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Since its first definition, back in 1990, the Electron Localization Function (ELF) has settled as one of the most com-
monly employed techniques to characterize the nature of the chemical bond in real space. Although most of the work
using the ELF has been focused on the study of ground-state chemical reactivity, a growing interest has blossomed
to apply these techniques to the nearly unexplored realm of excited states and photochemistry. Since accurate excited
electronic states usually require to account appropriately for electron correlation, the standard single-determinant ELF
formulation cannot be blindly applied to them, and it is necessary to turn to correlated ELF descriptions based on the
two-particle density matrix (2-PDM). The latter require costly wavefunction approaches, unaffordable for most of the
systems of current photochemical interest. Here, we compare exact, 2-PDM-based ELF results with those of approx-
imate 2-PDM reconstructions taken from Reduced Density Matrix Functional Theory (RDMFT). Our approach is put
to the test in a wide variety of representative scenarios, such as those provided by the lowest-lying excited electronic
states of simple diatomic and polyatomic molecules. Altogether, our results suggest that even approximate 2-PDMs are
able to accurately reproduce, on a general basis, the topological and statistical features of the ELF scalar field, paving
the way toward the application of cost-effective methodologies, such as TD-HF or TD-DFT, in the accurate description
of the chemical bonding in excited states of photochemical relevance.

I. INTRODUCTION

The molecular structure hypothesis, supplemented with the
chemical bond noumenon, constitutes one of the foundational
paradigms of the Chemical Sciences. In modern parlance,
matter is typically described in terms of a collection of in-
teracting particles held together by either classical chemical
bonds or by considerably weaker non-covalent interactions
(NCI), while chemical reactivity is understood as the evolu-
tion and transformation of their spatial arrangement and con-
nectivity. In a first approximation, chemists simply evolve
3D-embedded undirected graphs, so that if the building blocks
of matter, the atoms, are identified with the vertices of the
graphs, so are the basic entities of chemical structure be as-
sociated with the edges, or bonds. It is astonishing how ex-
perimental evidence led chemists to such a topological pic-
ture well before the discovery of the electron1, the elucida-
tion of the basic structure of atoms2, or the first quantum
mechanical rationalization of their stability.3 Within a few
decades, the cubical atom of paired electrons proposed by
G. N. Lewis4 and the Valence Shell Electron Pair Repulsion
(VSEPR) model of Gillespie5 resulted in a division of the
molecular space (R3) into bonding/lone pair domains that ex-
clude the presence of other pairs due to the Pauli exclusion
principle. With a few exceptions,6 these simple principles are
extremely successful at explaining the structure and bonding
of ground state molecules, to the point that they can be easily

taught to fresh students. From the standpoint of Physics, and
under the Born-Oppenheimer approximation7, the structure of
a molecule arises from the Coulombic interaction among its
electrons in the electric field induced by clamped nuclei. Al-
though electronic energies can be accurately estimated from
approximate solutions of the Schrödinger equation, the large
dimensionality and complexity of wavefunctions, which exist
in a HN Hilbert space, make it extremely difficult to transi-
tion from a physical description to the chemical objects just
described. Furthermore, the chemical bond lacks a properly
defined Dirac operator, and it is thus not an observable in
quantum mechanics. Despite these inconveniences, the field
of Quantum Chemical Topology (QCT)8 has been very suc-
cessful in linking quantum mechanics with a canonical inter-
pretation of the chemical bond and molecular structure. QCT
focuses on the topological analysis of scalar fields (built from
wavefunctions) in R3. For instance, the topological analysis
of the electron density, ρ(r), which constitutes the basis of the
Quantum Theory of Atoms in Molecules (QTAIM)9, provides
a standalone definition of atoms in molecules and their inter-
connections. A complementary partitioning of the space in
terms of localized electron pairs can be conveniently achieved
by means of the Electron Localization Function (ELF)10–15.
In this way, a chemically appealing representation and analy-
sis of the electronic structure of molecules becomes available,
allowing for an intuitive rationalization of computed wave-
functions in terms of the classical Lewis and VSEPR models
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of the covalent or ionic bonds together with the remaining lone
electron pairs.

The ELF was introduced in 1990 by Becke and Edge-
combe, initially for single-determinant Hartree-Fock (HF)
wavefunctions.10 Later, Savin showed that this original oper-
ational definition also held in ground state density functional
theory (DFT).11 Since then, the ELF has been shown to ad-
mit several complementary interpretations,16–18 among which
two stand out for our purposes.

According to the first one, large ELF values indicate regions
in space where the probability of finding a localized pair of
electrons is particularly high. This result arises naturally from
the original definition of the ELF, η(r),

η(r) =
(

1+(
D(r)
D0(r)

)2
)−1

, (1)

Here, D(r) is the curvature of the conditional probability
density, Pσσ (r), to find an electron of spin σ at a spher-
ically averaged distance s around a point r where another
same-spin electron is known to lie. Given that Pσσ (r,s) =
πσσ (r,s)/ρσ (r), where πσσ and ρσ are the same-spin two-
particle density matrix (2-PDM) and the σ spin component of
the electron density, respectively,

D(r) =
1
2

∇
2
s Pσσ (r,r+ s)

∣∣∣∣
s=0

=(
∑

σ

i |∇ψi (r)|2−
1
4
|∇ρσ (r)|2

ρσ (r)

)
(2)

where the right-hand side shows an expansion of D in terms of
the occupied molecular orbitals (with spin σ ) of a HF wave-
function, ψi. D0 is the value of D as computed for a non-
interacting homogeneous electron gas, and makes ELF dimen-
sionless and density independent. Hence, in those regions
where the probability of finding two same-spin electrons is
small (D(r) small), the opposite-spin probability will be large
and so will be the ELF values.

A second relevant interpretation of ELF uses the kinetic en-
ergy of the electrons, and starts by identifying the first term
of D(r) as half the positive-definite kinetic energy density of
a system with mean-field-interacting electrons, while noticing
that the second is half the kinetic energy density of a system
of bosons with the same density. D is thus measuring the ex-
cess kinetic energy density of a ferminonic system with re-
spect to a bosonic one as a result of Pauli’s principle,11,13 so
that large D values are to be associated with regions where
electrons will not localize and vice versa. This kinetic inter-
pretation is crucial in density functional theory (DFT), as it
allows to use Kohn-Sham (KS) orbitals in Eq. 2 even though
the original derivation held only for an HF wavefunction. We
note in passing that the ELF also admits another interpretation
in terms of the monoelectronic character of the wavefunction,
since for a single-electron system D(r) is null and the ELF is
maximal (η = 1) at all points. In a many-electron scenario
the ELF peaks locally in regions where the wavefunction has
a strong monoelectronic character. This feature is especially
useful to characterize Rydberg states, in which an electron is

weakly bound to the molecular frame. The large value of ELF
in monoelectronic regions has been used, for instance, in the
development of the SCAN functional by Perdew.19

No matter which of the aforementioned interpretations is
used, the role that QCT descriptors, such as the ELF, have
played in the study of chemical bonding and the electronic
structure of molecules and solids is undeniable. However,
most of the work done in the context of QCT has been devoted
to the characterization of ground-state systems, and only mod-
erate attention has emerged in recent years on extending these
efforts to the photochemistry realm, with the aim of shin-
ing light on the changes undergone by chemical bonds upon
electronic excitation20–34. The importance of this extension
is further motivated by the overwhelming abundance of new
phenomena taking place in excited states such as in the pho-
todissociation35 and photoisomerization36 of a large number
of molecules. Additionally, electronic excitation allows for
a wide range of ground-state-forbidden chemical transforma-
tions to take place, such as cyclizations37, isomerizations38,
proton transfer reactions39 or even electron rearrangements,40

to name just a few possibilities that are opening the way to a
whole new spectrum of chemical reactions. Also, the limited
vibrational phenomena found in ground states are typically re-
placed by a much richer adiabatic and non-adiabatic dynamics
in excited states. As a result of this variety, photochemistry
is nowadays an exciting field with technologically important
outcomes that range from solar cell manufacturing41 to sur-
face chemistry,42 chemical sensing43, or self-cleaning materi-
als44 applications. Recently, excited state chemistry has even
been coupled to quantum electrodynamics (QED) when elec-
trons are explicitly coupled to the photon field.45 Taking all
of the above into account, it becomes evident that the devel-
opment of theoretical tools as well as efficient algorithms to
characterize the chemical bond in excited states is of utmost
importance.

At first glance, one might be tempted to use the original
formulation of the ELF to study this and related chemical
phenomena. Unfortunately, and despite its intuitive and ra-
tional derivation, the single-determinant origin of the 2-PDM
appearing in Eq. 2 prevents electronic correlation effects from
being effectively taken into account. This is particularly in-
convenient, as electron correlation is known to play a funda-
mental role in the understanding of a rich variety of chemi-
cal phenomena , particularly in excited states.46,47 In this pa-
per, we examine to what extent the introduction of correlation
effects through the explicit consideration of the 2-PDM af-
fects the ELF, paying particular attention to the accuracy of
approximate reconstructions of the two-particle density that
can be used in the case of DFT derived wavefunctions. Our
results show that it is feasible to get accurate descriptions of
the chemical bonding in excited states from these approximate
ELF expressions, that are put to the test in a wide variety of
scenarios, in a number of test-bed excited electronic states of
simple well-known molecules of different size, such as wa-
ter or benzene. The paper is organized as follows: first, a
brief overview of the theoretical background of the ELF kernel
along with the reconstruction of 2-PDM in terms on natural
orbitals and occupation numbers is presented. Then, in a set



3

of different molecules and excited states we assess the effect
of including electron correlation in the ELF calculation using
a CASSCF wavefunctions and several reconstructions of the
2-PDM coming from TD-DFT and TD-HF calculations. The
final section gathers the conclusions that can be drawn from
our work.

II. THEORETICAL METHODS

Research on correlation effects in ELF is scarce and re-
quires avoiding the use of single-determinant expansions and,
in some cases, preventing normalization to the homogeneous
electron gas (HEG). For instance, Dobson and Silvi48–50 de-
rived the ELF from local integration of the conditional pair
density. More recently, Matito et al.51 showed that Dobson’s
and Savin’s results were in fact equivalent and that the ELF in
a correlated scenario could be obtained from

D(r)
DHEG(r)

=
∇2

s πββ (r,r+ s)|s=0 +∇2
s παα(r,r+ s)|s=0

2cF ρ8/3(r)
. (3)

The above expression is obviously invariant under orbital
transformations, independent on the electronic state of the
system and applicable to any wavefunction, either single- or
multi-determinant. In this way, Eq. 3 can be used for both
ground and excited states, including electron correlation or
not. Under this more general approach, all that is necessary is
an expression for the 2-PDM, πσσ , of the electronic state un-
der investigation. As an example, one can reconstruct an ap-
proximate 2-PDM from a time-dependent density functional
theory (TD-DFT) calculation in terms of the natural orbitals
(NO),

{
φ
(k)
i

}
, and occupations numbers, ni, of the corre-

sponding TD-DFT density matrix, as:

π
σσ

(k) (~r1,~r2) = ∑
i∈σ

∑
j∈σ

nin j

(
φ
(k∗)
i (~r1)φ

(k∗)
j (~r2)φ

(k)
i (~r1)φ

(k)
j (~r2)−φ

(k∗)
i (~r1)φ

(k∗)
j (~r2)φ

(k)
j (~r1)φ

(k)
i (~r2)

)
. (4)

Indeed, using such a simple procedure, some of us have suc-
cessfully studied the proton transfer of salicylidene methy-
lamine in the excited state.31 By replacing Eq. 4 in Eq. 3 one
arrives to the uncorrelated ELF for excited states proposed by
Maulen et al.31

η
(k)(~r) =

1

1+

∑
σ
i ni|∇φ

(k)
i (~r)|2− 1

4
|∇ρσ ,(k)(~r)|2

ρσ ,(k)(~r)

3
5 6π2ρσ ,(k)(~r)

5/3

2 , (5)

which has been used by Guerra et al.34 to reinterpret archety-
pal chemical reactions in excited states and by some of us to
guide the rational design of bio-markers52. The reconstruc-
tion of the 2-PDM in terms of NOs to compute the ELF in
the ground state has been attempted before. Matito et al.53

showed that an HF-like reconstruction (Eq. 4) is exception-
ally accurate at recovering the correlated topology of ELF in
molecules with low to medium static correlation. Contrar-
ily, statistical properties depending on the 2-PDM, such as
the fluctuation of the ELF basin populations or the inter-basin
ELF covariances, seemed to be particularly more sensitive to
the quality of 2-PDM.53

Correlation effects are expected to be more important in
excited than in ground states. This becomes especially pro-
nounced in the case of high-energy excitations, where the en-
ergy gap between neighboring states decreases with the ex-
citation energy, thus increasing the impact of static correla-
tion. In the conventional excited state calculations frame-
work, static correlation is often accounted for via multiref-
erence methods, such as CASSCF, from which the 2-PDM

can be extracted exactly. Unfortunately, these are compu-
tationally demanding and cannot be routinely employed to
study the complex systems of state-of-the-art chemical re-
search, such as dyes. Instead, a reasonably accurate treatment
of the excited states of systems of medium to large size can be
achieved with the aid of Time-Dependent Density Functional
Theory (TD-DFT). Actually, TD-DFT has settled as one of
the most commonly applied methodologies to study the pho-
tochemistry of molecules with up to hundreds of atoms. Un-
fortunately, TD-DFT, as DFT itself, lacks any true 2-PDM,
raising the need of approximately reconstructing it in terms
of the 1-PDM NOs and their corresponding occupation num-
bers. Albeit this not possible in an exact way, quantum me-
chanics establishes certain rules that must be fulfilled and that
help us in such an enterprise. Some examples include the N-
representability54 condition, the so-called sum rule, (Eq. 9)
as well as some characteristic (a)symmetries that ensure the
physical rigor of the 2-PDM.55,56 Relying on these, the Re-
duced Density Matrix Functional theory (RDMFT) has pro-
vided over the years a wealth of approximate reconstructions
of the 2-PDM. RDMFT is grounded on Gilbert’s theorem,57

which establishes, in analogy to the Hohenberg-Kohn theo-
rem54, that there is a one to one mapping between the first
order reduced density matrix, 1-RDM, and the ground state
energy and wavefunction.

Most of the 2-PDM reconstruction models that have been
proposed within RDMT can be put in a common frame-
work if we write the 2-PDM in the basis of NO products
φ
(k)∗
i (~r1)φ

(k)∗
j (~r2)φ

(k)
k (~r1)φ

(k)
l (~r2). In this (particle-hole) ba-
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sis, the HF reconstruction of the 2-PDM is simply

Πi jkl = nin jδikδ jl−nin jδilδ jk, (6)

where the first term is the "direct" part while the second, or
"exchange" one, comes from antisymmetry. Taking this into
account, more general expressions that will capture Coulomb
correlation effects are usually written as

Πi jkl = f (ni,n j)δikδ jl−g(ni,n j)δilδ jk, (7)

where f (nσ
i ,n

σ
j ) and g(nσ

i ,n
σ
j ) are functions of the previous

occupation numbers, which are usually chosen so as to incor-
porate as much electron correlation as possible at the expense
of lifting some of the exact conditions that the 2-PDM must
fulfill. In this regard, it has been argued51,53 that preserving
both the Pauli principle and the sum rules of the 2-PDM are
musts when it comes to computing and analyzing the topolog-
ical features of the ELF field. Thus, we should ensure, first,
that

π
σσ

(k) (~r1,~r1) = 0, (8)

so that the local fermionic kinetic energy excess sensed by the
ELF is accurately modeled. However, as we shall see, viola-
tion of this condition has no major consequences in practice.
Similarly, the sum rule ensuring that the 2-PDM integrates to
the exact number of same-spin electron pairs∫ ∫

π
σσ

(k) (~r1,~r2)d~r1d~r2 = Nσ (Nσ −1), (9)

is expected to play a significant role in the topological analysis
of any gradient field, since it behaves as a scale factor. For
instance, the covariance between the population of two non-
overlapping basins Ω1 and Ω2 involves integrations of the 2-
PDM,

cov(Ω1,Ω2) =
∫

Ω1

∫
Ω2

(π(k)(~r1,~r2)−ρk(~r1)ρk(~r2))d~r1d~r2,

(10)
and violation of the sum rule leads to improperly behaving
covariances.

Either following or not the aforementioned rules, a lot of
work has been devoted over the years to derive suitable func-
tional forms for the kernel of Eq. 7. In this context, several no-
toriously successful and well-known approaches can be high-
lighted including the Buijse-Baerends approach(BB)58,59; the
Goedecker-Umrigar (GU)60 and BBC261 functionals, devel-
oped to correct for the self-interaction and overbinding er-
rors inherent to the BB functional; the Csanyi-Arias (CA)62

and Csanyi-Goedecker-Arias (CGA)63 functionals, based on
tensor product expansions of the 2-PDM; or the empirical
Marques-Lathiotakis (ML)64 and Marques-Lathiotakis-self-
interaction-corrected (MLSIC)64 functionals, written as Pade
approximants, to name a few. Explicit expressions of the
terms f (ni,n j) and g(ni,n j) (Eq. 7) for these functionals can
be found in Table I. Further details can be found in Section F
of the SI.

III. COMPUTATIONAL DETAILS

All calculations were performed in the gas phase with-
out any relativistic corrections, at different levels of theory.
Molecular geometries were optimized in the ground state at
the DFT level of theory, with the range-separated ω-B97XD
functional65 in combination with the def2-TZVP basis set66.
Such a range-separated functional, including long-range dis-
persion corrections, was selected on the basis of its suitability
for calculating electronic excitations with TD-DFT. Geome-
try optimizations were performed with the aid of the Gaus-
sian1667 quantum chemistry package. Moreover, all the sta-
tionary points found were verified to be true minima on their
potential energy surfaces through conventional harmonic cal-
culations. ELF calculations in the excited states were done
with an in-house modified version of the TopMod code68 that
allows reading both NOs as well as 2-PDMs. For CASSCF
wavefunctions, the 2-PDM is built from the CI expansion in
the basis of canonical molecular orbitals55 and the ELF is
computed with Eq 3. In TD-DFT there is no wavefunction
of the excited state but only its 1-RDM. Once the 1-RDM
is transformed into its NO’s representation through diagonal-
ization, Eq. 7 is used to reconstruct the 2-PDM with all the
functionals described in Table I. Similarly to CASSCF, Eq 3
is used to compute the TD-DFT ELF. It is very important to
make it clear that, given a 2-PDM reconstruction, Eqs. 3 and
5 are not equivalent. Instead, they become only coincident in
the particular case of HF reconstruction.

CASSCF’s wavefunctions of excited states were computed
employing an even state-average optimization of orbitals.
Namely, when n electronic states with adequate symmetry
contribute to the state they were given equal 1/n weights. It
is important to clarify here that it is not our intention to cal-
culate excited states with extreme precision but to investigate
how adequate the 2-PDM reconstructions used to calculate the
ELF are under the TD-DFT formalism. Ideally, one should
use full CI 2-PDM as a reference, but this cannot be afforded
with the triple-Z basis (def2-TZVP) needed to correctly de-
scribe excited states with TD-DFT. Hence, we followed this
strategy: i) A full-CI was performed with a small basis set
(def2-SV(P) without d functions), ii) then an active space was
crafted such that it remained as small as possible but suffi-
ciently close to the full-CI ELF (see Figures SI 2 and SI 3
in SI), and iii) a slightly larger active space was used in the
calculations with the larger basis set.

When large basis sets are used in TD-DFT, it is usual for
the natural orbitals corresponding to the highest KS orbitals
to have slightly negative occupation numbers (ON). Indeed,
Gordon et al.69 have noted that the occurrence of such neg-
ative ON is indicative of the need for a multireference treat-
ment. Negative ON results in non-N-representable 1-RDMs.
Although there are methods to restore the N-representability
by projecting the 1-RDM to the N-representable space70, we
opted for empirical alternatives: either neglect those orbitals
or consider the absolute value of their occupation numbers.
We have examined both possibilities and found that the first
option is the one that brings the TD-DFT results closer to
the CASSCF benchmarks (see section B in SI). Therefore,
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Approximation Constrains
f (ni,n j) g(ni,n j) Antisymmetry Sum Rule

HF nin j nin j X ×
BB nin j

√nin j × X

BBC2 nin j


nin j j 6= i and SOcc.
−√nin j j 6= i andWOcc√nin j otherwise

× ×

GU nin j(1−δi j)
√nin j(1−δi j) × ×

CGA nin j 1/2(nin j +
√

ni(2−n j)n j(2−n j)) × ×
ML nin j nin j ∗

a+bnin j
1+cnin j

× ×
MLSIC nin j(1−δi j) nin j ∗

a+bnin j
1+cnin j

(1−δi j) × ×

TABLE I. Summary of the pair density reconstructions used in this work. f and g correspond to the functions in Eq 7. The last two columns
indicate whether or not the reconstruction strictly preserves the antisymmetry condition and the sum rule.SOcc and WOcc refers to strongly
(φi, i≤ N/2) and weakly (φ j, j > N/2) occupied naturals orbitals, respectively.

in all our results, the first strategy has been the methodology
of choice, unless otherwise specified. Note that neglecting
negative ON is actually very close to already proposed ap-
proaches for making 2-RDM approximately N-representable,
as introduced by Ayers et al.71. N-representability of density
matrices is certainly a key condition for accurate electronic
structure methods based on it. On the other hand, for de-
scriptive tools such as the ELF, we expect that correcting the
N-representability would almost certainly not change the de-
scription of the system.

IV. RESULTS AND DISCUSSION

As the main purpose of this work is to explore the reliabil-
ity of the computation of the ELF in excited states with meth-
ods lacking exact 2-PDM matrices, we have selected a set of
molecules and electronic states that are prone to undergo sig-
nificant changes in their bonding pattern upon excitation. We
will thus study the archetypal molecules of hydrogen fluoride
(HF), water (H2O), and benzene (C6H6) in their first or sec-
ond lowest-lying excited states. With the exception of ben-
zene, tehese states are expected to have a least partial diffuse
(Rydberg-like) character. Table II summarizes some basic in-
formation about the excitations considered in this work.

A. Hydrogen Fluoride

The X1Σ+ ground state of HF is a singlet dominated by the
(σ2s)

2(σ2p)
2(π2p)

2(π2p)
2 valence MOs configuration. On the

other hand, the A1Π+ first excited state is a 2-fold spatially
degenerate state arising from a π2p → σ∗2p single-electron
promotion. We do not expect CASSCF to have "chemical
accuracy" for the states studied here. However, comparing
CASSCF excitation energy (9.93 eV ) with an experimental
value72 (10.35 eV ) gives us confidence that we chose the cor-
rect active space. Similar results are obtained with TD-DFT
and TD-HF approaches, with excitation energies of 10.47 and
11.86 eV , respectively. Moreover, in TD-DFT the single-

Molecule State Eexc
calc (eV) Eexc

exp (eV) Symmetry Transition
HF (vert.) 1 9.93 10.35 X1Σ+→ A1Π+ [H→L]

HF 2 15.21 13.00-16.00 X1Σ+→ B1Σ+ [H-1→L]
HF (adiab.) 2 6.93 – X1Σ+→ B1Σ+ [H-1→L]

H2O 1 7.60 7.40 1A1→ 1B1 [H→L]
C6H6 1 5.21 4.72 1A1g→ 1B2u [H→L]

TABLE II. Lowest lying excited states of the HF, H2O, and C6H6
molecules studied in this work. Both the CASSCF estimated excita-
tion, Eexc

calc, and the experimentally determined excitation, Eexc
exp, ener-

gies are reported in eV. Term symbols/symmetry of the ground and
excited states as well as Kohn-Sham orbitals involved in the tran-
sitions are also shown. Experimental data was taken from the lit-
erature72–76. The labels H and L are used to refer to the HOMO
and LUMO frontier orbitals, respectively. In HF, both the vertical
(Franck-Condon) and adiabatic excitations are shown.

electron transition that contributes the most to the excita-
tion is π2p → σ∗2p. The same is true for TD-HF, although a
small contribution from the π2p → σ∗2s promotion is also ob-
served in this case. The A1Π+ dissociates to the ground state
F(2P)+H(2S).

In order to understand correctly the ELF changes underly-
ing the X1Σ+→ A1Π+ excitation, it is convenient to discuss
first the basic features of the ELF field in the ground state.
It shows three basins: an F core (C(F)) with a population ap-
proximately equal to 2 electrons, a valence basin of the F atom
(V (F)), with 6.4 electrons, and an additional basin attributed
to the H-F bond (V (H,F)), that bears a total of 1.5 electrons
(See Figure 1). These last two basins roughly reconstruct the
8 valence shell electrons of the system. The ELF picture thus
corresponds to what is expected for a high polarity molecule,
arising from the large electronegativity difference between its
constituting atoms.

In the Franck-Condon (FC) A1Π+ state, the ELF exhibits an
additional valence basin which was absent in the correspond-
ing basal state (See Figure 2). As we will see, this newly
formed basin can be attributed to a fuzzy valence of the H
atom which emerges in response to the electron promotion.
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FIG. 1. Profile of the electron localization function (ELF) on
the internuclear axis (red), and 1.1Å above of the internuclear
axis (orange) in hydrogen fluoride molecule computed with ω-
b97xd/def2tzvp in the ground state (X1Σ+). The inset shows the line
along which the ELF has been plot and a ELF = 0.83 isosurface. F
and H are depicted as red and light-gray points in the inset. Positions
of F and H are marked with light-gray triangle next to the position
axis. Vertical dashed lines indicate the position of basins separatrix.

Furthermore, although the C(F) basin remains nearly
unmodified, the electronic excitation promotes significant
changes in the topology and electron count of the remain-
ing ELF valence basins. For instance, whereas the popula-
tion of the V(F) barely changes, the V(H,F) bond basin un-
dergoes a noticeable decrease in its population in favor of the
newly formed hydrogen "valence" basin V(H). Globally, the
image of the bond pattern provided by the ELF in the FC
geometry of the A1Π+ state corresponds to a weakening of
the H-F bond coupled to a concomitant localization of a Ry-
dberg electron close to the hydrogen atom. This is consistent
with previous studies which have attributed a strong Rydberg
character72–74,77 to this state. As anticipated in the introduc-
tion, the ELF is particularly useful to uncover monoelectronic
regions of the wavefunction.

After discussing the general changes induced in the ELF
upon the excitation of the system, it is worth exploring how
these results change with the level of theory and the accu-
racy in the reconstruction of the approximate 2-PDM. We will
use CASSCF with the largest active space as reference val-
ues. ELF computed with a smaller active space serves to il-
lustrate the importance of including some dynamic correla-
tion.Comparisons with ELF computed with a smaller active
space serves to illustrate the importance of the amount of cor-
relation included. Fig. 2 shows profiles of the ELF of the HF
molecule along the molecular axis. One can see that in the
neighborhood of the F atom, the ELF calculated with all the
RDMFT reconstructions are quite similar. The main differ-
ences between the TD-DFT and CAS ELF’s are in the vicin-
ity of the separatrix between the V(H,F) and V(H) basins as
well as in the V(H) basin, for which any of the RDMFT ap-
proaches tend to underestimate the ELF. All RDMFT recon-
structions are marginally closer to the CAS with the largest ac-
tive space. Note that a large value of the ELF in the separatrix
of two basins leads to less defined critical points of the scalar

field, something which is commonly referred to as a less per-
sistent topology78,79. Chemically, this can be interpreted as a
decrease in the electronic localization of the system (i.e., these
maxima are less “significant” to identify localization regions).
This is, moreover, consistent with a large underestimation, by
all reconstructions, of the population variance of V(H) (see
Table III).

We will use CASSCF with the largest active space as refer-
ence values. ELF computed with a smaller active space serves
to illustrate the importance of including dynamic correlation.
As this is readily included in TD-DFT, the TD-DFT ELF is
closer to CASSCF with the largest active space

FIG. 2. Profile of the electron localization function (ELF) along the
internuclear axis in the first excited state (A1Π+) of the HF molecule
as computed with CASSCF and several reconstructions of the 2-
PDM at the TD-DFT level (see Table I). The inset shows the line
along which the ELF has been plotted as well as an ELF isosurface
with an isovalue of 0.83. F and H are depicted as red and light-
gray points, respectively. The positions of F and H are marked with
light-gray triangles. Vertical dashed lines indicate the location of the
separatrices between the basins.

Since the Π states do not have axial symmetry, neither does
the ELF. With the aim of characterizing this lack of symmetry,
we decided to analyze the evolution of the ELF out of the in-
ternuclear region, and more specifically by setting a 1 au (0.53
Å) offset with respect to the molecular axis (see Figure 3). The
results show that in the yz plane the TD-DFT reconstructions
are qualitatively and quantitatively equivalent to the CAS val-
ues, whereas in the xz plane, the former significantly underes-
timate the ELF, especially as far as the V(F) and V(H,F) basins
are regarded. Up to this point, it can be concluded that in the
A1Π+ state of the HF molecule all 2-PDM approximate TD-
DFT reconstructions are equally satisfactory in recovering the
correct topology of the ELF. However, from Figures 2 and 3
it is clear that the largest deviations from the CAS references
are found for the GU, CGA, BB, and BBC2 functionals.

Besides the straightforward analysis of the ELF values on
their own, quite relevant chemical information (aromaticity,
reactivity, etc.) can also be extracted from the analysis of
basin population statistics. As can be seen from Table III,
which summarizes the population and variance of the basins,
all approaches underestimate the variance of the population
of the Rydberg basin V(H), with the exception of the GU,
ML and MLSIC functionals. Notably, the HF reconstruction
incorrectly predicts that the Rydberg electron is completely
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A1Π+ State (FC)
Basins CAS(4,6) CAS(4,12) TDHF HF BB BBC2 GU CGA ML MLSIC
C(F) 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
σ2 0.36 0.36 0.37 0.37 0.38 0.38 0.38 0.38 0.38 0.38

V(F) 6.2 6.2 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7
σ2 1.04 1.06 0.52 0.52 0.68 0.68 1.11 0.68 1.08 1.15

V(H,F) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
σ2 0.28 0.29 0.28 0.28 0.27 0.27 0.27 0.27 0.28 0.29

V(H) 1.4 1.3 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
σ2 0.49 0.49 0.00 0.00 0.25 0.25 0.54 0.25 0.50 0.55

B1Σ+ State (FC)
Basins CAS(2,4) CAS(6,17) TDHF HF BB BBC2 GU CGA ML MLSIC
C(F) 2.1 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2
σ2 0.37 0.36 0.38 0.39 0.39 0.39 0.39 0.39 0.39 0.39

V(F) 6.6 6.6 6.8 6.7 6.9 6.9 6.9 6.9 6.9 6.9
σ2 0.91 0.96 0.36 0.48 0.67 0.67 0.99 0.68 1.03 1.07

V(H,F) 0.4 0.1 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.1
σ2 0.35 0.08 0.19 0.26 0.14 0.14 0.14 0.14 0.15 0.13

V(H) 0.8 1.2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
σ2 0.55 0.46 0.04 0.04 0.23 0.23 0.42 0.23 0.49 0.52

A1Σ+ State (Adiabatic)
Basins CAS(2,4) CAS(2,13) TDHF HF BB BBC2 GU CGA ML MLSIC
C(F) 2.1 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2
σ2 0.38 0.38 0.37 0.38 0.38 0.38 0.38 0.38 0.38 0.38

V(F) 7.5 7.5 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3
σ2 0.85 0.85 0.16 0.25 0.51 0.51 0.77 0.52 0.81 0.86

V(H) 0.4 0.4 0.6 0.6 0.6 0.5 0.6 0.6 0.6 0.6
σ2 0.28 0.28 -0.13 -0.05 0.15 0.20 0.34 0.15 0.36 0.43

TABLE III. Population and variance (σ ) of the population of the ELF basins of the hydrogen fluoride molecule in the A1Π+ (FC) and B1Σ+

(Franck-Condon and adiabatic) excited states.

uncorrelated from the rest of the molecule, as manifested by
the null values of the variance. Since a wavefunction without
dynamic correlation, such as TD-HF, yields the same result,
it is plausible to attribute this shortcoming of the HF recon-
struction to its inability to capture dynamic correlation. These
findings are not exclusive to such a basin. Similar results are
observed for the fluorine valence basin V(F). This indicates
that the reconstructions are more effective in capturing the
ELF topology than the correlations between electron pairs.

We move now on to the next excited state, B1Σ+, which is
usually classified as a nσ2p → σ∗2p single-electron transition.
This state is characterized by a moderately large excitation
energy. Experiments narrows this excitation down to a band
within 13 to 16 eV .73,74 The CAS(6,17) value is 15.21 eV ,
while TD-DFT and TD-HF are 15.94 and 14.73 eV , respec-
tively. In TD-DFT, the single-electron transition that con-
tributes the most to the excited state is σ2p → σ∗2p. B1Σ+ is
a bound state to which a strong ionic character is attributed
in its equilibrium geometry74. Therefore, and for the sake of
completeness, here we will study its ELF at both the FC and
the equilibrium geometry.

Figs. 4 and 5 summarize our results. At both geometries we
appreciate a clear tendency for the RDMFT reconstructions to
underestimate the ELF, especially in the valence region of F
and in the V(H,F) bond region in the FC geometry, a result
which seems rather general to any of the functionals here ex-

plored. The non-negligible population (0.4 e) of the V(H,F)
basin in the FC geometry suggests that in that state the bond
retains its covalency up to a certain extent. Additionally, the
appearance of a valence V(H) basin behind the H atoms evi-
dences, once again, the strong Rydberg-like character of such
an excitation. Considerably different trends can be found at
the equilibrium geometry: there is no V(H,F) bond basin at
all and the ELF around the fluorine atom is nearly indistin-
guishable from that of the free atom. On the other hand, a
fraction of an electron (0.4 e) surrounds the nucleus of H. All
this points out to a strong increase in the ionic character of
the bond upon excitation which agrees with experimental and
computational evidence74. Finally, when it comes to popula-
tion fluctuations of the actual ELF basins of the B1Σ+ state,
the picture is similar to that found for the A1Π state. From Ta-
ble III one can draw a general conclusion for Hydrogen Fluo-
ride: TD-DFT reconstructions of the 2-PDM tend to underes-
timate the variance, becoming less accurate as the fluctuation
increases. It can also be concluded that the GU, ML, and ML-
SIC RDMFTs are those achieving the variances resembling
the CASSSF results the most. The reader will also notice that
in the case of the equilibrium geometry, the Hartree-Fock re-
construction (both in the TD-DFT and TD-HF cases) leads
to non-physical negative variances for the V(H) basin. This
negative result can be rationalized in terms of the presence of
natural orbitals with small negative occupancy. We think that
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FIG. 3. Profiles of the electron localization function (ELF) com-
puted 1 au (0.53Å) away from the internuclear axis in the first ex-
cited state (A1Π+) of the hydrogen fluoride molecule as computed
with CASSCF and several reconstructions of the 2 particle-reduced-
density-matrix (see Table I). The up/down plots correspond to the
ELF in the xz and yz planes, respectively. The insets show the line
along which the ELF has been plotted and a ELF= 0.83 isosurface,
with F and H being depicted as red and light-gray points. The posi-
tions of F and H are marked with light-gray triangles. Vertical dashed
lines indicate the location of the separatrices between the basins.

FIG. 4. Profile of the electron localization function (ELF) along the
internuclear axis in the Franck-Condon geometry of the second ex-
cited state, B1Σ+, of the hydrogen fluoride molecule, as computed
with CASSCF and several reconstructions of the 2 particle-reduced-
density-matrix (see Table I). The inset shows the line along which
the ELF has been plotted and a ELF = 0.77 isosurface. F and H are
depicted as red and light-gray points in the inset. Positions of F and
H are marked with light-gray triangles. Vertical dashed lines indicate
the position of the separatrices between the ELF basins.

the HF reconstruction is particularly sensitive to the violation
of the sum rule.

FIG. 5. Profile of the electron localization function (ELF) along
the internuclear axis at the equilibrium distance of the second ex-
cited state, B1Σ+, of the hydrogen fluoride molecule, as computed
with CASSCF and several reconstructions of the 2 particle-reduced-
density-matrix (see Table I). The inset shows the line along which
the ELF has been plotted and a ELF = 0.77 isosurface. F and H are
depicted as red and light-gray points in the inset. Positions of F and
H are marked with light-gray triangles. Vertical dashed lines indicate
the position of the separatrices between the ELF basins.

B. Polyatomic Molecules

Although the excited states of diatomic molecules present
a great diversity/complexity and are very well characterized,
routine photochemistry often deals with polyatomic systems.
In particular, the first excited state for each given multiplic-
ity is of great interest, since Kasha’s rule80 indicates that it
is from this state that most of the radiative deexcitations will
likely take place. Taking this into account, we have decided to
study the first FC excited of water and benzene. In both cases,
the CASSCF excitation energies (7.60 eV for H2O in its 1B1
state and 5.21 eV for 1B2u benzene) agree reasonably well
with experiments and other theoretical estimations75,76,81–85.

Fig. 6 shows the ELF profiles in the Franck-Condon ge-
ometry of the first excited state (1B1) of the water molecule.
Apart from the characteristic V(O,H) bond basins and the oxy-
gen non-bonding lone pairs, three valence basins arise in the
nearby vicinity of the H atoms, 2xV(H1) and V(H2). These
three basins add up to almost one electron, which corresponds
to a Rydberg state75 of an electron that has left the valence of
Oxygen. Furthermore, in this case the topology and statistical
properties of the ELF field for all the TD-DFT reconstruction
functionals agree well with the multireference calculations.
Actually, the main difference between the CAS and TD-DFT
results is found in the population (volume) of the V(H2) basin,
which has its attractor in the xz mirror plane (see Table IV).
All of the RDMFT reconstructions as well as the CAS result
using a minimum active space underestimate the population
and variance of this basin, something which could indicate
that it arises from a strong dynamic electron correlation.

We would like to finish our study considering benzene,
which is an epitome molecule in the study of how electron
localization and aromaticity change upon electronic excita-
tion. In the ground state, the unusual stability exhibited by
the C6H6 skeleton when compared to other π conjugated sys-
tems is often attributed to its aromaticity86, In a diametrically
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1B1 State (FC)
Basins CAS(2,4) CAS(2,17) TDHF HF BB BBC2 GU CGA ML MLSIC
C(O) 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
σ2 0.32 0.32 0.32 0.33 0.34 0.33 0.33 0.33 0.33 0.33

V(O) 2.9 2.9 2.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9
σ2 1.15 1.15 0.90 0.91 1.04 1.04 1.18 1.05 1.17 1.18

V(H,O) 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
σ2 0.88 0.88 0.88 0.87 0.90 0.90 0.92 0.90 0.92 0.92

V1(H) 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
σ2 0.29 0.29 0.23 0.22 0.28 0.28 0.33 0.28 0.33 0.36

V2(H) 0.2 0.2 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0
σ2 0.18 0.18 0.04 0.06 0.05 0.05 0.05 0.05 0.05 0.00

TABLE IV. ELF basin population and variance (σ ) for H2O in its first 1B1 excited state at the Franck-Condon geometry

Basin CAS(6,6) DFT CAS(6,10) HF BB GU ML
Ground Ground Excited BBC2 MLSIC

State State State CGA
C(C) 2.1 2.1 2.1 2.1 2.1 2.1 2.1
σ2 0.25 0.26 0.27 0.26 0.26 0.26 0.26

V(C,H) 2.1 2.1 2.2 2.2 2.2 2.2 2.2
σ2 0.62 0.65 0.67 0.66 0.68 0.68 0.69

V(C,C) 2.8 2.8 2.7 2.7 2.7 2.7 2.7
σ2 1.27 1.31 1.30 1.22 1.22 1.23 1.27

Cov[V(C1,C2),V(C2,C3)] -0.26 -0.27 -0.24 -0.24 -0.24 -0.23 -0.22

TABLE V. ELF basin population, variance (σ ) and covariance (between adjacent bond basins) of the benzene molecule in its ground and 1B2u
excited states. When results for different reconstructions are numerically equivalent, they are collected in a single column.

opposed way, reverse-Hückel87 and Baird88 rules classify the
first singlet 1B2u excited state (and also the first 3B1u triplet)
as antiaromatic83,88–90. The ELF of benzene in both states
has six equivalent V(C,C) bond basins. In the ground state,
the ELF computed at the DFT and CAS(6,6) levels of theory
agree very well with one another as far as the topology and
statistical properties of the basins are regarded (see Table V).
Upon excitation, CAS predicts very small changes in the pop-
ulations of the V(C,C) and V(C,H) basins, which decrease and
increase, respectively. Similarly, the variance of both basins
increases only marginally with excitation. From Table V, it
becomes clear that all RDMT approximations coincide quite
well with the CAS results, both in the population of the basins
and in their fluctuations. The only relevant difference is that,
with the exception of the ML and MLSIC RDMFTs, TD-DFT
results slightly underestimate the variance of the C-C bond
basin. Although σ and π separations91 of the ELF or delocal-
ization index analyses92,93 are usually better suited to quantify
aromaticity changes in general situations, the covariances of
the basin populations are sufficient to uncover them in this
simple case: a key element of planar aromatic compounds
is their ability to delocalize electrons along closed π-bonded
paths. That is, the less aromatic an electron state of benzene
becomes, the lower the expected electron fluctuation between
the V(C,C) basins will be. From the last row of Table V, it
is clear that the fluctuation between two neighboring basins
is smaller in the excited state than in the ground state. Such
a finding would be consistent with a potential decrease in the

aromaticity of the skeleton upon excitation, in agreement with
chemical intuition and the aforementioned aromaticity rules.
Note also that this change in the electron fluctuation is less
marked in all DFT reconstructions when compared to the CAS
results.

V. CONCLUSIONS

Current state-of-the-art chemical research relies on experi-
mental techniques that allow exquisite spatiotemporal control
of the interaction between radiation and matter. The grossest
effect of this interaction is the promotion of matter to elec-
tronically excited states in which a plethora of photochemi-
cal processes might take place. Since chemists think in terms
of isolated chemical bonds that form and break, there is no
doubt about the importance of having reliable theoretical and
computational tools to characterize the chemical bonding in
excited states. The ELF has proven to be a reliable tool for
this purpose in the ground state. Although it can be calcu-
lated for any method in which the 2-PDM is accessible (Eq. 3),
such as it is the case for multi-configurational methods of the
CASSCF type, the high computational cost associated to these
techniques severely limits the complexity of the systems and
processes that can be rigorously studied. In this work, we
show that fairly reasonable results can be achieved at the com-
putationally feasible TD-DFT level by approximately recon-
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FIG. 6. Profile of the electron localization function (ELF) along the
O-H bond axis (up) and in the C2 axis (down) of the first excited state
(1B1) of the water molecule. The insets show the lines along which
the ELF has been plotted and a ELF = 0.83 isosurface. O and H are
depicted as red and light-gray points in the inset, and with light-gray
triangles in the profiles. Vertical dashed lines indicate the position of
the separatrices between basins.

structing the corresponding 2-PDM under the RDMFT for-
malism. Given the wide use of TD-DFT in the study of photo-
chemical processes, we have decided to investigate the limits
of applicability of this reconstruction strategy. For this pur-
pose, we have used CASSCF (and full CI when possible) as a
reference method to assess the accuracy of the ELF when cal-
culated with some of the most commonly employed RDMFT
functionals, in prototypical molecules and excited states (HF,
H2O and C6H6) covering a diverse range of bonding patterns.
The first important conclusion that can be drawn from this
work is that any of the here explored reconstructions of the 2-
PDM are quite effective in capturing the right ELF topology.
The largest deviations in the latter are found in the case of
HF in the A1Π+ and B1Σ+ excited states with the GU, CGA,
BB, and BBC2 reconstructions, which are characterized by
a strong Rydberg character and the presence of degeneracies
(in A1Π+ ). On the other hand, in the case of H2O and C6H6,
all 2-PDM reconstructions recover the topology predicted by
CASCCF results. The bond pattern derived from the topol-
ogy of the ELF agrees with what is accepted for all the states
scrutinized: i) the A1Π+ states of HF are dissociative with a
broken F-H bond and a Rydberg electron; ii) the FC geometry
of the B1Σ+ state in HF has a strong Rydberg character while
the bond becomes strongly ionic at the equilibrium geometry;
iii) the B1 state of water is a mixed-valence Rydberg state;
and iv) the A state of benzene is a valence state of diminished
aromaticity. Contrary to the plain ELF topology, correlations
between electron pairs, as measured through the variances and

covariances of the basin populations, are found to be way
more sensitive to the specific form of the RDFMT functionals.
All of them tend to underestimate significantly the variance of
the basin populations, becoming less accurate as these fluctu-
ations increase. Altogether, the best average performance was
found for the ML and MLSIC functionals. The HF recon-
struction is particularly sensitive to the loss of the sum rule
which could even result in non-physical negative variances.
With the evidence presented in this paper we conclude that,
in the case of excited states computed with TD-DFT, "robust"
reconstructions, such as ML and MLSIC, should be preferred
to HF. Note that all the works found in literature31,34,94,95 that
have used the ELF to characterize photochemical processes in
excited (spin-preserving) states have used the HF reconstruc-
tion proposed by us up to now.31 Although this is the easiest
way to calculate the ELF in an excited state, it may lack the
necessary accuracy for non-innocent valence excited states.

ACKNOWLEDGMENTS

This work was partially supported by Fondecyt Grant No.
1220366, by the Center for the Development of Nanoscience
and Nanotechnology CEDENNA AFB220001, and by the su-
percomputing infrastructure of the NLHPC (ECM-02). TG
and CC thank to ANID REDES190102. AMP and MG thank
the Spanish MICIU, grant PID2021-122763NB-I00 for finan-
cial support. MG specifically acknowledges the Spanish MI-
CIU for the predoctoral grant FPU19/02903. We would like to
thank Professor Eduard Matito for the fruitful discussion and
for the help with the technical details of the source code of the
TopMod program.

SUPPORTING INFORMATION

The Supporting information includes details on: i) ELF
profiles in the ground state for the hydrogen fluorine molecule;
ii) full-CI ELF profiles computed with a def2-SV(P) basis
set, iii) The influence of negative occupation numbers on the
ELF of HF; iv) The ELF isosurfaces for all molecules, excited
states, and reconstructions; v) The equilibrium geometries of
all molecules; vi) The molecular orbitals involved in the elec-
tronic transitions; and vi) a description of the methodology
employed to compute the ELF

1J. J. Thomson, Lond. Edinb. Dublin Philos. Mag. J. Sci. 44, 293 (1897).
2E. Rutherford, Lond. Edinb. Dublin Philos. Mag. J. Sci. 21, 669 (1911).
3N. Bohr, Nature 121, 580 (1928).
4G. N. Lewis, Journal of the American Chemical Society 38, 762 (1916).
5R. Gillespie and R. S. Nyholm, Quarterly Reviews, Chemical Society 11,
339 (1957).

6R. J. Gillespie and E. A. Robinson, Journal of Computational Chemistry
28, 87 (2006).

7R. Born M.; Oppenheimer, Annalen der Physik 84, 457 (1927).
8P. L. A. Popelier, in Challenges and Advances in Computational Chemistry
and Physics (Springer International Publishing, Cham, 2016) pp. 23–52.

9R. F. W. Bader, Accounts of Chemical Research 18, 9 (1985).
10A. D. Becke and K. E. Edgecombe, The Journal of chemical physics 92,

5397 (1990).



11

11A. Savin, A. D. Becke, J. Flad, R. Nesper, H. Preuss, and H. G. Vonschner-
ing, Angewandte Chemie 30, 409 (1991).

12A. Savin, O. Jepsen, J. Flad, O. K. Andersen, H. Preuss, and H. G. von
Schnering, Angewandte Chemie International Edition in English 31, 187
(1992).

13B. Silvi and A. Savin, Nature 371, 683 (1994).
14A. Savin, B. Silvi, and F. Colonna, Canadian Journal of Chemistry-Revue

Canadienne De Chimie 74, 1088 (1996).
15A. Savin, R. Nesper, S. Wengert, and T. F. Fässler, Angeii Chem In Ed

Engl 36, 1808 (1997).
16M. Kohout, International Journal of Quantum Chemistry 97, 651 (2004).
17A. Savin, Journal of Physics and Chemistry of Solids 65, 2025 (2004).
18P. W. Ayers, Journal of Chemical Sciences 117, 441 (2005).
19J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402

(2015).
20A. E. Hillers-Bendtsen, F. O. Kjeldal, N. Ree, E. Matito, and K. V.

Mikkelsen, Phys. Chem. Chem. Phys. (2022).
21R. F. W. Bader, D. Bayles, and G. L. Heard, J. Chem. Phys. 112, 10095

(2000).
22Y.-G. Wang, K. B. Wiberg, and N. H. Werstiuk, J. Phys. Chem. A 111,

3592–3601 (2007).
23P. B. Coto, D. Roca-Sanjuán, L. Serrano-Andrés, A. Martín-Pendás,

S. Martí, and J. Andrés, J. Chem. Theory Comput. 5, 3032–3038 (2009).
24R. Chávez-Calvillo and J. Hernández-Trujillo, J. Phys. Chem. A 115,

13036–13044 (2011).
25V. Tognetti and L. Joubert, Chemical Physics Letters 557, 150 (2013).
26J. Jara-Cortés, J. M. Guevara-Vela, A. M. Pendás, and J. Hernández-

Trujillo, Journal of Computational Chemistry 38, 957 (2017).
27D. Ferro-Costas, E. Francisco, A. M. Pendás, and R. A. Mosquera,

ChemPhysChem 17, 2666 (2016).
28D. Ferro-Costas, A. M. Pendás, L. González, and R. A. Mosquera, Phys.

Chem. Chem. Phys. 16, 9249 (2014).
29E. I. Sánchez-Flores, R. Chávez-Calvillo, T. A. Keith, G. Cuevas, T. Rocha-

Rinza, and F. Cortés-Guzmán, Journal of Computational Chemistry 35, 820
(2014).

30L. Gutiérrez-Arzaluz, F. Cortés-Guzmán, T. Rocha-Rinza, and J. Peón,
Phys. Chem. Chem. Phys. 17, 31608 (2015).

31B. Maulen, A. Echeverri, T. Gómez, P. Fuentealba, and C. Cárdenas, Jour-
nal of Chemical Theory and Computation 15, 5532 (2019).

32J. Jara-Cortés, T. Rocha-Rinza, and J. Hernández-Trujillo, Computational
and Theoretical Chemistry 1053, 220 (2015).

33L. Gutiérrez-Arzaluz, D. Ramírez-Palma, F. Buitrón-Cabrera, T. Rocha-
Rinza, F. Cortés-Guzmán, and J. Peon, Chemical Physics Letters 683, 425
(2017).

34C. Guerra, L. Ayarde-Henriquez, M. D.-N. na, C. Cárdenas, P. Pérez, and
E. Chamorro, Phys. Chem. Chem. Phys. 23, 20598 (2021).

35M. N. R. Ashfold, B. Cronin, A. L. Devine, R. N. Dixon, and M. G. D.
Nix, Science 312, 1637 (2006).

36S. Axelrod, E. Shakhnovich, and R. Gómez-Bombarelli, Nature Commu-
nications 13 (2022).

37O. R. Alzueta, M. C. Cuquerella, and M. A. Miranda, The Journal of Or-
ganic Chemistry 84, 13329 (2019).

38M. Yang, C. Huo, A. Li, Y. Lei, L. Yu, and C. Zhu, Phys. Chem. Chem.
Phys. 19, 12185 (2017).

39P. Zhou and K. Han, Accounts of Chemical Research 51, 1681 (2018).
40J. Laksman, E. P. Månsson, A. Sankari, D. Céolin, M. Gisselbrecht, and

S. L. Sorensen, Phys. Chem. Chem. Phys. 15, 19322 (2013).
41M. Pastore, E. Mosconi, F. De Angelis, and M. Grátzel, The Journal of

Physical Chemistry C 114, 7205 (2010).
42L. F. V. Ferreira, M. Rosário Freixo, A. R. Garcia, and F. Wilkinson, J.

Chem. Soc., Faraday Trans. 88, 15 (1992).
43A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones,

P. J. Sadler, P. Wasserscheid, and P. S. Russell, Chem. Soc. Rev. 42, 8629
(2013).

44N. B. McGuinness, H. John, M. K. Kavitha, S. Banerjee, D. D. Dionys-
iou, and S. C. Pillai, in Photocatalysis: Applications (The Royal Society
of Chemistry, 2016) pp. 204–235.

45J. Yuen-Zhou, W. Xiong, and T. Shegai, J. Chem. Phys. 156, 030401
(2022).

46S. Grimme, Chemistry A European Journal 10, 3423 (2004).

47D. P. Tew, W. Klopper, and T. Helgaker, Journal of Computational Chem-
istry 28, 1307 (2007).

48J. F. Dobson, The Journal of Chemical Physics 94, 4328 (1991).
49J. F. Dobson, The Journal of Chemical Physics 98, 8870 (1993).
50B. Silvi, The Journal of Physical Chemistry A 107, 3081 (2003).
51E. Matito, B. Silvi, M. Duran, and M. Solà, The Journal of Chemical

Physics 125, 024301 (2006).
52A. Echeverri, T. Gómez, E. Luppi, C. Botuha, J. Contreras-Garcia, and

C. Cárdenas, Manuscript in preparation (2022).
53F. Feixas, E. Matito, M. Duran, M. Solà, and B. Silvi, Journal of Chemical

Theory and Computation 6, 2736 (2010).
54R. Parr, Density-functional theory of atoms and molecules (Oxford Univer-

sity Press Clarendon Press, New York Oxford England, 1989).
55R. McWeeny, Methods of Molecular Quantum Mechanics (Academic, Lon-

don, 1989).
56R. McWeeny and B. T. Sutcliffe, Methods of Molecular Quantum Mechan-

ics, Monographs of Theoretical Chemistry, Vol. 2 (Academic Press, Lon-
don, 1969).

57T. L. Gilbert, Phys. Rev. B 12, 2111 (1975).
58M. A. Buijse and E. J. Baerends, Molecular Physics 100, 401 (2002).
59M. Buijse and P. P. E. Baerends (1991).
60S. Goedecker and C. J. Umrigar, Phys. Rev. Lett. 81, 866 (1998).
61O. Gritsenko, K. Pernal, and E. J. Baerends, The Journal of Chemical

Physics 122, 204102 (2005).
62G. Csányi and T. A. Arias, Phys. Rev. B 61, 7348 (2000).
63G. Csányi, S. Goedecker, and T. A. Arias, Physical Review A 65 (2002),

10.1103/physreva.65.032510.
64M. A. L. Marques and N. N. Lathiotakis, Physical Review A 77 (2008),

10.1103/physreva.77.032509.
65J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).
66F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).
67M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,

J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Peters-
son, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov,
J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toy-
ota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Ki-
tao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro,
M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,
R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S.
Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Strat-
mann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L.
Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dan-
nenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz,
J. Cioslowski, and D. J. Fox, “Gaussian 09 revision a.2,” (2009).

68F. F. S. Noury, X. Krokidis and B. Silvi, “Topmod package,” (1997).
69M. S. Gordon, M. W. Schmidt, G. M. Chaban, K. R. Glaesemann, W. J.

Stevens, and C. Gonzalez, J. Chem. Phys. 110, 4199 (1999).
70E. Cancès and K. Pernal, J. Chem. Phys. 128, 134108 (2008).
71C. Lanssens, P. W. Ayers, D. Van Neck, S. De Baerdemacker, K. Gunst,

and P. Bultinck, arXiv.org , 084104 (2017).
72A. Hitchcock and C. Brion, Chemical Physics 61, 281 (1981).
73A. Hitchcock, G. Williams, C. Brion, and P. Langhoff, Chemical Physics

88, 65 (1984).
74G. D. Lonardo and A. E. Douglas, Canadian Journal of Physics 51, 434

(1973).
75M. Rubio, L. Serrano-Andrés, and M. Merchán, The Journal of Chemical

Physics 128, 104305 (2008).
76J. Philis, A. Bolovinos, G. Andritsopoulos, E. Pantos, and P. Tsekeris, J.

Phys. B: Atom. Mol. Phys. 14, 3621–3635 (1981).
77J. Pitarch-Ruiz, J. Sánchez-Marín, C. Lavín, A. Velasco, and I. Martín,

Chemical Physics Letters 476, 151 (2009).
78T. Novoa, J. Contreras-García, P. Fuentealba, and C. Cárdenas, The Journal

of Chemical Physics 150, 204304 (2019).
79H. Edelsbrunner and J. L. Harer, Computational Topology An introduction

(American Mathematical Society, 2010).
80M. Kasha, Discuss. Faraday Soc. 9, 14 (1950).
81R. Mota, R. Parafita, A. Giuliani, M.-J. H.-F. c, J. L. G. Garcia, S. Hoff-

mann, N. Mason, P. A. Ribeiro, M. Raposo, and P. L. ao Vieira, Chemical
Physics Letters 416, 152 (2005).



12

82H. t. Wang, W. S. Felps, and S. P. McGlynn, J. Chem. Phys. 67, 2614
(1977).

83P. B. Karadakov, J. Phys. Chem. A 112, 7303–7309 (2008).
84E. C. da Silva, J. Gerratt, D. L. Cooper, and M. Raimondi, The Journal of

Chemical Physics 101, 3866–3887 (1994).
85A. L. SKLAR, Reviews of Modern Physics 14, 232 (1942).
86E. Hückel, Z. physik 70, 204 (1931).
87H. Ottosson, Nature Chemistry 4, 969 (2012).
88N. C. Baird, Journal of the American Chemical Society 94, 4941 (1972).
89T. Slanina, R. Ayub, J. Toldo, J. Sundell, W. Rabten, M. Nicaso, I. Al-

abugin, I. F. Galván, A. K. Gupta, R. Lindh, A. Orthaber, R. J. Lewis,
G. Grönberg, J. Bergman, and H. Ottosson, J. Am. Chem. Soc. 142,

10942–10954 (2020).
90M. Rosenberg, C. Dahlstrand, K. Kilså, and H. Ottosson, Chem. Rev. 114,
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