the modal mass with normal mode shapes. However, the term aψr 

(see eq. (14)) depends on the complex modal mass mr and on the damped natural frequency ωdr. 
The eigenvectors {Eψr} cannot be normalized to the unit length of the vector because the units of {ψ r} and λr{ψ r} are different. For 

example, if {ψ r} is dimensionless then: 

{ψr }→ dimensionless λr {ψr } →1/s 

However, it must be noticed that a change in the scaling of the mode shapes results in a change of parameters aψr . Similarly, 
normalization of the eigenvectors to matrix [A] modifies the scaling of the mode shapes. 

3.2. Normalization of mode shapes 

The complex mode shapes can be normalized with the same techniques used in case of real modes [4,7,9,12,13,14]. 

3.2.1. Normalization to the unit length 
The arbitrary normalized complex mode shape {ψ r} can be normalized to the unit length of the vector, hereafter denoted as {ψLr}

by: 

{ψLr} =
{ψr}

Lψr

(21) 
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Where Lψr is the Euclidean length of the vector {ψ r} given by: 

Lψr =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

{ψr}
H
• {ψr}

√

(22) 

which is a real number. The superscript ‘H’ indicates complex conjugate. The length of the vector {ψLr} normalized to unit length 
{ψLr} =

{ψr}
Lψr 

is dimensionless unity, i.e.,LψLr = 1.

3.2.2. Normalization to a component equal to unity 
The complex mode shapes can be normalized to a component equal to unity, hereafter denoted {ψUr

}, and it is commonly assumed 
to consider the largest component equal to a unity real number. 

3.2.3. Normalization to the mass matrix 
This normalization technique is used in un-damped models, but in case of general damping this normalization is commonly 

substituted by normalization to matrix [A]. 
A complex mode shape {ψ r} is normalized to the mass matrix, hereafter denoted as {ϕr} = {ψ r}/

̅̅̅̅̅̅
mr

√
if the modal mass is 

dimensionless real unity, i.e. mr = {ψ r}
T
[M]{ψ r} = 1. 

3.3. Relationship between normalizations 

If we have mode shapes normalized to the unit length of the mode shape {ψLr}, to a component equal to unity {ψUr}, to the mass 
matrix {ϕr}, or arbitrary normalized {ψr}, and we denote aψLr , aψUr , aϕr and aψr the corresponding complex scaling parameters, it is 
derived from eq. (14) that: 

aψLr = aψUr

1
{ψUr}

H
• {ψUr}

= aϕr

1
{ϕr}

H
• {ϕr}

= aψr

1
{ψr}

H
• {ψr}

(23) 

Or alternatively: 

aψLr

L2
ψLr

= 1
=

aψUr

L2
ψUr

=
aϕr

L2
ϕr

=
aψr

L2
ψr

(24) 

From eq. (23) that the following relationship between the mode shapes normalized with different techniques is derived: 

{ψLr
}

̅̅̅̅̅̅̅̅aψLr

√ =
{ψUr

}
̅̅̅̅̅̅̅̅aψUr

√ =
{ϕr}
̅̅̅̅̅̅̅aϕr

√ =
{ψr}
̅̅̅̅̅̅̅aψr

√ (25)  

4. Projection of the complex mode shapes on the undamped normal modes 

In this section the structural dynamic modification theory [8] is used to obtain the general damped system as a perturbation of the 
un-damped system, and an analytical expression that relates the modal masses of both the damped and the un-damped system is 
derived. 

The general damped system can be considered a perturbation of the un-damped system, where the modification is defined by the 
damping matrix [C]. The eigenvalue problem of the perturbed system is given by eq.(9), i.e.: 

(
[M]λ2

r + [C]λr + [K]
)
{ψr} = {0} (9) 

Whereas that of the un-perturbed system (un-damped model) is given by: 
(
[M]λ2

0r + [K]
)
{ψ0r} = {0} (26) 

According to the structural dynamic modification theory [8], the perturbed mode shapes {ψ r} can be expressed as a linear com-
bination of the un-damped (un-perturbed) mode shapes {ψ0r} by means of the expression [8]: 

[ψ] = [ψ0][P] (27) 

Where [ψ ] is the matrix of complex mode shapes of the damped system, [ψ0] is the matrix of mode shapes of the un-damped system, 
and [P] is a transformation matrix. The columns of matrix [P] can be obtained solving the eigenvalue problem [8]: 

(
[m0]λ2

r + [ψ0]
T
[C][ψ0]λr + [m0]

[
ω2

0

] )
{pr} = {0} (28) 

Where {pr} indicates the r-th column of matrix [P]. 
Matrix [P] is diagonal if the inner product [ψ0]

T
[C][ψ0] is a diagonal matrix, i.e., if the normal mode shapes [ψ0] are orthogonal with 

respect to the damping matrix [C]. Thus, the complexity of the mode shapes depends on the level of orthogonality of the normal mode 
shapes with respect to damping matrix [C].

The terms of matrix [P] are, in general, complex. If eq. (27) is substituted in eq.(10), the complex modal mass mr can be expressed as: 

M.A. López and R. Brincker                                                                                                                                                                                         



Mechanical Systems and Signal Processing 200 (2023) 110621

6

mr = {pr}
T
[ψ0]

T
[M][ψ0]{pr} = {pr}

T
[m0]{pr} (29) 

From eq. (29) is concluded that since [m0] is diagonal, the complex modal mass can be obtained as a linear combination of the modal 
masses of the un-damped system, i.e.: 

mr =
∑N

k=1
p2

krm0k (30) 

The matrix [P] is not diagonal and therefore all the modes of the un-damped system contribute to the complex modal mass. 
Although m0k is real, the terms of matrix [P] are complex and therefore mr is complex. If both mode shapes are normalized with the same 
technique, the diagonal terms of matrix [P] will be close to ±1 or to ±i.

The modal mass matrix [m] = [ψ ]T[M][ψ ] and the modal stiffness matrix given by: 

[k] = [ψ]T [K][ψ] (31) 

are not diagonal matrices [4,7] and the components are complex. The diagonal terms of eqs. (10) and (31) are related by: 

ω2
r = kr/mr (31) 

Where kr and mr indicate the r-th diagonal terms of matrices [k] and [m].

5. Projection of the complex eigenvectors on the undamped REAL eigenvectors 

In this section the structural dynamic modification theory [8] is used to obtain the modal parameters (poles and parameters aψ ) of 
the general damped system, as a perturbation of the un-damped system in a state space model format. Relationships between the poles 
and parameters aψ of both the damped and the un-damped system are derived. 

The general damped system can be obtained perturbing the un-damped system (eq. (16)) with the matrix [ΔA] where: 

[ΔA] =
[
[0] [0]
[0] [C]

]

(32) 

The eigenvalue problem of the perturbed system is given by [8]: 

([B0] + ([A0] + [ΔA] )λr ){Eψr} = {0} (33) 

According to the structural dynamic modification theory, the perturbed eigenvectors {Eψr} can be expressed as a linear combi-
nation of the un-damped (unperturbed) eigenvectors 

{
Eψ0r

}
by means of [8]: 

[Eψ ] =
[
Eψ0

]
[T] (34) 

where [T] is a transformation matrix. The columns of matrix [T] can be obtained solving the eigenvalue problem [8]: 
( [

bψ0

]
+
( [

aψ0

]
+
[
Eψ0

]
[ΔA]

[
Eψ0

] )
λr
)
{Tr} = 0 (35) 

Or: 
( [

bψ0

]
+
( [

aψ0

]
+ {ψr}

T
[C]{ψr}

)
λr
)
{Tr} = 0 (36) 

Premultiplication of eq. (4) by [EΨ]
T and substitution of eq. (34) into the first term of such equation, leads to: 

[T]T [Eψ 0]
T
[B][Eψ 0][T] = − [aψ ][Λ] (37) 

Due to the fact [B] = [B0], eq. (37) can also be expressed as: 

− [T]T [aψ0][Λ0][T] = − [aψ ][Λ] (38) 

from which it follows that the term aψr of the complex system is related to the terms [aψ0] of the undamped model by means of the 
expression: 

aψr =
{Tr}

T
[aψ0][Λ0]{Tr}

λr
(39) 

i.e., the parameters aψr can be obtained as a linear combination of the parameters aψ0r. 
The matrix [aψ ] can also be expressed as: 

[aψ ] = [Eψ ]
T
[A][Eψ ] = [Eψ ]

T
[A0][Eψ ] + [Eψ ]

T
[ΔA][Eψ ] (40) 

If eq. (34) is substituted in the first term of eq. (40), it results in: 

[aψ ] = [T]T [aψ0][T] + [Eψ ]
T
[ΔA][Eψ ] = [T]T [aψ0][T] + [ψ]T [C]{ψ} (41) 
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And the terms aψr can also be formulated as: 

aψr = {Tr}
T
[aψ0]{Tr}+ cr (42) 

Where aψr and cr are the diagonal terms of matrices [aψ ] and [c], respectively. 
If the eigenvectors [EΨ] and [EΨ0 ] are normalized to matrices [A]and[A0], respectively, eq. (38) becomes: 

[T]T [Λ0][T] = [Λ] (43) 

Which means that the poles of the damped system can be obtained as a linear combination of the poles of the un-damped system, i. 
e.: 

λr = {T}T
r [Λ0]{T}r (44) 

Whereas the parameter aψr results in 

aψr = {Tr}
T
{Tr} + cr (45)  

6. Engineering interpretation of the complex modal mass 

6.1. Modal mass in un-damped systems 

In this section, the concept of length of continuous and discrete mode shapes defined for un-damped models in [13,14], as well as 
the relationship between modal mass and length of mode shapes, is briefly outlined. 

It was demonstrated in [13,14] that the modal mass of a discrete un-damped dynamic system with constant mass-density can be 
expressed as: 

m0r = {ψ0r}
T
[M]{ψ0r} = MTL2

ψ0r
(46) 

Where MT is the total mass of the system and L2
ψ0r 

is the square length of the mode shape {ψ0r} defined by the expression: 

L2
ψ0r

=
{ψ0r}

T
[V]{ψ0r}

VT
(47) 

With VT being the total volume of the system and [V] the volume matrix. This length definition has the same unit as the mode shape, 
it is a pure geometrical quantity and it does not depend on the number of DOF’s considered to discretize the model [13,14]. 

In the general case of varying mass density, eq. (46) can be expressed as: 

m0r = MTarL2
ψ0r

(48) 

Where MTar is the apparent total mass of the r-th mode, which is different for each mode and depends on how the mass is distributed 
in the structure (see [13,14] for information on how to obtain MTar). 

Fig. 1. 2nd normal and complex mode shapes of a cantilever beam model.  
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6.2. Modal mass in damped systems 

The concept of length of continuous and discrete mode shapes defined for un-damped models in [13,14] is here extended to the 
complex modes case, which provides a better interpretation of the complex modal mass of damped models. 

In algebra, the length (also denoted Euclidean length) of a complex vector {ψr} is calculated with eq. (22), which is a real scalar. 
This might suggest calculating the modal mass using the expression: 

mr = {ψr}
H
[M]{ψr} (49) 

Which is also a real scalar. Although eq. (49) might be appealing, it cannot be used because the products [EΨ]
H
[A][EΨ] and 

[EΨ]
H
[B][EΨ] are not diagonal, i.e., there is no orthogonality. 

The eigenvectors are determined by the eigenvalue problem and what comes out of an eigenvalue algorithm is a complex eigen-
vector {Eψr} and a complex mode shape {ψr}) scaled by some complex constant aψ r . For a complex mode shape, there is not always a 
point on the structure at which the modal displacement is zero at all times within a periodic cycle [2,3,4,7,9,10]. Let us consider a 
single mode {ψ r} of a discrete system of a cantilever beam (Fig. 1). For normal modes, the relative displacement location of each mass 
Mk is given by: 

u1(t) = Re(ψr1)cos(ωrt)

u2(t) = Re(ψr2)cos(ωrt) (50) 

And the ratio u1(t)
u2(t)

does not change with time t. 
In case of complex modes, the relative displacement location of each mass Mk at any given instant in time (Fig. 1) is a function of the 

corresponding real and imaginary components of the mode shape, i.e.: 

u1(t) = ψr1eλrt +ψ*
r1eλ*

r t  

u2(t) = ψr2eλrt +ψ*
r2eλ*

r t (51) 

And the ratio u1(t)
u2(t)

changes with time t. This means that the length of the mode shape is also changing with time, and it must be 
complex. 

For systems with constant mass density, [M] = ρ[V] and Eq. (10) can be expressed as: 

mr = {ψr}
T
[M]{ψr} = MT

{ψr}
T
[V]{ψr}

VT
(52) 

In order to extend eq. (46) to complex modes, the length of a complex mode shapes must be defined as: 

Lψr =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

{ψr}
T
[V]{ψr}

VT

√

(53) 

The definition given by eq. (53) uses the transpose of the mode shapes (not the complex conjugate) and the length is, in general, 
complex [4,7]. This is a difference with the Euclidean length used in algebra, which leads to a real scalar because it uses the conjugate 
transpose. 

Substitution of Eq. (53) in Eq. (52) leads to: 

mr = MTL2
ψr

(54) 

Eq. (54) demonstrates that the expression which relates the modal mass and the length of the mode shapes in constant mass-density 
systems is the same for real and complex modes [13,14]. Due to the fact that MT is a scalar, the modal mass mr must also be complex if 
Lψr is complex. 

As the general damped system can be consider a perturbation of the un-damped system, where the modification is defined by the 
damping matrix [C], both models have the same mass [M], and volume [V], matrices. If eq. (27) is substituted into eq. (52), this can be 
expressed as: 

L2
ψr

= {pr}
T
[L0]

2
{pr} (55) 

Where [L0] is a matrix containing the length of the un-damped normal modes, which is diagonal in constant mass-density systems [. 
From eq. (55) is inferred that the length of the complex mode shapes can be expressed as a linear combination of the length of the 

mode shapes of the un-damped model. Substitution of eq. (55) in eq. (52) gives: 

mr = MT{pr}
T
[L0]

2
{pr} (56) 

Where the modal mass depends on the total mass MT, the length of the un-damped mode shapes, and the terms of matrix [P]. 
In the general case of varying mass density, the modal mass can be expressed as [13,14]: 
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mr = MTarL2
ψr

(58) 

Where MTar is the apparent total mass given by [13,14]: 

MTar = VT

∑
nMnL2

ψnr∑
nVnL2

ψnr

(59) 

With n being the number of different regions of the structure with different mass density and L2
ψnr 

is the complex square length of the 
mode shapes in the region n. This apparent total mass MTar is different from the total mass and changes value from mode shape to mode 
shape. Thus, the deviation of the apparent total mass MTar from the total mass MT, is a measure of how much the mass distribution 
deviate from the uniform distribution [13,14]. 

7. Example 

In order to illustrate the equations developed in this paper, the modal parameters of the 2-DOF system shown in Table 1 were 
determined. Three different types of damping situations were considered: un-damped, proportional damping and general damping. 

For the damped systems, the same damping ratios were considered. It can be observed in Table 1 that although the damping ratios 
are the same for both damped systems, the damping matrices are significantly different. With respect to the natural frequencies, they 
are close but not equal, which means that the natural frequencies ωr of the general damped model are different from both the pro-
portionally damped model and the undamped model. 

In order to show the effect of the damping, several models with the same mass and stiffness matrices and different damping ratios 
were simulated. Two types of damping were considered: proportional and general damping. In case of general damping, the damping 
matrix considered in the simulations was: 

[C] = β
[

8 − 2
− 2 3

]

(57) 

Where 0 ≤ β ≤ 20, whereas the damping matrix corresponding to proportional damping was: 

[C] = β
[

6.5565 − 3.0973
− 3.0973 5.1887

]

(58) 

The damping ratios of both systems are equal for β = 1. In case of proportional damping, the damping ratios are proportional to β, 
whereas the damping ratios of the general damping case are approximately proportional to β (Fig. 2). 

Fig. 3 shows the influence of the damping on the natural frequencies. The figure confirms that the natural frequency ωr does not 
coincide with the natural frequency of the un-damped model. It can also be observed that the natural frequency can increase or 
decrease with damping. The first natural frequency increase with increasing damping whereas that of the second mode decrease with 
damping. The same can be said for the damped natural frequencies (Fig. 4). 

The complex modal masses mr corresponding to mode shapes normalized with the maximum component equal to unity are pre-
sented in Figs. 5 and 6. The modal mass for the proportional damped model is real. With respect to the damped model, the real part of 
the modal masses decreases with damping whereas the imaginary part increases with increasing damping reaching a maximum for β ≈

8 for the first mode and for β ≈ 10 for the second mode. The. 

8. Conclusions 

The dynamic behavior of a structure can be defined using the modal model for which the natural frequencies, mass normalized 
mode shapes and damping ratios are needed. If the mode shapes are not normalized to the mass matrix, a new modal parameter for 
each mode has to be defined, known as modal mass. 

Table 1 
Matrices and modal parameters of a 2 DOF system.   

UN-DAMPED PROPORTIONAL DAMPING GENERAL DAMPING 

Stiffness and mass matrices 
[K] =

[
6000 − 2000
− 2000 6000

]

[M] =

[
2 0
0 3

]

Damping matrix  
[C] =

[
6.5565 − 3.0973
− 3.0973 5.1887

]

[C] =
[

8 − 2
− 2 3

]

Poles λr 0 + 39.2756i 
0 + 58.7999i 

− 0.5106 + 39.2723i 
− 1.9933 + 58.7661i 

− 0.5099 + 39.2797i 
− 1.9901 + 58.7550i 

Natural frequencies ωr (rd/s) 39.2756 
58.7999 

39.2756 
58.7999 

39.2830 
58.7887 

Damping ratios ζr 0 
0 

0.0130 
0.0339 

0.0130 
0.0339 

Natural frequencies ωdr (rd/s) 39.2756 
58.7999 

39.2723 
58.7661 

39.2797 
58.7550  
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In general damped models, the modal mass is complex, and its interpretation is difficult. In this paper, the structural dynamic 
modification theory (SDM) has been used to give an engineering interpretation of this modal parameter. The general damped model 
has been considered a perturbation of the corresponding un-damped model. It has been demonstrated that the complex modal mass can 
be considered a linear combination of the modal masses of the un-damped model. Moreover, the natural frequencies, the parameter ar 
and the poles of the general damped systems can also be expressed as linear combination of the corresponding un-damped modal 
parameters. 

In [13,14] the concept of length of continuous and discrete mode shapes was defined for un-damped models. In this paper, this 
concept has been extended to the complex modes case. 

Fig. 2. Damping ratios of the proportional and general damped models.  

Fig. 3. Natural frequencies of the system for proportional and general damped models.  
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Fig. 4. Damped natural frequencies of the system for proportional and general damped models.  

Fig. 5. Real part of the complex modal masses..mr  

M.A. López and R. Brincker                                                                                                                                                                                         



Mechanical Systems and Signal Processing 200 (2023) 110621

12

A new and better definition of the modal mass in general damped models, which is physically meaningful and does not depend on 
the number of DOF’s consider to discretize the model, has been formulated. It is demonstrated that if the mass density of the system is 
constant, the modal mass is always equal to the product between the total mass of the structure and the magnitude of the length 
squared, but with a phase to introduce a complex number. 

If the mass density is not constant, the concept of apparent mass is proposed, and the modal mass is always equal to the product 
between the apparent mass and the magnitude of the complex length squared. 
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